JP2007230168A - Manufacturing method of foamed resin molded product and foamed resin molded product - Google Patents

Manufacturing method of foamed resin molded product and foamed resin molded product Download PDF

Info

Publication number
JP2007230168A
JP2007230168A JP2006057572A JP2006057572A JP2007230168A JP 2007230168 A JP2007230168 A JP 2007230168A JP 2006057572 A JP2006057572 A JP 2006057572A JP 2006057572 A JP2006057572 A JP 2006057572A JP 2007230168 A JP2007230168 A JP 2007230168A
Authority
JP
Japan
Prior art keywords
temperature
resin
resin foam
cavity
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057572A
Other languages
Japanese (ja)
Inventor
Keiichi Aikawa
敬一 相川
Masaaki Kito
雅昭 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Engineering Inc
Original Assignee
Hayashi Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Engineering Inc filed Critical Hayashi Engineering Inc
Priority to JP2006057572A priority Critical patent/JP2007230168A/en
Publication of JP2007230168A publication Critical patent/JP2007230168A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a manufacturing efficiency for a foamed resin molded product excellent in acoustic absorption property. <P>SOLUTION: A manufacturing method of the foamed resin molded product comprises arranging general faces 23 and 33 at molding faces 21 and 31 of at least one of molds 20 and 30 and a temperature up section 24 to be higher temperature than the general face and forming the foamed resin molded product M10 under forming a skin layer M16 not foamed on the surface contacted with the general faces 23 and 33 by separating the molds 20 and 30 and forming an air vent hole M16a on the surface adjacent to the temperature up section 24. Further a heat insulating material (a heat insulating structure) 26 which thermally insulates the general faces 23 and 33 and the temperature up section 24 may be formed on at least one of the molding faces 21 and 31 of molds 20 and 30. The temperature up section 24 can be formed into a shape to be more projected to a cavity C1 than the general faces 23 and 33. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車の内装材等に用いられる樹脂発泡成形体の製造方法および樹脂発泡成形体に関する。   The present invention relates to a method for producing a resin foam molded article used for automobile interior materials and the like, and a resin foam molded article.

従来より、以下のようにして、一対の成形型を離間(コアバック)させて発泡樹脂成形材料を射出成形し、自動車の内装材に用いている。
まず、雌雄対の成形型を型締めして形成されるキャビティに発泡剤を含む樹脂成形材料を加熱溶融させて充填し、所定秒数の経過後、前記雌雄対の成形型を相互に所定距離だけ離間させてキャビティの容積を拡張する。すると、キャビティ内に充填された樹脂成形材料は、内圧が開放され、内部に含まれる発泡剤が発泡してキャビティに追随して膨張する。その後、樹脂成形材料は、多数の気泡を有する状態で固化し、樹脂発泡成形体とされる。
上記樹脂発泡成形体は、金型に接して成形の早い段階で冷却形成された表面のスキン層と、該スキン層の内側に発泡剤の発泡にともなって形成された発泡層とを有する構造とされている。得られる樹脂発泡成形体は、軽量で触感が柔らかく、自動車の内装用のパネル等での用途がある。また、成形工程が一工程で済む合理的な利点がある。
特開2005−59224号公報 特開2002−317548号公報
Conventionally, a foamed resin molding material is injection-molded by separating (core back) a pair of molding dies as described below and used as an automobile interior material.
First, a resin molding material containing a foaming agent is heated and melted and filled in a cavity formed by clamping a male and female mold, and after a predetermined number of seconds, the male and female molds are placed at a predetermined distance from each other. The cavity volume is expanded by being spaced apart by a distance. Then, the resin molding material filled in the cavity is released from the internal pressure, and the foaming agent contained therein expands to follow the cavity and expand. Thereafter, the resin molding material is solidified in a state having a large number of bubbles to form a resin foam molding.
The resin foam molded body has a structure having a skin layer on the surface formed by cooling in contact with a mold at an early stage of molding, and a foam layer formed along with foaming of the foaming agent inside the skin layer. Has been. The obtained resin foam molded article is lightweight and soft to the touch, and has applications in automobile interior panels and the like. In addition, there is a reasonable advantage that the molding process is completed in one step.
JP-A-2005-59224 JP 2002-317548 A

しかしながら、自動車の内装材として良好な吸音性が得られる樹脂発泡成形体を効率よく製造することができなかった。   However, it has not been possible to efficiently produce a resin foam molded article that provides good sound absorption as an automobile interior material.

特許文献1には、スキン層、低発泡層、高発泡層の少なくとも3種類の層をこの順に含有した熱可塑性樹脂発泡成形体が記載されている。同文献の段落0015では、高発泡層部分の拡大写真について、低発泡層に接する部分の0.5mm角に相当する領域を取り、この領域に含まれる気泡とその大部分が0.5mm角の領域に含まれる気泡についてそれぞれの厚み方向の径(Da1)と該厚み方向と垂直な方向の径(Da2)を測定し、個数平均値を算出することにより求めることが記載されている。
同熱可塑性樹脂発泡成形体は、0.5mm角の領域に含まれる気泡から径Da1,Da2を求めており、気泡の最大長径が0.5mm程度と小さい気泡を多数有するものである。このため、発泡成形体内部の通気性が無く、自動車の内装材としての触感が良好であるとは言えないうえ、吸音性が高いとは言えなかった。
Patent Document 1 describes a thermoplastic resin foam molded article containing at least three types of layers in this order: a skin layer, a low foam layer, and a high foam layer. In paragraph 0015 of the same document, for the enlarged photograph of the high foam layer part, an area corresponding to 0.5 mm square of the part in contact with the low foam layer is taken, and the bubbles contained in this area and most of them are 0.5 mm square. It is described that the bubbles contained in the region are obtained by measuring the diameter (Da1) in the thickness direction and the diameter (Da2) in the direction perpendicular to the thickness direction and calculating the number average value.
The thermoplastic resin foamed molded article has a diameter Da1, Da2 obtained from bubbles contained in a 0.5 mm square region, and has a large number of small bubbles with a maximum long diameter of about 0.5 mm. For this reason, there is no air permeability inside the foam molded article, and it cannot be said that the tactile sensation as an automobile interior material is good, and it cannot be said that the sound absorption is high.

特許文献2には、内在するセルが厚み方向に紡錘状に延びたポリオレフィン発泡体からなるクッション層と表面層とを含む衝撃吸収床材が記載されている。
同衝撃吸収床材も、アスペクト比の平均値が1.1〜4と、特許文献1記載の熱可塑性樹脂発泡成形体よりも小さいため、最大長径が1mmに達するような非常に細長いセルは存在しない。また、同公報図1(b)に示すように、セルどうしが連通していないため、床材内部の通気性が無く、内装材としての触感が良好であるとは言えないうえ、吸音性も高いとは言えなかった。
Patent Document 2 describes an impact-absorbing floor material including a cushion layer and a surface layer made of a polyolefin foam in which inner cells extend in a spindle shape in the thickness direction.
The shock absorbing flooring also has an average aspect ratio of 1.1 to 4, which is smaller than the thermoplastic resin foam molded article described in Patent Document 1, and therefore there are very elongated cells whose maximum major axis reaches 1 mm. do not do. In addition, as shown in FIG. 1B, since the cells do not communicate with each other, there is no air permeability inside the flooring, and it cannot be said that the tactile sensation as an interior material is good, and the sound absorption is also good. It was not expensive.

本発明は、吸音性の良好な樹脂発泡成形体の製造効率を向上させることを目的とする。   An object of this invention is to improve the manufacturing efficiency of a resin foam molded object with favorable sound-absorbing property.

上記目的を達成するため、本発明は、互いに近接および離反可能な一対の成形型を所定の近接位置に近接させたときに形成されるキャビティに発泡剤を含む樹脂成形材料を充填した後、前記一対の成形型を所定の離間位置まで離間させて前記キャビティを拡張させることにより該キャビティ内の樹脂成形材料に発泡セルを形成させて樹脂発泡成形体を成形する樹脂発泡成形体の製造方法であって、前記成形型の少なくとも一方の成形面に一般面と該一般面より高温となる昇温部とを少なくとも設け、前記一対の成形型を離間させることにより前記一般面に接した表面に非発泡のスキン層を形成しながら前記昇温部に接した表面に開孔を形成して前記樹脂発泡成形体を成形することを特徴とする。
また、本発明の樹脂発泡成形体は、前記一対の成形型を離間させることにより前記一般面に接した表面に非発泡のスキン層を形成しながら前記昇温部に接した表面に開孔を形成して成形したことを特徴とする。
In order to achieve the above-mentioned object, the present invention fills a cavity formed when a pair of molds capable of approaching and separating from each other are brought close to a predetermined proximity position with a resin molding material containing a foaming agent, and then A method for producing a resin foam molded article in which a pair of molds are separated to a predetermined separation position and the cavity is expanded to form foam cells in the resin molding material in the cavity to mold a resin foam molded article. In addition, at least one molding surface of the mold is provided with at least a general surface and a temperature raising portion having a temperature higher than the general surface, and the pair of molds are separated from each other so that the surface in contact with the general surface is non-foamed. The resin foam molded article is formed by forming an opening in the surface in contact with the temperature raising portion while forming the skin layer.
Further, the resin foam molded body of the present invention has an opening on the surface in contact with the temperature raising portion while forming a non-foamed skin layer on the surface in contact with the general surface by separating the pair of molds. It is formed and molded.

樹脂成形材料を充填したキャビティを形成する一対の成形型が離間するとき、成形型の一般面に接した樹脂成形材料の表面は冷却されて非発泡のスキン層が形成され、該一般面よりも高温の昇温部に接した樹脂成形材料の表面は開孔が形成される。これにより、後加工で樹脂発泡成形体の表面に開孔を形成する必要が無く、成形と同時に樹脂発泡成形体の表面に開孔が形成される。ここで、樹脂発泡成形体へ向かう音は、樹脂発泡成形体の開孔に進入して吸音される。従って、成形と同時に良好な吸音性を有する樹脂発泡成形体が得られ、良好な吸音性を有する樹脂発泡成形体の製造効率が向上する。
なお、成形型の成形面に温度を変えることなく凹部と凸部とを設けると、キャビティに充填された樹脂成形材料内で成形面の凹部に対応する内部の位置の温度が成形面の凸部に対応する内部の位置の温度よりも高くなる結果、樹脂発泡成形体の内部に空洞が形成される。しかし、凹部に接した表面にも凸部に接した表面にもスキン層が形成されてしまう。本発明では、成形型の離間と同時に昇温部に接した表面へ強制的に開孔が形成されるので、成形と同時に良好な吸音性の樹脂発泡成形体が得られ、製造効率が向上する。
When a pair of molds forming a cavity filled with a resin molding material are separated from each other, the surface of the resin molding material in contact with the general surface of the mold is cooled to form a non-foamed skin layer. Openings are formed on the surface of the resin molding material in contact with the high temperature heating portion. Thereby, it is not necessary to form an opening on the surface of the resin foam molded body by post-processing, and an opening is formed on the surface of the resin foam molded body simultaneously with molding. Here, the sound toward the resin foam molded article enters the opening of the resin foam molded article and is absorbed. Therefore, a resin foam molded article having good sound absorbing properties can be obtained simultaneously with molding, and the production efficiency of the resin foam molded article having good sound absorbing properties is improved.
If the concave and convex portions are provided on the molding surface of the molding die without changing the temperature, the temperature at the internal position corresponding to the concave portion of the molding surface in the resin molding material filled in the cavity is increased. As a result of the temperature becoming higher than the temperature at the internal position corresponding to, a cavity is formed inside the resin foam molded body. However, a skin layer is formed on the surface in contact with the concave portion and on the surface in contact with the convex portion. In the present invention, since a hole is forcibly formed on the surface in contact with the temperature rising portion at the same time as the separation of the mold, a good sound-absorbing resin foam molded body can be obtained simultaneously with the molding, and the production efficiency is improved. .

上記昇温部は、一対の成形型の一方にのみ設けてもよいし、両方の成形型に設けてもよい。前記昇温部を成形型に複数設けると、樹脂発泡成形体へ向かう音波のうち開孔に進入する割合が多くなるので、樹脂発泡成形体の吸音性が向上する。各昇温部は、独立した部材でも成形型の一部でもよく、単一の部材で構成されても複数の部材で構成されてもよい。
前記昇温部が断熱構造で一般面から断熱されると、昇温部から一般面への熱の移動が抑えられるので、昇温部が高温に維持され安定して樹脂発泡成形体に開孔が形成される。むろん、前記昇温部は一般面と接して設けられてもよく、この場合、昇温部に断熱材等を用いることができる。
前記昇温部は、一般面と面一でもよいが、一般面よりも前記キャビティに向けて突出させた形状としてもよい。すると、より確実に開孔が樹脂発泡成形体に形成される。
前記昇温部は、位置が固定されてもよいし、移動可能にされてもよい。
前記昇温部は、加熱機構により一般面より高温に加熱されてもよい。すると、昇温部が安定して高温に維持され安定して樹脂発泡成形体に開孔が形成される。むろん、前記昇温部は、加熱機構により加熱されなくても、高温の樹脂成形材料から熱を供給されて高温になるので、樹脂発泡成形体に開孔が形成される。
なお、昇温とは、温度が上がる意味であり、加熱機構等により積極的に温度を上げる意味でもよいし、加熱機構を用いずに高温の樹脂成形材料の熱により自然と温度が上がる意味でもよい。
The temperature raising part may be provided only on one of the pair of molds or on both molds. If a plurality of the temperature raising portions are provided in the mold, the ratio of the sound waves going to the resin foam molded body to enter the openings increases, so that the sound absorption of the resin foam molded body is improved. Each temperature raising unit may be an independent member or a part of a mold, and may be composed of a single member or a plurality of members.
When the temperature rising part is insulated from the general surface with a heat insulating structure, the heat transfer from the temperature rising part to the general surface is suppressed, so that the temperature rising part is maintained at a high temperature and stably opened in the resin foam molded body. Is formed. Of course, the temperature raising portion may be provided in contact with a general surface, and in this case, a heat insulating material or the like can be used for the temperature raising portion.
The temperature raising unit may be flush with the general surface, but may have a shape protruding toward the cavity from the general surface. Then, the opening is more reliably formed in the resin foam molded body.
The temperature raising unit may be fixed in position or movable.
The temperature raising unit may be heated to a temperature higher than the general surface by a heating mechanism. Then, the temperature raising portion is stably maintained at a high temperature, and the openings are stably formed in the resin foam molded body. Of course, even if the temperature raising portion is not heated by the heating mechanism, heat is supplied from the high-temperature resin molding material and the temperature rises, so that an opening is formed in the resin foam molded body.
The term “temperature rise” means that the temperature rises, and may mean that the temperature is positively increased by a heating mechanism or the like, or it means that the temperature rises naturally due to the heat of the high-temperature resin molding material without using the heating mechanism. Good.

上記一般面は、冷却機構により樹脂成形材料の融点より低い温度に冷却されてもよい。すると、一般面が安定して昇温部より低温に維持され安定して樹脂発泡成形体にスキン層が形成される。むろん、前記一般面は、冷却機構により冷却されなくても、外気で成形型が冷却されると昇温部より低温となるので、樹脂発泡成形体にスキン層が形成される。
上記成形型の成形面には、一般面と昇温部とだけを設けてもよいし、一般面と昇温部とを断熱する断熱構造等、一般面と昇温部以外の構成を設けてもよい。
また、一般面を冷却する冷却機構や、昇温部を加熱する加熱機構や、昇温部をスライド駆動するスライド駆動機構なども用いて樹脂発泡成形体を成形してもよい。
上述した各場合も、特許請求の範囲に含まれる。
The general surface may be cooled to a temperature lower than the melting point of the resin molding material by a cooling mechanism. Then, the general surface is stably maintained at a lower temperature than the temperature raising portion, and the skin layer is stably formed on the resin foam molded article. Of course, even if the general surface is not cooled by the cooling mechanism, the temperature becomes lower than the temperature raising portion when the mold is cooled by the outside air, so that a skin layer is formed on the resin foam molded body.
The molding surface of the mold may be provided with only the general surface and the temperature raising part, or a structure other than the general surface and the temperature raising part, such as a heat insulating structure that insulates the general surface and the temperature raising part. Also good.
In addition, the resin foam molded body may be molded using a cooling mechanism for cooling the general surface, a heating mechanism for heating the temperature raising portion, a slide drive mechanism for slidingly driving the temperature raising portion, or the like.
Each case described above is also included in the claims.

請求項1に係る発明によれば、吸音性の良好な樹脂発泡成形体の製造効率を向上させることが可能になる。
請求項2に係る発明では、樹脂発泡成形体に向かう音が開孔から空洞へ進入して吸音されるので、製造される樹脂発泡成形体の吸音性を向上させることが可能になる。
請求項3、請求項4、請求項6、請求項7に係る発明では、より確実に樹脂発泡成形体の表面に開孔を形成することができ、製造される樹脂発泡成形体の吸音性をさらに向上させることが可能になる。
According to the invention which concerns on Claim 1, it becomes possible to improve the manufacture efficiency of a resin foam molded object with favorable sound absorption property.
In the invention which concerns on Claim 2, since the sound which goes to a resin foam molded object approachs into a cavity from an opening and is absorbed, it becomes possible to improve the sound absorption property of the resin foam molded object manufactured.
In the inventions according to claim 3, claim 4, claim 6, and claim 7, it is possible to more reliably form holes on the surface of the resin foam molded article, and to improve the sound absorption of the resin foam molded article to be manufactured. Further improvement is possible.

請求項5に係る発明では、さらに確実に樹脂発泡成形体の表面に開孔を形成することができ、製造される樹脂発泡成形体の吸音性をさらに向上させることが可能になる。
請求項8に係る発明では、成形型の離間と同時に昇温部がキャビティに向けてスライドして樹脂成形材料の表面に開孔を形成するので、表面に開孔を有する樹脂発泡成形体の製造効率を向上させることが可能になる。
In the invention which concerns on Claim 5, an opening can be more reliably formed in the surface of a resin foam molded object, and it becomes possible to further improve the sound absorption property of the resin foam molded object manufactured.
In the invention according to claim 8, since the temperature raising portion slides toward the cavity simultaneously with the separation of the molding die to form the opening in the surface of the resin molding material, the production of the resin foam molding having the opening in the surface Efficiency can be improved.

請求項9に係る発明では、より安定した形状の開孔を表面に有する樹脂発泡成形体を得ることが可能になる。
請求項10に係る発明では、良好な製造効率にて吸音性の良好な樹脂発泡成形体を得ることが可能になる。
In the invention according to the ninth aspect, it is possible to obtain a resin foam molded body having an opening having a more stable shape on the surface.
In the invention which concerns on Claim 10, it becomes possible to obtain the resin foam molding with favorable sound absorption property with favorable manufacturing efficiency.

以下、下記の順序に従って本発明の実施の形態について説明する。
(1)樹脂発泡成形体の製造方法:
(2)変形例:
Hereinafter, embodiments of the present invention will be described in the following order.
(1) Manufacturing method of resin foam molding:
(2) Modification:

(1)樹脂発泡成形体の製造方法:
図1は本発明の一実施形態に係る樹脂発泡成形体M10の製造方法を模式的に示す図、図2は本製造方法に用いられる樹脂発泡成形体の製造装置10を模式的に示す図、図3は成形型20に断熱材26と昇温部材24を取り付ける様子を示す分解斜視図、図4は所定の近接位置L1にあるときにキャビティC1を形成する成形型20,30の要部を垂直断面にて示す図、図5は成形型20の移動量を示すタイミングチャート、図6は樹脂発泡成形体の一般部M10aの構造を垂直断面にて示す図、図7はキャビティに充填された樹脂成形材料M1の変化を示す断面図、図8は本発明の一実施形態に係る樹脂発泡成形体M10の一部の平面および垂直断面を示す図、図9は本樹脂発泡成形体M10を適用した自動車用内装材の外観を示す斜視図である。
本樹脂発泡成形体M10は、吸音パネル等、自動車の内装材等に用いられる。
(1) Manufacturing method of resin foam molding:
FIG. 1 is a diagram schematically illustrating a method for manufacturing a resin foam molded body M10 according to an embodiment of the present invention, and FIG. 2 is a diagram schematically illustrating a resin foam molded body manufacturing apparatus 10 used in the present manufacturing method. FIG. 3 is an exploded perspective view showing a state in which the heat insulating material 26 and the temperature raising member 24 are attached to the mold 20, and FIG. 4 shows the main parts of the molds 20, 30 that form the cavity C 1 when in the predetermined proximity position L 1. FIG. 5 is a timing chart showing the amount of movement of the molding die 20, FIG. 6 is a figure showing the structure of the general part M10a of the resin foam molding in a vertical section, and FIG. 8 is a cross-sectional view showing a change in the resin molding material M1, FIG. 8 is a diagram showing a partial plane and vertical cross section of the resin foam molded body M10 according to an embodiment of the present invention, and FIG. 9 is an application of the resin foam molded body M10. The perspective view which shows the external appearance of the interior material for automobiles A.
This resin foam molding M10 is used for automobile interior materials such as sound absorbing panels.

本製造方法では、互いに近接および離反可能な一対の成形型20,30を所定の近接位置L1に近接させたときに形成されるキャビティC1に発泡剤を含む樹脂成形材料M1を充填した後、前記一対の成形型20,30を所定の離間位置L2まで離間(コアバック)させて前記キャビティC1を拡張させることにより該拡張したキャビティC1内の樹脂成形材料に霜柱状の発泡セルM13を形成させて樹脂発泡成形体M10を成形する。成形体M10は、平板状、曲板状、シート状、等、薄く広がった形状に形成され、該成形体の表面は、平面形状、曲面形状、凹凸形状、等、様々な形状とすることができる。
ここで、近接位置L1にあるときの一対の成形型20,30の間の距離d1は、1.0〜10.0mmとされている。距離d1を下限以上にすると厚み方向(離間方向D1)の途中で発泡セルが切断されず霜柱状発泡セルが厚み方向へ十分に長くなって内部の通気性が大きくなることにより良好な吸音性が得られ内装材として良好な弾性かつ良好な触感が得られる点で好ましく、距離d1を上限以下にすると樹脂発泡成形体が固くなりすぎないとともに霜柱状発泡セルが厚み方向へ十分に長くなって内部の通気性が大きくなることにより良好な吸音性が得られ良好な弾性かつ良好な触感が得られる点で好ましいためである。また、近接位置L1から離間位置L2までの離間距離(コアバック距離)d2は、1.0〜50.0mmとされ、より好ましくは4.0〜20.0mmとされる。距離d2を下限以上にすると離間方向D1において発泡セルが1.0mm以上と十分に長くなって霜柱状発泡セルの部分の通気度が大きくなることにより良好な吸音性が得られる点で好ましく、距離d2を上限以下にすると厚み方向の途中で発泡セルが切断されないことにより内装材として良好な弾性かつ良好な触感が得られる点で好ましいためである。なお、樹脂発泡成形体M10の厚みd3は、d1+d2となる。本製造方法では、表面に非発泡のスキン層M16を形成しながら、一対の成形型20,30の離間方向D1へ前記離間距離d2以下の範囲内で1.0mm以上となるように気泡を連続させて霜柱状に発泡セルM13を伸長させて、樹脂発泡成形体M10を成形する。
ここで、成形型20,30の少なくとも一方の成形面21,31には、一般面(23)と、該一般面より高温となる昇温部(24)とを少なくとも設けている。そして、本製造方法は、一対の成形型20,30を離間させることにより一般面23に接した表面(一般面M10b)に非発泡のスキン層M16を形成しながら昇温部24に接した表面に通気孔(開孔)を形成して、樹脂発泡成形体M10を成形する。
In this manufacturing method, the resin molding material M1 containing a foaming agent is filled into the cavity C1 formed when a pair of molds 20 and 30 that can approach and separate from each other are brought close to a predetermined proximity position L1, and then the above-mentioned The pair of molds 20 and 30 are separated (core back) to a predetermined separation position L2 to expand the cavity C1, thereby forming a frost column-shaped foam cell M13 in the resin molding material in the expanded cavity C1. Resin foam molding M10 is molded. The molded body M10 is formed in a thin and wide shape such as a flat plate shape, a curved plate shape, a sheet shape, and the surface of the molded body may have various shapes such as a planar shape, a curved surface shape, and an uneven shape. it can.
Here, the distance d1 between the pair of molding dies 20 and 30 at the proximity position L1 is set to 1.0 to 10.0 mm. When the distance d1 is greater than or equal to the lower limit, the foamed cells are not cut in the middle of the thickness direction (separating direction D1), and the frost columnar foamed cells are sufficiently long in the thickness direction to increase the internal air permeability, thereby providing good sound absorption. The obtained interior material is preferable in terms of obtaining good elasticity and good tactile sensation, and if the distance d1 is set to the upper limit or less, the resin foam molded body does not become too hard and the frost columnar foam cell becomes sufficiently long in the thickness direction and the inside. This is because it is preferable in that good air-absorbing property can be obtained and good elasticity and good tactile sensation can be obtained. Further, the separation distance (core back distance) d2 from the proximity position L1 to the separation position L2 is 1.0 to 50.0 mm, and more preferably 4.0 to 20.0 mm. When the distance d2 is set to the lower limit or more, the foam cell is sufficiently long as 1.0 mm or more in the separation direction D1, and it is preferable in that good sound absorption can be obtained by increasing the air permeability of the frost columnar foam cell portion. If d2 is less than or equal to the upper limit, the foamed cells are not cut in the thickness direction, which is preferable in that good elasticity and good tactile sensation can be obtained as an interior material. The thickness d3 of the resin foam molded body M10 is d1 + d2. In this manufacturing method, while forming the non-foamed skin layer M16 on the surface, the bubbles are continuously arranged in the separation direction D1 of the pair of molds 20 and 30 so as to be 1.0 mm or more within the range of the separation distance d2 or less. The foamed cell M13 is elongated in the form of a frost column, and the resin foam molded body M10 is molded.
Here, at least one of the molding surfaces 21 and 31 of the molds 20 and 30 is provided with at least a general surface (23) and a temperature raising portion (24) that is higher in temperature than the general surface. And this manufacturing method is the surface which contacted the temperature rising part 24, forming the non-foamed skin layer M16 in the surface (general surface M10b) which contacted the general surface 23 by separating a pair of shaping | molding die 20 and 30. Vent holes (open holes) are formed in the resin foam molded body M10.

本樹脂発泡成形体を成形するのに適する成形装置としては、公知のインラインスクリュー式の射出成形機を用いることが可能であり、形態(堅型、横型)や駆動方式(油圧式、電動式等)は問わない。
図2は、本樹脂発泡成形体を成形するための発泡射出成形機の一例を示している。発泡射出成形機10は、成形材料投入ホッパ13、ガス貯留タンク14、樹脂成形材料の押出方向を軸とした円筒形状の外筒部材15、該外筒部材に挿入されたスクリュー16、外筒部材15の途中に付設されたガス注入装置17、スクリュー16を回転駆動する図示しないモータ、雄型とされた移動型20、雌型とされた固定型30、冷却機構40、等を備え、部材13〜16,20,30の主要部は金属製とされている。スクリュー16のL/D比は、例えば、20程度とすることができる。外筒部材15の先に取り付けられる成形型20,30は、雌雄対の金型とされ、型締め状態で密閉された所要のキャビティC1を形成する。ガス注入装置17は、例えば、不活性ガスの注入圧力を一定圧力に制御する。
発泡射出成形機10は、射出口15aから液状(溶融状態を含む)の樹脂成形材料をキャビティC1に射出し、雌型30から雄型20を所定の離間位置まで離間させてキャビティC1内の樹脂成形材料を発泡させ、該樹脂成形材料を固化または硬化させて成形することにより、樹脂発泡射出成形体M10を形成する。そして、金型20,30を開けて成形体M10を取り出すことにより、樹脂発泡射出成形体の製造の1サイクルが終了する。
なお、移動型20を雌型にし、固定型30を雄型にしてもよい。また、成形型20のみをスライド動作可能にする以外にも、射出口が形成された成形型30もスライド動作可能にしてもよいし、該成形型30のみスライド動作可能にしてもよい。さらに、成形型20として、スライドコアを用いた金型を用いてもよい。
As a molding apparatus suitable for molding the resin foam molded body, a known in-line screw type injection molding machine can be used, and the form (solid type, horizontal type) or drive system (hydraulic type, electric type, etc.) ) Does not matter.
FIG. 2 shows an example of a foam injection molding machine for molding the resin foam molding. The foam injection molding machine 10 includes a molding material charging hopper 13, a gas storage tank 14, a cylindrical outer cylinder member 15 centering on the extrusion direction of the resin molding material, a screw 16 inserted into the outer cylinder member, an outer cylinder member 15 is provided with a gas injection device 17 attached in the middle of 15, a motor (not shown) that rotationally drives the screw 16, a moving mold 20 that is a male mold, a fixed mold 30 that is a female mold, a cooling mechanism 40, and the like. The main parts of ˜16, 20, and 30 are made of metal. The L / D ratio of the screw 16 can be set to about 20, for example. The molding dies 20 and 30 attached to the tip of the outer cylinder member 15 are male and female molds, and form a required cavity C1 sealed in a clamped state. For example, the gas injection device 17 controls the injection pressure of the inert gas to a constant pressure.
The foam injection molding machine 10 injects a liquid (including a molten state) resin molding material from the injection port 15a into the cavity C1, and separates the male mold 20 from the female mold 30 to a predetermined separation position, thereby resin in the cavity C1. By foaming the molding material and solidifying or curing the resin molding material, the resin foam injection molded body M10 is formed. Then, by opening the molds 20 and 30 and taking out the molded body M10, one cycle of manufacturing the resin foam injection molded body is completed.
The movable mold 20 may be a female mold, and the fixed mold 30 may be a male mold. In addition to enabling only the molding die 20 to slide, the molding die 30 formed with the injection port may be slidable, or only the molding die 30 may be slidable. Furthermore, a mold using a slide core may be used as the mold 20.

図4に示すように、移動型20には、一般部22、昇温部材(昇温部)24、断熱材(断熱構造)26、が設けられている。移動型20の成形面21には、一般部の一般面23、昇温部材24の本体部24a、断熱材26のキャビティ側面26c、が設けられていることになる。固定型30は、一般部32のみからなる。むろん、図10に示すように固定型30にも昇温部24や断熱構造26を設けてもよいし、固定型のみ昇温部や断熱構造を設けてもよい。
移動型の一般部22と固定型30の材質には、S50C鋼(47W/m/K)、S50C鋼(59W/m/K)、SKD61鋼(43W/m/K)、等を用いることができ、例えば熱伝導率40〜400W/m/Kの材料を用いることができる。
図3に示すように、移動型の成形面21には、断熱材26を挿入して取り付けるための略円錐台状の断熱材取付孔21aが昇温部材24の数に合わせて形成されている。
As shown in FIG. 4, the movable mold 20 is provided with a general part 22, a temperature raising member (temperature raising part) 24, and a heat insulating material (heat insulating structure) 26. The molding surface 21 of the movable mold 20 is provided with a general surface 23 of the general portion, a body portion 24a of the temperature raising member 24, and a cavity side surface 26c of the heat insulating material 26. The fixed mold 30 includes only a general part 32. Of course, as shown in FIG. 10, the fixed mold 30 may be provided with the temperature raising part 24 and the heat insulating structure 26, or the fixed mold may be provided with the temperature rising part and the heat insulating structure.
The material of the movable general part 22 and the fixed mold 30 may be S50C steel (47 W / m / K), S50C steel (59 W / m / K), SKD61 steel (43 W / m / K), or the like. For example, a material having a thermal conductivity of 40 to 400 W / m / K can be used.
As shown in FIG. 3, a substantially frustoconical heat insulating material attachment hole 21 a for inserting and attaching the heat insulating material 26 is formed on the movable molding surface 21 according to the number of the temperature raising members 24. .

昇温部を構成する昇温部材24の材質には、アルミニウムや銅等の金属、等の熱伝導率の高い材質を用いることができ、例えば熱伝導率200〜400W/m/Kの材料を用いることができる。複数設けられる場合の昇温部材24の分散密度は、樹脂発泡成形体に形成される通気孔の密度に影響し、樹脂発泡成形体に必要な通気孔の分散密度で定められ、例えば0.1〜3.0個/cm2とすることができる。昇温部材24は、キャビティ側に突出する本体部24aと、断熱材26に埋め込まれる根部24bとから構成され、概略、段付き円柱状に形成されている。本体部24aは、略円柱状に形成され、円柱の角部を面取りした形状とされている。根部24bは、本体部24aよりも細い略円柱状に形成され、円柱の角部を面取りした形状とされている。むろん、本体部や根部の形状には、面取りしていない円柱形状、先端を尖らせた形状、テーパーをつけた形状、等、様々な形状が考えられる。
なお、本体部24aにおける根部側の角部はアンダーカット形状と呼ばれる面取りしたテーパー形状とされているが、このようなテーパー形状を有していても、成形された樹脂発泡成形体を型から抜き取ることができる。むろん、昇温部材の本体部をアンダーカット形状にしないようにしてもよいし、本体部のアンダーカット形状の部分を断熱材に埋め込むようにしてもよい。
本体部24aの直径d11は、樹脂発泡成形体に形成される通気孔(開孔)M16aの径、ひいては樹脂発泡成形体の吸音特性に影響を与えるものであるが、通気孔を確実に形成する観点から、例えば、0.5〜10.0mm、1.0〜8.0mm、2.0〜6.0mmとすることができる。本体部24aの高さh1(昇温部24における一般面23からキャビティC1に向けて突出した長さ)は、樹脂発泡成形体の吸音特性に影響を与えるものであるが、例えば、1.0〜10.0mm、4.0〜8.0mm、成形型が所定の近接位置L1にあるときのキャビティC1の厚みd1(対向する成形面の間隔)の10〜100%、とすることができる。ここで、h1≦d1とするのは、本体部24aの先端部24cと固定型の成形面31との干渉を防ぐためである。また、スキン層M16を貫通して発泡層M12へ繋がるように通気孔M16aを形成する観点からは、高さh1を樹脂発泡成形体に形成されるスキン層M16の厚みd4以上にするのが好ましい。なお、h1=d1とすると、樹脂発泡成形体に厚み方向D1へ貫通する貫通孔が形成され、他の吸音材と重ねて複合的な吸音構造体を形成することが可能になる。
As the material of the temperature raising member 24 constituting the temperature raising portion, a material having a high thermal conductivity such as a metal such as aluminum or copper can be used. For example, a material having a thermal conductivity of 200 to 400 W / m / K is used. Can be used. The dispersion density of the temperature raising member 24 when a plurality of the temperature raising members 24 is provided affects the density of the air holes formed in the resin foam molded body, and is determined by the dispersion density of the air holes necessary for the resin foam molded body. it can be set to 3.0 pieces / cm 2. The temperature raising member 24 is composed of a main body portion 24a protruding to the cavity side and a root portion 24b embedded in the heat insulating material 26, and is roughly formed in a stepped columnar shape. The main body portion 24a is formed in a substantially cylindrical shape and has a shape in which a corner portion of the column is chamfered. The root portion 24b is formed in a substantially cylindrical shape that is thinner than the main body portion 24a, and has a shape in which a corner portion of the column is chamfered. Of course, various shapes such as a non-chamfered columnar shape, a sharpened tip, and a tapered shape are conceivable as the shape of the main body and the root.
In addition, although the corner | angular part by the side of the root part in the main-body part 24a is made into the chamfered taper shape called an undercut shape, even if it has such a taper shape, the shape | molded resin foam molded object is extracted from a type | mold. be able to. Of course, the main body portion of the temperature raising member may not be undercut, or the undercut portion of the main body portion may be embedded in the heat insulating material.
The diameter d11 of the main body portion 24a affects the diameter of the ventilation hole (opening) M16a formed in the resin foam molded body, and consequently the sound absorption characteristics of the resin foam molded body. From the viewpoint, for example, the thickness may be 0.5 to 10.0 mm, 1.0 to 8.0 mm, or 2.0 to 6.0 mm. The height h1 of the main body portion 24a (the length protruding from the general surface 23 toward the cavity C1 in the temperature raising portion 24) affects the sound absorption characteristics of the resin foam molded article. ˜10.0 mm, 4.0 to 8.0 mm, and 10 to 100% of the thickness d1 of the cavity C1 when the molding die is at the predetermined proximity position L1 (interval between opposing molding surfaces). Here, h1 ≦ d1 is to prevent interference between the tip 24c of the main body 24a and the molding surface 31 of the fixed mold. Further, from the viewpoint of forming the air vent M16a so as to penetrate the skin layer M16 and connect to the foam layer M12, the height h1 is preferably equal to or greater than the thickness d4 of the skin layer M16 formed in the resin foam molded body. . If h1 = d1, a through-hole penetrating in the thickness direction D1 is formed in the resin foam molded body, and it is possible to form a composite sound absorbing structure by overlapping with other sound absorbing materials.

根部24bの直径d12は、例えば、1.0〜10.0mm、4.0〜8.0mmとすることができる。図の例では、d12<d11とした例を示している。根部24bの深さh2(昇温部24における一般面23から一般部22へ向けて突出した長さ)は、例えば、1.0〜10.0mm、4.0〜8.0mm、移動型20の離間方向D1の厚みの10〜100%、とすることができる。   The diameter d12 of the root portion 24b can be set to, for example, 1.0 to 10.0 mm, 4.0 to 8.0 mm. In the example of the figure, an example in which d12 <d11 is shown. The depth h2 of the root portion 24b (the length protruding from the general surface 23 toward the general portion 22 in the temperature raising portion 24) is, for example, 1.0 to 10.0 mm, 4.0 to 8.0 mm, and the movable die 20. 10 to 100% of the thickness in the separation direction D1.

断熱構造を構成する断熱材26の材質には、セラミック、ポリカーボネート樹脂、等の熱伝導率の低い材質を用いることができ、例えば熱伝導率0.1〜50W/m/Kの材料を用いることができる。また、加熱機構で加熱することなく高温の樹脂成形材料からの熱のみで昇温部を高温に維持する観点からは、断熱材の熱伝導率を一般部22の熱伝導率の1/2以下にするのが好ましい。さらに、断熱材の熱伝導率を昇温部24の熱伝導率の1/2以下にするのが好ましい。断熱材26は、キャビティ側面26cが一般部側面26dより広くされた略円錐台状に形成され、昇温部材の根部24bを挿入して取り付けるための略円柱状の昇温部取付孔26aがキャビティ側面26cに形成されている。ここで、昇温部取付孔26aの内周面は根部24bの外周面に合わせた形状とされ、断熱材26の外周面26bは断熱材取付孔21aの内周面に合わせた形状とされている。
断熱材26における昇温部取付孔26aが形成された部分の厚みh3は、例えば、移動型20の離間方向D1の厚みから根部24bの深さh2を差し引いた長さ以下で0.5〜10.0mmとすることができる。根部24bの周囲における断熱材26の最小の厚みは、図4の(d13−d12)/2であり、例えば、隣り合う根部24bの間の距離d14以下で0.5〜10.0mmとすることができる。なお、断熱材26のキャビティ側面の直径は例えば2.0〜15.0mmとすることができ、断熱材26の一般部側の直径はキャビティ側面の直径未満で例えば2.0〜9.0mmとすることができる。
なお、断熱構造には、一般面23と昇温部24とを隔てる空洞層、この空洞層と断熱材との組み合わせ、等も考えられる。
As a material of the heat insulating material 26 constituting the heat insulating structure, a material having a low thermal conductivity such as ceramic or polycarbonate resin can be used. For example, a material having a thermal conductivity of 0.1 to 50 W / m / K is used. Can do. Further, from the viewpoint of maintaining the temperature rising portion at a high temperature only by heat from the high temperature resin molding material without being heated by a heating mechanism, the heat conductivity of the heat insulating material is ½ or less of the heat conductivity of the general portion 22. Is preferable. Furthermore, it is preferable that the heat conductivity of the heat insulating material is ½ or less of the heat conductivity of the temperature raising portion 24. The heat insulating material 26 is formed in a substantially truncated cone shape in which the cavity side surface 26c is wider than the general side surface 26d, and the substantially cylindrical heating portion mounting hole 26a for inserting and mounting the root portion 24b of the heating member is a cavity. It is formed on the side surface 26c. Here, the inner peripheral surface of the temperature raising portion mounting hole 26a is shaped to match the outer peripheral surface of the root portion 24b, and the outer peripheral surface 26b of the heat insulating material 26 is shaped to match the inner peripheral surface of the heat insulating material mounting hole 21a. Yes.
The thickness h3 of the portion of the heat insulating material 26 where the temperature raising portion mounting hole 26a is formed is, for example, 0.5 to 10 inclusive, which is equal to or less than the length obtained by subtracting the depth h2 of the root portion 24b from the thickness in the separation direction D1 of the movable mold 20. .0 mm. The minimum thickness of the heat insulating material 26 around the root portion 24b is (d13-d12) / 2 in FIG. 4, for example, 0.5 to 10.0 mm at a distance d14 or less between the adjacent root portions 24b. Can do. In addition, the diameter of the cavity side surface of the heat insulating material 26 can be set to 2.0 to 15.0 mm, for example, and the diameter of the general part side of the heat insulating material 26 is less than the diameter of the cavity side surface, for example, 2.0 to 9.0 mm. can do.
As the heat insulating structure, a hollow layer that separates the general surface 23 and the temperature raising portion 24, a combination of the hollow layer and the heat insulating material, and the like can be considered.

図3に示すように、各断熱材取付孔21aに各断熱材26を挿入して例えば接着剤により接着して固定し、当該各断熱材の昇温部取付孔26aに各昇温部材の根部24bを挿入して例えば接着剤により接着して固定すると、移動型の成形面21が形成される。なお、断熱材取付孔21aの内周面と断熱材の外周面26bとにお互い螺合するねじを形成すれば、断熱材26を断熱材取付孔21aに螺合して固定することができる。また、昇温部取付孔26aの内周面と根部24bの外周面とにお互い螺合するねじを形成すれば、昇温部材24を昇温部取付孔26aに螺合して固定することができる。   As shown in FIG. 3, each heat insulating material 26 is inserted into each heat insulating material mounting hole 21a and bonded and fixed, for example, with an adhesive, and the root portion of each temperature increasing member is inserted into the temperature increasing portion mounting hole 26a of each heat insulating material. When 24b is inserted and bonded and fixed with, for example, an adhesive, a movable molding surface 21 is formed. In addition, if the screw | thread screwed together in the internal peripheral surface of the heat insulating material attachment hole 21a and the outer peripheral surface 26b of heat insulating material is formed, the heat insulating material 26 can be screwed and fixed to the heat insulating material attachment hole 21a. Further, if a screw that is screwed to the inner peripheral surface of the temperature raising portion mounting hole 26a and the outer peripheral surface of the root portion 24b is formed, the temperature rising member 24 can be screwed and fixed to the temperature rising portion mounting hole 26a. it can.

昇温部24を成形面21に多数設ける場合、一般的には樹脂発泡成形体において周縁となる部分を除く全面に対して均一に分散して配置すると樹脂発泡成形体に良好な吸音性が得られるが、内装材の形状により偏在させて配置してもよい。例えば、自動車の乗員の耳に近い位置となる部分に昇温部を多く配置したり、音波の侵入してくる側となる部分に昇温部を多く配置したりすることが考えられる。また、各昇温部を縦横整然と並べるより図8に示すように千鳥状に各通気孔M16aが形成されるよう各昇温部を千鳥状に並べる方が樹脂発泡成形体の剛性を高くすることができると考えられる。
樹脂発泡成形体M10に多数形成する通気孔M16aの径(直径d21)としては、0.5〜10mmが好ましく、1.0〜8.0mmがより好ましく、2.0〜6.0mmがさらに好ましい。径を前記下限以上にすると音波が通気孔内へ進入しやすくなって良好な吸音性が得られる点で好ましく、径を前記上限以下にすると吸音パネルについて良好な剛性が得られる点で好ましいからである。なお、通気孔が昇温部材の本体部24aと同じ径となる場合には本体部の径d11を所望の通気孔の径d21にすればよく、通気孔が本体部24aより小さい径になる場合にはその程度に応じて本体部の径d11を所望の通気孔の径d21より大きくすればよく、通気孔が本体部24aより大きい径になる場合にはその程度に応じて本体部の径d11を所望の通気孔の径d21より小さくすればよい。
In the case where a large number of temperature raising portions 24 are provided on the molding surface 21, in general, if the resin foam molding is uniformly dispersed over the entire surface of the resin foam molding excluding the peripheral portion, good sound absorption is obtained in the resin foam molding. However, it may be arranged unevenly depending on the shape of the interior material. For example, it is conceivable that a large number of temperature rising portions are arranged in a portion close to the ears of a passenger of an automobile, or a large number of temperature rising portions are arranged in a portion on the side where sound waves enter. Further, rather than arranging the temperature rising portions in a vertical and horizontal order, as shown in FIG. 8, arranging the temperature rising portions in a staggered manner to form the respective vent holes M16a increases the rigidity of the resin foam molded body. It is thought that you can.
The diameter (diameter d21) of the air holes M16a formed in the resin foam molded body M10 is preferably 0.5 to 10 mm, more preferably 1.0 to 8.0 mm, and even more preferably 2.0 to 6.0 mm. . When the diameter is set to the above lower limit or more, it is preferable in that sound waves can easily enter the ventilation hole and good sound absorption can be obtained, and when the diameter is set to the upper limit or less, it is preferable from the viewpoint of obtaining good rigidity for the sound absorbing panel. is there. When the vent hole has the same diameter as the main body portion 24a of the temperature raising member, the main body portion diameter d11 may be set to the desired vent hole diameter d21, and the vent hole has a smaller diameter than the main body portion 24a. The diameter d11 of the main body may be made larger than the desired diameter d21 of the vent according to the degree, and when the vent is larger than the main body 24a, the diameter d11 of the main body according to the degree. Should be smaller than the desired diameter d21 of the vent hole.

樹脂発泡成形体M10の厚み方向D1へ該方向D1とは垂直な面PL1上に投影したときの成形体M10の投影面積S1に対する通気孔M16aの投影面積の総面積S2をスキン層の開口率p=(S2/S1)と呼ぶことにすると、開口率pとしては、百分率で3〜50%が好ましく、10〜40%がさらに好ましい。開口率を下限以上にすると音波が通気孔を十分に通過して良好な吸音性が得られる点で好ましく、開口率を上限以下にすると吸音パネルについて良好な剛性が得られる点で好ましいからである。なお、各通気孔M16aの直径をd21、スキン層片面に形成された通気孔M16aの数をn1とすると、p=n1×π(d1/2)2/S1である。
吸音率のピークは、開口率pが大きくなると高周波側にシフトする。また、同じ開口率でも、吸音率のピークは、通気孔の径が小さくなると高周波側にシフトし、発泡層が薄くなると高周波側にシフトし、スキン層が薄くなると高周波側にシフトする。従って、これらを昇温部の大きさや数や配置などで調節することにより、樹脂発泡成形体の用途や配設位置に合わせて通気孔の態様を最適化することができる。
The total area S2 of the projected area of the vent hole M16a with respect to the projected area S1 of the molded body M10 when projected onto the surface PL1 perpendicular to the direction D1 in the thickness direction D1 of the resin foam molded body M10 is the opening ratio p of the skin layer. = (S2 / S1), the aperture ratio p is preferably 3 to 50% and more preferably 10 to 40% as a percentage. This is because when the aperture ratio is set to the lower limit or higher, the sound wave sufficiently passes through the vent hole and good sound absorption is obtained, and when the aperture ratio is set to the upper limit or less, the sound absorption panel is preferable because good rigidity is obtained. . Note that p = n1 × π (d1 / 2) 2 / S1, where d21 is the diameter of each air hole M16a and n1 is the number of air holes M16a formed on one side of the skin layer.
The peak of the sound absorption coefficient shifts to the high frequency side as the aperture ratio p increases. Even at the same aperture ratio, the peak of the sound absorption coefficient shifts to the high frequency side when the diameter of the air hole becomes small, shifts to the high frequency side when the foam layer becomes thin, and shifts to the high frequency side when the skin layer becomes thin. Therefore, by adjusting these according to the size, number, and arrangement of the temperature raising portions, it is possible to optimize the mode of the vent holes in accordance with the use and arrangement position of the resin foam molded article.

本成形機10は、移動型の一般部22と固定型30とから熱を奪うことにより一般面23,33を樹脂成形材料M1の融点より低い温度に冷却する冷却機構40を備えている。なお、樹脂成形材料の融点は、JIS K6900に規定される溶融温度のように、特定の試験条件のもとで測定する際に加熱により半結晶質重合体の中で結晶性が見えなくなる温度で定義することができる。図1と図2に示す成形機10では、移動型の一般部22の内部と固定型30の内部とに冷却通路41が形成され、送液機構42により冷却通路41内に冷却水等の冷却液(冷却媒体)を通過させる冷却機構40が示されている。むろん、冷却機構は、樹脂成形材料の融点より低い温度の空気で移動型の一般部と固定型とを空冷する機構、等でもよい。また、移動型の一般部と固定型とが自然に空冷される場合、積極的に冷却する冷却機構を設けなくてもよい。
一般面23,33の温度は、樹脂成形材料の融点や求められる樹脂発泡成形体の性質等に応じて決定すればよく、例えば、樹脂成形材料の融点より低い温度で30〜80℃とすることができる。また、一般面23に接する表面でスキン層を確実に形成し昇温部24に接する表面に通気孔を確実に形成する観点からは、一般面23の温度を昇温部24の温度よりも20℃以上低い温度とするのが好ましい。
The molding machine 10 includes a cooling mechanism 40 that cools the general surfaces 23 and 33 to a temperature lower than the melting point of the resin molding material M1 by removing heat from the movable general portion 22 and the fixed die 30. The melting point of the resin molding material is the temperature at which the crystallinity becomes invisible in the semicrystalline polymer due to heating when measured under specific test conditions, such as the melting temperature specified in JIS K6900. Can be defined. In the molding machine 10 shown in FIGS. 1 and 2, a cooling passage 41 is formed inside the movable general portion 22 and inside the fixed die 30, and cooling of cooling water or the like is performed in the cooling passage 41 by the liquid feeding mechanism 42. A cooling mechanism 40 that allows liquid (cooling medium) to pass through is shown. Of course, the cooling mechanism may be a mechanism that air-cools the movable general part and the stationary mold with air having a temperature lower than the melting point of the resin molding material. In addition, when the movable general part and the stationary mold are naturally air-cooled, it is not necessary to provide a cooling mechanism that actively cools.
What is necessary is just to determine the temperature of the general surfaces 23 and 33 according to the melting | fusing point of a resin molding material, the property of the resin foam molded object calculated | required, etc., for example, setting it as 30-80 degreeC at the temperature lower than the melting point of a resin molding material Can do. Further, from the viewpoint of surely forming the skin layer on the surface in contact with the general surface 23 and surely forming the air holes in the surface in contact with the temperature raising portion 24, the temperature of the general surface 23 is set to 20% higher than the temperature of the temperature raising portion 24. It is preferable that the temperature is lower by at least ° C.

樹脂成形材料M1を構成する樹脂としては、加熱して溶融させることができる観点から熱可塑性樹脂(合成樹脂の一種)が好ましいが、フェノール樹脂やユリア樹脂等の各種熱硬化性樹脂(合成樹脂の一種)、合成樹脂にゴム成分等の軟質成分を配合してエラストマー的な性質を高めた改質樹脂、等を用いることができる。
熱可塑性樹脂としては、オレフィン系樹脂やオレフィン系熱可塑性エラストマー等を用いることができ、単独重合体でも、2種以上のモノマーを共重合させた共重合体でも、オレフィンと不飽和カルボン酸とを共重合させた共重合体でも、これらの組み合わせでもよく、具体的には、ポリプロピレン、ポリエチレン、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、ポリエチレンテレフタレート(PET)、ポリアミド、ポリスチレン、これらの組み合わせ、これらの樹脂にゴム成分を配合した改質樹脂、等を用いることができる。
溶融可能な樹脂成形材料の融点は、例えば100〜300℃とされるが、成形型の一般面23,33に接した表面にスキン層を形成する観点から、前記一般面23,33の温度よりも高温が好ましく、前記一般面23,33の温度より20℃以上高い温度がより好ましい。
The resin constituting the resin molding material M1 is preferably a thermoplastic resin (a kind of synthetic resin) from the viewpoint of being able to be heated and melted, but various thermosetting resins (such as a phenolic resin and a urea resin) 1 type), a modified resin in which a soft component such as a rubber component is blended with a synthetic resin to improve elastomeric properties, and the like can be used.
As the thermoplastic resin, an olefin resin, an olefin thermoplastic elastomer, or the like can be used. Either a homopolymer or a copolymer obtained by copolymerizing two or more types of monomers, an olefin and an unsaturated carboxylic acid can be used. Copolymerized copolymers or combinations thereof may be used. Specifically, polypropylene, polyethylene, acrylonitrile butadiene styrene resin (ABS resin), polyethylene terephthalate (PET), polyamide, polystyrene, combinations thereof, these resins For example, a modified resin in which a rubber component is blended can be used.
The melting point of the meltable resin molding material is, for example, 100 to 300 ° C. From the viewpoint of forming a skin layer on the surface in contact with the general surfaces 23 and 33 of the molding die, the melting point of the resin molding material is higher than the temperature of the general surfaces 23 and 33. Is preferably a high temperature, more preferably a temperature 20 ° C. higher than the temperature of the general surfaces 23 and 33.

樹脂成形材料M1に含ませる発泡剤としては、常温1気圧で気体の不活性ガスや揮発性有機化合物等の物理発泡剤、加熱により分解または反応してガスを発生する化学発泡剤、これらの組み合わせ、を用いることができる。発泡剤に不活性ガスを用いると、樹脂と反応せず、樹脂を劣化させることがないので好ましい。不活性ガスとしては、二酸化炭素、窒素、アルゴン、ヘリウム、ネオン、これらの組み合わせ、等を用いることができる。揮発性有機化合物としては、ブタンやペンタン等の炭化水素を発生させる揮発性発泡剤等を用いることができる。化学発泡剤としては、炭酸アンモニウムや炭酸水素ナトリウム等の炭酸ガス等を発生させる無機系発泡剤、ポリカルボン酸やアゾ化合物等の有機化合物のガスを発生させる有機系発泡剤、等を用いることができる。   The foaming agent contained in the resin molding material M1 includes a physical foaming agent such as a gas inert gas or a volatile organic compound at a normal temperature of 1 atm, a chemical foaming agent that decomposes or reacts by heating to generate gas, and a combination thereof. Can be used. It is preferable to use an inert gas for the foaming agent because it does not react with the resin and does not deteriorate the resin. As the inert gas, carbon dioxide, nitrogen, argon, helium, neon, a combination thereof, or the like can be used. As the volatile organic compound, a volatile foaming agent that generates hydrocarbons such as butane and pentane can be used. As the chemical foaming agent, an inorganic foaming agent that generates a carbon dioxide gas such as ammonium carbonate or sodium hydrogen carbonate, an organic foaming agent that generates a gas of an organic compound such as polycarboxylic acid or azo compound, or the like may be used. it can.

ここで、不活性ガスに造核剤を併用すると、造核剤が適度な核形成材となって、気泡が適度に緻密かつ均一に形成され、より高い吸音性を維持しながら内装材としての触感の良好な樹脂発泡成形体を形成することができる。造核剤を含まない樹脂成形材料に対する造核剤の添加割合は、物理発泡剤を発泡させる核として機能する配合割合であればよく、例えば、造核剤を含まない樹脂成形材料100重量部に対して1重量部以上50重量部未満(より好ましくは1〜20重量部)の範囲内とすることができる。また、造核剤として化学発泡剤を用いる場合、化学発泡剤は不活性ガスの発泡を補助する機能を有する。なお、造核剤の配合割合を調整することにより、発泡セルの緻密度を調節し、吸音性を調節することができる。また、樹脂成形材料に注入する不活性ガスの圧力は、0.5〜20MPaが好ましく、1.0〜7.0MPaがさらに好ましい。不活性ガスの圧力を前記下限以上にすると、樹脂成形材料に対する不活性ガスの溶解量が十分となり、高発泡倍率の樹脂発泡成形体が得られる点で好ましい。一方、不活性ガスの圧力を前記上限以下にすると、不活性ガスの無駄が無くなり、ガス注入装置や金型に汎用品を用いることができる結果安価になるので好ましい。   Here, when a nucleating agent is used in combination with an inert gas, the nucleating agent becomes an appropriate nucleating material, and bubbles are formed moderately densely and uniformly, and as an interior material while maintaining higher sound absorption A resin foam molded article having good tactile sensation can be formed. The addition ratio of the nucleating agent with respect to the resin molding material not containing the nucleating agent may be a blending ratio that functions as a nucleus for foaming the physical foaming agent. For example, 100 parts by weight of the resin molding material not containing the nucleating agent On the other hand, it can be in the range of 1 to 50 parts by weight (more preferably 1 to 20 parts by weight). Moreover, when using a chemical foaming agent as a nucleating agent, a chemical foaming agent has the function to assist foaming of an inert gas. In addition, by adjusting the blending ratio of the nucleating agent, the density of the foamed cells can be adjusted and the sound absorption can be adjusted. Further, the pressure of the inert gas injected into the resin molding material is preferably 0.5 to 20 MPa, and more preferably 1.0 to 7.0 MPa. When the pressure of the inert gas is set to the above lower limit or more, the amount of the inert gas dissolved in the resin molding material is sufficient, which is preferable in that a resin foam molded body having a high expansion ratio can be obtained. On the other hand, it is preferable to set the pressure of the inert gas below the upper limit because the inert gas is not wasted and a general-purpose product can be used for the gas injection device and the mold, resulting in a low cost.

樹脂成形材料M1を樹脂と発泡剤のみで構成してもよいが、樹脂成形材料M1に添加剤を含ませてもよい。添加剤としては、タルク等の充てん材、核剤、顔料、滑剤、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、これらの組み合わせ、等を用いることができる。樹脂成形材料中の各材料の配合割合は、樹脂の性質を十分に残す観点からは、樹脂を50重量%以上(好ましくは65重量%以上)、添加剤を50重量%未満(好ましくは35重量%未満)とすることができる。
樹脂成形材料にタルクを含ませると発泡セルを小さくさせることができ、タルクの配合量を多くするほど発泡セルを小さくすることができる。そこで、樹脂成形材料に含まれるタルクの重量比を調整することにより、発泡セルの大きさを調節して樹脂発泡成形体を成形することができる。従って、タルク量を調整することにより、樹脂発泡成形体の吸音性を調節することができる。
The resin molding material M1 may be composed of only a resin and a foaming agent, but an additive may be included in the resin molding material M1. As additives, fillers such as talc, nucleating agents, pigments, lubricants, antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, combinations thereof, and the like can be used. The blending ratio of each material in the resin molding material is 50% by weight (preferably 65% by weight or more) of resin and less than 50% by weight of additive (preferably 35% by weight) from the viewpoint of sufficiently retaining the properties of the resin. %)).
When talc is included in the resin molding material, the foam cell can be made smaller, and the foam cell can be made smaller as the blending amount of talc is increased. Therefore, by adjusting the weight ratio of talc contained in the resin molding material, the size of the foam cell can be adjusted to mold the resin foam molded body. Therefore, by adjusting the amount of talc, the sound absorption property of the resin foam molded article can be adjusted.

本樹脂発泡成形体M10の一般部M10aは、移動型の一般面23に対応する位置に形成され、成形型の一般面23,33に接触した両側の表面に非発泡のスキン層M16,M16が形成され、両スキン層M16,M16に挟まれた内部が発泡層M12とされる。
スキン層M16は、液状の樹脂成形材料よりも温度の低い一般面23,33に接した部分の樹脂成形材料が早く温度低下して発泡せずに固化することにより、非発泡の状態で形成される。
スキン層の厚みd4は、樹脂成形材料の温度、一般面23,33の温度、成形型20,30の離間のタイミングで制御される。樹脂成形材料の温度や成形型の成形面の温度を低くするか成形型の離間のタイミングを遅くするとスキン層が厚くなり、樹脂成形材料の温度や成形型の成形面の温度を高くするか成形型の離間のタイミングを早くするとスキン層が薄くなる。スキン層の厚みd4は、成形型20,30の間の距離d1の半分未満の範囲内で0.1〜1.0mmが好ましい。厚みd4が前記下限以上になると内装材として良好な弾性かつ良好な触感が得られ、厚みd4が前記上限以下になると樹脂発泡成形体が固くなりすぎず良好な弾性かつ良好な触感が得られる点で好ましいためである。
The general part M10a of the resin foam molded body M10 is formed at a position corresponding to the general surface 23 of the movable mold, and non-foamed skin layers M16 and M16 are formed on both surfaces in contact with the general surfaces 23 and 33 of the mold. The formed and sandwiched between both skin layers M16 and M16 is a foam layer M12.
The skin layer M16 is formed in a non-foamed state by the temperature of the resin molding material in contact with the general surfaces 23 and 33 having a temperature lower than that of the liquid resin molding material rapidly solidifying without foaming. The
The thickness d4 of the skin layer is controlled by the temperature of the resin molding material, the temperatures of the general surfaces 23 and 33, and the timing of separating the molds 20 and 30. If the temperature of the resin molding material or the molding surface of the molding die is lowered or the timing of separating the molding die is delayed, the skin layer becomes thick, and the temperature of the resin molding material or the molding surface of the molding die is increased or molded. If the mold separation timing is advanced, the skin layer becomes thinner. The thickness d4 of the skin layer is preferably 0.1 to 1.0 mm within a range less than half of the distance d1 between the molds 20 and 30. When the thickness d4 is not less than the above lower limit, good elasticity and good tactile sensation can be obtained as an interior material, and when the thickness d4 is not more than the above upper limit, the resin foam molded article is not too hard and good elasticity and good tactile sensation can be obtained. This is because it is preferable.

発泡層M12には、一般面23に対応する位置にて離間方向D1へ離間距離d2以下で1.0mm以上気泡を連続させて霜柱状に伸長した発泡セルM13が形成される。
図6を参照して説明すると、一般面23に対応する位置でコアバックの初期に生じた樹脂成形材料中の多数のミクロな気泡は、成形型の離間および発泡剤の発泡作用により離間方向D1へ伸長し、略離間方向に隣接する他の気泡との間に連結口M13aが生じ、離間方向へ柱状につながっていく。図の例では、気泡a1,a2,a3,a4が離間方向へ連通して柱状の連続セルが形成されていることが示されている。一方、離間方向とは垂直な方向D2へは、隣接する他の気泡の存在により成長が抑えられるが、セルの壁が薄くなることにより隣接する他の気泡との間に連結口M13bが生じる。その結果、離間方向D1へ伸長した霜柱状の発泡セルM13が形成される。図の例では、気泡a2と気泡b2とが連通し、気泡a1と気泡c1とが連通して、発泡セルが霜柱状に組織化されていることが示されている。
発泡セルM13は、離間方向の長さd5が上記垂直方向D2における柱状の各セルの径に対して極めて大きく、楕円体ないし紡錘体という概念とは異なる形状になっている。ここで、発泡セルの離間方向の長さd5は、連通した気泡の中で離間方向D1へ最も長い部分の長さ、すなわち図において連通した気泡の中で最も上側となる上下方向の位置と最も下側となる上下方向の位置との上下方向の差の長さをいうものとする。また、上記垂直方向D2の断面で見ると、気泡a1,a2,a3,a4のように気泡が千鳥状につながっていく結果、セルの断面はジグザグとなり、円形ないし楕円形という概念とは異なる形状になる傾向がある。なお、発泡セルは、発泡層の両側にある両スキン層に繋がる長さとなることもある。
In the foam layer M12, a foam cell M13 is formed in which a bubble is continuously extended in a frost column by 1.0 mm or more in the separation direction D1 at a position corresponding to the general surface 23 at a separation distance d2 or less.
Referring to FIG. 6, a large number of micro bubbles in the resin molding material generated in the initial stage of the core back at a position corresponding to the general surface 23 are separated in the separation direction D1 by the separation of the mold and the foaming action of the foaming agent. The connecting port M13a is formed between the other bubbles adjacent to each other in the substantially separating direction, and is connected in a columnar shape in the separating direction. In the example of the figure, it is shown that bubbles a1, a2, a3, and a4 communicate with each other in the separating direction to form a columnar continuous cell. On the other hand, in the direction D2 perpendicular to the separation direction, the growth is suppressed by the presence of other adjacent bubbles, but the connection port M13b is formed between the other adjacent bubbles due to the thin wall of the cell. As a result, a frost column-like foam cell M13 extending in the separation direction D1 is formed. In the example of the figure, it is shown that the bubbles a2 and the bubbles b2 communicate with each other, the bubbles a1 and the bubbles c1 communicate with each other, and the foamed cells are organized in a frost column shape.
The foam cell M13 has a length d5 in the separation direction that is very large with respect to the diameter of each columnar cell in the vertical direction D2, and has a shape different from the concept of an ellipsoid or spindle. Here, the length d5 of the foam cell in the separation direction is the length of the longest portion of the connected bubbles in the separation direction D1, that is, the position in the vertical direction that is the uppermost of the bubbles connected in the drawing. The length of the vertical difference from the lower vertical position is assumed. Further, when viewed in the cross section in the vertical direction D2, as a result of the bubbles being connected in a staggered manner like the bubbles a1, a2, a3, and a4, the cross section of the cell becomes zigzag, which is different from the concept of a circle or ellipse. Tend to be. In addition, a foam cell may become the length connected with the both skin layers in the both sides of a foam layer.

一般面23に対応する位置の発泡層M12は、霜柱状の発泡セルM13が形成される結果、離間方向とは垂直な方向D1へ通気性を有するように形成される。ここで、前記垂直方向D2へ厚み5.0mmとなるように切断したときのJIS L1096のフラジール形法による通気度が0.4cc/cm2/sec以上となるように発泡層を形成すると、高い吸音性の樹脂発泡成形体が得られる。ここで、発泡層の前記垂直方向D2の通気度を大きくするには、例えば、発泡セルM13を離間方向D1へ長くすればよく、成形型の離間距離d2を長くすればよい。また、成形型の離間距離d2を調整することにより、発泡層の前記垂直方向D2の通気度を調節することができる。
さらに、発泡層の密度が0.03〜0.5g/cm3となるように樹脂発泡成形体を成形すると、厚み方向への圧縮力に対して座屈しにくく内装材として良好な弾性かつ良好な触感を得るとともに高い吸音性を得ることが可能になる。ここで、発泡層の密度を小さくするには、例えば、発泡セルM13を離間方向D1へ長くすればよく、成形型の離間距離d2を長くすればよい。また、成形型の離間距離d2を調整することにより、発泡層の密度を調節することができる。なお、発泡倍率は、近接位置にあるときの一対の成形型の間の距離をd1、離間距離をd2として、(d1+d2)/d1とする。求められる発泡倍率と樹脂成形材料の密度とスキン層の厚みd4とから発泡層の密度のおおよそを求めることができるので、発泡倍率と樹脂成形材料の密度とスキン層の厚みd4をみて発泡層の密度を調節することができる。
The foam layer M12 at a position corresponding to the general surface 23 is formed so as to have air permeability in the direction D1 perpendicular to the separation direction as a result of the formation of the frost column-like foam cells M13. Here, when the foamed layer is formed so that the air permeability according to the fragile method of JIS L1096 when cut to a thickness of 5.0 mm in the vertical direction D2 is 0.4 cc / cm 2 / sec or more, it is high. A sound-absorbing resin foam molding is obtained. Here, in order to increase the air permeability of the foam layer in the vertical direction D2, for example, the foam cell M13 may be elongated in the separation direction D1, and the separation distance d2 of the mold may be increased. Further, the air permeability in the vertical direction D2 of the foam layer can be adjusted by adjusting the separation distance d2 of the mold.
Furthermore, when the resin foam molded body is molded so that the density of the foamed layer is 0.03 to 0.5 g / cm 3, it is less likely to buckle against the compressive force in the thickness direction and has good elasticity and good as an interior material. It becomes possible to obtain tactile sensation and high sound absorption. Here, in order to reduce the density of the foam layer, for example, the foam cell M13 may be lengthened in the separation direction D1, and the separation distance d2 of the mold may be lengthened. Further, the density of the foam layer can be adjusted by adjusting the separation distance d2 of the mold. The expansion ratio is (d1 + d2) / d1, where d1 is the distance between the pair of molds when they are close to each other, and d2 is the separation distance. Since the approximate density of the foamed layer can be obtained from the required foaming ratio, the density of the resin molding material, and the thickness d4 of the skin layer, the density of the foamed layer can be determined by examining the foaming ratio, the density of the resin molding material, and the thickness d4 of the skin layer. The density can be adjusted.

なお、発泡層M12においてスキン層M16,M16に接触する表面側の部分に、離間方向D2へ短い発泡セルを有する中間層が形成されてもよい。中間層の発泡セルは、隣接する気泡が連結も連通もしていない独立セルでもよい。   In the foam layer M12, an intermediate layer having foam cells that are short in the separation direction D2 may be formed on a portion of the surface side in contact with the skin layers M16 and M16. The foam cell of the intermediate layer may be an independent cell in which adjacent bubbles are not connected or communicated.

次に、図1と図5を参照して、本樹脂発泡成形体の製造方法の各ステップを、キャビティ内の樹脂成形材料の状態の変化と併せて説明する。なお、樹脂成形材料を構成する樹脂として、熱可塑性樹脂を用いるものとする。   Next, with reference to FIG. 1 and FIG. 5, each step of the manufacturing method of this resin foam molding is demonstrated with the change of the state of the resin molding material in a cavity. Note that a thermoplastic resin is used as the resin constituting the resin molding material.

まず、図1の上段に示すように、型開き状態にある雌雄対の成形型20,30を閉じ、キャビティC1を形成する(図5のタイミングt1〜t2)。このとき、成形型20は所定の近接位置L1にあり、成形型20,30間の距離はd1とされている。また、発泡剤を含む樹脂成形材料M1は融点MP以上の高温の液状とされ、成形型20,30は融点MPより低い温度(例えば30〜80℃)にされる。なお、樹脂成形材料を融点以上に加熱して溶融状態にすれば、高温の液状にすることができる。例えば、熱可塑性樹脂に融点160℃のポリプロピレンを用いる場合、樹脂成形材料を170〜230℃程度に加熱してポリプロピレンを溶融させる。
次に、図1の中段に示すように、溶融状態の樹脂成形材料M1を、射出圧100〜200MPa、充填時間0.5〜5秒でキャビティC1内に射出して、金型20,30内に充填する(図5のタイミングt2〜t3)。射出圧、充填時間は、主に射出する樹脂成形材料の量、すなわち、樹脂発泡成形体の大きさによって増減する。充填された樹脂成形材料は、キャビティ内に突出した昇温部材の本体部24aの周囲にも回り込み、該本体部を覆う。ここで、昇温部材24は、断熱材26で一般面23から断熱されて冷却が防がれ、高温の樹脂成形材料から熱を供給されて該樹脂成形材料の温度に近づく。継続的なバッチ成形の結果、昇温部材24の温度は、一般面23,33の温度より例えば20〜200℃程度高い状態が維持される。
First, as shown in the upper part of FIG. 1, the male and female molds 20 and 30 in the mold open state are closed to form the cavity C1 (timing t1 to t2 in FIG. 5). At this time, the mold 20 is at a predetermined proximity position L1, and the distance between the molds 20 and 30 is d1. Moreover, the resin molding material M1 containing a foaming agent is made into a high-temperature liquid above melting | fusing point MP, and the shaping | molding die 20 and 30 is made into temperature (for example, 30-80 degreeC) lower than melting | fusing point MP. In addition, if a resin molding material is heated more than melting | fusing point and it is made into a molten state, it can be made a high temperature liquid state. For example, when polypropylene having a melting point of 160 ° C. is used as the thermoplastic resin, the resin molding material is heated to about 170 to 230 ° C. to melt the polypropylene.
Next, as shown in the middle stage of FIG. 1, the molten resin molding material M1 is injected into the cavity C1 with an injection pressure of 100 to 200 MPa and a filling time of 0.5 to 5 seconds. (Timing t2 to t3 in FIG. 5). The injection pressure and the filling time vary mainly depending on the amount of the resin molding material to be injected, that is, the size of the resin foam molded body. The filled resin molding material also wraps around the body portion 24a of the temperature raising member protruding into the cavity and covers the body portion. Here, the temperature raising member 24 is insulated from the general surface 23 by the heat insulating material 26 to prevent cooling, and heat is supplied from the high temperature resin molding material to approach the temperature of the resin molding material. As a result of continuous batch molding, the temperature of the temperature raising member 24 is maintained at a temperature higher by about 20 to 200 ° C., for example, than the temperature of the general surfaces 23 and 33.

図7の上段に示すように、キャビティC2に充填された樹脂成形材料M1について、便宜上、所定の温度(例えば、樹脂成形材料が固化する温度)以下の低温領域R1,R2と、該所定の温度より高温の高温領域R3(図中、点を付した領域)とに領域分けすることにする。樹脂成形材料の温度分布は、一般面23に対応する位置では表面側の低温領域R1,R2に高温領域R3が挟まれた分布となり、昇温部材24に対応する位置では該昇温部材に高温領域R3が接した分布となる。
このように、移動型の一般部22と固定型30の温度が低いため、成形型の一般面23,33に接した部分の樹脂成形材料は、先に冷却されて固化し、型20,30の間の距離d1の半分未満の範囲内で0.1〜1.0mmの非発泡のスキン層として形成される。また、スキン層よりも内側にある樹脂成形材料は、溶融状態を維持している。一方、昇温部材24に接した樹脂成形材料は、冷却が遅れ、はっきりとしたスキン層が形成されない状態が維持される。
As shown in the upper part of FIG. 7, for the resin molding material M1 filled in the cavity C2, for convenience, low temperature regions R1 and R2 below a predetermined temperature (for example, the temperature at which the resin molding material solidifies), and the predetermined temperature The region is divided into a higher temperature region R3 (a region marked with dots in the figure). The temperature distribution of the resin molding material is a distribution in which the high temperature region R3 is sandwiched between the low temperature regions R1 and R2 on the surface side at the position corresponding to the general surface 23, and the temperature rising member has a high temperature at the position corresponding to the temperature increasing member 24. The region R3 is in contact with the distribution.
Thus, since the temperature of the movable mold general part 22 and the fixed mold 30 is low, the resin molding material in the part in contact with the general surfaces 23 and 33 of the mold is first cooled and solidified to form the molds 20 and 30. Is formed as a non-foamed skin layer of 0.1 to 1.0 mm within a range of less than half of the distance d1 between. Moreover, the resin molding material inside the skin layer maintains a molten state. On the other hand, the resin molding material in contact with the temperature raising member 24 is maintained in a state where cooling is delayed and a clear skin layer is not formed.

樹脂成形材料を射出すると、ミクロな気泡が複数生じ始める。樹脂成形材料に造核剤を含ませた場合、造核剤が核形成材となり、溶融状態の樹脂成形材料の中で造核剤を中心として不活性ガスが集結し、等方性の球形に近い形で径が0.1mm未満のミクロな気泡が多数生じ始める。この段階が、初期発泡段階である。
成形型20,30を近接位置L1で保持する時間T1(図5のタイミングt3〜t4)は、1〜10秒が好ましく、3〜7秒がさらに好ましい。保持時間T1を3秒以上にすると樹脂成形材料の粘度が適度に高くなって一般面23に対応する位置にて離間方向D1の途中で発泡セルが切断されにくくなり、保持時間T1を前記上限以下にすると固化による発泡不足が生じなくなる。なお、樹脂成形材料の温度や成形型の温度が低い場合や成形型20を離間させる速度(離間速度)を遅くする場合には、樹脂の粘度が上がり過ぎないように保持時間T1を短くすればよい。成形型が近接位置に保持されると、その間に、スキン層が形成され、スキン層より内側の樹脂成形材料の温度が低下して剪断粘度が上昇する。
When the resin molding material is injected, a plurality of micro bubbles start to be generated. When a nucleating agent is included in the resin molding material, the nucleating agent becomes a nucleating material, and in the molten resin molding material, inert gas gathers around the nucleating agent to form an isotropic spherical shape. A large number of micro bubbles having a diameter of less than 0.1 mm begin to form. This stage is the initial foaming stage.
The time T1 (timing t3 to t4 in FIG. 5) for holding the molds 20 and 30 at the proximity position L1 is preferably 1 to 10 seconds, and more preferably 3 to 7 seconds. When the holding time T1 is set to 3 seconds or more, the viscosity of the resin molding material is moderately high, and the foamed cells are hardly cut in the middle of the separation direction D1 at the position corresponding to the general surface 23. The holding time T1 is less than the above upper limit. In this case, insufficient foaming due to solidification does not occur. When the temperature of the resin molding material or the temperature of the mold is low, or when the speed at which the mold 20 is separated (separation speed) is slowed, the holding time T1 can be shortened so that the resin viscosity does not increase too much. Good. When the mold is held in the proximity position, a skin layer is formed between them, the temperature of the resin molding material inside the skin layer is lowered, and the shear viscosity is increased.

タイミングt4の後、図1の下段に示すように、雌雄の成形型20,30を所定の離間位置L2まで相互に離間させ、キャビティC1の容積を拡張させる(図5のタイミングt4〜t5)。すると、初期発泡段階で樹脂成形材料内に形成された複数のミクロのセルは、成形型の離間に伴って離間方向D1にのみ伸長されて、略離間方向に隣接する他の気泡と連通するとともに離間方向とは垂直な方向D2へも隣接する他の気泡と一部連通する。その結果、図7の下段に示すように、一般面23に対応する位置では、離間方向D1へ伸長した霜柱状の発泡セルM13を有する発泡層M12が表面のスキン層M16,M16どうしの間に形成され、該発泡層が離間方向とは垂直な方向D2へ通気性を有するように形成される。一方、昇温部材24に対応する位置では、高温領域R3が広い結果、樹脂成形材料の種類や温度や上記タイミングt1〜t5や成形型の離間距離等により形状は異なるものの、発泡セルが途中で切断されて空洞M15が内部に形成される。また、昇温部材24に接した樹脂成形材料の温度は一般面23に接した樹脂成形材料の温度よりも高く(例えば20℃以上高く)、粘度が低い(例えば剪断粘度が101〜103Pa・s)ため、スキン層M16を貫通して空洞M15へ繋がるように通気孔M16aが形成される。
上記空洞M15は、通常、略卵形となり、例えば、長径が離間距離d2の80〜100%程度、短径が昇温部材の本体部24aの径d11の100〜150%程度になる。短径がd11以上となるのは、昇温部材の本体部の周囲で発泡セルの壁が切れるためと推察される。なお、隣接する昇温部材により形成される隣接した空洞どうしが一部繋がってもよい。空洞M15は、音波を樹脂発泡成形体M10の内部に取り込んでエネルギーを吸収するための構造とされる。そこで、吸音性能を最適にする大きさおよび形状の空洞M15が形成されるように昇温部の構造を設定すればよい。
上記離間段階の際、成形型20の離間速度V1は、1〜100mm/秒が好ましく、10〜60mm/秒がさらに好ましい。離間速度V1を前記下限以上にすると発泡が起こらないような現象が生じないためであり、離間速度V1を前記上限以下にすると霜柱状発泡セルの組織が崩れる現象が生じないためであるとともに汎用的な射出成形機を用いることができる結果安価な射出成形機で済むためである。なお、近接位置L1から離間位置L2まで離間する時間は、0.02〜3秒程度とされる。
After the timing t4, as shown in the lower part of FIG. 1, the male and female molds 20, 30 are separated from each other to a predetermined separation position L2, and the volume of the cavity C1 is expanded (timing t4 to t5 in FIG. 5). Then, the plurality of micro cells formed in the resin molding material in the initial foaming stage are expanded only in the separation direction D1 with the separation of the molding die, and communicate with other bubbles that are substantially adjacent in the separation direction. A part of the air bubbles communicates with other adjacent bubbles in the direction D2 perpendicular to the separation direction. As a result, as shown in the lower part of FIG. 7, at the position corresponding to the general surface 23, the foam layer M <b> 12 having the frost column-shaped foam cells M <b> 13 extending in the separation direction D <b> 1 is between the skin layers M <b> 16 and M <b> 16 on the surface. The foamed layer is formed so as to have air permeability in a direction D2 perpendicular to the separating direction. On the other hand, at the position corresponding to the temperature raising member 24, the high temperature region R3 is wide. By cutting, a cavity M15 is formed inside. Further, the temperature of the resin molding material in contact with the temperature raising member 24 is higher (for example, higher than 20 ° C.) than the temperature of the resin molding material in contact with the general surface 23 and has a low viscosity (for example, shear viscosity of 10 1 to 10 3). Pa · s), the air hole M16a is formed so as to penetrate the skin layer M16 and connect to the cavity M15.
The cavity M15 is generally substantially oval, for example, the major axis is about 80 to 100% of the separation distance d2, and the minor axis is about 100 to 150% of the diameter d11 of the body portion 24a of the temperature raising member. The reason why the minor axis is d11 or more is presumed that the wall of the foam cell is cut around the main body of the temperature raising member. In addition, adjacent cavities formed by adjacent temperature raising members may be partially connected. The cavity M15 has a structure for absorbing sound by taking sound waves into the resin foam molded body M10. Therefore, the structure of the temperature raising portion may be set so that the cavity M15 having a size and shape that optimizes the sound absorption performance is formed.
In the separation step, the separation speed V1 of the mold 20 is preferably 1 to 100 mm / second, and more preferably 10 to 60 mm / second. This is because when the separation speed V1 is equal to or higher than the lower limit, a phenomenon in which foaming does not occur does not occur, and when the separation speed V1 is equal to or lower than the upper limit, a phenomenon that the structure of the frosted columnar foam cell does not collapse occurs. This is because an inexpensive injection molding machine can be used. The time for separating from the proximity position L1 to the separation position L2 is about 0.02 to 3 seconds.

上記離間段階(成形型20,30を離間させているとき)で、キャビティ内でスキン層よりも内側にある樹脂成形材料の温度(例えばキャビティの中心の温度)を試験温度とした該樹脂成形材料の溶融張力は、0.1〜30gfであるのが好ましく、0.2〜1.0gfであるのがさらに好ましい。ただし、樹脂成形材料の溶融張力は、JIS K7199に準拠した(株)東洋精機製作所製のキャピラリーレオメータ「キャピログラフ1C型」を用い、シリンダの下端に直径1.0mmのキャピラリーを装着して、前記試験温度にした樹脂成形材料をシリンダ内に充填し、キャピラリーレオメータのピストンを降下速度10mm/minで降下させてシリンダ内の樹脂成形材料をキャピラリーから糸状に押し出し、同時に、押し出された樹脂成形材料を5.0m/minの引き取り速度で引き取る際に測定される溶融張力とする。樹脂成形材料が熱可塑性の材料である場合、樹脂成形材料を加熱して溶融させ、成形型20,30が近接位置L1にあるときのキャビティに溶融状態の樹脂成形材料を射出して、成形型20,30を離間させるときにキャビティ内にある樹脂成形材料の中で最も高い温度を試験温度として、当該試験温度の溶融状態の樹脂成形材料をシリンダ内に充填し、ピストンを降下させて樹脂成形材料を糸状に押し出して引き取る際に溶融張力を測定すればよい。樹脂成形材料の溶融張力が0.1gf未満と小さいと成形型を離間させたときに発泡セルの壁が切れてしまい発泡セルが霜柱状に形成されないため0.1gf以上にするのが好ましく、樹脂成形材料の溶融張力が大きすぎる(30gfよりも大)と成形型を離間させても発泡セルが霜柱状に形成されずに通気度もほとんどなく吸音性も低いため30gf以下にするのが好ましい。   In the separation step (when the molds 20 and 30 are spaced apart), the resin molding material having the test temperature as the temperature of the resin molding material inside the cavity inside the skin layer (for example, the temperature at the center of the cavity) The melt tension of is preferably from 0.1 to 30 gf, more preferably from 0.2 to 1.0 gf. However, the melt tension of the resin molding material was determined by using a capillary rheometer “Capillograph 1C type” manufactured by Toyo Seiki Seisakusho Co., Ltd. in accordance with JIS K7199. The cylinder is filled with the resin molding material at a temperature, the piston of the capillary rheometer is lowered at a descending speed of 10 mm / min, and the resin molding material in the cylinder is extruded from the capillary into a thread shape. At the same time, the extruded resin molding material is 5 The melt tension measured when the sheet is drawn at a take-up speed of 0.0 m / min. When the resin molding material is a thermoplastic material, the resin molding material is heated and melted, and the molten resin molding material is injected into the cavity when the molding dies 20 and 30 are in the proximity position L1. The highest temperature among the resin molding materials in the cavity when separating 20 and 30 is set as the test temperature, the resin molding material in a molten state at the test temperature is filled in the cylinder, and the piston is lowered to form the resin molding. What is necessary is just to measure melt tension, when material is extruded and taken out in the shape of a thread. If the melt tension of the resin molding material is as small as less than 0.1 gf, the foamed cell wall is cut when the mold is separated and the foamed cell is not formed in the form of frost columns. When the melt tension of the molding material is too large (greater than 30 gf), even if the mold is separated, the foamed cells are not formed in the form of frost columns, and the air permeability is hardly present and the sound absorption is low.

さらに、成形型の離間距離d2は、得ようとする樹脂発泡成形体の発泡倍率によって定まるものであり、近接位置L1にあるときの成形型20,30の間の距離d1の2.0〜9.0倍(樹脂発泡成形体の発泡倍率が3〜10倍)が好ましく、距離d1の2.0〜5.0倍(樹脂発泡成形体の発泡倍率が3〜6倍)がさらに好ましい。言い換えると、成形型20,30を近接位置L1から離間位置L2まで離間させるときのキャビティC1の容積比は、3〜10が好ましく、3〜6がさらに好ましい。キャビティの容積比(離間距離d2)を前記下限以上にすると一般面23に対応した位置で離間方向D1において発泡セルが霜柱状で十分に長くなって通気度が大きくなることにより吸音性が良好になり、上限以下にすると一般面23に対応した位置で厚み方向(離間方向D1)の途中で発泡セルが切断されないことにより内装材として良好な弾性かつ良好な触感が得られるためである。
本製造方法では、近接位置にあるときの両成形型の間の距離d1を1.0〜10.0mmとし、離間距離d2を1.0〜50.0mmとしているので、一般面23に対応する位置の発泡セルM13は離間方向D1へ離間距離d2以下で1.0mm以上気泡が連続して伸長した霜柱状に形成される。
Further, the separation distance d2 of the mold is determined by the expansion ratio of the resin foam molded product to be obtained, and is 2.0 to 9 of the distance d1 between the molds 20 and 30 when in the proximity position L1. 0.0 times (the foaming ratio of the resin foam molding is 3 to 10 times) is preferable, and 2.0 to 5.0 times the distance d1 (the foaming ratio of the resin foam molding is 3 to 6 times) is more preferable. In other words, the volume ratio of the cavity C1 when the molds 20 and 30 are separated from the proximity position L1 to the separation position L2 is preferably 3 to 10, and more preferably 3 to 6. When the volume ratio of the cavities (separation distance d2) is equal to or greater than the lower limit, the foamed cells are frost columns in the separation direction D1 at a position corresponding to the general surface 23 and become sufficiently long to increase the air permeability. If the upper limit is not reached, the foamed cells are not cut in the middle of the thickness direction (separating direction D1) at the position corresponding to the general surface 23, so that good elasticity and good tactile sensation as an interior material can be obtained.
In this manufacturing method, the distance d1 between the two molds at the close position is set to 1.0 to 10.0 mm, and the separation distance d2 is set to 1.0 to 50.0 mm. The foam cell M13 at the position is formed in a frost column shape in which bubbles are continuously extended by 1.0 mm or more at a separation distance d2 or less in the separation direction D1.

なお、一対の成形型20,30を離間させる速度V1について近接位置L1から離間し始めた位置での速度よりも離間位置L2へ到達する位置での速度の方を大きくして樹脂発泡成形体を成形すると、一般面23に対応する位置で発泡セルを安定して霜柱状に形成することができるので、高い吸音性を維持しながら内装材としての弾性および触感をさらに良好にさせることができる。例えば、タイミングt4〜t5において成形型20の離間速度V1を徐々に、または、段階的に上げることにより、近接位置L1から離間し始めた位置での速度よりも離間位置L2へ到達する位置での速度の方を大きくする。   In addition, the speed at the position reaching the separation position L2 is made larger than the speed at the position where the pair of molds 20 and 30 are separated from the proximity position L1 at the speed V1, and the resin foam molding is obtained. If it shape | molds, since a foam cell can be stably formed in a frost column shape in the position corresponding to the general surface 23, the elasticity and tactile sense as an interior material can be made further favorable, maintaining high sound absorption. For example, at the timing t4 to t5, by gradually or stepwise increasing the separation speed V1 of the mold 20, the position at which the mold 20 reaches the separation position L2 rather than the speed at the position where the separation starts from the proximity position L1. Increase the speed.

上記離間段階を終了すると、成形型20を離間位置L2で所定時間保持する(図5のタイミングt5〜t6)。成形型を離間位置で保持する時間T2は、内部の発泡層が冷却されて固化する時間があればよく、例えば、約30秒とすればよい。
最後に、離間位置L2で型締め状態にある成形型20,30を開き、キャビティを開放し(図5のタイミングt6〜t7)、樹脂発泡成形体M10を取り出すことにより、一連の製造サイクルが終了する。
When the separation step is finished, the mold 20 is held at the separation position L2 for a predetermined time (timing t5 to t6 in FIG. 5). The time T2 for holding the mold in the spaced position is sufficient if the internal foamed layer is cooled and solidified, for example, about 30 seconds.
Finally, the molds 20 and 30 in the clamped state are opened at the separation position L2, the cavity is opened (timing t6 to t7 in FIG. 5), and the resin foam molded body M10 is taken out to complete a series of manufacturing cycles. To do.

形成される樹脂発泡成形体M10は、薄く広がった形状とされ、一般面23,33に接した表面に非発泡のスキン層M16が形成され、一般面23に対応する位置で内部に離間方向へ1mm以上連続気泡で伸長した霜柱状発泡セルM13を有する通気性の発泡層M12が形成されるとともに、昇温部材24に対応する位置にて空洞M15が内部に形成され、スキン層M16を貫通して空洞M15へ繋がるように通気孔M16aが形成される。これにより、樹脂発泡成形体は、一般面23に対応した位置ではスキン層(例えば厚さ0.1〜1.0mm、密度0.8〜1.0g/cm2)に霜柱状発泡セル(例えば密度0.03〜0.5g/cm2)が挟まれた構造となり、昇温部材24に対応した位置では通気孔M16aがスキン層M16を貫通して底部M16a1が背後の空洞M15に連通した構造となる。
すると、図8に示すように、樹脂発泡成形体M10へ向かう音波は、通気孔M16aから空洞M15へ進入し、発泡層M12で通気性の霜柱状発泡セルM13に進入してエネルギーが吸収され、ほとんど反射しない。従って、騒音等の音が発泡層M12で吸音され、自動車の車室等の静粛性を向上させることが可能になる。また、霜柱状発泡セルの間に空洞が分散して存在しているので、軽量ながら厚み方向への圧縮力に対して座屈しにくく内装材として良好な弾性が得られる。従って、本樹脂発泡成形体は、全体として、低密度で、自己形状性があり、触感が良好で、吸音性が高く、薄くてもこれらの性能が発現されるといった、有用な効果を奏する。
The formed resin foam molded body M10 has a thin and wide shape, and a non-foamed skin layer M16 is formed on the surface in contact with the general surfaces 23 and 33. A breathable foam layer M12 having frost columnar foam cells M13 extended with continuous bubbles of 1 mm or more is formed, and a cavity M15 is formed inside at a position corresponding to the temperature raising member 24, and penetrates the skin layer M16. Thus, a ventilation hole M16a is formed so as to be connected to the cavity M15. As a result, the resin foam molded body has a frost columnar foam cell (for example, a thickness of 0.1 to 1.0 mm and a density of 0.8 to 1.0 g / cm 2 ) at a position corresponding to the general surface 23 (for example, Density 0.03 to 0.5 g / cm < 2 >) is sandwiched, and at a position corresponding to the temperature raising member 24, the air hole M16a penetrates the skin layer M16 and the bottom M16a1 communicates with the back cavity M15. It becomes.
Then, as shown in FIG. 8, the sound wave toward the resin foam molded body M10 enters the cavity M15 from the vent hole M16a, enters the breathable frost columnar foam cell M13 by the foam layer M12, and energy is absorbed, Almost no reflection. Accordingly, noise such as noise is absorbed by the foamed layer M12, and it is possible to improve the quietness of the passenger compartment of the automobile. Moreover, since cavities are dispersed and exist between the frost column-shaped foamed cells, the elastic material can be easily buckled against a compressive force in the thickness direction while being lightweight, and good elasticity can be obtained as an interior material. Therefore, the resin foam molded article as a whole has useful effects such as low density, self-shape, good tactile sensation, high sound absorption, and the ability to be exhibited even when thin.

本樹脂発泡成形体は、単独あるいは表皮材等と組み合わせて吸音パネルとして用いることができ、図9に示すように、自動車用ピラーガーニッシュP1、自動車用パッケージトレイトリムP2、ドアトリム(不図示)、サンバイザー(不図示)等の各種の自動車用内装材等に使用することができる。
図11は、スキン層M16の表面側に通気性の表皮材M17を積層した吸音パネルを示している。ここで、吸音パネルM101は、上記樹脂発泡成形体M10の両面に表皮材M17を貼り付けた例を示している。また、吸音パネルM102は、図10に示す成形型20,30で両面に通気孔M16aが形成されるように成形された樹脂発泡成形体M20の片面にのみ表皮材M17を貼り付けた例を示している。
表皮材M17は、自動車の内装材としての意匠性を付与する目的で吸音パネルの表面に設けられ、例えば、厚み0.2〜8.0mm、目付50〜600g/m2の、織物、不織布、ニット、微小な通気孔を多数形成した各種レザー、等を用いることができる。スキン層に通気性の表皮材を積層すると、吸音パネルの表面を加飾したり、吸音パネルにソフトな触感を付与したり、吸音パネルの傷付きを防止したり、吸音性を向上させたりすることができる。また、表皮材M17にJIS L1096による通気度が6cc/cm2/sec以上の高通気性の表皮材を用いると、吸音効果を低下させることなく意匠性を高めることが可能となる。
This resin foam molding can be used alone or in combination with a skin material as a sound absorbing panel. As shown in FIG. 9, pillar garnish P1 for automobile, package tray trim P2 for automobile, door trim (not shown), sun It can be used for various automotive interior materials such as a visor (not shown).
FIG. 11 shows a sound absorbing panel in which a breathable skin material M17 is laminated on the surface side of the skin layer M16. Here, the sound absorbing panel M101 shows an example in which a skin material M17 is attached to both surfaces of the resin foam molded body M10. Further, the sound absorbing panel M102 shows an example in which the skin material M17 is pasted only on one surface of the resin foam molded body M20 formed by the molding dies 20 and 30 shown in FIG. ing.
The skin material M17 is provided on the surface of the sound-absorbing panel for the purpose of imparting design properties as an automobile interior material. For example, a woven fabric, a nonwoven fabric having a thickness of 0.2 to 8.0 mm and a basis weight of 50 to 600 g / m 2 , Knit, various leathers with a large number of minute ventilation holes, and the like can be used. Laminating a breathable skin material on the skin layer will decorate the surface of the sound absorbing panel, give the sound absorbing panel a soft feel, prevent damage to the sound absorbing panel, and improve sound absorbing properties. be able to. In addition, when a highly breathable skin material having an air permeability of 6 cc / cm 2 / sec or more according to JIS L1096 is used for the skin material M17, it is possible to improve the design without reducing the sound absorption effect.

以上説明したように、成形型20,30が離間するとき、成形型の一般面23,33に接した樹脂成形材料の表面は冷却されて非発泡のスキン層が形成され、同時に、該一般面よりも高温の昇温部に接した樹脂成形材料の表面は開孔が形成される。これにより、後加工で樹脂発泡成形体の表面に開孔を形成する必要が無く、成形と同時に良好な吸音性を有する樹脂発泡成形体が得られる。従って、樹脂発泡成形体のスキン層に多数の開孔を形成する合理的な方法を提供することができ、吸音性の良好な樹脂発泡成形体の製造効率を向上させることが可能になる。また、開孔がスキン層を貫通して内部の空洞にまで繋がった通気孔とされるため、非常に良好な吸音性を有する樹脂発泡成形体が得られる。さらに、一般面と昇温部とが断熱されているので、別途加熱機構で昇温部を加熱することなく一般面より高温に維持することができ、確実に開孔を形成して非常に良好な吸音性の成形体を得ることができる。さらに、昇温部が一般面よりもキャビティに向けて突出しているので、確実に開孔を形成して非常に良好な吸音性の成形体を得ることができる。さらに、一般面を樹脂成形材料の融点より低い温度に冷却する冷却機構が設けられているので、確実にスキン層を形成して良好な吸音性の成形体を得ることができる。   As described above, when the molds 20 and 30 are separated from each other, the surface of the resin molding material in contact with the general surfaces 23 and 33 of the mold is cooled to form a non-foamed skin layer. Openings are formed on the surface of the resin molding material that is in contact with the temperature rising portion at a higher temperature. Thereby, it is not necessary to form a hole in the surface of the resin foam molded article by post-processing, and a resin foam molded article having good sound absorption at the same time as molding can be obtained. Therefore, it is possible to provide a rational method for forming a large number of openings in the skin layer of the resin foam molded article, and it is possible to improve the production efficiency of a resin foam molded article having good sound absorption. In addition, since the opening is a vent hole that penetrates through the skin layer to the internal cavity, a resin foam molded article having very good sound absorption is obtained. In addition, since the general surface and the temperature rising part are insulated, the temperature rising part can be maintained at a temperature higher than that of the general surface without heating with a separate heating mechanism, and the hole is reliably formed and very good. A sound-absorbing molded article can be obtained. Furthermore, since the temperature raising portion protrudes from the general surface toward the cavity, it is possible to reliably form an opening and obtain a molded article having a very good sound absorbing property. Furthermore, since a cooling mechanism for cooling the general surface to a temperature lower than the melting point of the resin molding material is provided, a skin layer can be surely formed and a good sound-absorbing molded body can be obtained.

(2)変形例:
図12に示すように、種々の形状の昇温部71〜75を用いて樹脂発泡成形体に表面に開孔を形成することができる。昇温部材71は、円柱状の本体部71aと、該本体部よりも径の大きい根部71bとを有している。これにより、樹脂成形材料からの多くの熱を根部71bに蓄積させることができ、より確実に昇温部を一般面より高温に維持して吸音性の良好な成形体を得ることが可能になる。昇温部材72は、略円筒形状のキャビティ側を本体部72a、成形型の一般部側を根部72bとし、先端部72cに多数の鋭い歯が形成されている。昇温部材73は、略円錐形状の頂点部を先端部73aとして、キャビティ側を本体部73a、一般部側を根部73bとし、本体部の側面に複数の刃73dが形成されている。昇温部材74は、鉛筆のように、先端部74cを円錐形状とし、この先端部から一般部側を円柱形状として、キャビティ側を本体部74a、一般部側を根部74bとしている。逆に、昇温部材75は、先端部75cを円錐状に凹んだ形状として周縁部を突出させて内側を窪ませ、この先端部から一般部側を円柱形状として、キャビティ側を本体部75a、一般部側を根部75bとしている。
(2) Modification:
As shown in FIG. 12, holes can be formed on the surface of the resin foam molded body using the temperature rising portions 71 to 75 having various shapes. The temperature raising member 71 has a columnar main body 71a and a root 71b having a diameter larger than that of the main body. As a result, a large amount of heat from the resin molding material can be accumulated in the root portion 71b, and it becomes possible to obtain a molded article with good sound absorption while maintaining the temperature rising portion at a higher temperature than the general surface more reliably. . The temperature raising member 72 has a body portion 72a on the substantially cylindrical cavity side and a root portion 72b on the general portion side of the mold, and a number of sharp teeth are formed on the tip portion 72c. The temperature raising member 73 has a substantially conical apex portion as a tip portion 73a, a cavity side as a main body portion 73a, and a general portion side as a root portion 73b, and a plurality of blades 73d are formed on the side surface of the main body portion. Like the pencil, the temperature raising member 74 has a tip portion 74c having a conical shape, a general portion side from the tip portion is a cylindrical shape, a cavity side is a main body portion 74a, and a general portion side is a root portion 74b. On the contrary, the temperature raising member 75 has a tip portion 75c recessed in a conical shape so that the peripheral portion protrudes and the inside is depressed, the general portion side from this tip portion is a cylindrical shape, and the cavity side is the main body portion 75a, The general part side is a root part 75b.

図13に示すように、昇温部24を積極的に成形型の一般面23より高温に(好ましくは20℃以上高温に)加熱する加熱機構50を設けてもよい。図では、各昇温部材24の根部24bを接触させた熱伝導部材54が移動型の一般部22の内部に設けられ、移動型の一般部22の内部に加熱通路51が形成され、一般部22から加熱通路51と熱伝導部材54と昇温部材の根部24bを断熱する断熱材(断熱構造)53が当該各部51,54,24bと一般部22との間に設けられ、送液機構52により加熱通路51内に加熱油等の加熱液(加熱媒体)を通過させる加熱機構50が示されている。むろん、加熱機構は、移動型の一般部内で昇温部に接して設けられたヒータに電流を流して昇温部を加熱する機構、等でもよい。熱伝導部材54は、熱伝導率の大きいアルミニウムや銅等の金属等から形成され、加熱媒体からの熱を各根部24bに伝達する。加熱機構は、昇温部を樹脂成形材料M1の融点MP以上に加熱してもよいし、融点MPより低い温度に加熱してもよい。いずれの場合でも、昇温部に接した樹脂成形材料の温度低下を遅らせることができる。すると、確実に昇温部の温度が一般面より高温とされるので、確実に開孔を形成して良好な吸音性の成形体を得ることができる。
この場合も、昇温部には図12で示した昇温部材71〜75を用いてもよい。昇温部材71を用いる場合、径の大きい根部71bに接するように加熱媒体の循環用のパイプを一般部22の中に設置し、所定温度に制御された加熱媒体を循環させることにより、昇温部材の温度を高温に制御することができる。
As shown in FIG. 13, a heating mechanism 50 that actively heats the temperature raising portion 24 to a temperature higher than the general surface 23 of the mold (preferably to a temperature higher than 20 ° C.) may be provided. In the figure, a heat conducting member 54 in contact with the root 24b of each temperature raising member 24 is provided inside the movable general part 22, and a heating passage 51 is formed inside the movable general part 22, and the general part 22, a heat insulating material (heat insulating structure) 53 that insulates the heating passage 51, the heat conducting member 54, and the root portion 24b of the temperature raising member is provided between the respective portions 51, 54, 24b and the general portion 22, and a liquid feeding mechanism 52 is provided. 1 shows a heating mechanism 50 that allows a heating liquid (heating medium) such as heating oil to pass through the heating passage 51. Of course, the heating mechanism may be a mechanism that heats the temperature rising section by passing a current through a heater provided in contact with the temperature rising section in the movable general portion. The heat conducting member 54 is formed of a metal such as aluminum or copper having a high heat conductivity, and transfers heat from the heating medium to each root portion 24b. The heating mechanism may heat the temperature raising portion to the melting point MP or higher of the resin molding material M1, or may be heated to a temperature lower than the melting point MP. In any case, the temperature drop of the resin molding material in contact with the temperature raising portion can be delayed. Then, since the temperature of the temperature raising portion is surely higher than that of the general surface, it is possible to reliably form the aperture and obtain a good sound-absorbing molded body.
Also in this case, the temperature raising members 71 to 75 shown in FIG. When the temperature raising member 71 is used, a heating medium circulation pipe is installed in the general part 22 so as to be in contact with the root 71b having a large diameter, and the heating medium controlled to a predetermined temperature is circulated to increase the temperature. The temperature of the member can be controlled to a high temperature.

なお、図13に示す機構50を加熱および冷却可能な温度制御機構としてもよい。この場合、通路51は加熱媒体および冷却媒体の媒体通路となり、送液機構52は加熱媒体および冷却媒体を媒体通路51へ送り出す機構となる。加熱媒体および冷却媒体としては、油、水、等を用いることができる。むろん、温度制御機構50は、移動型の一般部内で昇温部に接して設けられたヒータに電流を流して昇温部を加熱および冷却する機構、等でもよい。昇温部の温度を検出する温度センサを設置すれば、温度センサの検出温度に基づいて昇温部を目標温度にフィードバック制御することができるし、昇温部内で温度勾配を設けることもできる。
上記温度制御機構を設けることにより、昇温部を所定の温度範囲に精度よく維持して成形を安定して繰り返すことが可能になる。また、成形型の離間終了後(タイミングt5〜t6)に昇温部を強制的に冷却することにより、樹脂発泡成形体を確実に固化させ、安定した形状の樹脂発泡成形体を得ることができる。
Note that the mechanism 50 shown in FIG. 13 may be a temperature control mechanism capable of heating and cooling. In this case, the passage 51 serves as a medium passage for the heating medium and the cooling medium, and the liquid feeding mechanism 52 serves as a mechanism for sending the heating medium and the cooling medium to the medium passage 51. Oil, water, etc. can be used as the heating medium and the cooling medium. Of course, the temperature control mechanism 50 may be a mechanism that heats and cools the temperature rising section by passing a current through a heater provided in contact with the temperature rising section in the movable general portion. If a temperature sensor for detecting the temperature of the temperature raising unit is installed, the temperature raising unit can be feedback-controlled to the target temperature based on the temperature detected by the temperature sensor, and a temperature gradient can be provided in the temperature raising unit.
By providing the temperature control mechanism, it is possible to stably maintain the temperature raising portion within a predetermined temperature range and stably repeat the molding. In addition, by forcibly cooling the temperature rising portion after the mold is separated (timing t5 to t6), the resin foam molded body can be solidified reliably, and a resin foam molded body having a stable shape can be obtained. .

図14に示すように、昇温部材76を一般面23からキャビティへ突出させず、一般面23に埋め込まれるように設けてもよい。この場合であっても、昇温部76は一般面23より高温となるので、成形型を離間させることにより、樹脂発泡成形体には、一般面23に接した表面に非発泡のスキン層が形成され、昇温部76に接した表面に開孔が形成される。同図の例では、例えば冷却機構40で樹脂成形材料の融点MPより低い温度に冷却された一般面23に接した表面にスキン層が形成され、加熱機構50にて昇温部76が例えば前記融点MP以上に加熱されて、スキン層を貫通して内部の空洞へ繋がる通気孔が形成される。   As shown in FIG. 14, the temperature raising member 76 may be provided so as to be embedded in the general surface 23 without protruding from the general surface 23 to the cavity. Even in this case, the temperature raising portion 76 has a temperature higher than that of the general surface 23. Therefore, by separating the mold, the resin foam molded body has a non-foamed skin layer on the surface in contact with the general surface 23. An opening is formed on the surface formed and in contact with the temperature raising portion 76. In the example of the figure, for example, a skin layer is formed on the surface in contact with the general surface 23 cooled to a temperature lower than the melting point MP of the resin molding material by the cooling mechanism 40, and the heating mechanism 50 causes the heating unit 76 to By being heated to the melting point MP or higher, a vent hole penetrating the skin layer and leading to the internal cavity is formed.

図15と図16に示すように、昇温部24を双方向にスライド駆動するスライド駆動機構60を設け、通気孔M16aを形成するときに昇温部24をキャビティC1に向けて進出させて、樹脂発泡成形体を成形してもよい。本成形機10の昇温部材24は、所定の退避位置(図15に示す位置)と所定の進出位置(図16に示す位置)との間でキャビティC1に向けて進出および退避する双方向(離間方向D1)へスライド可能とされている。なお、図では、各昇温部材24の根部24bを接触させた熱伝導部材54が移動型の一般部22の内部に設けられ、移動型の一般部22の内部でヒータ55が熱伝導部材54に接して取り付けられ、一般部22からヒータ55と熱伝導部材54と昇温部材の根部24bを断熱する断熱材(断熱構造)53が当該各部55,54,24bと一般部22との間に設けられた加熱機構50が示されている。むろん、加熱機構には、上述した各種の機構を用いることができる。ここで、熱伝導部材54とヒータ55とは、昇温部材24とともに双方向(離間方向D1)へスライド可能とされている。スライド駆動機構60は、例えば、一般部22内で熱伝導部材54に取り付けられて自ら双方向(離間方向D1)へスライド動作することにより熱伝導部材54と昇温部材24とヒータ55とをスライド動作させるピストン部材61と、油圧等によりピストン部材61を双方向(離間方向D1)へスライド駆動するシリンダ62とから構成することができる。   As shown in FIGS. 15 and 16, a slide drive mechanism 60 that slides the temperature raising unit 24 in both directions is provided, and when the air vent M16a is formed, the temperature raising unit 24 is advanced toward the cavity C1, A resin foam molding may be molded. The temperature raising member 24 of the molding machine 10 is bi-directionally advanced and retracted toward the cavity C1 between a predetermined retracted position (position shown in FIG. 15) and a predetermined advanced position (position shown in FIG. 16) ( It is possible to slide in the separating direction D1). In the figure, the heat conducting member 54 in contact with the root 24 b of each temperature raising member 24 is provided inside the movable general part 22, and the heater 55 is located inside the movable general part 22. And a heat insulating material (heat insulating structure) 53 that insulates the heater 55, the heat conducting member 54, and the root portion 24b of the temperature raising member from the general portion 22 between the respective portions 55, 54, 24b and the general portion 22. The provided heating mechanism 50 is shown. Of course, the various mechanisms described above can be used as the heating mechanism. Here, the heat conducting member 54 and the heater 55 are slidable in both directions (separating direction D1) together with the temperature raising member 24. For example, the slide drive mechanism 60 is attached to the heat conducting member 54 in the general portion 22 and slides in both directions (separating direction D1) by itself to slide the heat conducting member 54, the temperature raising member 24, and the heater 55. A piston member 61 to be operated and a cylinder 62 that slide-drives the piston member 61 in both directions (separating direction D1) by hydraulic pressure or the like can be used.

所定の進出位置にあるときの昇温部24における一般面23からキャビティC1に向けて突出した長さは、例えば、1.0〜10.0mm、1.0〜5.0mm、成形型が所定の近接位置L1にあるときのキャビティC1の厚みd1の10〜100%、とすることができる。所定の退避位置にあるときの昇温部24における一般面23からキャビティC1に向けて突出した長さは、例えば、0.0mm(突出していない)〜1.0mmとすることができる。昇温部24がスライドする距離は、退避位置と進出位置との距離で決まり、例えば、1.0〜10.0mm、1.0〜5.0mm、とすることができる。
昇温部には、図4等で示した昇温部材24、図12で示した昇温部材71〜75、等を用いることができる。スキン層を突き破る観点からは、先端部の尖った昇温部材72〜75を用いると好適である。
The length protruding from the general surface 23 toward the cavity C1 in the temperature raising portion 24 when it is at the predetermined advance position is, for example, 1.0 to 10.0 mm, 1.0 to 5.0 mm, and the mold is predetermined. 10 to 100% of the thickness d1 of the cavity C1 at the close position L1. The length protruding from the general surface 23 of the temperature raising unit 24 toward the cavity C1 at the predetermined retraction position can be set to 0.0 mm (not protruding) to 1.0 mm, for example. The distance that the temperature raising unit 24 slides is determined by the distance between the retracted position and the advanced position, and can be, for example, 1.0 to 10.0 mm, 1.0 to 5.0 mm.
The temperature raising member 24 shown in FIG. 4 and the like, the temperature raising members 71 to 75 shown in FIG. From the viewpoint of breaking through the skin layer, it is preferable to use the temperature raising members 72 to 75 having sharp tips.

以上の構成により、樹脂成形材料M1が充填されたキャビティC1に向けて昇温部材24が所定の進出位置まで進出するので、確実に開孔を形成して非常に良好な吸音性の成形体を得ることができる。   With the above configuration, since the temperature raising member 24 advances to a predetermined advance position toward the cavity C1 filled with the resin molding material M1, it is possible to reliably form an opening and form a very good sound-absorbing molded article. Obtainable.

昇温部材24を進出させるタイミングとしては、図5を参照して説明すると、成形型20,30を離間させるのと同時に昇温部材24をキャビティC1に向けて進出させるタイミングt11〜t12とすることができる。図の例ではt11=t4とし、t12をt4とt5の間にしているが、t12=t5としてもよいし、t1をt4とt5の間にしてもよい。タイミングt11〜t12の時間は、0.02〜3秒程度とされる。本変形例では、成形型20,30の離間と同時に昇温部材24がキャビティに向けてスライドして樹脂成形材料の表面に通気孔M16aを形成するので、表面に通気孔を有する樹脂発泡成形体の製造効率を向上させることが可能になる。
なお、昇温部材24を退避させるタイミングとしては、タイミングt5終了時点から次回成形のタイミングt1までの間にすればよい。
また、昇温部材24の温度が射出時(タイミングt2〜t3)の樹脂成形材料の温度に近くなるほど、昇温部材の本体部24aの周りで新たなスキン層が生じることなく確実に発泡層まで貫通した通気孔が形成され、吸音性の良好な樹脂発泡成形体が得られる。
When the temperature raising member 24 is advanced with reference to FIG. 5, timings t11 to t12 at which the temperature raising member 24 is advanced toward the cavity C1 at the same time as the molds 20 and 30 are separated. Can do. In the example shown in the figure, t11 = t4 and t12 is set between t4 and t5. However, t12 = t5 may be set, or t1 may be set between t4 and t5. The period of time t11 to t12 is about 0.02 to 3 seconds. In the present modification, the temperature raising member 24 slides toward the cavity simultaneously with the separation of the molding dies 20 and 30 to form the vent hole M16a on the surface of the resin molding material. Therefore, the resin foam molded body having the vent holes on the surface. It becomes possible to improve the manufacturing efficiency of the.
The timing for retracting the temperature raising member 24 may be from the end of the timing t5 to the next molding timing t1.
Further, as the temperature of the temperature raising member 24 becomes closer to the temperature of the resin molding material at the time of injection (timing t2 to t3), a new skin layer does not form around the body portion 24a of the temperature raising member and the foam layer is surely reached. A through-hole is formed, and a resin foam molded article having good sound absorption is obtained.

また、成形型20,30を離間位置L2まで離間させたタイミングt5の後に昇温部材24をキャビティC1に向けて進出させてもよい(タイミングt13〜t14)。図の例ではt13,t14をともにt5とt6の間にしているが、t13=t5としてもよいし、昇温部材72〜75のように固化した樹脂発泡成形体の表面を突き破り可能な昇温部材を用いていればt14=t6としてもよい。タイミングt13〜t14の時間は、0.02〜3秒程度とされる。本変形例では、樹脂成形材料の温度がスキン層、発泡層とも下がっているので、熱により固化を防止した穿孔よりも、機械的な穿孔が行われる。発泡層の中の空洞は、卵形のような膨らみが少なく、昇温部材の直径の円柱に近い形状になる。本変形例では、工程が簡略化され、装置が簡単になる可能性があるとともに、スキン層に対する穿孔が確実になり、より安定した形状の通気孔を表面に有する樹脂発泡成形体を得ることが可能になる。   Further, the temperature raising member 24 may be advanced toward the cavity C1 after the timing t5 when the molds 20 and 30 are separated to the separation position L2 (timing t13 to t14). In the example shown in the figure, t13 and t14 are both between t5 and t6, but t13 = t5 may be used, and the temperature rise that can break through the surface of the solidified resin foam molded body such as the temperature raising members 72 to 75 If a member is used, t14 = t6 may be set. The period of time t13 to t14 is about 0.02 to 3 seconds. In this modification, since the temperature of the resin molding material is lowered in both the skin layer and the foam layer, mechanical perforation is performed rather than perforation in which solidification is prevented by heat. The cavity in the foamed layer is less bulging like an oval and has a shape close to a cylinder having a diameter of the temperature raising member. In this modification, the process can be simplified, the apparatus can be simplified, and the skin layer can be reliably perforated to obtain a resin foam molded body having a more stable shape of air vents on the surface. It becomes possible.

なお、本発明は、上述した実施例や変形例に限られず、上述した実施例および変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した実施例および変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。   In addition, this invention is not restricted to the Example and modification which were mentioned above, Each structure disclosed in the Example and modification which were mentioned above mutually replaced, the structure which changed the combination, well-known technique, and the above-mentioned Configurations in which the respective configurations disclosed in the embodiments and the modified examples are mutually replaced or combinations are changed are also included.

樹脂発泡成形体の製造方法を模式的に示す断面図。Sectional drawing which shows typically the manufacturing method of a resin foaming molding. 樹脂発泡成形体の製造装置を模式的に示す断面図。Sectional drawing which shows typically the manufacturing apparatus of a resin foaming molding. 成形型に断熱材と昇温部材を取り付ける様子を示す分解斜視図。The disassembled perspective view which shows a mode that a heat insulating material and a temperature rising member are attached to a shaping | molding die. キャビティを形成する成形型の要部を示す垂直断面図。The vertical sectional view which shows the principal part of the shaping | molding die which forms a cavity. 成形型の移動量を示すタイミングチャート。The timing chart which shows the movement amount of a shaping | molding die. 樹脂発泡成形体の一般部の構造を示す垂直断面図。The vertical sectional view which shows the structure of the general part of a resin foaming molding. キャビティに充填された樹脂成形材料の変化を示す断面図。Sectional drawing which shows the change of the resin molding material with which the cavity was filled. 樹脂発泡成形体の一部を示す平面図および垂直断面図。The top view and vertical sectional view which show a part of resin foaming molding. 本樹脂発泡成形体を適用した自動車用内装材の外観を示す斜視図。The perspective view which shows the external appearance of the interior material for motor vehicles which applied this resin foaming molding. 変形例においてキャビティを形成する成形型の要部を示す垂直断面図。The vertical sectional view which shows the principal part of the shaping | molding die which forms a cavity in a modification. 樹脂発泡成形体を用いた吸音パネルを示す垂直断面図。The vertical sectional view which shows the sound-absorbing panel using the resin foaming molding. 昇温部の各種変形例を示す斜視図。The perspective view which shows the various modifications of a temperature rising part. 加熱機構(温度制御機構)を設けた製造装置を模式的に示す断面図。Sectional drawing which shows typically the manufacturing apparatus provided with the heating mechanism (temperature control mechanism). 変形例において樹脂発泡成形体製造装置の要部を模式的に示す断面図。Sectional drawing which shows typically the principal part of the resin foam molded object manufacturing apparatus in a modification. スライド駆動機構を設けた製造装置を模式的に示す断面図。Sectional drawing which shows typically the manufacturing apparatus provided with the slide drive mechanism. 昇温部を進出させた製造装置の様子を模式的に示す断面図。Sectional drawing which shows typically the mode of the manufacturing apparatus which made the temperature rising part advance.

符号の説明Explanation of symbols

10…発泡射出成形機、
20,30…一対の成形型、
21,31…成形面、21a…断熱材取付孔、
22,32…一般部、23,33…一般面、
24,71〜76…昇温部材(昇温部)、24a…本体部、24b…根部、
26…断熱材(断熱構造)、26a…昇温部取付孔、26b…外周面、
40…冷却機構、41…冷却通路、42…送液機構、
50…加熱機構(温度制御機構)、51…加熱通路(媒体通路)、52…送液機構、
53…断熱材(断熱構造)、54…熱伝導部材、55…ヒータ、
60…スライド駆動機構、61…ピストン部材、62…シリンダ、
C1…キャビティ、
D1…離間方向、D2…離間方向とは垂直な方向、
L1…所定の近接位置、L2…所定の離間位置、
M1…樹脂成形材料、
M10,M20…樹脂発泡成形体、
M10a…一般部、M10b…一般面、
M12…発泡層、M13…発泡セル、
M15…空洞、
M16…スキン層、
M16a…通気孔(開孔)、M16a1…通気孔の底部、
M17…表皮材、
M101,M102…吸音パネル、
PL1…樹脂発泡成形体の厚み方向とは垂直な面、
10: Foam injection molding machine,
20, 30 ... a pair of molds,
21, 31 ... molding surface, 21 a ... heat insulating material mounting hole,
22, 32 ... General part, 23, 33 ... General surface,
24, 71-76 ... temperature rising member (temperature raising part), 24a ... main body part, 24b ... root part,
26 ... heat insulating material (heat insulating structure), 26a ... temperature rising part mounting hole, 26b ... outer peripheral surface,
40 ... Cooling mechanism, 41 ... Cooling passage, 42 ... Liquid feeding mechanism,
50 ... heating mechanism (temperature control mechanism), 51 ... heating passage (medium passage), 52 ... liquid feeding mechanism,
53 ... heat insulating material (heat insulating structure), 54 ... heat conducting member, 55 ... heater,
60 ... slide drive mechanism, 61 ... piston member, 62 ... cylinder,
C1 ... cavity,
D1 ... separation direction, D2 ... direction perpendicular to the separation direction,
L1: a predetermined proximity position, L2: a predetermined separation position,
M1 ... resin molding material,
M10, M20 ... resin foam molding,
M10a ... general part, M10b ... general surface,
M12 ... foam layer, M13 ... foam cell,
M15 ... hollow,
M16 ... Skin layer,
M16a ... vent (opening), M16a1 ... bottom of vent,
M17 ... skin material,
M101, M102 ... sound absorbing panel,
PL1 ... a surface perpendicular to the thickness direction of the resin foam molding,

Claims (10)

互いに近接および離反可能な一対の成形型を所定の近接位置に近接させたときに形成されるキャビティに発泡剤を含む樹脂成形材料を充填した後、前記一対の成形型を所定の離間位置まで離間させて前記キャビティを拡張させることにより該キャビティ内の樹脂成形材料に発泡セルを形成させて樹脂発泡成形体を成形する樹脂発泡成形体の製造方法であって、
前記成形型の少なくとも一方の成形面に一般面と該一般面より高温となる昇温部とを少なくとも設け、前記一対の成形型を離間させることにより前記一般面に接した表面に非発泡のスキン層を形成しながら前記昇温部に接した表面に開孔を形成して前記樹脂発泡成形体を成形することを特徴とする樹脂発泡成形体の製造方法。
A cavity formed when a pair of molds that can approach and separate from each other is brought close to a predetermined proximity position, and a resin molding material containing a foaming agent is filled in the cavity, and then the pair of molds are separated to a predetermined separation position. And expanding the cavity to form a foamed cell in the resin molding material in the cavity to mold a resin foam molded article,
A non-foamed skin is provided on the surface in contact with the general surface by providing at least one general surface and a temperature raising portion having a temperature higher than the general surface on at least one molding surface of the mold, and separating the pair of molds A method for producing a resin foam molded article, comprising forming a hole in a surface in contact with the temperature raising portion while forming a layer, and molding the resin foam molded article.
前記キャビティに充填された樹脂成形材料内で前記昇温部に対応する位置の温度を前記一般面に対応する位置の温度よりも高くして前記一対の成形型を離間させることにより前記昇温部に対応する位置にて空洞を内部に形成するとともに前記スキン層を貫通して前記空洞へ繋がるように前記開孔を形成して前記樹脂発泡成形体を成形することを特徴とする請求項1に記載の樹脂発泡成形体の製造方法。   In the resin molding material filled in the cavity, the temperature at the position corresponding to the temperature rising portion is made higher than the temperature at the position corresponding to the general surface, and the pair of molds are separated from each other to raise the temperature rising portion. 2. The resin foam molded body is formed by forming a cavity inside at a position corresponding to 1 and forming the opening so as to penetrate the skin layer and connect to the cavity. The manufacturing method of the resin foaming molding of description. 前記成形型の少なくとも一方の成形面に前記一般面と前記昇温部とを断熱する断熱構造をさらに設けて、前記樹脂発泡成形体を成形することを特徴とする請求項1または請求項2に記載の樹脂発泡成形体の製造方法。   3. The resin foam molded body is formed by further providing a heat insulating structure that insulates the general surface and the temperature rising portion on at least one molding surface of the molding die. The manufacturing method of the resin foaming molding of description. 前記昇温部を前記一般面よりも前記キャビティに向けて突出させた形状として、前記樹脂発泡成形体を成形することを特徴とする請求項1〜請求項3のいずれかに記載の樹脂発泡成形体の製造方法。   The resin foam molding according to any one of claims 1 to 3, wherein the resin foam molding is molded in a shape in which the temperature raising portion is protruded toward the cavity from the general surface. Body manufacturing method. 前記昇温部における前記一般面から前記キャビティに向けて突出した長さを、前記樹脂発泡成形体に形成されるスキン層の厚み以上、かつ、前記近接位置にある一対の成形型にて対向する成形面の間隔以下として、前記樹脂発泡成形体を成形することを特徴とする請求項4に記載の樹脂発泡成形体の製造方法。   The length protruding from the general surface toward the cavity in the temperature raising part is equal to or greater than the thickness of the skin layer formed on the resin foam molded body, and is opposed to the pair of molds in the proximity position. 5. The method for producing a resin foam molded article according to claim 4, wherein the resin foam molded article is molded to be equal to or less than a distance between molding surfaces. 前記一般面を前記樹脂成形材料の融点より低い温度に冷却する冷却機構と、前記昇温部を前記一般面より高温に加熱する加熱機構とをさらに設けて、前記樹脂発泡成形体を成形することを特徴とする請求項1〜請求項5のいずれかに記載の樹脂発泡成形体の製造方法。   A cooling mechanism that cools the general surface to a temperature lower than the melting point of the resin molding material, and a heating mechanism that heats the temperature raising portion to a temperature higher than the general surface, and molding the resin foam molded body. The method for producing a resin foam molded article according to any one of claims 1 to 5. 前記昇温部を前記キャビティに向けて進出および退避する双方向へスライド可能とし、該昇温部を前記双方向へスライド駆動するスライド駆動機構を設け、前記開孔を形成するときに前記昇温部を前記キャビティに向けて進出させて、前記樹脂発泡成形体を成形することを特徴とする請求項1〜請求項6のいずれかに記載の樹脂発泡成形体の製造方法。   The temperature raising portion is slidable in both directions to advance and retreat toward the cavity, and a slide driving mechanism is provided to slide the temperature raising portion in both directions, and the temperature raising portion is formed when the opening is formed. The method for producing a resin foam molded body according to any one of claims 1 to 6, wherein the resin foam molded body is molded by advancing a portion toward the cavity. 前記一対の成形型を離間させるのと同時に前記昇温部を前記キャビティに向けて進出させて、前記樹脂発泡成形体を成形することを特徴とする請求項7に記載の樹脂発泡成形体の製造方法。   8. The resin foam molded body according to claim 7, wherein the resin foam molded body is molded by moving the temperature raising portion toward the cavity simultaneously with separating the pair of molds. Method. 前記一対の成形型を前記離間位置まで離間させた後に前記昇温部を前記キャビティに向けて進出させて、前記樹脂発泡成形体を成形することを特徴とする請求項7に記載の樹脂発泡成形体の製造方法。   8. The resin foam molding according to claim 7, wherein after the pair of molding dies are separated to the separation position, the temperature rising portion is advanced toward the cavity to mold the resin foam molding. Body manufacturing method. 互いに近接および離反可能な一対の成形型を所定の近接位置に近接させたときに形成されるキャビティに発泡剤を含む樹脂成形材料を充填した後、前記一対の成形型を所定の離間位置まで離間させて前記キャビティを拡張させることにより該キャビティ内の樹脂成形材料に発泡セルを形成させて成形した樹脂発泡成形体であって、
前記成形型の少なくとも一方の成形面に一般面と該一般面より高温となる昇温部とを少なくとも設けて前記一対の成形型を離間させることにより前記一般面に接した表面に非発泡のスキン層を形成しながら前記昇温部に接した表面に開孔を形成して成形した、樹脂発泡成形体。
A cavity formed when a pair of molds that can approach and separate from each other is brought close to a predetermined proximity position, and a resin molding material containing a foaming agent is filled in the cavity, and then the pair of molds are separated to a predetermined separation position. A resin foam molded body formed by forming foam cells in the resin molding material in the cavity by expanding the cavity,
A non-foamed skin is formed on the surface in contact with the general surface by providing at least one general surface and a temperature raising portion having a temperature higher than the general surface on at least one molding surface of the mold and separating the pair of molds A resin foam molded article formed by forming an opening in a surface in contact with the temperature raising portion while forming a layer.
JP2006057572A 2006-03-03 2006-03-03 Manufacturing method of foamed resin molded product and foamed resin molded product Pending JP2007230168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057572A JP2007230168A (en) 2006-03-03 2006-03-03 Manufacturing method of foamed resin molded product and foamed resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057572A JP2007230168A (en) 2006-03-03 2006-03-03 Manufacturing method of foamed resin molded product and foamed resin molded product

Publications (1)

Publication Number Publication Date
JP2007230168A true JP2007230168A (en) 2007-09-13

Family

ID=38551223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057572A Pending JP2007230168A (en) 2006-03-03 2006-03-03 Manufacturing method of foamed resin molded product and foamed resin molded product

Country Status (1)

Country Link
JP (1) JP2007230168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081655A (en) * 2010-10-12 2012-04-26 Kaneka Corp Method of manufacturing super-soft foamed body
JP2013018187A (en) * 2011-07-11 2013-01-31 Mazda Motor Corp Mold structure for molding foamed resin molded product
CN118219485A (en) * 2024-04-22 2024-06-21 东莞市南炬高分子材料有限公司 Forming equipment and method for processing annular silica gel belt

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052371A (en) * 1998-08-05 2000-02-22 Idemitsu Petrochem Co Ltd Sound absorbing and insulating material and its preparation
JP2003337588A (en) * 2002-05-21 2003-11-28 Idemitsu Petrochem Co Ltd Sound absorbing body and sound absorbing structure
JP2005212244A (en) * 2004-01-29 2005-08-11 Gp Daikyo Corp Method for molding resin molded product
JP2005349758A (en) * 2004-06-11 2005-12-22 Gp Daikyo Corp Manufacturing method of sound absorbing material
JP2006240271A (en) * 2005-03-07 2006-09-14 Prime Polymer:Kk Manufacturing method of sound absorbing article and sound absorbing article obtained by the same, and sound absorbing structure
JP2006243678A (en) * 2005-03-07 2006-09-14 Prime Polymer:Kk Sound absorbing body and sound absorbing structure and method for manufacturing sound absorbing body
JP2006272838A (en) * 2005-03-30 2006-10-12 Prime Polymer:Kk Manufacturing method for sound absorbing body, metal mold for use in the manufacturing method, and sound absorbing body and sound absorbing structure, obtained by the manufacturing method
JP2007106021A (en) * 2005-10-14 2007-04-26 Hayashi Telempu Co Ltd Resin foamed molding and its manufacturing process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052371A (en) * 1998-08-05 2000-02-22 Idemitsu Petrochem Co Ltd Sound absorbing and insulating material and its preparation
JP2003337588A (en) * 2002-05-21 2003-11-28 Idemitsu Petrochem Co Ltd Sound absorbing body and sound absorbing structure
JP2005212244A (en) * 2004-01-29 2005-08-11 Gp Daikyo Corp Method for molding resin molded product
JP2005349758A (en) * 2004-06-11 2005-12-22 Gp Daikyo Corp Manufacturing method of sound absorbing material
JP2006240271A (en) * 2005-03-07 2006-09-14 Prime Polymer:Kk Manufacturing method of sound absorbing article and sound absorbing article obtained by the same, and sound absorbing structure
JP2006243678A (en) * 2005-03-07 2006-09-14 Prime Polymer:Kk Sound absorbing body and sound absorbing structure and method for manufacturing sound absorbing body
JP2006272838A (en) * 2005-03-30 2006-10-12 Prime Polymer:Kk Manufacturing method for sound absorbing body, metal mold for use in the manufacturing method, and sound absorbing body and sound absorbing structure, obtained by the manufacturing method
JP2007106021A (en) * 2005-10-14 2007-04-26 Hayashi Telempu Co Ltd Resin foamed molding and its manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081655A (en) * 2010-10-12 2012-04-26 Kaneka Corp Method of manufacturing super-soft foamed body
JP2013018187A (en) * 2011-07-11 2013-01-31 Mazda Motor Corp Mold structure for molding foamed resin molded product
CN118219485A (en) * 2024-04-22 2024-06-21 东莞市南炬高分子材料有限公司 Forming equipment and method for processing annular silica gel belt

Similar Documents

Publication Publication Date Title
JP2007106304A (en) Sound absorbing panel
JP4283797B2 (en) Resin foam molding and method for producing the same
KR101277364B1 (en) Process for Producing Sound Absorber and Produced by the Process, Sound Absorber and Sound Absorbing Structure
EP2343185B1 (en) Sandwich panel and method of forming the sandwich panel
JP4976147B2 (en) Clip mounting seat and interior material
JP6003009B2 (en) Resin sandwich panel and method for manufacturing resin sandwich panel
JP6986386B2 (en) Vehicle seat members
JP5971073B2 (en) Resin sandwich panel and method for manufacturing resin sandwich panel
JP6015921B2 (en) Resin sandwich panel and method for manufacturing resin sandwich panel
JP6252749B2 (en) Resin sandwich panel and method for manufacturing resin sandwich panel
JP2007230168A (en) Manufacturing method of foamed resin molded product and foamed resin molded product
JP5718106B2 (en) Clip mounting seat and interior material
JP4722511B2 (en) Sound absorber, sound absorbing structure, and method of manufacturing sound absorber
JP4503478B2 (en) Sound absorber manufacturing method and mold used in this method
JP2002369286A (en) Diaphragm for electroacoustic transducer, and method for manufacturing the same
JP5626875B2 (en) Thermoplastic resin foam molding and method for producing the same
JP2011235447A (en) Thin resin panel and method of manufacturing the same
JP4696366B2 (en) Thermoplastic resin foam molding
JP5743257B2 (en) Thermoplastic resin foam molding and method for producing the same
JP2015024572A (en) Interior member for vehicle
JP4476673B2 (en) Mold for foam molding
JP5155053B2 (en) Resin foam molded product and method for producing the same
JP2018171751A (en) Foamed resin molded article and manufacturing method of the same
JP7474405B2 (en) Method for forming foamed resin sheet
JP2009056947A (en) Sound absorption structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090325