JP2007227580A - Device and method for liquid-immersed exposure - Google Patents

Device and method for liquid-immersed exposure Download PDF

Info

Publication number
JP2007227580A
JP2007227580A JP2006046132A JP2006046132A JP2007227580A JP 2007227580 A JP2007227580 A JP 2007227580A JP 2006046132 A JP2006046132 A JP 2006046132A JP 2006046132 A JP2006046132 A JP 2006046132A JP 2007227580 A JP2007227580 A JP 2007227580A
Authority
JP
Japan
Prior art keywords
immersion liquid
resist film
immersion
liquid
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046132A
Other languages
Japanese (ja)
Inventor
Naoyuki Miyashita
直幸 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006046132A priority Critical patent/JP2007227580A/en
Publication of JP2007227580A publication Critical patent/JP2007227580A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain failures caused by micro bubbles, watermarks, etc, from occurring without fail in liquid-immersed lithography. <P>SOLUTION: A liquid-immersed exposure device performs liquid-immersed lithography, by interposing an immersion liquid between a resist film 1 formed on a wafer substrate 2 and a projection optical system 3 which subjects the resist film 1 to exposure. The liquid-immersed exposure device is equipped with an electrifying means 5 that electrifies the immersion liquid and a de-electrifying means 6 which removes electric charge from the immersion liquid. An immersion liquid electrifying process and an immersion liquid de-electrifying process are incorporated into an exposure sequence, whereby the immersion liquid is made to transit into a hydrophilic nature or a hydrophobic nature in relation to the resist film 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マスクに描画された回路パターンを投影光学系によってウエハ基板上に転写する露光装置および露光方法に関し、特に液浸液を介在させて液浸リソグラフィを行う液浸型の露光装置および露光方法に関する。   The present invention relates to an exposure apparatus and an exposure method for transferring a circuit pattern drawn on a mask onto a wafer substrate by a projection optical system, and more particularly to an immersion type exposure apparatus and exposure for performing immersion lithography with an immersion liquid interposed. Regarding the method.

一般に、メモリや論理回路などの半導体素子、液晶パネルなどの表示素子、磁気ヘッドなどの検出素子、CCDなどの撮像素子等といった各種デバイスを製造する際には、フォトリソグラフィ技術を用いてマスクに描画された回路パターンを投影光学系によってウエハ基板上へ転写する縮小投影型の露光装置が利用される。この露光装置で転写できる最小のパターン寸法(解像度)は、露光光の波長に比例し、投影光学系の開口数(NA)に反比例する。そのため、高解像度を実現するためには、露光光を短波長化するか、NAの大きな投影光学系を用いればよい。転写パターンの高解像度化は、正にこれに倣った形で展開されてきている。例えば、露光光の短波長化は、g線(波長;436nm)からi線(波長;365nm)、KrF(波長;248nm)、ArF(波長;193nm)へと推移し、今後は次の光源としてF2(波長;157nm)あるいはEUV(波長;13.5nm)の実現へ向けて開発が進められている。また、これと並行して投影光学系の高NA化も加速的に進み、現在では0.9を超えるNAを有した露光装置が開発され販売へと至っている。   In general, when manufacturing various devices such as semiconductor elements such as memory and logic circuits, display elements such as liquid crystal panels, detection elements such as magnetic heads, imaging elements such as CCDs, etc., drawing on a mask using photolithography technology A reduction projection type exposure apparatus is used that transfers the circuit pattern onto a wafer substrate by a projection optical system. The minimum pattern size (resolution) that can be transferred by this exposure apparatus is proportional to the wavelength of exposure light and inversely proportional to the numerical aperture (NA) of the projection optical system. Therefore, in order to realize high resolution, the exposure light may be shortened or a projection optical system having a large NA may be used. Higher resolution of the transfer pattern has been developed in a form following this. For example, the shortening of exposure light wavelength has shifted from g-line (wavelength: 436 nm) to i-line (wavelength: 365 nm), KrF (wavelength: 248 nm), and ArF (wavelength: 193 nm). Development is progressing toward realization of F2 (wavelength: 157 nm) or EUV (wavelength: 13.5 nm). In parallel with this, the NA of the projection optical system has been accelerated, and at present, an exposure apparatus having an NA exceeding 0.9 has been developed and sold.

このような微細化の流れを停滞させることなく継続していく一つの手法として、ArFレーザを用いた液浸リソグラフィが注目されている(例えば、特許文献1参照)。液浸リソグラフィとは、投影光学系とウエハ基板との間を液体で充填することにより、更なる高NA化を実現する手法である。つまり、投影光学系のNAは、液体の屈折率をn(n>1)とするとNA=n・sinθであるため、投影光学系とウエハ基板との間を空気の屈折率よりも高い屈折率nの媒質で満たすことにより、「1」を超えるnの領域まで拡張して露光することが可能となる。したがって、液浸リソグラフィによれば、従前の半導体製造のために大幅な施設変更を要することなく、転写パターンの高解像度化を実現できるので、製造コストの増大を抑制しつつ次世代LSIへの対応が可能となるといったメリットが得られる。   As one method of continuing such a miniaturization flow without stagnation, immersion lithography using an ArF laser has been attracting attention (see, for example, Patent Document 1). Immersion lithography is a technique for realizing a higher NA by filling a space between a projection optical system and a wafer substrate with a liquid. That is, the NA of the projection optical system is NA = n · sin θ when the refractive index of the liquid is n (n> 1), so that the refractive index between the projection optical system and the wafer substrate is higher than the refractive index of air. By filling with n media, it is possible to expand and expose to n regions exceeding “1”. Therefore, immersion lithography can realize higher resolution of transfer patterns without requiring major facility changes for conventional semiconductor manufacturing, so it can be used for next-generation LSIs while suppressing an increase in manufacturing costs. The merit that it becomes possible is obtained.

特開平10−303114号公報JP-A-10-303114

ところで、ウエハ基板上へのパターン転写を行う場合、そのウエハ基板上にはレジスト膜が形成されることになるが、液浸リソグラフィにおいて、そのレジスト膜の形成材料は、投影光学系とウエハ基板との間に充填される液浸液に対しての濡れ性が高い親水性材料が用いられる傾向にある。これは、濡れ性の高い親水性材料であれば、露光後のパターンを現像するための現像液への溶解性が高いものが多く、その現像を適切に行えるからであり、また液浸液のレジスト膜との接触角を小さくすることができるので、露光時におけるマイクロバブルが発生し難くなるからである。「マイクロバブル」とは、液浸液中に発生する小さな気泡のことをいい、露光光屈折や転写像解像不良等の要因となり得るものである。しかしながら、濡れ性の高い親水性材料でレジスト膜を形成すると、上述したメリットが得られる一方で、液浸液へのレジスト膜形成材料の溶出が増加してしまうことが考えられる。また、露光後にウエハ基板を取り出すべく液浸液を除去する際、濡れ性が高い故に、ウォーターマークが発生し易くなるおそれがある。「ウォーターマーク」とは、液浸液中の除去時にレジスト膜上に残る水滴に起因して発生するシミ状の欠陥のことをいう。   By the way, when pattern transfer onto a wafer substrate is performed, a resist film is formed on the wafer substrate. In immersion lithography, the material for forming the resist film is a projection optical system, a wafer substrate, and the like. There is a tendency to use a hydrophilic material having high wettability with respect to the immersion liquid filled in between. This is because many hydrophilic materials with high wettability have high solubility in a developer for developing a pattern after exposure, and the development can be appropriately performed. This is because the contact angle with the resist film can be reduced, so that microbubbles are hardly generated during exposure. “Microbubbles” refer to small bubbles generated in the immersion liquid, which can cause exposure light refraction and transfer image resolution failure. However, when the resist film is formed of a hydrophilic material having high wettability, the above-described merit can be obtained, but it is considered that elution of the resist film forming material into the immersion liquid increases. Further, when the immersion liquid is removed in order to take out the wafer substrate after exposure, the wettability is high, so that a watermark may be easily generated. “Watermark” refers to a spot-like defect caused by water droplets remaining on the resist film upon removal in the immersion liquid.

この点については、濡れ性の高い親水性材料ではなく、液浸液に対しての濡れ性が低い疎水性材料を用いてレジスト膜の形成することも考えられる。濡れ性の低い疎水性材料であれば、レジスト膜の形成材料が液浸液へ溶出し難くなり、また液浸液のレジスト膜との接触角を大きくすることができるので、液浸液の除去時にウォーターマークが発生してしまうのを抑制し得るからである。しかしながら、濡れ性の低い疎水性材料でレジスト膜を形成する場合には、膜形成材料として親水性材料が一般的に用いられる傾向を鑑みれば材料開発に制約が生じることが考えられ、また現像液への溶解性が低いことから露光後のパターン現像が適切に行えなくなるおそれがある。さらには、液浸液のレジスト膜との接触角が大きくなるので、露光時にマイクロバブルが発生してしまい、露光光屈折や転写像解像不良等を招くおそれもある。   In this regard, it is conceivable that the resist film is formed using a hydrophobic material having low wettability with respect to the immersion liquid instead of a hydrophilic material having high wettability. If the hydrophobic material has low wettability, it is difficult for the resist film forming material to elute into the immersion liquid, and the contact angle of the immersion liquid with the resist film can be increased. This is because sometimes the occurrence of a watermark can be suppressed. However, in the case of forming a resist film with a hydrophobic material having low wettability, it is considered that there is a restriction on material development in view of the tendency that a hydrophilic material is generally used as a film forming material. There is a possibility that pattern development after exposure cannot be performed properly because of its low solubility in water. Furthermore, since the contact angle of the immersion liquid with the resist film is increased, microbubbles are generated during exposure, and exposure light refraction and transfer image resolution failure may occur.

このように、液浸リソグラフィにおけるレジスト膜の形成材料については、親水性材料を用いた場合であっても、あるいは疎水性材料を用いた場合であっても、いずれの場合も図5に示すような一長一短がある。そのため、液浸リソグラフィにおいては、それぞれのメリットを活かしつつ、それぞれのデメリットを包括的に解消することが望まれている。   As described above, the resist film forming material in the immersion lithography is shown in FIG. 5 regardless of whether a hydrophilic material or a hydrophobic material is used. There are merits and demerits. Therefore, in immersion lithography, it is desired to comprehensively eliminate each demerit while utilizing each merit.

本発明は、上述した課題を解決するために案出された液浸型露光装置である。すなわち、ウエハ基板上に形成されたレジスト膜と当該レジスト膜に対する露光を行う投影光学系との間に液浸液を介在させて液浸リソグラフィを行う液浸型露光装置であって、前記液浸液を帯電させる帯電手段と、前記液浸液に対する除電を行う除電手段とを備えることを特徴とするものである。   The present invention is an immersion type exposure apparatus devised to solve the above-described problems. That is, an immersion type exposure apparatus that performs immersion lithography with an immersion liquid interposed between a resist film formed on a wafer substrate and a projection optical system that performs exposure on the resist film. It is characterized by comprising a charging means for charging the liquid and a charge eliminating means for removing charge from the immersion liquid.

上記構成の液浸型露光装置では、ウエハ基板上のレジスト膜と投影光学系との間に液浸液を介在させて液浸リソグラフィを行う。
このとき、レジスト膜における液浸液に対する濡れ性は、一般に液浸液とレジスト膜との接触角で定量的に表記され、レジスト膜の形成材料が決まれば液浸液の接触角もある固有の角度で決定されてしまう。ただし、この接触角は、ある程度の範囲内であれば、液浸液の帯電により変化可能であることが知られている。つまり、例えば疎水性を有した材料でウエハ基板上のレジスト膜を形成した場合であっても、液浸液の帯電量を変化させれば、その液浸液のレジスト膜との接触角を、親水性を有した材料で形成した場合のように小さくすることができるのである。
In the immersion type exposure apparatus configured as described above, immersion lithography is performed with an immersion liquid interposed between the resist film on the wafer substrate and the projection optical system.
At this time, the wettability of the resist film with respect to the immersion liquid is generally expressed quantitatively by the contact angle between the immersion liquid and the resist film, and if the resist film forming material is determined, the contact angle of the immersion liquid is also inherent. It will be determined by the angle. However, it is known that the contact angle can be changed by charging the immersion liquid as long as it is within a certain range. That is, for example, even when a resist film is formed on a wafer substrate with a hydrophobic material, if the charge amount of the immersion liquid is changed, the contact angle of the immersion liquid with the resist film is The size can be reduced as in the case of forming with a hydrophilic material.

このことから、上記構成の液浸型露光装置では、液浸液を帯電させる帯電手段と、液浸液に対する除電を行う除電手段とを備えており、液浸液を帯電させたり除電したりするようになっている。したがって、例えば、露光シーケンス中は帯電手段により液浸液を帯電させてレジスト膜に対して親水的作用状態にし、露光シーケンス終了後、液浸液を除去する際には、帯電させた液浸液に対する除電を行ってレジスト膜に対して疎水的作用状態にする、といったことを行い得る。つまり、液浸液の帯電と除電を行うことで、親水的作用状態と疎水的作用状態とを遷移させ得るようになる。   Therefore, the immersion type exposure apparatus having the above-described configuration includes a charging unit that charges the immersion liquid and a neutralization unit that performs charge removal on the immersion liquid, and charges or removes the immersion liquid. It is like that. Thus, for example, during the exposure sequence, the immersion liquid is charged by the charging means to make the resist film hydrophilic, and when the immersion liquid is removed after completion of the exposure sequence, the charged immersion liquid is used. It is possible to perform a process such that the resist film is subjected to a hydrophobic action by removing the charge. That is, the hydrophilic action state and the hydrophobic action state can be transitioned by charging and discharging the immersion liquid.

本発明によれば、液浸液の帯電と除電とを露光シーケンスに組み込むことにより、その液浸液をレジスト膜との関係において親水的作用状態または疎水的作用状態のいずれかに遷移させ得るので、例えば露光中は液浸液を帯電させて親水的作用状態にし、露光終了後に液浸液を除去する際には除電して疎水的作用状態にするといったことが実現可能となり、結果として液浸リソグラフィを行う場合であってもマイクロバブルやウォーターマーク等のいずれの欠陥についても抑制することができ、当該液浸リソグラフィを経て得られる製品の歩留まり向上が期待できる。しかも、親水的作用状態と疎水的作用状態とを遷移させ得るので、レジスト膜の形成材料についての設計自由度を高く確保することができ、例えば透明度は高いが撥水性が高くなる傾向になることで知られるフッ素を樹脂に含むレジスト形成材料であっても、あたかも親水性レジストとして使用できる可能性が得られる。
つまり、本発明では、液浸液の帯電と除電によって親水的作用状態と疎水的作用状態とを遷移させることで、レジスト膜の形成材料として親水性材料を用いた場合と疎水性材料を用いた場合とのそれぞれのメリットを活かしつつ、それぞれのデメリットを包括的に解消することが可能となる。
According to the present invention, charging and discharging of the immersion liquid can be incorporated into the exposure sequence so that the immersion liquid can be transitioned to either a hydrophilic action state or a hydrophobic action state in relation to the resist film. For example, during exposure, it is possible to charge the immersion liquid to a hydrophilic action state, and to remove the immersion liquid after the exposure is completed, to remove the charge to a hydrophobic action state. Even when lithography is performed, any defects such as microbubbles and watermarks can be suppressed, and an improvement in the yield of products obtained through the immersion lithography can be expected. In addition, since the hydrophilic action state and the hydrophobic action state can be changed, a high degree of freedom in designing the resist film forming material can be ensured. For example, the transparency is high but the water repellency tends to be high. Even if it is a resist forming material containing fluorine in the resin known in (1), there is a possibility that it can be used as a hydrophilic resist.
That is, in the present invention, a hydrophilic material is used as a resist film forming material and a hydrophobic material is used by transitioning between a hydrophilic action state and a hydrophobic action state by charging and discharging of the immersion liquid. It is possible to comprehensively eliminate each demerit while taking advantage of each merit.

以下、図面に基づき本発明に係る液浸型露光装置および液浸型露光方法について説明する。   Hereinafter, an immersion type exposure apparatus and an immersion type exposure method according to the present invention will be described with reference to the drawings.

先ず、液浸型露光装置の基本的な構成について説明する。
図1は、本発明に係る液浸型露光装置の構成例を示す説明図である。ここで説明する液浸型露光装置は、液浸リソグラフィを行うためのもので、レジスト膜1が形成されたウエハ基板2がセットされるテーブル(ただし不図示)と、そのウエハ基板2上に形成されたレジスト膜1に対する露光を行う投影光学系3と、レジスト膜1と投影光学系3との間に液浸液を介在させるための液保持部4と、を備えている。
First, a basic configuration of the immersion type exposure apparatus will be described.
FIG. 1 is an explanatory view showing a configuration example of an immersion type exposure apparatus according to the present invention. The liquid immersion type exposure apparatus described here is for performing liquid immersion lithography, and is formed on a table (not shown) on which a wafer substrate 2 on which a resist film 1 is formed is set, and on the wafer substrate 2. A projection optical system 3 that performs exposure on the resist film 1, and a liquid holding unit 4 for interposing an immersion liquid between the resist film 1 and the projection optical system 3.

投影光学系3は、例えば波長193nmのパルス光を放射するArFエキシマレーザを光源とする縮小光学系を用いることが考えられる。なお、縮小光学系の詳細については、公知技術を利用して実現すればよいため、ここではその説明を省略する。   The projection optical system 3 may be a reduction optical system that uses, for example, an ArF excimer laser that emits pulsed light with a wavelength of 193 nm as a light source. Note that the details of the reduction optical system may be realized using a known technique, and thus the description thereof is omitted here.

液保持部4は、レジスト膜1上で液浸液を貯留させるためのものである。ただし、液保持部4は、レジスト膜1およびウエハ基板2の全体が液浸液に浸るように、その液浸液を貯留するものであってもよい。また、液保持部4には、レジスト膜1と投影光学系3との間に液浸液のみが介在するように、その液保持部4内に液浸液を注入充填するための供給ノズル4aが設けられている。さらには、供給ノズル4aとは別に、液保持部4内の液浸液を、その液保持部4内から排出除去するための排出ノズル4bも設けられている。そして、供給ノズル4aを通じて液浸液が液保持部4内に注入されるとともに、注入充填された液浸液が排出ノズル4bから排出除去されるようになっている。   The liquid holding unit 4 is for storing the immersion liquid on the resist film 1. However, the liquid holding unit 4 may store the immersion liquid so that the entire resist film 1 and the wafer substrate 2 are immersed in the immersion liquid. Further, the supply nozzle 4a for injecting and filling the immersion liquid into the liquid holding part 4 so that only the immersion liquid is interposed between the resist film 1 and the projection optical system 3 in the liquid holding part 4. Is provided. In addition to the supply nozzle 4 a, a discharge nozzle 4 b for discharging and removing the immersion liquid in the liquid holding unit 4 from the liquid holding unit 4 is also provided. Then, the immersion liquid is injected into the liquid holding unit 4 through the supply nozzle 4a, and the injected and filled immersion liquid is discharged and removed from the discharge nozzle 4b.

液保持部4内に注入充填される液浸液は、入手が容易で取り扱いが簡単な超純水を用いることが考えられる。ただし、液浸液の表面張力を減少させるとともに、界面活性力を増大させるために、レジスト膜1を溶解させず、かつ、投影光学系3のレンズ素子下面に対する影響が無視できる脂肪族系の添加剤(液体)をわずかな割合で添加してもよい。添加剤としては、純水とほぼ等しい屈折率を有するメチルアルコール等が好ましい。このようにすると、純水中のメチルアルコール成分が蒸発して含有濃度が変化しても、液浸液の全体としての屈折率変化を極めて小さくできるといった利点が得られる。なお、液浸液中に浸ることになるレジスト膜1は、液浸液中への溶出がし難いように、その液浸液に対して濡れ性の低い疎水性材料を用いて形成されるものとする。疎水性材料は、レジスト膜の形成材料として公知のものを用いればよいため、ここではその説明を省略する。   It is conceivable to use ultrapure water that is easy to obtain and easy to handle as the immersion liquid to be injected and filled into the liquid holding unit 4. However, in order to reduce the surface tension of the immersion liquid and increase the surface activity, an addition of an aliphatic system that does not dissolve the resist film 1 and can ignore the influence on the lower surface of the lens element of the projection optical system 3 An agent (liquid) may be added in a small proportion. As the additive, methyl alcohol or the like having a refractive index substantially equal to that of pure water is preferable. In this way, even if the methyl alcohol component in the pure water evaporates and the content concentration changes, there is an advantage that the refractive index change of the immersion liquid as a whole can be made extremely small. The resist film 1 to be immersed in the immersion liquid is formed by using a hydrophobic material having low wettability with respect to the immersion liquid so that the elution into the immersion liquid is difficult. And Since the hydrophobic material may be a known material for forming a resist film, the description thereof is omitted here.

ところで、本実施形態で説明する液浸型露光装置では、上述した投影光学系3および液保持部4に加え、その特徴的な構成として、帯電手段5および除電手段6を備えている。   By the way, in the immersion type exposure apparatus described in the present embodiment, in addition to the projection optical system 3 and the liquid holding unit 4 described above, a charging unit 5 and a charge eliminating unit 6 are provided as characteristic features thereof.

帯電手段5は、供給ノズル4aを通じて液保持部4内に注入充填される液浸液または既に液保持部4内に注入充填されている液浸液のいずれかを帯電させるものである。ただし、帯電手段5は、遅くとも投影光学系3がレジスト膜1に対する露光を行う前に、その投影光学系3とレジスト膜1との間に介在する液浸液に対する帯電を行うようになっている。   The charging means 5 charges either the immersion liquid injected and filled into the liquid holding part 4 through the supply nozzle 4a or the immersion liquid already injected and filled into the liquid holding part 4. However, the charging unit 5 charges the immersion liquid interposed between the projection optical system 3 and the resist film 1 before the projection optical system 3 exposes the resist film 1 at the latest. .

帯電は、摩擦帯電現象または誘導帯電現象を利用して行えばよい。摩擦帯電現象とは、絶縁物と絶縁物や絶縁物と金属物体等の摩擦により静電気を帯びることをいう。また、誘導帯電現象とは、電気を帯びた物体が他の物体に近づくと、これに応じて他の物体の静電気量が変化(増える)ことをいう。   Charging may be performed using a frictional charging phenomenon or an induction charging phenomenon. The frictional charging phenomenon refers to static electricity due to friction between an insulator and an insulator or between an insulator and a metal object. The induction charging phenomenon means that when an electrically charged object approaches another object, the amount of static electricity of the other object changes (increases) accordingly.

具体的には、摩擦帯電現象を利用する場合であれば、液浸液を帯電させる材質によって供給ノズル4aを形成し、これにより帯電手段5を構成することが考えられる。ここで、「帯電させる材質」とは、液浸液との摩擦により、その液浸液を帯電させ易い材質のことをいう。例えば、正極に帯電させ易い材質としては、ガラス、ナイロン、アルミニウム等が挙げられる。一方、負極に帯電させ易い材質としては、フッ素樹脂、ポリ塩化ビニル、ポリエチレン等が挙げられる。   Specifically, if the triboelectric charging phenomenon is used, it is conceivable that the supply nozzle 4a is formed of a material that charges the immersion liquid, and thereby the charging means 5 is configured. Here, the “material to be charged” means a material that easily charges the immersion liquid by friction with the immersion liquid. For example, glass, nylon, aluminum, etc. are mentioned as a material which is easily charged to the positive electrode. On the other hand, examples of materials that can be easily charged to the negative electrode include fluororesin, polyvinyl chloride, and polyethylene.

また、摩擦帯電現象を利用する場合には、帯電させる材質による形成と併せて、あるいは帯電させる材質による形成とは全く別に、液浸液を帯電させる形状に供給ノズル4aを形成し、これにより帯電手段5を構成することも考えられる。ここで、「帯電させる形状」とは、液浸液との摩擦により、その液浸液を帯電させ易い形状のことをいう。
図2は、本発明に係る液浸型露光装置における供給ノズルの具体例を示す説明図である。供給ノズル4aの形状の具体例としては、例えば、図2(a)に示すように供給ノズル4aの射出口(液出口)を櫛状にした形状や、図2(b)に示すように、供給ノズル4aの内部を液浸液が蛇行しながら流れるように構成した形状が挙げられる。これらの形状は、供給ノズル4aの構成部材と液浸液との摩擦面積をより多く確保し得るように構成されたものである。摩擦面積が多くなれば、これに応じて液浸液が帯電する度合いも高くなるからである。
In addition, when the frictional charging phenomenon is used, the supply nozzle 4a is formed in a shape for charging the immersion liquid in addition to the formation by the material to be charged or completely different from the formation by the material to be charged. It is also conceivable to constitute the means 5. Here, the “charged shape” means a shape in which the immersion liquid is easily charged by friction with the immersion liquid.
FIG. 2 is an explanatory view showing a specific example of the supply nozzle in the immersion type exposure apparatus according to the present invention. As a specific example of the shape of the supply nozzle 4a, for example, as shown in FIG. 2 (a), the shape of the injection nozzle (liquid outlet) of the supply nozzle 4a in a comb shape, or as shown in FIG. 2 (b), A shape configured so that the immersion liquid flows while meandering in the supply nozzle 4a can be mentioned. These shapes are configured to ensure a larger friction area between the component of the supply nozzle 4a and the immersion liquid. This is because as the friction area increases, the degree of charging of the immersion liquid increases accordingly.

なお、供給ノズル4aの材質または形状の工夫により帯電手段5を実現し、その帯電手段5によって摩擦帯電現象を利用した帯電を行う場合には、供給ノズル4aを通じて液保持部4内に注入充填される液浸液が帯電の対象となる。   In addition, when the charging unit 5 is realized by devising the material or shape of the supply nozzle 4a and the charging unit 5 performs charging using the frictional charging phenomenon, the charging unit 5 is injected and filled into the liquid holding unit 4 through the supply nozzle 4a. The immersion liquid becomes the target of charging.

一方、誘導帯電現象を利用する場合であれば、供給ノズル4a内の液流路部分または液保持部4内の液貯留部分のいずれか一方または両方に、液浸液を帯電させるための電極を配し、その電極への電圧印加を通じて液浸液に対する帯電を行い得るようにし、これにより帯電手段5を構成することも考えられる。この場合は、電極への印加電圧を制御することで、液浸液の帯電電位や極性等を任意に設定し得るようになる。また、電極の配置位置次第で、帯電対象となる液浸液についても任意に設定し得るようになる。すなわち、供給ノズル4a内に電極を配せば、その供給ノズル4aを通じて液保持部4内に注入充填される液浸液が帯電の対象となり、液保持部4内に電極を配せば、その液保持部4内に既に注入充填されている液浸液が帯電の対象となる。   On the other hand, if the induction charging phenomenon is used, an electrode for charging the immersion liquid is provided on one or both of the liquid flow path part in the supply nozzle 4a and the liquid storage part in the liquid holding part 4. It is also conceivable that the charging means 5 can be constituted by charging the immersion liquid through voltage application to the electrodes. In this case, the charging potential and polarity of the immersion liquid can be arbitrarily set by controlling the voltage applied to the electrode. Further, the immersion liquid to be charged can be arbitrarily set depending on the arrangement position of the electrodes. That is, if an electrode is arranged in the supply nozzle 4a, the immersion liquid injected and filled into the liquid holding part 4 through the supply nozzle 4a becomes an object to be charged, and if an electrode is arranged in the liquid holding part 4, The immersion liquid that has already been injected and filled into the liquid holding unit 4 becomes the object of charging.

このような帯電手段5に対して、除電手段6は、その帯電手段5によって帯電された液浸液に対する除電を行うものである。ただし、除電は、投影光学系3がレジスト膜1に対する露光を行った後、そのレジスト膜1と投影光学系3との間に介在する液保持部4内の液浸液を当該液保持部4内から除去する前に、行うようになっているものとする。   With respect to such a charging means 5, the static elimination means 6 performs static elimination on the immersion liquid charged by the charging means 5. However, in the charge removal, after the projection optical system 3 exposes the resist film 1, the immersion liquid in the liquid holding unit 4 interposed between the resist film 1 and the projection optical system 3 is used as the liquid holding unit 4. It is supposed to be done before removing from inside.

図3は、本発明に係る液浸型露光装置における除電手段の例を示す説明図である。除電手段6の具体例としては、例えば図3(a)に示すように、液浸液との接触により当該液浸液に対する除電を行うものが挙げられる。すなわち、液保持部4内に配された電極を利用しつつ、その電極への印加電圧制御を通じて除電を行ったり、あるいは排出ノズル4bを導電性材料によって形成し、その導電性材料と液浸液との接触を通じて、当該液浸液に対する除電を行ったり、その他の公知技術を利用して除電を行うことが考えられる。また、液浸液に対する除電は、非接触で行うことも考えられる。具体的には、例えば図3(b)に示すように、除電手段6として公知のイオナイザを用い、液浸液に対してAC型、パルスDC型または連続DC型等のイオンを照射することで、当該液浸液に対する除電を非接触で行うことも可能である。   FIG. 3 is an explanatory view showing an example of the charge eliminating means in the immersion type exposure apparatus according to the present invention. As a specific example of the static elimination means 6, as shown to Fig.3 (a), what performs the static elimination with respect to the said immersion liquid by contact with immersion liquid is mentioned, for example. That is, while using the electrode disposed in the liquid holding unit 4, static elimination is performed by controlling the voltage applied to the electrode, or the discharge nozzle 4b is formed of a conductive material, and the conductive material and the immersion liquid are used. It is conceivable to remove static electricity from the immersion liquid through contact with the liquid or to use other known techniques. It is also conceivable that the charge removal from the immersion liquid is performed without contact. Specifically, for example, as shown in FIG. 3 (b), a known ionizer is used as the static eliminating means 6, and the immersion liquid is irradiated with ions of AC type, pulse DC type, continuous DC type, or the like. It is also possible to perform static elimination on the immersion liquid in a non-contact manner.

次に、以上のように構成された液浸型露光装置における処理動作例、すなわち液浸型露光方法について説明する。
図4は、本発明に係る液浸型露光方法の手順の一例を示すフローチャートである。
Next, a processing operation example in the immersion type exposure apparatus configured as described above, that is, an immersion type exposure method will be described.
FIG. 4 is a flowchart showing an example of the procedure of the immersion type exposure method according to the present invention.

一般に、液浸リソグラフィでは、レジスト膜1の形成材料として、液浸液に対しての濡れ性が高い親水性材料が用いられる傾向にある。その一方で、疎水性材料を用いると、ウォーターマーク軽減やレジスト成分の液浸液への染み出し等を抑制する効果があることも見逃すことはできない。
そこで、液浸型露光装置では、レジスト膜1が疎水性材料で形成されているにも拘らず、そのレジスト膜1と液浸液との接触角を小さくし、恰も親水性であるように振る舞う性質を持たせるために、以下に述べるような手順で液浸露光を行う。
In general, in immersion lithography, a hydrophilic material having high wettability with respect to an immersion liquid tends to be used as a material for forming the resist film 1. On the other hand, when a hydrophobic material is used, it cannot be overlooked that it has an effect of reducing the watermark and suppressing the leakage of the resist component into the immersion liquid.
Therefore, in the immersion type exposure apparatus, although the resist film 1 is formed of a hydrophobic material, the contact angle between the resist film 1 and the immersion liquid is reduced and the soot behaves like being hydrophilic. In order to provide the properties, immersion exposure is performed according to the following procedure.

液浸露光にあたっては、先ず、処理対象となるウエハ基板2をテーブル上にセットする。そして、そのウエハ基板2上に形成されたレジスト膜1と投影光学系3との間に液浸液を介在させるべく、液保持部4内に液浸液を注入充填する(ステップ11、以下ステップを「S」と略す)。これにより、レジスト膜1と投影光学系3との間には、液浸液のみが介在することになる。   In immersion exposure, first, a wafer substrate 2 to be processed is set on a table. Then, in order to interpose an immersion liquid between the resist film 1 formed on the wafer substrate 2 and the projection optical system 3, an immersion liquid is injected and filled in the liquid holding unit 4 (step 11, hereinafter step). Is abbreviated as “S”). As a result, only the immersion liquid is interposed between the resist film 1 and the projection optical system 3.

この液保持部4内の液浸液については、投影光学系3がレジスト膜1への露光を開始する前までに、帯電手段5がその液浸液に対する帯電を行う(S12)。すなわち、帯電手段5は、液浸液の注入時または注入完了後で露光開始前のタイミングにて、液浸液を帯電させる。   With respect to the immersion liquid in the liquid holding unit 4, the charging unit 5 charges the immersion liquid before the projection optical system 3 starts exposure of the resist film 1 (S12). That is, the charging unit 5 charges the immersion liquid at the time of injection of the immersion liquid or at the timing after the completion of injection and before the start of exposure.

例えば、液浸液が超純水(誘電率80.40)であれば、フッ素樹脂の表層を転がすだけで簡単に-10kV程度の静電気が帯電する。したがって、液浸液が超純水である場合には、フッ素樹脂等の「液浸液を帯電させる材質」によって供給ノズル4aを形成すれば、液保持部4内への液浸液の注入時に、その液浸液を−数kV〜数十kV程度(例えば-10kV程度)に帯電させることが可能である。これは、供給ノズル4aを「液浸液を帯電させる形状」に形成した場合についても、全く同様のことが言える。   For example, if the immersion liquid is ultrapure water (dielectric constant 80.40), static electricity of about -10 kV can be easily charged by simply rolling the surface of the fluororesin. Therefore, when the immersion liquid is ultrapure water, when the supply nozzle 4a is formed of a “material for charging the immersion liquid” such as a fluororesin, when the immersion liquid is injected into the liquid holding unit 4 The immersion liquid can be charged to about −several kV to several tens of kV (for example, about −10 kV). The same can be said for the case where the supply nozzle 4a is formed in a “shape for charging the immersion liquid”.

帯電手段5が電極を利用して液浸液を帯電させるものである場合には、その電極の配置位置に応じて、液浸液の注入時または注入完了後のいずれか一方または両方のタイミングにて、その電極への電圧印加を行うとともに、その電極への印加電圧の大きさを制御することで、液保持部4内の液浸液を−数kV〜数十kV程度(例えば-10kV程度)に帯電させることが可能である。また、負の極性への帯電のみならず、正の極性への帯電にも対応することが可能となる。   When the charging means 5 uses an electrode to charge the immersion liquid, depending on the position of the electrode, either at the time of injection of the immersion liquid or at the timing of one or both after completion of the injection In addition, by applying a voltage to the electrode and controlling the magnitude of the voltage applied to the electrode, the immersion liquid in the liquid holding unit 4 is reduced to about −several kV to several tens kV (for example, about −10 kV). ) Can be charged. Further, not only charging to a negative polarity but also charging to a positive polarity can be handled.

なお、液浸液の帯電は、供給ノズル4aを「液浸液を帯電させる材質」で形成することによって行ってもよいし、供給ノズル4aを「液浸液を帯電させる形状」で形成することによって行ってもよいし、電極への電圧印加を利用して行ってもよいし、あるいはこれらを適宜組み合わせて行ってもよい。   The immersion liquid may be charged by forming the supply nozzle 4a with “a material for charging the immersion liquid” or forming the supply nozzle 4a with “a shape for charging the immersion liquid”. May be performed using voltage application to the electrodes, or may be performed by appropriately combining these.

帯電手段5が液浸液を帯電させると、その後、投影光学系3がレジスト膜1への露光を行う(S13)。このとき、液浸液が帯電された状態にあると、レジスト膜1に対する液浸液の接触角は、帯電していない場合に比べて小さくなる傾向にある。そのため、液浸液は、レジスト膜1が疎水性材料で形成されていても、帯電によって親水性の方向へ性質が変化し、親水性として作用する「親水的作用状態」に遷移する。したがって、液浸液が帯電している状態で、投影光学系3がレジスト膜1への露光を行えば、液浸液とレジスト膜1との界面で発生する危険性のあるマイクロバブルを抑制することが可能となる。つまり、疎水性材料で形成されたレジスト膜1であっても、液浸液の帯電によって親水的作用状態に遷移して濡れ性が向上するので、結果としてレジスト膜1が疎水性材料であるにも拘らずマイクロバブルの発生を抑制できるのである。   When the charging unit 5 charges the immersion liquid, the projection optical system 3 thereafter exposes the resist film 1 (S13). At this time, if the immersion liquid is in a charged state, the contact angle of the immersion liquid with respect to the resist film 1 tends to be smaller than that in the case where the immersion liquid is not charged. Therefore, even if the resist film 1 is formed of a hydrophobic material, the immersion liquid changes its property in the hydrophilic direction due to charging, and transitions to a “hydrophilic action state” that acts as hydrophilicity. Therefore, if the projection optical system 3 exposes the resist film 1 while the immersion liquid is charged, microbubbles that may be generated at the interface between the immersion liquid and the resist film 1 are suppressed. It becomes possible. That is, even if the resist film 1 is formed of a hydrophobic material, the resist film 1 is made of a hydrophobic material as a result of the transition to a hydrophilic action state due to the charging of the immersion liquid and improving the wettability. Nevertheless, the generation of microbubbles can be suppressed.

このときの液浸液の帯電電位の大きさについては、液浸液とレジスト膜1との接触角が所望範囲(親水性となる範囲)に属することのなるように、液浸液とレジスト膜1の形成材料との兼ね合いで決定すればよい。具体的には、数十kV程度であれば十分であると考えられる。すなわち、液浸液の帯電電位は、例えば実験やシミュレーションを通じて経験的に導き出せばよく、その導き出した帯電電位が得られるように、供給ノズル4aの材質、形状、電極への印加電圧の大きさ等を設定することが考えられる。   At this time, with respect to the magnitude of the charging potential of the immersion liquid, the immersion liquid and the resist film are set so that the contact angle between the immersion liquid and the resist film 1 belongs to a desired range (a range in which hydrophilicity is obtained). What is necessary is just to determine by balance with 1 formation material. Specifically, it is considered that about several tens of kV is sufficient. That is, the charging potential of the immersion liquid may be derived empirically through, for example, experiments or simulations, and the material, shape, magnitude of applied voltage to the electrode, and the like so that the derived charging potential can be obtained. Can be set.

投影光学系3による露光シーケンスが終了すると、その後は、液保持部4内の帯電された液浸液について、その液浸液を液保持部4内から排出ノズル4bを通じて排出除去する前に、除電手段6がその液浸液に対する除電を行う(S14)。このとき、液浸液にのみならず、レジスト膜1およびウエハ基板2に対しても、除電を行うことが望ましい。レジスト膜1およびウエハ基板2に対する除電は、除電手段6が液浸液との接触により当該液浸液に対する除電を行う場合であれば、その液浸液に対する除電を通じて行うことが考えられる。また、除電手段6が液浸液に対する除電を非接触で行う場合であれば、レジスト膜1およびウエハ基板2に対してもイオン照射を行うことで、レジスト膜1およびウエハ基板2に対する除電を行うことが考えられる。   After the exposure sequence by the projection optical system 3 is completed, after the charged immersion liquid in the liquid holding unit 4 is discharged before removing the immersion liquid from the liquid holding unit 4 through the discharge nozzle 4b. The means 6 performs static elimination on the immersion liquid (S14). At this time, it is desirable to perform static elimination not only on the immersion liquid but also on the resist film 1 and the wafer substrate 2. It is conceivable that the neutralization of the resist film 1 and the wafer substrate 2 is performed through the neutralization of the immersion liquid if the neutralization means 6 performs the neutralization of the immersion liquid by contact with the immersion liquid. In addition, if the static elimination means 6 performs the static elimination on the immersion liquid in a non-contact manner, the resist film 1 and the wafer substrate 2 are neutralized by irradiating the resist film 1 and the wafer substrate 2 with ions. It is possible.

この除電によって、液浸液は、親水的作用状態から疎水性として作用する「疎水的作用状態」に遷移する。すなわち、レジスト膜1が疎水性材料で形成されていることから、帯電による親水的作用状態から、除電によって元の疎水的作用状態に戻ることになる。   By this charge removal, the immersion liquid transitions from a hydrophilic action state to a “hydrophobic action state” that acts as hydrophobicity. That is, since the resist film 1 is formed of a hydrophobic material, the hydrophilic action state due to charging returns to the original hydrophobic action state due to charge removal.

そして、除電後は、疎水的作用状態にある液浸液を、排出ノズル4bを通じて液保持部4内から排出除去する(S15)。この疎水的作用状態では、液浸液とレジスト膜1との撥水性が増す。したがって、液浸液を除去する際に、レジスト膜1上にウォーターマークが残存してしまうのを抑制することが可能となる。つまり、レジスト膜1上での残存溶液によるウォーターマーク等の欠陥抑制に寄与すし得るようになる。   After neutralization, the immersion liquid in a hydrophobic action state is discharged and removed from the liquid holding unit 4 through the discharge nozzle 4b (S15). In this hydrophobic action state, the water repellency between the immersion liquid and the resist film 1 increases. Therefore, it is possible to prevent the watermark from remaining on the resist film 1 when removing the immersion liquid. That is, it can contribute to suppression of defects such as watermarks due to the residual solution on the resist film 1.

また、レジスト膜1およびウエハ基板2に対しても除電を行えば、これらに帯電した静電気が除去されるので、浮遊粉塵等が引き寄せられてしまうのを防ぐことができ、結果としてレジスト膜1およびウエハ基板2への異物付着を抑制することができる。つまり、マイクロバブルの発生を抑制すべく液浸液を帯電させた場合であっても、レジスト膜1およびウエハ基板2も帯電して異物が付着してしまうといった弊害の発生を回避し得るようになる。   Further, if the static electricity is removed from the resist film 1 and the wafer substrate 2, the static electricity charged thereto is removed, so that it is possible to prevent the floating dust and the like from being attracted. Foreign matter adhesion to the wafer substrate 2 can be suppressed. In other words, even when the immersion liquid is charged to suppress the generation of microbubbles, it is possible to avoid the occurrence of adverse effects such as the resist film 1 and the wafer substrate 2 being charged and foreign matter adhering thereto. Become.

液浸液の除去後は、続いて処理対象となるウエハ基板2があれば、そのウエハ基板2上に形成されたレジスト膜1に対して上述した一連の処理を繰り返して行い、処理対象となるウエハ基板2がなければ、一連の処理を終了する(S16)。   After the immersion liquid is removed, if there is a wafer substrate 2 to be processed subsequently, the above-described series of processing is repeatedly performed on the resist film 1 formed on the wafer substrate 2 to be processed. If there is no wafer substrate 2, the series of processing is terminated (S16).

以上のように、本実施形態で説明した液浸型露光装置およびその液浸型露光装置が実行する液浸型露光方法によれば、液浸液の帯電と除電とを露光シーケンスに組み込むことにより、その液浸液をレジスト膜1との関係において親水的作用状態または疎水的作用状態のどちらかに遷移させ得るようになっている。したがって、露光中は液浸液を帯電させて親水的作用状態にし、露光終了後に液浸液を除去する際には除電して疎水的作用状態にするといったことが実現可能となり、結果として液浸リソグラフィを行う場合であってもマイクロバブルやウォーターマーク等のいずれの欠陥についても抑制することができ、結果として当該液浸リソグラフィを経て得られる製品の歩留まり向上が期待できるようになる。しかも、親水的作用状態と疎水的作用状態とを遷移させ得るので、レジスト膜の形成材料についての設計自由度を高く確保することができ、例えば透明度は高いが撥水性が高くなる傾向になることで知られるフッ素を樹脂に含むレジスト形成材料であっても、あたかも親水性レジストとして使用できる可能性が得られる。つまり、本実施形態で説明した液浸型露光装置および液浸型露光方法によれば、液浸液の帯電と除電によって親水的作用状態と疎水的作用状態とを遷移させることで、レジスト膜1の形成材料として親水性材料を用いた場合と疎水性材料を用いた場合とのそれぞれのメリットを活かしつつ、それぞれのデメリットを包括的に解消することが可能となる。   As described above, according to the immersion type exposure apparatus described in the present embodiment and the immersion type exposure method executed by the immersion type exposure apparatus, charging and discharging of the immersion liquid are incorporated into the exposure sequence. The immersion liquid can be shifted to either a hydrophilic action state or a hydrophobic action state in relation to the resist film 1. Therefore, it is possible to charge the immersion liquid during exposure to make it hydrophilic, and to remove the immersion liquid after exposure to make it hydrophobic so that it becomes hydrophobic. Even when lithography is performed, any defects such as microbubbles and watermarks can be suppressed, and as a result, improvement in the yield of products obtained through the immersion lithography can be expected. In addition, since the hydrophilic action state and the hydrophobic action state can be changed, a high degree of freedom in designing the resist film forming material can be ensured. For example, the transparency is high but the water repellency tends to be high. Even if it is a resist forming material containing fluorine in the resin known in (1), there is a possibility that it can be used as a hydrophilic resist. That is, according to the immersion type exposure apparatus and the immersion type exposure method described in the present embodiment, the resist film 1 can be changed between the hydrophilic action state and the hydrophobic action state by charging and discharging of the immersion liquid. It is possible to comprehensively eliminate each demerit while utilizing the respective merits of using a hydrophilic material and a hydrophobic material as the forming material.

このようなメリットを活かしつつそれぞれのデメリットを包括的に解消するためには、本実施形態で説明したように、レジスト膜1に対する露光前に液浸液の帯電を行い、そのレジスト膜1に対する露光後、液保持部4内からの液浸液の除去前に当該液浸液に対する除電を行えばよい。すなわち、かかるタイミングで液浸液に対する帯電および除電を行えば、マイクロバブルやウォーターマーク等のいずれの欠陥についても、これらを確実に抑制し得るようになる。   In order to comprehensively eliminate each demerit while utilizing such merits, as described in the present embodiment, the immersion liquid is charged before the resist film 1 is exposed, and the resist film 1 is exposed. Thereafter, before the immersion liquid is removed from the liquid holding unit 4, the charge for the immersion liquid may be removed. That is, if charging and discharging are performed on the immersion liquid at such timing, any defects such as microbubbles and watermarks can be reliably suppressed.

また、本実施形態で説明したように、液浸液に対する帯電を、供給ノズル4aの形成材質または形状を利用して行うようにすれば、その帯電を簡素な構成で容易に行うことが可能となる。一方、液浸液に対する帯電を、電極への電圧印加を利用して行うようにすれば、帯電電位等を任意に設定し得るようになるため、その帯電の柔軟性や汎用性等を十分に確保することが可能となる。   Further, as described in the present embodiment, if the immersion liquid is charged by using the forming material or shape of the supply nozzle 4a, the charging can be easily performed with a simple configuration. Become. On the other hand, if the immersion liquid is charged by applying voltage to the electrodes, the charging potential and the like can be set arbitrarily, so that the charging flexibility and versatility are sufficient. It can be secured.

このことは、液浸液に対する帯電のみならず、除電についても同様のことが言える。すなわち、液浸液との接触により当該液浸液に対する除電を行えば、その除電を簡素な構成で容易に行うことが可能となる一方、液浸液に対する除電を非接触で行えば、イオン照射の内容(イオン種類や照射量等)を適宜設定し得るので、その除電の柔軟性や汎用性等を十分に確保することが可能となる。   The same can be said of the charge removal as well as the charging of the immersion liquid. That is, if the charge is removed from the immersion liquid by contact with the immersion liquid, the charge removal can be easily performed with a simple configuration, while if the charge removal from the immersion liquid is performed in a non-contact manner, ion irradiation is performed. Therefore, it is possible to appropriately set the content (ion type, irradiation amount, etc.) of the battery, and sufficiently ensure the flexibility and versatility of the charge removal.

なお、本実施形態では、本発明の好適な実施具体例について説明したが、本発明はその内容に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更することが可能である。   In addition, although this embodiment demonstrated the suitable Example of this invention, this invention is not limited to the content, It can change suitably in the range which does not deviate from the summary.

本発明に係る液浸型露光装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the immersion type exposure apparatus which concerns on this invention. 本発明に係る液浸型露光装置における供給ノズルの具体例を示す説明図である。It is explanatory drawing which shows the specific example of the supply nozzle in the immersion type exposure apparatus which concerns on this invention. 本発明に係る液浸型露光装置における除電手段の例を示す説明図である。It is explanatory drawing which shows the example of the static elimination means in the immersion type exposure apparatus which concerns on this invention. 本発明に係る液浸型露光方法の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the immersion type exposure method which concerns on this invention. 液浸リソグラフィにおいてレジスト膜の形成材料に親水性材料を用いた場合と疎水性材料を用いた場合との特徴を対比して示した説明図である。It is explanatory drawing which showed the characteristic of the case where a hydrophilic material is used for the resist film formation material in immersion lithography, and the case where a hydrophobic material is used.

符号の説明Explanation of symbols

1…レジスト膜、2…ウエハ基板、3…投影光学系、4…液保持部、4a…供給ノズル、4b…排出ノズル、5…帯電手段、6…除電手段   DESCRIPTION OF SYMBOLS 1 ... Resist film, 2 ... Wafer substrate, 3 ... Projection optical system, 4 ... Liquid holding part, 4a ... Supply nozzle, 4b ... Discharge nozzle, 5 ... Charging means, 6 ... Static elimination means

Claims (8)

ウエハ基板上に形成されたレジスト膜と当該レジスト膜に対する露光を行う投影光学系との間に液浸液を介在させて液浸リソグラフィを行う液浸型露光装置であって、
前記液浸液を帯電させる帯電手段と、
前記液浸液に対する除電を行う除電手段と
を備えることを特徴とする液浸型露光装置。
An immersion type exposure apparatus that performs immersion lithography by interposing an immersion liquid between a resist film formed on a wafer substrate and a projection optical system that performs exposure on the resist film,
Charging means for charging the immersion liquid;
An immersion type exposure apparatus, comprising: a charge eliminating unit that performs charge removal on the immersion liquid.
前記帯電手段は、前記レジスト膜に対する露光前に前記液浸液の帯電を行い、
前記除電手段は、前記レジスト膜に対する露光後、当該レジスト膜と前記投影光学系との間から前記液浸液を除去する前に、当該液浸液に対する除電を行う
ことを特徴とする請求項1記載の液浸型露光装置。
The charging means performs charging of the immersion liquid before exposure to the resist film,
2. The neutralization unit performs neutralization on the immersion liquid after exposure to the resist film and before removing the immersion liquid from between the resist film and the projection optical system. An immersion type exposure apparatus as described.
前記帯電手段は、前記液浸液を前記レジスト膜と前記投影光学系との間に介在させるための供給ノズルが、当該液浸液を帯電させる材質によって形成されてなる
ことを特徴とする請求項1記載の液浸型露光装置。
The charging unit is characterized in that a supply nozzle for interposing the immersion liquid between the resist film and the projection optical system is formed of a material for charging the immersion liquid. 2. An immersion type exposure apparatus according to 1.
前記帯電手段は、前記液浸液を前記レジスト膜と前記投影光学系との間に介在させるための供給ノズルが、当該液浸液を帯電させる形状に形成されてなる
ことを特徴とする請求項1記載の液浸型露光装置。
The charging means is characterized in that a supply nozzle for interposing the immersion liquid between the resist film and the projection optical system is formed in a shape for charging the immersion liquid. 2. An immersion type exposure apparatus according to 1.
前記帯電手段は、前記液浸液を前記レジスト膜と前記投影光学系との間に介在する液浸液を帯電させるための電極を有してなる
ことを特徴とする請求項1記載の液浸型露光装置。
2. The immersion according to claim 1, wherein the charging unit includes an electrode for charging the immersion liquid interposed between the resist film and the projection optical system. Mold exposure equipment.
前記除電手段は、前記液浸液との接触により当該液浸液に対する除電を行う
ことを特徴とする請求項1記載の液浸型露光装置。
The immersion type exposure apparatus according to claim 1, wherein the neutralizing unit neutralizes the immersion liquid by contact with the immersion liquid.
前記除電手段は、前記液浸液へのイオン照射により非接触で当該液浸液に対する除電を行う
ことを特徴とする請求項1記載の液浸型露光装置。
2. The immersion type exposure apparatus according to claim 1, wherein the static elimination unit performs static elimination on the immersion liquid in a non-contact manner by ion irradiation to the immersion liquid.
ウエハ基板上に形成されたレジスト膜と当該レジスト膜に対する露光を行う投影光学系との間に液浸液を介在させて液浸リソグラフィを行う液浸型露光方法であって、
前記レジスト膜と前記投影光学系との間に前記液浸液を介在させるステップと、
前記液浸液を帯電させるステップと、
帯電後の液浸液を介在させた状態で前記投影光学系が前記レジスト膜に対する露光を行うステップと、
前記レジスト膜に対する露光後に当該レジスト膜と前記投影光学系との間に介在する液浸液に対する除電を行うステップと、
除電後の液浸液を前記レジスト膜と前記投影光学系との間から除去するステップと
を含むことを特徴とする液浸型露光方法。
An immersion type exposure method for performing immersion lithography by interposing an immersion liquid between a resist film formed on a wafer substrate and a projection optical system for performing exposure on the resist film,
Interposing the immersion liquid between the resist film and the projection optical system;
Charging the immersion liquid;
The projection optical system exposing the resist film with an immersion liquid after charging interposed; and
Performing static elimination on the immersion liquid interposed between the resist film and the projection optical system after exposure to the resist film;
Removing the immersion liquid after neutralization from between the resist film and the projection optical system.
JP2006046132A 2006-02-23 2006-02-23 Device and method for liquid-immersed exposure Pending JP2007227580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046132A JP2007227580A (en) 2006-02-23 2006-02-23 Device and method for liquid-immersed exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046132A JP2007227580A (en) 2006-02-23 2006-02-23 Device and method for liquid-immersed exposure

Publications (1)

Publication Number Publication Date
JP2007227580A true JP2007227580A (en) 2007-09-06

Family

ID=38549100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046132A Pending JP2007227580A (en) 2006-02-23 2006-02-23 Device and method for liquid-immersed exposure

Country Status (1)

Country Link
JP (1) JP2007227580A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053918A1 (en) * 2006-10-31 2008-05-08 Nikon Corporation Liquid holding apparatus, liquid holding method, exposure apparatus, exposure method and device manufacturing method
JP2009141357A (en) * 2007-12-03 2009-06-25 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009152582A (en) * 2007-12-03 2009-07-09 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
JP2012526368A (en) * 2009-05-04 2012-10-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical imaging with low immersion liquid evaporation
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
WO2019205594A1 (en) * 2018-04-26 2019-10-31 Boe Technology Group Co., Ltd. Display substrate, display apparatus, method of fabricating display substrate, and pixel definition material for forming pixel definition layer of display substrate

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
WO2008053918A1 (en) * 2006-10-31 2008-05-08 Nikon Corporation Liquid holding apparatus, liquid holding method, exposure apparatus, exposure method and device manufacturing method
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
JP2012104854A (en) * 2007-12-03 2012-05-31 Asml Netherlands Bv Immersion lithographic apparatus and device manufacturing method
US8149379B2 (en) 2007-12-03 2012-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009141357A (en) * 2007-12-03 2009-06-25 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009152582A (en) * 2007-12-03 2009-07-09 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US9405205B2 (en) 2007-12-20 2016-08-02 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9785061B2 (en) 2007-12-20 2017-10-10 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9036128B2 (en) 2007-12-20 2015-05-19 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2016128920A (en) * 2009-05-04 2016-07-14 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical imaging with reduced immersion liquid evaporation effects
JP2012526368A (en) * 2009-05-04 2012-10-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical imaging with low immersion liquid evaporation
WO2019205594A1 (en) * 2018-04-26 2019-10-31 Boe Technology Group Co., Ltd. Display substrate, display apparatus, method of fabricating display substrate, and pixel definition material for forming pixel definition layer of display substrate
US11393885B2 (en) 2018-04-26 2022-07-19 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Display substrate, display apparatus, method of fabricating display substrate, and pixel definition material for forming pixel definition layer of display substrate

Similar Documents

Publication Publication Date Title
JP2007227580A (en) Device and method for liquid-immersed exposure
JP5408006B2 (en) Cleaning method and substrate processing method
JP4565270B2 (en) Exposure method, device manufacturing method
US8102501B2 (en) Immersion lithography fluid control system using an electric or magnetic field generator
TW200532388A (en) Exposure apparatus and device manufacturing method
US20080049201A1 (en) Lithographic apparatus and lithographic apparatus cleaning method
JP5045437B2 (en) Exposure apparatus, exposure method, and device manufacturing method
TWI394011B (en) Lithographic apparatus and device manufacturing method
JP2011066452A (en) Lithographic device and method for cleaning lithographic device
US8279396B2 (en) Lithographic apparatus and device manufacturing method
JP4438748B2 (en) Projection exposure apparatus, projection exposure method, and device manufacturing method
US7692761B2 (en) Exposure apparatus and method, and device manufacturing method
JP2007165852A (en) Method and system for immersion lithography
JP2010103530A (en) Lithographic apparatus and method of removing contamination
JP2006024819A (en) Immersion exposure apparatus and manufacturing method for electronic device
US20090297990A1 (en) Liquid holding apparatus, liquid holding method, exposure apparatus, exposing method, and device fabricating method
US20110129782A1 (en) Lithographic apparatus and device manufacturing method
JP4922858B2 (en) Pattern forming method and cleaning apparatus
JP2007258638A (en) Immersion exposure method and immersion exposure device
KR20080012477A (en) Apparatus and method using immersion lithography
KR100847841B1 (en) Semiconductor device manufacturing method and exposure apparatus therefor
JP5299347B2 (en) Exposure apparatus, liquid supply method, and device manufacturing method
JP2007294691A (en) Liquid immersion aligner, and method of manufacturing device
JP2007035776A (en) Exposure device, exposure method, and device manufacturing method
JP2002304062A (en) Squeezing roll