JP2007228726A - Power supply device for vehicle - Google Patents

Power supply device for vehicle Download PDF

Info

Publication number
JP2007228726A
JP2007228726A JP2006046994A JP2006046994A JP2007228726A JP 2007228726 A JP2007228726 A JP 2007228726A JP 2006046994 A JP2006046994 A JP 2006046994A JP 2006046994 A JP2006046994 A JP 2006046994A JP 2007228726 A JP2007228726 A JP 2007228726A
Authority
JP
Japan
Prior art keywords
voltage detection
detection unit
voltage
battery module
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006046994A
Other languages
Japanese (ja)
Other versions
JP4553853B2 (en
Inventor
Hiroyuki Tatsumi
宏之 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006046994A priority Critical patent/JP4553853B2/en
Publication of JP2007228726A publication Critical patent/JP2007228726A/en
Application granted granted Critical
Publication of JP4553853B2 publication Critical patent/JP4553853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently prevent degradation in a battery module while simplifying a circuit structure for detecting voltage, by reducing the number of voltage detection points. <P>SOLUTION: The power supply device for a vehicle is equipped with a battery group 3 having a plurality of battery modules 1 connected in series, a voltage detection part 4 which detects the voltage of respective voltage detection units 2 having the battery group 3 divided into a plurality of voltage detection units 2, and a controller 5 which controls the current for charging/discharging the battery group 3 with the detection voltage of the voltage detection part 4. The battery group 3 is divided into a voltage detection unit 2A of a good environment and a voltage detection unit 2B of a bad environment, and the voltage of each voltage detection unit 2 is detected with the voltage detection part 4. Furthermore, the voltage detection unit 2A of the good environment has more serial connection quantity of the battery module 1 than the voltage detection unit 2B of the bad environment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として、ハイブリッド自動車や電気自動車等の自動車に搭載されて、車両を走行させるモーターを駆動する車両用の電源装置に関する。   The present invention mainly relates to a power supply device for a vehicle that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle and drives a motor that runs the vehicle.

車両用の電源装置は、複数の電池を直列に接続して電池モジュールとし、さらにこの電池モジュールを多数に直列に連結して出力電圧を高くしている。この電源装置は、直列に接続している全ての電池を同じ電流で放電し、また同じ電流で充電する。このため、全ての電池の充電量は等しく、また放電量も等しくなる。ただ、全ての電池の電気特性は同じではなく、充放電を繰り返すにしたがって、各々の電池モジュールで残容量等にアンバランスが発生する。残容量のアンバランスは、特定の電池モジュールの過充電や過放電の原因となって、電池の寿命を短くする。残容量が少なくなる電池モジュールは過放電されやすく、また残容量が大きくなる電池モジュールは過充電されやすくなって、過充電や過放電が電池を著しく劣化させるからである。   In a power supply device for a vehicle, a plurality of batteries are connected in series to form a battery module, and a number of the battery modules are connected in series to increase the output voltage. This power supply device discharges all batteries connected in series with the same current and charges them with the same current. For this reason, the charge amount of all the batteries is equal, and the discharge amount is also equal. However, the electrical characteristics of all the batteries are not the same, and an imbalance occurs in the remaining capacity and the like in each battery module as charging and discharging are repeated. The remaining capacity imbalance causes overcharge and overdischarge of a specific battery module, and shortens the battery life. This is because a battery module with a small remaining capacity is easily overdischarged, and a battery module with a large remaining capacity is easily overcharged, and overcharging and overdischarging significantly deteriorate the battery.

この弊害を防止するために、各々の電池モジュールの電圧を検出する電源装置が開発されている。(特許文献1参照)
特開2002−199510号公報
In order to prevent this problem, a power supply device that detects the voltage of each battery module has been developed. (See Patent Document 1)
JP 2002-199510 A

特許文献1の電源装置は、各々の電池モジュールの電圧を検出して、充放電をコントロールするので、多数点の電圧を検出する複雑な回路構成となって、部品コストと製造コストが高くなる欠点がある。この欠点は、電圧検出点の個数を少なくして、解消できる。たとえば、5個の素電池を直列に接続して電池モジュールとし、さらにこの電池モジュールを40個直列に接続している電源装置は、全ての電池モジュールの電圧を検出するには、40点の電圧を検出する必要がある。この電源装置は、電池全体を4ブロックに区分し、各々のブロックの電圧、すなわち、10個の電池モジュールを直列に接続する電圧を検出して、電圧検出点の個数を4点として1/10に少なくできる。この電源装置は、電圧検出するための回路構成を相当に簡素化して製造コストを低減できる。しかしながら、この電源装置は、10個の電池モジュールを直列に接続して電圧を検出するので、直列に接続しているいずれかの電池モジュールの残容量が小さく、あるいは大きくなって、過放電され、あるいは過充電される充電になるとき、これを正確に検出できなくなる。このため、直列に接続しているいずれかの電池モジュールが他の電池よりも劣化すると、この電池モジュールが過充電、又は過放電されやすくなって、劣化がますます加速される欠点がある。   Since the power supply device of Patent Document 1 detects the voltage of each battery module and controls charging and discharging, it has a complicated circuit configuration that detects voltages at multiple points, resulting in high component costs and manufacturing costs. There is. This drawback can be solved by reducing the number of voltage detection points. For example, a power supply device in which 5 unit cells are connected in series to form a battery module, and 40 battery modules are connected in series, can detect 40 battery voltages. Need to be detected. This power supply device divides the entire battery into 4 blocks, detects the voltage of each block, that is, the voltage connecting 10 battery modules in series, and sets the number of voltage detection points to 4 to 1/10. Can be less. This power supply device can considerably simplify the circuit configuration for voltage detection and reduce the manufacturing cost. However, since this power supply device detects the voltage by connecting 10 battery modules in series, the remaining capacity of any of the battery modules connected in series is small or large, and is overdischarged. Or, when charging is overcharged, this cannot be accurately detected. For this reason, when any battery module connected in series deteriorates more than other batteries, there is a drawback that the battery module is easily overcharged or overdischarged, and the deterioration is further accelerated.

本発明は、さらにこの欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電圧検出点の数を少なくして電圧を検出するための回路構成を簡単にしながら、電池モジュールの劣化を有効に防止できる車両用の電源装置を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a vehicle power supply apparatus that can effectively prevent deterioration of a battery module while simplifying a circuit configuration for detecting a voltage by reducing the number of voltage detection points. .

本発明の車両用の電源装置は、前述の目的を達成するために以下の構成を備える。
車両用の電源装置は、複数の電池モジュール1を直列に接続してなる電池群3と、この電池群3を複数の電圧検出ユニット2に分割して各々の電圧検出ユニット2の電圧を検出する電圧検出部4と、電圧検出部4の検出電圧で電池群3を充電又は放電する電流を制御する制御部5とを備える。電池群3は、好環境の電圧検出ユニット2Aと悪環境の電圧検出ユニット2Bに分割されており、各々の電圧検出ユニット2の電圧が電圧検出部4で検出されている。さらに、好環境の電圧検出ユニット2Aは、悪環境の電圧検出ユニット2Bよりも電池モジュール1の直列接続個数を多くしている。
The vehicle power supply device of the present invention has the following configuration in order to achieve the above-described object.
The power supply device for a vehicle detects a voltage of each voltage detection unit 2 by dividing the battery group 3 into a plurality of voltage detection units 2 and a battery group 3 formed by connecting a plurality of battery modules 1 in series. The voltage detection part 4 and the control part 5 which controls the electric current which charges or discharges the battery group 3 with the detection voltage of the voltage detection part 4 are provided. The battery group 3 is divided into a voltage detection unit 2 </ b> A having a favorable environment and a voltage detection unit 2 </ b> B having a bad environment, and the voltage of each voltage detection unit 2 is detected by the voltage detection unit 4. Furthermore, the voltage detection unit 2A in a favorable environment has a greater number of battery modules 1 connected in series than the voltage detection unit 2B in a bad environment.

本発明の車両用の電源装置は、悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aを、電池モジュール1の温度で分離して、悪環境の電圧検出ユニット2Bが、好環境の電圧検出ユニット2Aよりも高温または低温の電池モジュール1を含むことができる。悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aは、冷却ファンの運転を停止する状態における電池モジュール1の温度で分離し、悪環境の電圧検出ユニット2Bが、好環境の電圧検出ユニット2Aよりも高温または低温の電池モジュール1を含むことができる。また、悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aは、冷却ファンを運転する状態における電池モジュール1の温度で分離し、悪環境の電圧検出ユニット2Bが、好環境の電圧検出ユニット2Aよりも高温の電池モジュール1を含むことができる。さらにまた、悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aは、車両のイグニッションスイッチをオフにして所定時間経過した状態における電池モジュール1の温度で分離し、悪環境の電圧検出ユニット2Bが、好環境の電圧検出ユニット2Aよりも高温または低温の電池モジュール1を含むことができる。   The power supply device for a vehicle according to the present invention separates the voltage detection unit 2B in a bad environment and the voltage detection unit 2A in a good environment at the temperature of the battery module 1 so that the voltage detection unit 2B in a bad environment The battery module 1 having a temperature higher or lower than that of the detection unit 2A can be included. The bad environment voltage detection unit 2B and the good environment voltage detection unit 2A are separated by the temperature of the battery module 1 in a state where the operation of the cooling fan is stopped, and the bad environment voltage detection unit 2B becomes the good environment voltage detection unit. The battery module 1 having a temperature higher or lower than 2A can be included. Further, the bad environment voltage detection unit 2B and the good environment voltage detection unit 2A are separated by the temperature of the battery module 1 in a state where the cooling fan is operated, and the bad environment voltage detection unit 2B becomes the good environment voltage detection unit. The battery module 1 having a temperature higher than 2A can be included. Furthermore, the adverse environment voltage detection unit 2B and the favorable environment voltage detection unit 2A are separated by the temperature of the battery module 1 after a predetermined time has passed after turning off the ignition switch of the vehicle, and the adverse environment voltage detection unit 2B. However, the battery module 1 having a temperature higher or lower than that of the voltage detection unit 2A in a favorable environment can be included.

本発明の車両用の電源装置は、悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aを、電池モジュール1の振動状態で分離して、悪環境の電圧検出ユニット2Bが、好環境の電圧検出ユニット2Aよりも大きく振動される電池モジュール1を含むことができる。   The power supply apparatus for a vehicle according to the present invention separates the voltage detection unit 2B in a bad environment and the voltage detection unit 2A in a good environment according to the vibration state of the battery module 1, so that the voltage detection unit 2B in a bad environment has a good environment. The battery module 1 that is vibrated more greatly than the voltage detection unit 2A can be included.

本発明の車両用の電源装置は、悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aを、電池モジュール1が受ける衝撃の大きさで分離して、悪環境の電圧検出ユニット2Bが、好環境の電圧検出ユニット2Aよりも強い衝撃を受ける電池モジュール1を含むことができる。   In the power supply device for a vehicle of the present invention, the voltage detection unit 2B in a bad environment and the voltage detection unit 2A in a good environment are separated by the magnitude of impact received by the battery module 1, and the voltage detection unit 2B in a bad environment The battery module 1 which receives a stronger impact than the voltage detection unit 2A in a favorable environment can be included.

本発明の車両用の電源装置は、悪環境の電圧検出ユニット2Bをひとつの電池モジュール1で構成し、好環境の電池ユニット2Aを、複数の電池モジュール1を直列に接続して構成することができる。   In the power supply device for a vehicle according to the present invention, the voltage detection unit 2B in a bad environment is configured by one battery module 1, and the battery unit 2A in a favorable environment is configured by connecting a plurality of battery modules 1 in series. it can.

本発明の電源装置は、電圧検出点の数を少なくして電圧を検出するための回路構成を簡単にしながら、電池モジュールの劣化を有効に防止できる特徴がある。それは、本発明の車両用の電源装置が、複数の電池モジュールを直列に接続している電池群を、好環境の電圧検出ユニットと悪環境の電圧検出ユニットに分割すると共に、好環境の電圧検出ユニットは、悪環境の電圧検出ユニットよりも電池モジュールの直列接続個数を多くし、複数に分割された電圧検出ユニットの電圧を電圧検出部で検出するからである。とくに、本発明は、好環境の電圧検出ユニットには、悪環境の電圧検出ユニットよりも多数の電池モジュールを直列に接続して電圧を検出するので、電圧を検出する数を少なくしながら、電池モジュールの劣化を有効に防止できる。   The power supply device of the present invention has a feature that the deterioration of the battery module can be effectively prevented while simplifying the circuit configuration for detecting the voltage by reducing the number of voltage detection points. The vehicle power supply device according to the present invention divides a battery group in which a plurality of battery modules are connected in series into a voltage detection unit in a favorable environment and a voltage detection unit in a bad environment, and also detects a voltage in a favorable environment. This is because the unit increases the number of battery modules connected in series as compared to the voltage detection unit in a bad environment, and the voltage detection unit detects the voltage of the divided voltage detection unit. In particular, the present invention detects a voltage by connecting a large number of battery modules in series to a voltage detection unit in a favorable environment than in a voltage detection unit in a bad environment. The deterioration of the module can be effectively prevented.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための車両用の電源装置を例示するものであって、本発明は車両用の電源装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a vehicle power supply device for embodying the technical idea of the present invention, and the present invention does not specify the vehicle power supply device as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1に示す車両用の電源装置は、複数の電池モジュール1を直列に接続している電池群3と、この電池群3を複数の電圧検出ユニット2に分割して各々の電圧検出ユニット2の電圧を検出する電圧検出部4と、電圧検出部4の検出電圧で電池群3を充電又は放電する電流を制御する制御部5とを備える。電池モジュール1は、電池セルを5個直列接続したものが利用できるが、直列接続する電池セル数は、適宜、変更することができる。   The power supply device for a vehicle shown in FIG. 1 includes a battery group 3 in which a plurality of battery modules 1 are connected in series, and the battery group 3 is divided into a plurality of voltage detection units 2. The voltage detection part 4 which detects a voltage, and the control part 5 which controls the electric current which charges or discharges the battery group 3 with the detection voltage of the voltage detection part 4 are provided. Although the battery module 1 can use what connected five battery cells in series, The number of battery cells connected in series can be changed suitably.

電池群3は、好環境の電圧検出ユニット2Aと、悪環境の電圧検出ユニット2Bに分割されて、各々の電圧検出ユニット2の電圧が電圧検出部4で検出される。さらに、好環境の電圧検出ユニット2Aは、悪環境の電圧検出ユニット2Bよりも電池モジュール1の直列接続個数を多くしている。好環境の電圧検出ユニット2Aと悪環境の電圧検出ユニット2Bは、電池モジュール1の環境で分離される。電池の劣化が大きくなる厳しい環境に配置される電池モジュール1を悪環境の電圧検出ユニット2Bとし、電池の劣化が少なく好ましい環境に配置される電池モジュール1を好環境の電圧検出ユニット2Aとする。   The battery group 3 is divided into a voltage detection unit 2A having a favorable environment and a voltage detection unit 2B having a bad environment, and the voltage of each voltage detection unit 2 is detected by the voltage detection unit 4. Furthermore, the voltage detection unit 2A in a favorable environment has a greater number of battery modules 1 connected in series than the voltage detection unit 2B in a bad environment. The good environment voltage detection unit 2A and the bad environment voltage detection unit 2B are separated by the environment of the battery module 1. The battery module 1 placed in a harsh environment where the deterioration of the battery becomes large is referred to as a bad environment voltage detection unit 2B, and the battery module 1 placed in a favorable environment with less battery deterioration is referred to as a favorable environment voltage detection unit 2A.

電池モジュール1は、配設される環境によって電池温度、受ける振動や衝撃が異なる。したがって、複数の電池モジュール1は、たとえば電池温度、電池が受ける振動や衝撃等で、悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aに分離される。図1の電源装置は、電池温度が高くなる電池モジュール1を悪環境の電圧検出ユニット2Bとし、その他の電池モジュール1を好環境の電圧検出ユニット2Aとしている。とくに、この図の電源装置は、電池温度が最も高くなるひとつの電池モジュール1を悪環境の電圧検出ユニット2Bとし、その他の電池モジュール1を好環境の電圧検出ユニット2Aに分離している。電池温度が最も高くなる電池モジュール1は、中間に接続しているので、この電池モジュール1のプラス側とマイナス側に接続している電池モジュール1を好環境の電圧検出ユニット2Aとして、複数の電池モジュール1を直列に接続している。   The battery module 1 has different battery temperatures, vibrations and shocks depending on the environment in which it is installed. Accordingly, the plurality of battery modules 1 are separated into a bad environment voltage detection unit 2B and a favorable environment voltage detection unit 2A due to, for example, battery temperature, vibration or shock received by the battery, and the like. In the power supply device of FIG. 1, the battery module 1 in which the battery temperature becomes high is used as a bad environment voltage detection unit 2B, and the other battery modules 1 are used as a favorable environment voltage detection unit 2A. In particular, in the power supply device of this figure, one battery module 1 having the highest battery temperature is used as a voltage detection unit 2B in a bad environment, and the other battery modules 1 are separated into a voltage detection unit 2A in a good environment. Since the battery module 1 with the highest battery temperature is connected in the middle, the battery module 1 connected to the positive side and the negative side of the battery module 1 is used as a voltage detection unit 2A in a favorable environment, and a plurality of batteries are connected. Modules 1 are connected in series.

電池の温度は、ファンを運転する状態と停止する状態で変化する。また、車両に搭載される電源装置は、イグニッションスイッチをオフに切り換えた後、所定時間経過すると電池の温度が上昇するが、このとき特定の電池モジュールの温度が高くなることがある。したがって、電源装置は、電池モジュール1を冷却するファン(図示せず)を運転する状態で最高温度となる電池モジュールを悪環境の電圧検出ユニットとし、あるいはファンの運転を停止する状態で最高温度となる電池モジュールを悪環境の電圧検出ユニットとし、あるいは又、イグニッションスイッチをオフにして所定時間経過して後に最高温度となる電池モジュールを悪環境の電圧検出ユニットとし、その他の電池モジュールを好環境の電圧検出ユニットとする。電池は、高温で充放電されて寿命が低下することから、温度が高くなる電池モジュールは、悪環境の電圧検出ユニットとなる。   The battery temperature varies depending on whether the fan is operating or stopped. In addition, in a power supply device mounted on a vehicle, the temperature of a battery rises after a predetermined time has elapsed after the ignition switch is turned off. At this time, the temperature of a specific battery module may increase. Therefore, the power supply device uses the battery module that has the highest temperature in the state of operating the fan (not shown) that cools the battery module 1 as a voltage detection unit in an adverse environment, or the highest temperature in the state of stopping the fan operation. The battery module that becomes a bad environment voltage detection unit, or the battery module that reaches the maximum temperature after a predetermined time after turning off the ignition switch is the bad environment voltage detection unit, and other battery modules are A voltage detection unit. Since the battery is charged and discharged at a high temperature and its life is reduced, the battery module whose temperature is high becomes a voltage detection unit in a bad environment.

さらに、極寒の地で使用される車両は、電池の温度が極めて低い状態で充放電される。電池は温度が低下すると実質的に充放電できる容量が小さくなる。したがって、温度が極めて低く、たとえば0℃以下で充放電される電池は、実質的に充放電できる容量が小さくなる。実質容量の小さくなっている電池は、過放電または過充電されやすい。電池の過充電や過放電は、電池を劣化させる原因となる。したがって、極低温で使用される電源装置は、温度が低くなる電池モジュールが悪環境の電圧検出ユニットとなり、その他の電池モジュールが好環境の電圧検出ユニットとなる。この電源装置は、最低温度となる電池モジュールを悪環境の電圧検出ユニットとして、その他の電池モジュールを好環境の電圧検出ユニットとする。   Furthermore, vehicles used in extremely cold regions are charged and discharged with extremely low battery temperatures. As the temperature of the battery decreases, the capacity that can be substantially charged and discharged decreases. Accordingly, a battery that is charged and discharged at a very low temperature, for example, at 0 ° C. or less, has a substantially small capacity that can be charged and discharged. A battery having a small real capacity is likely to be overdischarged or overcharged. Battery overcharge and overdischarge cause deterioration of the battery. Therefore, in the power supply device used at an extremely low temperature, the battery module whose temperature is lowered becomes a voltage detection unit in a bad environment, and the other battery modules become voltage detection units in a favorable environment. In this power supply apparatus, the battery module having the lowest temperature is used as a voltage detection unit for adverse environments, and the other battery modules are used as voltage detection units for favorable environments.

さらに、車両に搭載される電源装置は、車両が走行することで、あるいはエンジンの振動等で搭載部分が振動される。このため、車両に搭載される電源装置は、電池モジュールの振動を皆無にはできない。多数の電池モジュールをケースに収納する電源装置は、各々の電池モジュールがケースに固定される状態が異なり、さらに、ケースや固定部分の局部的な共振等で電池モジュールの振動を皆無にできない。とくに、複数の素電池を直列に直線状に連結している細長い電池モジュールを、ケースとの間に冷却用の隙間を設けて両端部を支持する電源装置は、電池モジュールの全面をケースに密着させないことから、振動しない状態でケースに配置できない。振動の大きい電池モジュールは、振動の少ない電池モジュールに比較して寿命が短くなる。それは、電池の内部や外部の接続部が振動で外れ、あるいは電極が振動で劣化しやすくなるからである。この電源装置は、振動の大きい電池モジュールを悪環境の電圧検出ユニットとし、その他の電池モジュールを好環境の電圧検出ユニットとする。   Further, the power supply device mounted on the vehicle is vibrated by the vehicle traveling or by the vibration of the engine. For this reason, the power supply device mounted on the vehicle cannot eliminate the vibration of the battery module. In a power supply device that houses a large number of battery modules in a case, the state in which each battery module is fixed to the case is different, and furthermore, the vibration of the battery module cannot be completely eliminated due to local resonance of the case or the fixed portion. In particular, a power supply unit that supports both ends of a long and narrow battery module in which a plurality of unit cells are connected in series in a straight line with a clearance for cooling between the case and the entire battery module is in close contact with the case. Because it is not allowed to be placed, it cannot be placed in the case without vibration. A battery module with large vibration has a shorter life compared to a battery module with less vibration. This is because the internal and external connection portions of the battery are disconnected by vibration, or the electrodes are easily deteriorated by vibration. In this power supply device, a battery module having a large vibration is used as a voltage detection unit for adverse environments, and other battery modules are used as voltage detection units for favorable environments.

また、車両に搭載される電源装置は、車両の急ブレーキや衝突等で衝撃を受けることがある。とくに、多数の電池モジュールを水平面内に並べている電源装置は、急ブレーキや衝突のときに、前部と後部に配置される電池モジュールの衝撃が強くなる。電池モジュールは複数の素電池を直列に直線状に連結して相当な重量があるので、急ブレーキや衝撃のときに、前後の電池モジュールは他の電池モジュールに押されて強い衝撃を受けることがある。強い衝撃を受ける電池モジュールは、衝撃の少ない電池モジュールに比較して寿命が短くなる。それは、振動と同じように、電池の内部や外部の接続部が振動で外れ、あるいは電極が衝撃で劣化しやすくなるからである。この電源装置は、衝撃の大きい電池モジュールを悪環境の電圧検出ユニットとし、その他の電池モジュールを好環境の電圧検出ユニットとする。   In addition, a power supply device mounted on a vehicle may receive an impact due to a sudden braking or a collision of the vehicle. In particular, in a power supply device in which a large number of battery modules are arranged in a horizontal plane, the impact of battery modules disposed at the front and rear portions is increased during sudden braking or collision. A battery module has a considerable weight by connecting a plurality of unit cells in a straight line in series, so that in the event of sudden braking or impact, the front and rear battery modules may be pushed by other battery modules and receive a strong impact. is there. A battery module that receives a strong impact has a shorter life than a battery module that has a low impact. This is because, as in the case of vibration, the internal and external connection portions of the battery are disconnected by vibration, or the electrode is easily deteriorated by impact. In this power supply apparatus, a battery module having a large impact is used as a voltage detection unit for adverse environments, and other battery modules are used as voltage detection units for favorable environments.

電圧検出部4は、複数に分離された悪環境の電圧検出ユニット2Bと好環境の電圧検出ユニット2Aの電圧検出ユニット2の電圧を検出する。好環境の電圧検出ユニット2Aは、複数の電池モジュール1を直列に接続しているので、複数の電池モジュール1の電圧を加算したトータル電圧として電圧が検出される。悪環境の電圧検出ユニット2Bは、ひとつの電池モジュール1からなるので、ひとつの電池モジュール1の電圧が検出される。ただし、本発明の電源装置は、悪環境の電圧検出ユニットも、好環境の電圧検出ユニットよりも少ない個数の電池モジュールを直列に接続することができる。この電源装置は、電圧検出部でもって、悪環境の電圧検出ユニットの複数の電池モジュールのトータル電圧を検出する。   The voltage detection unit 4 detects the voltages of the voltage detection unit 2 of the adverse environment voltage detection unit 2B and the favorable environment voltage detection unit 2A. Since the voltage detection unit 2A in a favorable environment has a plurality of battery modules 1 connected in series, the voltage is detected as a total voltage obtained by adding the voltages of the plurality of battery modules 1. Since the bad environment voltage detection unit 2B is composed of one battery module 1, the voltage of one battery module 1 is detected. However, the power supply apparatus of the present invention can connect a battery module having a smaller number of battery modules in series than the voltage detection unit in a favorable environment. This power supply device detects a total voltage of a plurality of battery modules of a voltage detection unit in a bad environment with a voltage detection unit.

検出された電圧検出ユニット2の電圧は、残容量の検出に使用され、あるいは充放電の電流を積算して演算される残容量の補正に使用され、あるいはまた、残容量が0になって完全に放電されたことを検出して過放電される状態では放電電流を遮断し、さらに満充電されたことを検出して、過充電される状態になると充電電流を遮断するために使用される。   The detected voltage of the voltage detection unit 2 is used to detect the remaining capacity, or is used to correct the remaining capacity calculated by accumulating the charge / discharge current, or the remaining capacity becomes zero and complete. It is used to cut off the discharge current in the overdischarged state by detecting that it has been discharged, and to detect the full charge and cut off the charging current in the overcharged state.

多数の電池モジュール1を直列に接続している電池群3は、同じ電流で充放電される。したがって、全ての電池モジュール1の充電量と放電量は同じになる。しかしながら、必ずしも全ての電池モジュール1の電気特性は、等しく揃って変化するわけではない。とくに、充放電の繰り返し回数が多くなると、各々の電池モジュール1は劣化する程度が異なって、満充電できる容量が変化する。この状態になると、満充電できる容量の減少した電池モジュール1は、過充電されやすく、また過放電もされやすくなる。電池モジュール1は、過充電と過放電で著しく電気特性が劣化するので、満充電できる容量が減少した電池モジュールが過充電や過放電されると急激に劣化してしまう。このため、多数の電池モジュール1を直列に接続しているが、これを複数の電圧検出ユニット2に分割して、各々の電圧検出ユニット2の電圧を検出し、検出電圧から、電圧検出ユニット2に含まれる電池モジュール1の過充電と過放電を防止しながら、すなわち、電池モジュール1を保護しながら充放電することが大切となる。本発明の電源装置は、劣化しやすい環境の電池モジュール1は、悪環境の電圧検出ユニット2Bとして、より正確に電池モジュール1の電圧を検出して、確実に保護しながら充放電する。また、劣化の少ない電池モジュール1は、好環境の電圧検出ユニット2Aとして、より多くの電池モジュール1を直列接続してトータル電圧を検出し、この電圧で過充電と過放電を防止する。このため、好環境の電圧検出ユニット2Aに含まれ電池モジュール1の過充電と過放電も防止しながら充放電される。好環境の電圧検出ユニット2Aは、多くの電池モジュール1を直列に接続してトータル電圧を検出するので、電圧検出ユニット2の電圧を検出するチャンネル数を少なくしながら、また、全ての電池モジュール1を検出電圧で保護しながら充放電できる。   A battery group 3 in which a large number of battery modules 1 are connected in series is charged and discharged with the same current. Therefore, the charge amount and the discharge amount of all the battery modules 1 are the same. However, the electrical characteristics of all the battery modules 1 do not necessarily change equally. In particular, when the number of charge / discharge cycles is increased, the degree of deterioration of each battery module 1 is different, and the capacity that can be fully charged changes. If it will be in this state, the battery module 1 in which the capacity | capacitance which can be fully charged decreased will become easy to be overcharged, and will also be easy to be overdischarged. The battery module 1 significantly deteriorates in electrical characteristics due to overcharge and overdischarge. Therefore, when the battery module whose capacity that can be fully charged is reduced is overcharged or overdischarged, the battery module 1 is rapidly deteriorated. For this reason, a large number of battery modules 1 are connected in series, but this is divided into a plurality of voltage detection units 2 to detect the voltage of each voltage detection unit 2, and the voltage detection unit 2 is detected from the detected voltage. It is important to charge and discharge while preventing overcharge and overdischarge of the battery module 1 included in the battery module 1, that is, while protecting the battery module 1. In the power supply device of the present invention, the battery module 1 in an environment that is easily deteriorated is charged and discharged while detecting the voltage of the battery module 1 more accurately as the voltage detection unit 2B in an adverse environment, and protecting it reliably. In addition, the battery module 1 with less deterioration serves as a voltage detection unit 2A in a favorable environment to detect a total voltage by connecting more battery modules 1 in series and prevent overcharge and overdischarge with this voltage. For this reason, the battery module 1 is charged and discharged while preventing overcharge and overdischarge of the battery module 1 included in the voltage detection unit 2A in a favorable environment. Since the voltage detection unit 2A in a favorable environment detects the total voltage by connecting many battery modules 1 in series, the number of channels for detecting the voltage of the voltage detection unit 2 is reduced, and all the battery modules 1 Can be charged and discharged while being protected by the detection voltage.

各々の電池モジュール1は、電池セルである5個のニッケル水素電池を直列に接続している。25個の電池モジュール1を直列に接続する電池群3は、全体で125個のニッケル水素電池を直列に接続して、出力電圧を150Vとしている。電池モジュールは、必ずしも5個の電池を直列に接続するものではなく、たとえば、4個以下、あるいは6個以上の二次電池を直列に接続することもできる。また、電池群は、必ずしも25個の電池モジュールを直列に接続する必要はなく、これよりも少なく、あるいは多くの電池モジュールを直列に接続することができる。さらにまた、電池モジュールの二次電池は、リチウムイオン二次電池やニッケルカドミウム電池等の他の二次電池も使用できる。   Each battery module 1 has five nickel metal hydride batteries, which are battery cells, connected in series. In the battery group 3 in which 25 battery modules 1 are connected in series, a total of 125 nickel metal hydride batteries are connected in series, and the output voltage is 150V. The battery module does not necessarily connect five batteries in series. For example, four or less, or six or more secondary batteries can be connected in series. In addition, the battery group does not necessarily need to connect 25 battery modules in series, and fewer or more battery modules can be connected in series. Furthermore, the secondary battery of a battery module can also use other secondary batteries, such as a lithium ion secondary battery and a nickel cadmium battery.

電圧検出部4は、図において電池群3のマイナス側を基準点6として、この基準点6に対する電圧検出点7の電圧を検出し、検出した電圧検出点7の電圧差から各々の電圧検出ユニット2の電圧を演算する。電圧検出点7は、互いに直列に接続される電圧検出ユニット2の接続点である。電池群3の基準点6は、基準接続ライン8を介して電圧検出部4に接続される。この基準接続ライン8は、電圧検出部4のアースラインとしている。ただ、電圧検出部4のアースラインとなる基準接続ライン8は、車両のシャーシーアースには接続されない。感電を防止するためである。   The voltage detection unit 4 detects the voltage at the voltage detection point 7 relative to the reference point 6 with the negative side of the battery group 3 in the figure as the reference point 6, and each voltage detection unit from the detected voltage difference of the voltage detection point 7. 2 voltage is calculated. The voltage detection point 7 is a connection point of the voltage detection units 2 connected in series with each other. The reference point 6 of the battery group 3 is connected to the voltage detection unit 4 via the reference connection line 8. The reference connection line 8 is an earth line for the voltage detection unit 4. However, the reference connection line 8 serving as the ground line of the voltage detection unit 4 is not connected to the chassis ground of the vehicle. This is to prevent electric shock.

電圧検出ユニット2の接続点である電圧検出点7は、電圧検出ライン9を介して電圧検出部4に接続される。電圧検出部4は、電圧検出点7の電圧を検出して、各々の電圧検出ユニット2の電圧を検出する。   A voltage detection point 7 that is a connection point of the voltage detection unit 2 is connected to the voltage detection unit 4 via a voltage detection line 9. The voltage detection unit 4 detects the voltage of the voltage detection point 7 and detects the voltage of each voltage detection unit 2.

電圧検出部4は、電圧検出点7の電圧を分圧する抵抗分圧回路10と、抵抗分圧回路10で分圧された電圧を時分割に切り換えるマルチプレクサ11と、マルチプレクサ11の出力側に接続しているA/Dコンバータ12とを備える。   The voltage detection unit 4 is connected to a resistance voltage dividing circuit 10 that divides the voltage at the voltage detection point 7, a multiplexer 11 that switches the voltage divided by the resistance voltage dividing circuit 10 in a time division manner, and an output side of the multiplexer 11. The A / D converter 12 is provided.

抵抗分圧回路10は、ふたつの抵抗器13を直列に接続して、電圧検出点7の電圧を分圧してマルチプレクサ11に入力する。電圧検出点7の最高電圧は、マルチプレクサ11の最高入力電圧よりも高電圧となる。抵抗分圧回路10は、特定の分圧比で電圧検出点7の電圧を降下する。抵抗分圧回路10の分圧比は、直列に接続している抵抗器13の電気抵抗で特定される。マルチプレクサ11の入力と並列に接続している並列抵抗13Bに比較して、直列に接続している直列抵抗13Aの電気抵抗を大きくして、抵抗分圧回路10の分圧比を大きく、すなわちマルチプレクサ11の入力電圧を低くできる。   The resistance voltage dividing circuit 10 connects two resistors 13 in series, divides the voltage at the voltage detection point 7, and inputs the divided voltage to the multiplexer 11. The highest voltage at the voltage detection point 7 is higher than the highest input voltage of the multiplexer 11. The resistance voltage dividing circuit 10 drops the voltage at the voltage detection point 7 at a specific voltage dividing ratio. The voltage dividing ratio of the resistance voltage dividing circuit 10 is specified by the electric resistance of the resistor 13 connected in series. Compared with the parallel resistor 13B connected in parallel with the input of the multiplexer 11, the electric resistance of the series resistor 13A connected in series is increased, and the voltage dividing ratio of the resistance voltage dividing circuit 10 is increased, that is, the multiplexer 11 The input voltage can be lowered.

抵抗分圧回路10は、好ましくは、電圧検出点7の電圧を数Vに降圧してマルチプレクサ11に入力する。抵抗分圧回路10が電圧検出点7の電圧を低下させる割合は電気抵抗の比で特定されているので、検出された電圧は、A/Dコンバータ12を経て、制御部5にて演算されて、抵抗分圧回路10の分圧比を考慮して、実際の電圧に補正される。たとえば、抵抗分圧回路10の分圧比が1/50であれば、制御部5は、検出された電圧を50倍して電圧検出点7の電圧とする。   The resistance voltage dividing circuit 10 preferably steps down the voltage at the voltage detection point 7 to several volts and inputs the voltage to the multiplexer 11. Since the rate at which the resistance voltage dividing circuit 10 decreases the voltage at the voltage detection point 7 is specified by the ratio of electrical resistance, the detected voltage is calculated by the control unit 5 via the A / D converter 12. The voltage is corrected to an actual voltage in consideration of the voltage dividing ratio of the resistance voltage dividing circuit 10. For example, if the voltage dividing ratio of the resistance voltage dividing circuit 10 is 1/50, the control unit 5 multiplies the detected voltage by 50 to obtain the voltage at the voltage detection point 7.

さらに、制御部5は、電圧検出点7の電圧から電圧検出ユニット2の電圧を演算する。電圧検出ユニット2の電圧は、電圧検出点7の電圧差として検出される。ただし、マイナス側を基準点であるアースラインに接続している電圧検出ユニット2は、電圧検出点7の電圧が電圧検出ユニット2の電圧となる。制御部5は、演算された電圧検出ユニット2の電圧から電池モジュール1の電圧を演算する。   Further, the control unit 5 calculates the voltage of the voltage detection unit 2 from the voltage at the voltage detection point 7. The voltage of the voltage detection unit 2 is detected as a voltage difference at the voltage detection point 7. However, in the voltage detection unit 2 in which the minus side is connected to the ground line as a reference point, the voltage at the voltage detection point 7 becomes the voltage of the voltage detection unit 2. The controller 5 calculates the voltage of the battery module 1 from the calculated voltage of the voltage detection unit 2.

電池モジュール1の電圧は、
[電圧検出ユニットのトータル電圧/電池モジュールの個数]で演算される。
ひとつの電池モジュール1からなる悪環境の電圧検出ユニット2Bは、電圧検出ユニット2の電圧が電池モジュール1の電圧となる。
2個の電池モジュール1を直列に接続している好環境の電圧検出ユニット2Aは、
[電圧検出ユニットのトータル電圧/2]が電池モジュール1の電圧となる。
また、6個の電池モジュール1を直列に接続している電圧検出ユニット2は、
[電圧検出ユニットのトータル電圧/6]が電池モジュール1の電圧となる。
The voltage of the battery module 1 is
It is calculated by [total voltage of voltage detection unit / number of battery modules].
In the voltage detection unit 2B in a bad environment composed of one battery module 1, the voltage of the voltage detection unit 2 becomes the voltage of the battery module 1.
A favorable voltage detection unit 2A in which two battery modules 1 are connected in series,
[Total voltage / 2 of the voltage detection unit] is the voltage of the battery module 1.
Moreover, the voltage detection unit 2 which has connected six battery modules 1 in series is:
[Total voltage / 6 of the voltage detection unit] is the voltage of the battery module 1.

以上の電圧検出部4は、電圧検出点7の電圧を検出し、この電圧検出点7の差電圧から電圧検出ユニット2の電圧を検出する。ただし、本発明の電源装置は、各々の電圧検出ユニットの両端の電圧を差動アンプに入力し、差動アンプの出力をA/Dコンバータでデジタル信号に変換して、電圧検出ユニットの電圧を検出することもできる。   The voltage detection unit 4 described above detects the voltage at the voltage detection point 7 and detects the voltage of the voltage detection unit 2 from the difference voltage at the voltage detection point 7. However, in the power supply device of the present invention, the voltage at both ends of each voltage detection unit is input to a differential amplifier, the output of the differential amplifier is converted into a digital signal by an A / D converter, and the voltage of the voltage detection unit is It can also be detected.

制御部5は、電圧検出部4で検出された電池モジュール1の電圧で電池群3の充放電をコントロールして電池を保護し、また電池モジュール1の容量を検出し、あるいは充放電電流から演算される残容量を補正する。   The control unit 5 protects the battery by controlling charging / discharging of the battery group 3 with the voltage of the battery module 1 detected by the voltage detection unit 4, detects the capacity of the battery module 1, or calculates from the charging / discharging current. Correct the remaining capacity.

また、このような複数の電池モジュール1の電圧を測定するとき、電池モジュール間の電圧差を求め、電圧差(=電圧偏差)が判定基準である所定値以上のとき、電圧の低下した電池モジュール1が過放電状態として、放電を停止することができる。このような判定基準である所定値は、図2に示すように、「固定した電圧偏差の判定基準」とすることもできるし、下記に説明するような図2の「温度ばらつきでの電圧偏差も考慮した電圧偏差の判定基準」とすることもできる。つまり、複数の電池モジュールにおいて、温度ばらつきが生じると、図2の「温度ばらつきによる電圧偏差」に示すように、電圧偏差が生じる。そして、電池モジュール間での温度のばらつきによって生じる電圧偏差を考慮し、電池モジュール間の電圧偏差の判定基準を変化させることができる。つまり、図2に示されるように、電池モジュールの温度を測り、温度ばらつきがΔtであるときの電圧偏差の判定基準を図2の「温度ばらつきでの電圧偏差も考慮した電圧偏差の判定基準」のように変更してもよい。   Further, when measuring the voltage of such a plurality of battery modules 1, the voltage difference between the battery modules is obtained, and when the voltage difference (= voltage deviation) is equal to or greater than a predetermined value that is a criterion, the battery module having a decreased voltage 1 is in an overdischarged state, and discharge can be stopped. As shown in FIG. 2, the predetermined value as such a determination criterion can be a “fixed voltage deviation determination criterion” or “voltage deviation due to temperature variation” in FIG. 2 as described below. Can also be used as a criterion for voltage deviation taking into consideration. That is, when temperature variations occur in a plurality of battery modules, voltage deviations occur as shown in “voltage deviation due to temperature variations” in FIG. And the voltage deviation which arises by the dispersion | variation in the temperature between battery modules can be considered, and the criterion of the voltage deviation between battery modules can be changed. That is, as shown in FIG. 2, the temperature of the battery module is measured, and the voltage deviation criterion when the temperature variation is Δt is shown in FIG. 2 as “the voltage deviation criterion considering the voltage variation due to temperature variation”. It may be changed as follows.

本発明の一実施例にかかる車両用の電源装置の概略構成図である。It is a schematic block diagram of the power supply device for vehicles concerning one Example of the present invention. 複数の電池モジュールにおける温度ばらつきと電圧偏差との関係を示すグラフである。It is a graph which shows the relationship between the temperature dispersion | variation in a some battery module, and a voltage deviation.

符号の説明Explanation of symbols

1…電池モジュール
2…電圧検出ユニット 2A…好環境の電圧検出ユニット
2B…悪環境の電圧検出ユニット
3…電池群
4…電圧検出部
5…制御部
6…基準点
7…電圧検出点
8…基準接続ライン
9…電圧検出ライン
10…抵抗分圧回路
11…マルチプレクサ
12…A/Dコンバータ
13…抵抗器 13A…直列抵抗
13B…並列抵抗
DESCRIPTION OF SYMBOLS 1 ... Battery module 2 ... Voltage detection unit 2A ... Voltage detection unit of favorable environment
2B ... Bad Environment Voltage Detection Unit 3 ... Battery Group 4 ... Voltage Detection Unit 5 ... Control Unit 6 ... Reference Point 7 ... Voltage Detection Point 8 ... Reference Connection Line 9 ... Voltage Detection Line 10 ... Resistance Divider Circuit 11 ... Multiplexer 12 ... A / D converter 13 ... resistor 13A ... series resistance
13B ... Parallel resistance

Claims (8)

複数の電池モジュール(1)を直列に接続してなる電池群(3)と、この電池群(3)を複数の電圧検出ユニット(2)に分割して各々の電圧検出ユニット(2)の電圧を検出する電圧検出部(4)と、電圧検出部(4)の検出電圧で電池群(3)を充電又は放電する電流を制御する制御部(5)とを備え、
電池群(3)が、好環境の電圧検出ユニット(2A)と悪環境の電圧検出ユニット(2B)に分割されて、各々の電圧検出ユニット(2)の電圧が電圧検出部(4)で検出され、好環境の電圧検出ユニット(2A)は、悪環境の電圧検出ユニット(2B)よりも電池モジュール(1)の直列接続個数を多くしてなる車両用の電源装置。
A battery group (3) in which a plurality of battery modules (1) are connected in series, and the battery group (3) is divided into a plurality of voltage detection units (2), and the voltage of each voltage detection unit (2) is divided. A voltage detection unit (4) for detecting the voltage, and a control unit (5) for controlling the current for charging or discharging the battery group (3) with the detection voltage of the voltage detection unit (4),
The battery group (3) is divided into a voltage detection unit (2A) in a favorable environment and a voltage detection unit (2B) in a bad environment, and the voltage detection unit (4) detects the voltage of each voltage detection unit (2) In addition, the favorable voltage detection unit (2A) is a power supply device for vehicles in which the number of battery modules (1) connected in series is larger than that of the adverse environment voltage detection unit (2B).
悪環境の電圧検出ユニット(2B)と好環境の電圧検出ユニット(2A)を、電池モジュール(1)の温度で分離しており、悪環境の電圧検出ユニット(2B)が、好環境の電圧検出ユニット(2A)よりも高温または低温の電池モジュール(1)を含む請求項1に記載される車両用の電源装置。   The bad environment voltage detection unit (2B) and the good environment voltage detection unit (2A) are separated by the temperature of the battery module (1), and the bad environment voltage detection unit (2B) detects the good environment voltage. The power supply device for vehicles described in Claim 1 containing the battery module (1) higher or lower temperature than a unit (2A). 悪環境の電圧検出ユニット(2B)と好環境の電圧検出ユニット(2A)を、冷却ファンの運転を停止する状態における電池モジュール(1)の温度で分離しており、悪環境の電圧検出ユニット(2B)が、好環境の電圧検出ユニット(2A)よりも高温または低温の電池モジュール(1)を含む請求項2に記載される車両用の電源装置。   The bad environment voltage detection unit (2B) and the favorable environment voltage detection unit (2A) are separated by the temperature of the battery module (1) when the cooling fan is stopped. The vehicle power supply device according to claim 2, wherein 2B) includes a battery module (1) having a higher or lower temperature than the voltage detection unit (2A) in a favorable environment. 悪環境の電圧検出ユニット(2B)と好環境の電圧検出ユニット(2A)を、冷却ファンを運転する状態における電池モジュール(1)の温度で分離しており、悪環境の電圧検出ユニット(2B)が、好環境の電圧検出ユニット(2A)よりも高温または低温の電池モジュール(1)を含む請求項2に記載される車両用の電源装置。   The bad environment voltage detection unit (2B) and the favorable environment voltage detection unit (2A) are separated by the temperature of the battery module (1) when the cooling fan is operating. The vehicle power supply device according to claim 2, comprising a battery module (1) having a higher or lower temperature than the voltage detection unit (2A) in a favorable environment. 悪環境の電圧検出ユニット(2B)と好環境の電圧検出ユニット(2A)を、車両のイグニッションスイッチをオフにして所定時間経過した状態における電池モジュール(1)の温度で分離しており、悪環境の電圧検出ユニット(2B)が、好環境の電圧検出ユニット(2A)よりも高温または低温の電池モジュール(1)を含む請求項2に記載される車両用の電源装置。   The bad environment voltage detection unit (2B) and the favorable environment voltage detection unit (2A) are separated by the temperature of the battery module (1) after a predetermined time has passed since the vehicle ignition switch was turned off. The vehicle power supply device according to claim 2, wherein the voltage detection unit (2B) includes a battery module (1) having a higher or lower temperature than the voltage detection unit (2A) in a favorable environment. 悪環境の電圧検出ユニット(2B)と好環境の電圧検出ユニット(2A)を、電池モジュール(1)の振動状態で分離しており、悪環境の電圧検出ユニット(2B)が、好環境の電圧検出ユニット(2A)よりも大きく振動される電池モジュール(1)を含む請求項1に記載される車両用の電源装置。   The bad environment voltage detection unit (2B) and the favorable environment voltage detection unit (2A) are separated by the vibration state of the battery module (1), and the adverse environment voltage detection unit (2B) The power supply device for a vehicle according to claim 1, comprising a battery module (1) that is vibrated more greatly than the detection unit (2A). 悪環境の電圧検出ユニット(2B)と好環境の電圧検出ユニット(2A)を、電池モジュール(1)が受ける衝撃の大きさで分離しており、悪環境の電圧検出ユニット(2B)が、好環境の電圧検出ユニット(2A)よりも強い衝撃を受ける電池モジュール(1)を含む請求項1に記載される車両用の電源装置。   The bad environment voltage detection unit (2B) and the favorable environment voltage detection unit (2A) are separated by the magnitude of impact received by the battery module (1), and the adverse environment voltage detection unit (2B) The power supply device for a vehicle according to claim 1, comprising a battery module (1) that receives a stronger impact than the environmental voltage detection unit (2A). 悪環境の電圧検出ユニット(2B)がひとつの電池モジュール(1)からなり、好環境の電池ユニット(2A)が複数の電池モジュール(1)を直列に接続してなる請求項1に記載される車両用の電源装置。
The bad environment voltage detection unit (2B) is composed of one battery module (1), and the favorable environment battery unit (2A) is formed by connecting a plurality of battery modules (1) in series. Power supply device for vehicles.
JP2006046994A 2006-02-23 2006-02-23 Power supply for vehicle Active JP4553853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046994A JP4553853B2 (en) 2006-02-23 2006-02-23 Power supply for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046994A JP4553853B2 (en) 2006-02-23 2006-02-23 Power supply for vehicle

Publications (2)

Publication Number Publication Date
JP2007228726A true JP2007228726A (en) 2007-09-06
JP4553853B2 JP4553853B2 (en) 2010-09-29

Family

ID=38549973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046994A Active JP4553853B2 (en) 2006-02-23 2006-02-23 Power supply for vehicle

Country Status (1)

Country Link
JP (1) JP4553853B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296777A (en) * 2008-06-04 2009-12-17 Toyota Motor Corp Power storage controller and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469019A (en) * 1990-06-28 1992-03-04 Sharp Corp Battery charge controller
JPH07230828A (en) * 1994-02-18 1995-08-29 Matsushita Electric Ind Co Ltd Charging method for lead-acid battery
JP2001224138A (en) * 2000-02-07 2001-08-17 Hitachi Ltd Electricity storage device and detecting method for voltage of capacitor
JP2002199510A (en) * 2000-12-28 2002-07-12 Nissan Motor Co Ltd Voltage detection device of battery pack for electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469019A (en) * 1990-06-28 1992-03-04 Sharp Corp Battery charge controller
JPH07230828A (en) * 1994-02-18 1995-08-29 Matsushita Electric Ind Co Ltd Charging method for lead-acid battery
JP2001224138A (en) * 2000-02-07 2001-08-17 Hitachi Ltd Electricity storage device and detecting method for voltage of capacitor
JP2002199510A (en) * 2000-12-28 2002-07-12 Nissan Motor Co Ltd Voltage detection device of battery pack for electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296777A (en) * 2008-06-04 2009-12-17 Toyota Motor Corp Power storage controller and vehicle
JP4530078B2 (en) * 2008-06-04 2010-08-25 トヨタ自動車株式会社 Power storage control device and vehicle

Also Published As

Publication number Publication date
JP4553853B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US11165262B2 (en) Apparatus and method for preventing overcharge
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
KR100666817B1 (en) Apparatus and method for balancing battery
KR101057542B1 (en) Battery Management System and Its Driving Method
JP5274110B2 (en) Power supply for vehicle
EP2068420B1 (en) Secondary battery charging method and device
JP5789846B2 (en) Power supply device for vehicle and vehicle equipped with this power supply device
US8674659B2 (en) Charge control device and vehicle equipped with the same
US20060097700A1 (en) Method and system for cell equalization with charging sources and shunt regulators
WO2012164630A1 (en) Electricity storage system
JP2007300701A (en) Power supply device for vehicle
JP2007018826A (en) Vehicular power source device
KR20170002085A (en) Battery Pack and Charge Controlling System for Electric Vehicle Including Thereof
KR20130081215A (en) Power supply device
KR20160099357A (en) Battery pack and battery system including the same
JP2010032412A (en) Power supply for vehicle
US10391880B2 (en) Battery pack and electric vehicle including the same
JP5154076B2 (en) Battery pack and battery module and hybrid vehicle using the same
JP5885044B2 (en) Energy storage system balancer
CN113767544B (en) Apparatus and method for controlling on-operation of switching units included in parallel multi-battery pack
JP2001006750A (en) Battery inspecting device
US20220250478A1 (en) Method for operating an electric energy store, electric energy store, and device
JP4553853B2 (en) Power supply for vehicle
JP2001186682A (en) Method of controlling discharge of battery
JP2012165580A (en) Control device of power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4553853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3