JP2007228849A - Method for creating mutant filamentous fungus - Google Patents

Method for creating mutant filamentous fungus Download PDF

Info

Publication number
JP2007228849A
JP2007228849A JP2006052908A JP2006052908A JP2007228849A JP 2007228849 A JP2007228849 A JP 2007228849A JP 2006052908 A JP2006052908 A JP 2006052908A JP 2006052908 A JP2006052908 A JP 2006052908A JP 2007228849 A JP2007228849 A JP 2007228849A
Authority
JP
Japan
Prior art keywords
ion beam
filamentous fungus
mutant
filamentous fungi
conidia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006052908A
Other languages
Japanese (ja)
Other versions
JP5224494B2 (en
JP2007228849A5 (en
Inventor
Tomoko Abe
知子 阿部
Yutaka Miyazawa
豊 宮沢
Nobuhisa Fukunishi
暢尚 福西
Hiromitsu Ryuto
啓充 龍頭
Yasushige Yano
安重 矢野
Tomojiro Koide
知次郎 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2006052908A priority Critical patent/JP5224494B2/en
Publication of JP2007228849A publication Critical patent/JP2007228849A/en
Publication of JP2007228849A5 publication Critical patent/JP2007228849A5/ja
Application granted granted Critical
Publication of JP5224494B2 publication Critical patent/JP5224494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for creating mutant filamentous fungi by which variation can be induced in high frequency in a range in which many survival fungi exist. <P>SOLUTION: The method for creating the mutant filamentous fungi comprises irradiating conidium of filamentous fungi with heavy ion beam and selecting mutated filamentous fungi from among filamentous fungi formed by culturing the conidium subjected to irradiation treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、重イオンビームを照射することによって突然変異糸状菌を効率よく作出する方法に関する。   The present invention relates to a method for efficiently producing mutant filamentous fungi by irradiation with a heavy ion beam.

紅麹菌(モナスカス・アンカ、モナスカス・ピローサスなど)、黄麹菌(アスペルギルス・オリーゼ)、黒麹菌(アスペルギルス・アワモリ)などの麹菌は、醤油や味噌などの発酵食品製造、日本酒や焼酎などの酒類製造のほか、酵素、医薬品、化成品等の産業においても重要な位置を占める産業上有用な微生物である。特に、紅麹菌はコレステロール低下物質であるモナコリンK、血圧低下物質であるγ−アミノ酪酸(ギャバ)、モナスカス色素など、様々な二次代謝物質を生産することが知られており、最近にわかに注目されている機能性食品素材の一つである。このような産業上有用な微生物に、化学物質、紫外線、X線・γ線などの放射線を突然変異誘発源として用いて変異を誘発させることによって、生理活性物質や酵素の生産量の増大を図り、また、新たな需要に応える特性を付与することが行われている。   Aspergillus such as Monascus anca, Monascus pirosus, Aspergillus oryzae, Aspergillus awamori, fermented foods such as soy sauce and miso, and alcoholic beverages such as sake and shochu In addition, it is an industrially useful microorganism that occupies an important position in industries such as enzymes, pharmaceuticals, and chemical products. In particular, Monascus is known to produce various secondary metabolites such as monacholine K, a cholesterol-lowering substance, γ-aminobutyric acid (GABA), which is a blood pressure-lowering substance, and monascus pigment. Is one of the functional food ingredients. Increase the production of bioactive substances and enzymes by inducing mutations in such industrially useful microorganisms using chemical substances, ultraviolet rays, X-rays and γ-rays as radiation sources. Moreover, it has been performed to provide characteristics that meet new demands.

これまで紅麹菌に対する変異誘発例はいくつか知られており(特許文献1、非特許文献1〜2)、その変異手段は、主には薬剤処理、紫外線照射、薬剤処理と紫外線照射の併用である。変異株の選出の指標としている形質のほとんどが色素生産能異常(色素高生産またはアルビノ)で、シトリニン(毒素)低生産を指標としたものもある。また、その他の糸状菌の変異誘発に関する報告としては、アスペルギルス属菌に対する薬剤処理(非特許文献3)、アスペルギルス属菌に対するγ線照射(非特許文献4)、エノキタケに対するγ線照射(特許文献2)などがある。しかしながら、薬剤処理や紫外線照射などの従来の変異誘発方法は一般的に変異率が低く、先祖返りが容易に起こるという問題がある。   So far, several examples of mutagenesis against koji mold have been known (Patent Document 1, Non-Patent Documents 1 and 2), and the mutation means are mainly drug treatment, ultraviolet irradiation, combined use of drug treatment and ultraviolet irradiation. is there. Most of the traits used as an index for selection of mutant strains are abnormal pigment production (high pigment production or albino), and some are based on low production of citrinin (toxin). Other reports on mutagenesis of filamentous fungi include drug treatment for Aspergillus sp. (Non-patent document 3), γ-irradiation for Aspergillus sp. (Non-patent document 4), and γ-irradiation for Enokitake (Patent document 2). )and so on. However, the conventional mutagenesis methods such as drug treatment and ultraviolet irradiation generally have a problem that the mutation rate is low and ancestoring easily occurs.

一方、近年、炭素などのイオン原子を加速器を用いて高速に加速した重イオンビーム(重粒子線)を照射する変異誘発方法が新たに開発され、すでに植物(特許文献3〜5)、動物(特許文献6)、酵母(非特許文献5)については重イオンビーム照射による変異体が作出されている。重イオンビーム照射はいずれも変異誘発率が高く、またγ線より強いエネルギーを持ち、染色体に大きな変化をもたらすため、γ線では得られない突然変異を誘発できる期待がある。また、糸状菌では、黒麹菌(非特許文献6)に対して重イオンビーム照射による変異株作出の報告があるが、変異が誘発されても生存率が0.1%程度と極めて低く、効率が非常に悪い。   On the other hand, in recent years, a new mutagenesis method for irradiating a heavy ion beam (heavy particle beam) in which ion atoms such as carbon are accelerated at high speed using an accelerator has been developed. For Patent Document 6) and yeast (Non-Patent Document 5), mutants produced by heavy ion beam irradiation have been produced. Both heavy ion beam irradiations have a high mutagenesis rate, have higher energy than γ rays, and cause large changes in chromosomes, so there is an expectation that mutations that cannot be obtained with γ rays can be induced. In addition, as for filamentous fungi, there is a report on the production of mutant strains by irradiation with heavy ion beams against black koji mold (Non-patent Document 6), but even when mutations are induced, the survival rate is as low as about 0.1%, and the efficiency Is very bad.

特開2004−073199号公報JP 2004-073199 A 特開平07−274749号公報Japanese Patent Application Laid-Open No. 07-274749 特開平09−28220号公報Japanese Patent Laid-Open No. 09-28220 特開平09−220035号公報Japanese Patent Laid-Open No. 09-220035 特開2002−125496号公報JP 2002-12596 A 特開2001−95423号公報JP 2001-95423 A J. Ferment. Technol. (1973) 51(10), 757-759J. Ferment. Technol. (1973) 51 (10), 757-759 J. Agric. Food Chem. (2004) 52, 6977-6982J. Agric. Food Chem. (2004) 52, 6977-6982 J. Ind. Microbiol. (1991)8:113-120J. Ind. Microbiol. (1991) 8: 113-120 Agr. Biol. Chem. (1973) 37(4), 789-798Agr. Biol. Chem. (1973) 37 (4), 789-798 JAERI-Review (2004-025) 565-569JAERI-Review (2004-025) 565-569 Food Sci. Technol. Res. (1999) 5(2), 153-155Food Sci. Technol. Res. (1999) 5 (2), 153-155

従って、本発明の目的は、従来に比べてより効率的な突然変異糸状菌の作出方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing mutant filamentous fungi that is more efficient than conventional methods.

本発明者らは、上記課題を達成すべく鋭意検討を行った結果、糸状菌の分生子に重イオンビームを照射することによって、生存菌数が多い範囲に極めて高い頻度で変異を糸状菌に誘発できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention irradiate filamentous fungal conidia with a heavy ion beam, thereby causing mutations in filamentous fungi at a very high frequency within a large number of viable bacteria. We have found that it can be triggered and have completed the present invention.

すなわち、本発明は以下の発明を包含する。
(1) 糸状菌の分生子に重イオンビームを照射し、当該照射処理をした分生子を培養して形成した糸状菌の中から変異の生じた糸状菌を選抜することを特徴とする、突然変異糸状菌の作出方法。
(2) 重イオンビームが、アルゴンイオンビームまたは炭素イオンビームである、(1)に記載の方法。
(3) 糸状菌が紅麹菌である、(1)に記載の方法。
(4) 選抜が、糸状菌による有用物質の生産性を指標に行う、(1)〜(3)のいずれかに記載の方法。
(5) (1)〜(4)のいずれかに記載の方法により得られた突然変異糸状菌。
(6) 突然変異糸状菌モナスカス・ピローサス(Monascus pilosus)K-69株(FERM P-20784)。
That is, the present invention includes the following inventions.
(1) Irradiating a filamentous fungus conidia with a heavy ion beam, and selecting the filamentous fungus with mutation from the filamentous fungus formed by culturing the irradiated conidia, suddenly A method for producing mutant filamentous fungi.
(2) The method according to (1), wherein the heavy ion beam is an argon ion beam or a carbon ion beam.
(3) The method according to (1), wherein the filamentous fungus is a red koji mold.
(4) The method according to any one of (1) to (3), wherein the selection is performed using productivity of useful substances by filamentous fungi as an index.
(5) A mutant filamentous fungus obtained by the method according to any one of (1) to (4).
(6) Mutant fungus Monascus pilosus K-69 strain (FERM P-20784).

本発明の方法によれば、糸状菌に対して生存菌数が多い範囲に極めて高い頻度で変異を誘発することができ、しかも誘発される変異は遺伝的に安定である。従って、本発明の方法は、従来の方法に比べてより効率的に突然変異糸状菌を作出することを可能にする。また、本発明の方法により得られる、生理活性物質、抗生物質、酵素などの有用物質の生産性が向上した突然変異糸状菌は、医薬、食品、発酵などの各種産業分野において非常に有用である。   According to the method of the present invention, mutation can be induced at a very high frequency in a range where the number of surviving bacteria is large with respect to the filamentous fungus, and the induced mutation is genetically stable. Therefore, the method of the present invention makes it possible to produce mutant filamentous fungi more efficiently than the conventional method. In addition, mutant filamentous fungi obtained by the method of the present invention and having improved productivity of useful substances such as physiologically active substances, antibiotics and enzymes are very useful in various industrial fields such as pharmaceuticals, foods and fermentation. .

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の突然変異糸状菌の作出方法は、糸状菌の分生子に重イオンビームを照射し、当該照射処理をした分生子を培養して形成した糸状菌の中から変異の生じた糸状菌を選抜することを特徴とする。   In the method for producing a mutant filamentous fungus of the present invention, a filamentous fungus having a mutation is selected from filamentous fungi formed by irradiating the conidia of the filamentous fungus with a heavy ion beam and culturing the irradiated conidia. It is characterized by being selected.

本明細書において、糸状菌とは、鞭毛菌類、接合菌類、子嚢菌類、担子菌類、不完全菌のすべてを含み、特に、菌体が糸状を呈し、分生子と呼ばれる無性胞子を形成して増殖する、いわゆる「かび」をいう。本発明において使用する糸状菌としては、例えば、モナスカス(Monascus)属、アスペルギルス(Aspergillus)属、ペニシリウム(Penicillium)属、セファロスポリウム(Cephalosporium)属、アクレモニウム(Acremonium)属、フミコーラ(Humicola)属、トリコデルマ(Trichoderma)属、ムコール(Mucor)属、リゾプス(Rhizopus)属、フザリウム(Fusarium)属、エメリセラ(Emericella)属に属する微生物が挙げられる。なかでも、医薬、食品、発酵、酵素工業で使用する産業上有用な麹菌が好ましく、例えば、モナスカス・ピローサス(Monascus pilosus)、モナスカス・パーパレウス(Monascus purpureus)、モナスカス・アンカ(Monascus anka)、アスペルギルス・オリーゼ(Aspergillus oryzae)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・ソーヤ(Aspergillus sojae)などが挙げられる。   In this specification, the filamentous fungus includes all of flagella, zygomycetes, ascomycetes, basidiomycetes, and incomplete fungi. The so-called “mold” that proliferates. Examples of the filamentous fungus used in the present invention include, for example, the genus Monascus, the genus Aspergillus, the genus Penicillium, the genus Cephalosporium, the genus Acremonium, and the genus Humicola. And microorganisms belonging to the genus Trichoderma, Mucor, Rhizopus, Fusarium, and Emericella. Of these, industrially useful koji molds used in the pharmaceutical, food, fermentation, and enzyme industries are preferable. For example, Monascus pilosus, Monascus purpureus, Monascus anka, Aspergillus Examples include Aspergillus oryzae, Aspergillus niger, Aspergillus awamori, Aspergillus sojae, and the like.

糸状菌の分生子(無性胞子)は、糸状菌が気中に菌糸を延ばし、その先端がくびれて形成される器官をいい、重イオンビーム照射により変異を高頻度で誘発するためには、生育直後の新鮮な状態の分生子を使用するのが好ましいが、これに限定されない。   Filamentous conidia (asexual spores) are organs formed by extending mycelia into the air and constricting the tip of the filamentous fungus. In order to induce mutations frequently by heavy ion beam irradiation, Although it is preferable to use conidia in a fresh state immediately after growth, the present invention is not limited to this.

重イオンビームの種類としては、糸状菌に変異を誘発できるものであれば特に限定はないが、例えば、アルゴン(Ar)イオンビーム、炭素(C)イオンビーム、窒素(N)イオンビーム、ネオン(Ne)イオンビーム、鉄(Fe)イオンビームなどを用いることができるが、好ましい重イオンビームとしては、アルゴン(Ar)イオンビーム、炭素(C)イオンビームが挙げられる。   The type of heavy ion beam is not particularly limited as long as it can induce mutations in filamentous fungi. For example, argon (Ar) ion beam, carbon (C) ion beam, nitrogen (N) ion beam, neon ( Ne) ion beam, iron (Fe) ion beam, and the like can be used. Preferred heavy ion beams include argon (Ar) ion beams and carbon (C) ion beams.

重イオンビーム照射におけるLET (Linear Energy Transfer)は、20〜1000keV/μmの範囲が好ましい。重イオンビームの照射線量は、用いるイオンビームの種類、照射する糸状菌の種類などに応じて決めればよく、糸状菌に損傷を与えず、変異を誘発できる範囲内であれば特に限定されないが、生存菌数が多い範囲に高い頻度で変異を誘発する上で、Arイオンビームについては5〜30Gray、好ましくは10〜20Gray、Cイオンビームについては50〜200Gray、好ましくは100〜150Grayの範囲が例示できる。   LET (Linear Energy Transfer) in heavy ion beam irradiation is preferably in the range of 20 to 100 keV / μm. The irradiation dose of the heavy ion beam may be determined according to the type of ion beam used, the type of filamentous fungus to be irradiated, etc., and is not particularly limited as long as it does not damage the filamentous fungus and can induce mutation. For inducing mutation at a high frequency in a range with a large number of surviving bacteria, the range of 5 to 30Gray, preferably 10 to 20Gray for Ar ion beam, 50 to 200Gray for C ion beam, preferably 100 to 150Gray it can.

次に、重イオンビームを照射した分生子を培養してコロニーを形成させ、その中から変異の生じている糸状菌を選抜する。培養は、常法に従えばよく、例えば、分生子を寒天培地などにまき、15〜35℃にて、2〜7日間インキュベートすることによって行う。   Next, the conidia irradiated with the heavy ion beam is cultured to form a colony, and a filamentous fungus having a mutation is selected therefrom. The culture may be performed according to a conventional method, for example, by seeding conidia on an agar medium and incubating at 15 to 35 ° C. for 2 to 7 days.

選抜する変異の生じている糸状菌はどのようなものでもよいが、産業上有用な物質(例えば、医薬の有効成分となりうる生理活性物質や抗生物質、機能性食品素材、物質生産に関わる酵素など)の生産性の高いものが好ましい。例えば、紅麹菌であれば、モナコリンK(コレステロール低下物質)、γ-アミノ酪酸(血圧効果物質)、紅麹色素(モナスカス色素)などの生産性が高いものが好ましい。選抜方法は特に限定されず、例えば、モナコリンK生産性を指標とする場合は、モナコリンKには抗菌活性があるので(Journal of microbiological Methods 2000年 40巻 99-104ページ)、後記実施例に示すような阻止円アッセイによって行うことができる。また、紅麹色素生産であれば外観観察などによっても選抜することができる。   Any selected filamentous fungus may be used, but industrially useful substances (for example, physiologically active substances and antibiotics that can be active ingredients of drugs, functional food materials, enzymes involved in substance production, etc.) ) Having high productivity is preferred. For example, in the case of red koji mold, those having high productivity such as monacholine K (cholesterol lowering substance), γ-aminobutyric acid (blood pressure effect substance), and red koji pigment (monascus dye) are preferable. The selection method is not particularly limited. For example, when monacolin K productivity is used as an index, monacolin K has antibacterial activity (Journal of microbiological Methods 2000, 40, 99-104), and will be described in the examples below. Such a circle of inhibition assay can be performed. In addition, if it is red yeast pigment production, it can also be selected by visual observation.

上記の方法により得られる糸状菌のうち、モナコリンK高生産の突然変異株であるモナスカス・ピローサス(Monascus pilosus)K-69株は、2006年2月3日付で独立行政法人産業技術総合研究所特許生物寄託センター(IPOD)(茨城県つくば市東1−1−3)に受託番号FERM P-20784として寄託されている。   Among the filamentous fungi obtained by the above method, the Monascus pilosus K-69 strain, a mutant strain with high production of monacolin K, was patented by the National Institute of Advanced Industrial Science and Technology as of February 3, 2006. Deposited under the deposit number FERM P-20784 at the Biological Deposit Center (IPOD) (1-1-3 East Tsukuba, Ibaraki).

本菌株の寒天培地上の形態は、白色または淡赤色であり、顕微鏡下で2、3個が連結した分生子を有する。本菌株の生育の範囲は、pH4〜8、温度15〜35℃である。本菌株は、後記実施例に示すように、変異処理前の野生株(親株)に比較して、約2倍量のモナコリンKを生産する。   The form of the strain on the agar medium is white or light red, and has conidia in which a few are connected under a microscope. The range of growth of this strain is pH 4-8 and temperature 15-35 ° C. This strain produces about twice the amount of monacolin K as compared to the wild strain (parent strain) before the mutation treatment, as shown in the Examples below.

本発明方法により得られた突然変異糸状菌は、通常の野生型の糸状菌と同様な方法により培養・増殖すればよい。培地としては、通常、糸状菌の培養に使用され、資化可能な炭素源、窒素源、無機塩類及び必要な栄養源を適当に含有する培地であれば、天然培地、合成培地のいずれでもよい。また、培養条件も糸状菌の種類により適宜設定・変更すればよく、例えば紅麹菌の場合、培地のpHは4〜8、培養温度は15℃〜35℃、好ましくは20℃〜30℃、培養日数は2日〜15日間、好ましくは、5日〜8日間の条件下で行うことが例示できる。   The mutant filamentous fungus obtained by the method of the present invention may be cultured and propagated by the same method as that for normal wild-type filamentous fungi. As the medium, any natural or synthetic medium may be used as long as it is a medium normally used for culturing filamentous fungi and appropriately contains an assimitable carbon source, nitrogen source, inorganic salts and necessary nutrient sources. . In addition, the culture conditions may be appropriately set and changed depending on the type of filamentous fungus. For example, in the case of red yeast, the pH of the medium is 4 to 8, the culture temperature is 15 ° C to 35 ° C, preferably 20 ° C to 30 ° C. Examples of the number of days are 2 days to 15 days, preferably 5 days to 8 days.

以下、実施例によって本発明を更に具体的に説明するが、これらの実施例は本発明を限定するものでない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but these examples do not limit the present invention.

(実施例1)アルゴンイオンビーム照射による紅麹菌変異株の作出
(1)アルゴンイオンビームの照射
紅麹菌(モナスカス・ピローサス(Monascus pilosus)IFO 4520)の分生子を滅菌した0.7%生理食塩水中に回収し、プラスチックチューブに分注した。これにアルゴンイオンビーム(LET 281.5keV/μm;照射線量5,10,20,50,100(Gy))を照射した。
(Example 1) Production of mutant strain of koji mold by irradiation with argon ion beam
(1) Irradiation with an argon ion beam Conidia of Monascus pilosus IFO 4520 were collected in sterilized 0.7% physiological saline and dispensed into a plastic tube. This was irradiated with an argon ion beam (LET 281.5 keV / μm; irradiation doses 5, 10, 20, 50, 100 (Gy)).

照射後の分生子をポテトデキストロース寒天培地上にて培養し、形成されたコロニー数を計測した。一方、未照射の分生子を同様してポテトデキストロース寒天培地上にて培養し、このとき形成されたコロニー数を100%として、前記のコロニー数から生存率を算出した。   The conidia after irradiation was cultured on a potato dextrose agar medium, and the number of formed colonies was counted. On the other hand, unirradiated conidia were similarly cultured on a potato dextrose agar medium, and the number of colonies formed at this time was defined as 100%, and the survival rate was calculated from the number of colonies.

(2) モナコリンK生産性によるスクリーニング
サブローデキストロース寒天培地で1週間培養したアカパンカビ(Neurospora crassa NBRC6067)を白金耳により菌糸ごとかきとり、これを0.85%生理食塩水に回収した。懸濁液をボルテックス後、脱脂綿をつめたロートにて菌糸をろ別し、分生子液を得た。寒天濃度の低いサブローデキストロース寒天培地をオートクレーブし、40℃程度まで度冷ましてから上記の分生子液を加えてシャーレにて固めた。一方、ペーパーディスク上に、(1)のアルゴンイオンビーム照射による生存コロニーを液体培養し、菌体をろ過して得られた培養ろ液を滴下、乾燥させた。このペーパーディスクを前記の固まった寒天培地上に置き、28℃で1晩培養した。この時に形成された阻止円の面積を画像解析ソフトにより算出し、野生株(WT)よりも面積の大きい株を変異株候補とした(これを1次選抜とする)。各々の変異株を継代し、1次選抜と同様の操作をおこなうことで(これを2次選抜とする)変異株を得た。図1に、アルゴンイオンビーム照射による菌の生存率と変異率(モナコリンK高生産)を示す。一般に、人為的な変異誘発では、0.1〜1%の生存率の範囲において変異株の出現頻度が大きいとされているのに対し(改訂新版 実験農芸化学 上巻 第268頁、朝倉書店)、本変異方法では、生存率がほぼ100%(ほとんど死滅していない)の範囲において変異率が高くなった。
(2) Screening by Productivity of Monacolin K Akapan mold (Neurospora crassa NBRC6067) cultured on a Sabouraud dextrose agar medium for 1 week was scraped together with mycelia with platinum ears and recovered in 0.85% physiological saline. After vortexing the suspension, the mycelium was filtered off with a funnel filled with absorbent cotton to obtain a conidial liquid. A Sabouraud dextrose agar medium having a low agar concentration was autoclaved and cooled to about 40 ° C., and then the above conidial liquid was added and hardened in a petri dish. On the other hand, on the paper disk, the surviving colony by the argon ion beam irradiation of (1) was subjected to liquid culture, and the culture filtrate obtained by filtering the cells was dropped and dried. The paper disk was placed on the solidified agar medium and cultured at 28 ° C. overnight. The area of the inhibition circle formed at this time was calculated by image analysis software, and a strain having a larger area than that of the wild strain (WT) was selected as a mutant strain candidate (this is regarded as a primary selection). Each mutant was subcultured, and the same operation as in the primary selection was performed (this is referred to as secondary selection) to obtain a mutant. FIG. 1 shows the survival rate and mutation rate (high production of monacholine K) of argon ion beam irradiation. In general, in the case of artificial mutagenesis, it is said that the frequency of occurrence of mutant strains is high within the range of survival rate of 0.1 to 1% (revised new edition Experimental Agricultural Chemistry Vol. 268, Asakura Shoten) In this mutation method, the mutation rate increased in the range where the survival rate was almost 100% (almost not dead).

(3)紅麹菌変異株のモナコリンK生産性
グリセリン7%、グルコース3%、コーンスティープリカー3%、大豆タンパク0.8%、硫酸マグネシウム0.1%、硝酸ナトリウム0.2%(pH6.4)からなる培地をバッフル付き三角フラスコ(300mL容)に50mLずつ分注し、120℃で20分間滅菌した。この培地に、ポテトデキストロース寒天培地で斜面培養した(2)でスクリーングした紅麹菌変異株(K-69株)、または比較として野生株(WT)を接種し、25℃で14日間振とう培養した。培養液から菌体をろ別し、ろ液を以下に示すHPLC分析に供した。
(3) Monacholine K productivity of mutant strain of koji mold Baffle with a medium consisting of glycerin 7%, glucose 3%, corn steep liquor 3%, soy protein 0.8%, magnesium sulfate 0.1%, sodium nitrate 0.2% (pH 6.4) 50 mL each was dispensed into an Erlenmeyer flask (300 mL) and sterilized at 120 ° C. for 20 minutes. This medium was inoculated with a potato dextrose agar medium on a slant culture (2) screened with koji mold mutant (K-69) or, as a comparison, wild strain (WT) and cultured at 25 ° C for 14 days with shaking. did. The bacterial cells were separated from the culture solution, and the filtrate was subjected to the HPLC analysis shown below.

ろ液1.0gを水/アセトニトリル=50/50(v/v)の溶液で10倍希釈し、孔径0.45μmのフィルターでろ過したものを試料とした。移動相は0.1%(w/v)リン酸/アセトニトリル=40/60(v/v)を用いた。カラムはシリカ C18 (Wakosil-II 5C18AR 4.6×250mm)を用い、カラム温度は40℃付近で制御し、流速1.5mL/minで分析を行った。検出はPDA検出器にて行い、236nmでモニターした。 A sample obtained by diluting 1.0 g of the filtrate 10-fold with a solution of water / acetonitrile = 50/50 (v / v) and filtering through a filter having a pore diameter of 0.45 μm was used as a sample. As the mobile phase, 0.1% (w / v) phosphoric acid / acetonitrile = 40/60 (v / v) was used. The column was silica C 18 (Wakosil-II 5C18AR 4.6 × 250 mm), the column temperature was controlled around 40 ° C., and the analysis was performed at a flow rate of 1.5 mL / min. Detection was performed with a PDA detector and monitored at 236 nm.

上記条件で酸型モナコリンKの保持時間は4〜5分であった。モナコリンK標準品(商品名ロバスタチン;和光試薬工業製)のピーク面積から検量線を作成し、試料中の酸型モナコリンKを定量した。その結果、モナコリンK生産量は、WTは88mg/Lであるのに対し、紅麹菌変異株(K-69株)は150mg/Lであり、生産の向上が顕著に認められた。なお、紅麹菌変異株(K-69株)は、2006年2月3日付で独立行政法人産業技術総合研究所特許生物寄託センター(IPOD)(茨城県つくば市東1−1−3)に受託番号FERM P-20784として寄託されている。   Under the above conditions, the retention time of acid type monacolin K was 4-5 minutes. A calibration curve was created from the peak area of a standard product of Monacolin K (trade name: Lovastatin; manufactured by Wako Reagent Industries Co., Ltd.), and acid type Monacolin K in the sample was quantified. As a result, the production amount of monacolin K was 88 mg / L for WT, whereas it was 150 mg / L for the Monascus mutant (K-69 strain), and a marked improvement in production was observed. As for the mutant of Koji mold (K-69 strain), the accession number of the National Institute of Advanced Industrial Science and Technology (IPOD) (1-1-3 East, Tsukuba, Ibaraki) on February 3, 2006. Deposited as FERM P-20784.

(実施例2)炭素イオンビーム照射による紅麹菌変異株の作出
(1)炭素イオンビームの照射
紅麹菌(モナスカス・ピローサス(Monascus pilosus)IFO 4520)の分生子を滅菌した0.7%生理食塩水中に回収し、プラスチックチューブに分注した。これに炭素イオンビーム(LET 22.5keV/μm、照射線量50,100,150,200,300(Gy))を照射した。
(Example 2) Production of mutant strain of koji mold by carbon ion beam irradiation
(1) Irradiation with a carbon ion beam Conidia of Monascus pilosus IFO 4520 were collected in sterilized 0.7% physiological saline and dispensed into a plastic tube. This was irradiated with a carbon ion beam (LET 22.5 keV / μm, irradiation dose 50, 100, 150, 200, 300 (Gy)).

照射後の分生子をポテトデキストロース寒天培地上にて培養し、形成されたコロニー数を計測した。一方、未照射の分生子を同様してポテトデキストロース寒天培地上にて培養し、このとき形成されたコロニー数を100%として、前記のコロニー数から生存率を算出した。   The conidia after irradiation was cultured on a potato dextrose agar medium, and the number of formed colonies was counted. On the other hand, unirradiated conidia were similarly cultured on a potato dextrose agar medium, and the number of colonies formed at this time was defined as 100%, and the survival rate was calculated from the number of colonies.

(2) 色素生産性によるスクリーニング
炭素(C)イオンビーム照射による生存コロニーを液体培養し、菌体をろ過して得られた培養ろ液の450nmにおける吸光度を測定し、野生株(WT)よりも吸光度の高い株を変異株候補とした。実施例1と同様に2次選抜までおこない、変異株を得た。図2に、炭素イオンビーム照射による菌の生存率と変異率(色素高生産)を示す。本処理では、生存率が20〜40%の範囲において変異率が高くなった。
(2) Screening by pigment productivity Liquid colonies of surviving colonies by carbon (C) ion beam irradiation, and measuring the absorbance at 450nm of the culture filtrate obtained by filtering the cells, compared to the wild strain (WT) Strains with high absorbance were selected as mutant strain candidates. In the same manner as in Example 1, secondary selection was performed to obtain a mutant strain. FIG. 2 shows the survival rate and mutation rate (high pigment production) of bacteria by carbon ion beam irradiation. In this treatment, the mutation rate increased in the range of 20 to 40% survival rate.

図1は、アルゴンイオンビーム照射による紅麹菌の生存率と変異率を示す。FIG. 1 shows the survival rate and mutation rate of Aspergillus niger by irradiation with an argon ion beam. 図2は、炭素イオンビーム照射による紅麹菌の生存率と変異率を示す。FIG. 2 shows the survival rate and mutation rate of Monascus by carbon ion beam irradiation.

Claims (6)

糸状菌の分生子に重イオンビームを照射し、当該照射処理をした分生子を培養して形成した糸状菌の中から変異の生じた糸状菌を選抜することを特徴とする、突然変異糸状菌の作出方法。   A mutant filamentous fungus characterized by selecting a filamentous fungus mutated from filamentous fungi formed by irradiating a conidia of a filamentous fungus with a heavy ion beam and culturing the irradiated conidia. How to make 重イオンビームが、アルゴンイオンビームまたは炭素イオンビームである、請求項1に記載の方法。   The method according to claim 1, wherein the heavy ion beam is an argon ion beam or a carbon ion beam. 糸状菌が紅麹菌である、請求項1に記載の方法。   The method according to claim 1, wherein the filamentous fungus is a red koji mold. 選抜が、糸状菌による有用物質の生産性を指標に行う、請求項1〜3のいずれか記載の方法。   The method according to any one of claims 1 to 3, wherein the selection is performed using productivity of a useful substance by a filamentous fungus as an index. 請求項1〜4のいずれかに記載の方法により得られた突然変異糸状菌。   A mutant filamentous fungus obtained by the method according to claim 1. 突然変異糸状菌モナスカス・ピローサス(Monascus pilosus)K-69株(FERM P-20784)。   Mutant fungus Monascus pilosus K-69 strain (FERM P-20784).
JP2006052908A 2006-02-28 2006-02-28 Production method of mutant filamentous fungi Expired - Fee Related JP5224494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052908A JP5224494B2 (en) 2006-02-28 2006-02-28 Production method of mutant filamentous fungi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052908A JP5224494B2 (en) 2006-02-28 2006-02-28 Production method of mutant filamentous fungi

Publications (3)

Publication Number Publication Date
JP2007228849A true JP2007228849A (en) 2007-09-13
JP2007228849A5 JP2007228849A5 (en) 2009-04-09
JP5224494B2 JP5224494B2 (en) 2013-07-03

Family

ID=38550069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052908A Expired - Fee Related JP5224494B2 (en) 2006-02-28 2006-02-28 Production method of mutant filamentous fungi

Country Status (1)

Country Link
JP (1) JP5224494B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119967A1 (en) 2009-04-17 2010-10-21 キッコーマン株式会社 Aspergillus sp. having large-scale genome duplication
JP2019129825A (en) * 2018-01-31 2019-08-08 国立研究開発法人理化学研究所 Production method of rotifer mutant strain, rotifer mutant strain, and heavy ion beam determination method
CN115141821A (en) * 2022-06-08 2022-10-04 中国科学院西北生态环境资源研究院 Screening method for obtaining high-yield arthrobacter cyaneus by heavy ion irradiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011060715; Food Sci.Technol.Res.,1999,5(2),p.153-5 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119967A1 (en) 2009-04-17 2010-10-21 キッコーマン株式会社 Aspergillus sp. having large-scale genome duplication
US8900647B2 (en) 2009-04-17 2014-12-02 Kikkoman Corporation Koji mold having large-scale genomic duplication
JP2019129825A (en) * 2018-01-31 2019-08-08 国立研究開発法人理化学研究所 Production method of rotifer mutant strain, rotifer mutant strain, and heavy ion beam determination method
JP7291324B2 (en) 2018-01-31 2023-06-15 国立研究開発法人理化学研究所 Method for producing rotifer mutant strain, rotifer mutant strain, and determination method for heavy ion beam
CN115141821A (en) * 2022-06-08 2022-10-04 中国科学院西北生态环境资源研究院 Screening method for obtaining high-yield arthrobacter cyaneus by heavy ion irradiation

Also Published As

Publication number Publication date
JP5224494B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
Puhalla et al. The mechanism of heterokaryotic growth in Verticillium dahliae
Pradeep et al. Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions
CN107955794B (en) High-quality preservation method of cordyceps militaris strains
Upendra et al. Screening and molecular characterization of natural fungal isolates producing lovastatin
JP5224494B2 (en) Production method of mutant filamentous fungi
El-Gendy et al. Production and evaluation of antimycotic and antihepatitis C virus potential of fusant MERV6270 derived from mangrove endophytic fungi using novel substrates of agroindustrial wastes
Ushijima et al. Breeding by protoplast fusion of koji mold, Aspergillus sojae
Stasz et al. Limited vegetative compatibility following intra-and interspecific protoplast fusion inTrichoderma
CN108315265B (en) Aspergillus versicolor Av-2 strain and application thereof
Wang et al. Protoplast fusion between Blakeslea trispora 14,271 (+) and 14,272 (−) enhanced the yield of lycopene and β-carotene
JP3618702B2 (en) Monascus purpureus mutants and their use in the preparation of yellow pigments
Panda et al. Production of angkak through co-culture of Monascus purpureus and Monascus ruber
Ogawa Approaches to Hybridization and Applied Genetics by Protoplast Fusiono Koji-Molds and Mushrooms
WO2013157398A1 (en) Method for producing lactic acid
Kanpiengjai et al. Improving the monacolin K to citrinin production ratio in red yeast rice by an X-ray-induced mutant strain of Monascus purpureus
Luthra et al. Media optimization for lovastatin production by statistical approach using Aspergillus terreus by submerged fermentation
Atlı et al. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation
Efaq et al. Morphological characteristics of black aspergilli isolated from clinical wastes.
Kumar et al. Enhanced production of lipstatin from mutant of Streptomyces toxytricini and fed-batch strategies under submerged fermentation
US5605820A (en) Production of strains having biological activities by sexual crosses between vegetatively incompatible strains of Aspergillus nidulans
US7067304B2 (en) Monascus purpureus mutants and their use in preparing fermentation products having blood pressure lowering activity
Upendra et al. A novel approach for enhancement of lovastatin production using Aspergillus species
CN105219760B (en) A kind of high flux visualization screening technique of Clavulanic Acid High-Producing Strains strain
Kaur et al. Screening and selection of lovastatin hyper-producing mutants of Aspergillus terreus using cyclic mutagenesis
Siddiqui et al. A Preliminary Screening for Isolation of Lovastatin Producing Unknown Fungi from Forest Region Pachmarhi, MP India

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees