JP2007227102A - Ion source - Google Patents

Ion source Download PDF

Info

Publication number
JP2007227102A
JP2007227102A JP2006045743A JP2006045743A JP2007227102A JP 2007227102 A JP2007227102 A JP 2007227102A JP 2006045743 A JP2006045743 A JP 2006045743A JP 2006045743 A JP2006045743 A JP 2006045743A JP 2007227102 A JP2007227102 A JP 2007227102A
Authority
JP
Japan
Prior art keywords
electrode
container
vessel
needle
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006045743A
Other languages
Japanese (ja)
Inventor
Chikara Ichihara
主税 一原
Akira Kobayashi
明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006045743A priority Critical patent/JP2007227102A/en
Publication of JP2007227102A publication Critical patent/JP2007227102A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion source requiring no cooling to extremely low temperatures and having a simple structure, capable of obtaining an ion beam having high luminance and high efficiency of beam focusing. <P>SOLUTION: The ion source includes a vessel 4 filled with a material gas, a needle electrode 2 disposed in the vessel 4, and a minute opening 3a provided on the outer wall of the vessel 4. The inside of the vessel 4 is kept at higher pressure compared with the outside of the vessel, and the material gas is injected to the outside of the vessel 4 through the minute opening 3a from the inside of the vessel 4. The surrounding of the minute opening 3a is used as an opening electrode 3, the needle electrode 2 and the opening electrode 3 are made to have the same potential, and a strong electric field is impressed on the tip of the needle electrode by a potential difference between the needle electrode 2 as well as the opening electrode 3 and an external electrode 6 disposed in the outside of the vessel 4, to ionize the material gas by ionization of the electric field and extract the ionized ions. Thereby, an ion beam having a fixed beam emitting angle and high luminance can be obtained with a simple structure requiring no cooling to the extremely low temperature zone of the extraction electrode 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば表面物理分析装置や半導体製造の検査装置、欠陥リペア装置用イオンプローブ、イオン注入、イオンビーム露光、イオンビーム堆積、イオンビームエッチング、イオンビーム描画などに用いられる微小径イオンビーム発生用の高輝度のイオン源に関する。   This invention generates a small-diameter ion beam used for, for example, a surface physical analysis device, a semiconductor manufacturing inspection device, a defect repair device ion probe, ion implantation, ion beam exposure, ion beam deposition, ion beam etching, ion beam drawing, etc. The present invention relates to a high-intensity ion source.

液体金属イオン源が開発されて以来、半導体工業等の分野では、近年、サブミクロン以下に細く集束したイオンビームの応用が急速に広まっている。しかし、液体金属イオン源では得られるイオン種に制限があり、特にアルゴンなどの不活性ガスや酸素などの集束イオンビームを得る場合には、液体金属イオン源よりガス相の電界電離型イオン源が適している。このガス相の電界電離型イオン源は、圧力が10−1Pa程度のガス中で、その先端部半径が5nm〜100nm程度に尖らされた金属の針状電極に50〜60V/nm程度の強電界を加えるように装置構成されている。その結果、この針状電極の先端部近傍のガス分子は電界電離現象によりイオンと電子に分離され、分離したイオンがイオンビームとして取り出される。 Since the development of the liquid metal ion source, in the fields of the semiconductor industry and the like, in recent years, the application of the ion beam finely focused to submicron or less has been rapidly spreading. However, there are limitations on the types of ions that can be obtained with a liquid metal ion source. In particular, when obtaining a focused ion beam such as an inert gas such as argon or oxygen, a gas phase field ionization ion source is more suitable than a liquid metal ion source. Is suitable. This gas-phase field ion source has a strong force of about 50 to 60 V / nm on a metal needle electrode whose tip radius is sharpened to about 5 to 100 nm in a gas having a pressure of about 10 −1 Pa. The apparatus is configured to apply an electric field. As a result, gas molecules near the tip of the needle electrode are separated into ions and electrons by the field ionization phenomenon, and the separated ions are extracted as an ion beam.

このようなイオン源において発生するイオンビーム電流Iは、(1)式に示すようにガスの圧力Pと温度Tに比例する。
I∝P/T3/2 --------------- (1)
通常、イオン源ではイオン化後のイオンの消滅を最小限に抑えるため、このイオンを、10−3〜10−6程度の高真空容器内を飛行させる。したがって、容器内のガス圧力Pを大きくすることは不可能である。このため、従来技術では、ガス温度Tを数十K程度まで低くしてイオンビーム電流Iを大きくして、放出イオンの輝度を高めるような装置構成となっていた。
The ion beam current I generated in such an ion source is proportional to the gas pressure P and temperature T as shown in the equation (1).
I∝P / T 3/2 --------------- (1)
Usually, in an ion source, in order to minimize the disappearance of ions after ionization, the ions are caused to fly in a high vacuum container of about 10 −3 to 10 −6 . Therefore, it is impossible to increase the gas pressure P in the container. For this reason, in the prior art, the device configuration is such that the gas temperature T is lowered to about several tens of K and the ion beam current I is increased to increase the brightness of emitted ions.

この放出イオン、すなわちイオンビームの輝度を高めるイオン源として、例えば、特許文献1の図5に示されたように、針状のエミッタ11とその軸線上に位置させた開口13を有する引出し電極12とを具えて、イオン化室15に原料ガス14を導入することにより、エミッタ11の先端からイオン16を放出するようにし、エミッタ11の先端が引出し電極12の内側面から外側に2mm程度(図示の寸法b)突出するように配置した、イオンビーム露光装置の電界電離型イオン源が開示されている。このイオン源では、エミッタ11の先端が、前記のように突出しているため、エミッタ11周辺のガス圧力は、エミッタ11の先端部の基部で高くても先端部で低くなっており、イオン化室15内のガス圧力を高めても、高電界中で分極したガス分子の衝撃によるエミッタ11先端部の温度上昇が小さくなり、イオン化するガス分子の供給が阻害されず、放出イオンの輝度を高めることが可能であると述べられている。   As an ion source for increasing the brightness of the emitted ions, that is, the ion beam, for example, as shown in FIG. 5 of Patent Document 1, an extraction electrode 12 having a needle-like emitter 11 and an opening 13 positioned on the axis thereof is used. Then, the source gas 14 is introduced into the ionization chamber 15 so that ions 16 are emitted from the tip of the emitter 11, and the tip of the emitter 11 is about 2 mm outward from the inner surface of the extraction electrode 12 (not shown). Dimension b) A field ionization ion source of an ion beam exposure apparatus arranged so as to protrude is disclosed. In this ion source, since the tip of the emitter 11 protrudes as described above, the gas pressure around the emitter 11 is low at the tip even if it is high at the base of the tip of the emitter 11, and the ionization chamber 15. Even if the gas pressure inside is increased, the temperature rise at the tip of the emitter 11 due to the impact of gas molecules polarized in a high electric field is reduced, the supply of ionized gas molecules is not hindered, and the brightness of emitted ions can be increased. It is stated that it is possible.

一方、イオンビームの輝度を高めるとともに、その集束を効率よく行なうことも重要であり、そのためには、イオンビームの発生段階でのビーム発散角を小さく抑えることが効果的である。このビーム発散角を小さく抑えるため、例えば、非特許文献1では、数百nmオーダの針状電極の上に数nmオーダの突起(スーパーチップ)を形成する方法を用いた高輝度イオンビームが記載されている。また、非特許文献2では、この突起形成のベースとなる針状電極の半径が大きいほど、イオンビーム電流は大きくなることが記載されている。
特開昭64−63247号公報 S.Kalbitzer:Nuclear Instruments and Methods in Physics Research B 158(1999),P.53 R.Borret et al:Applied Physics 23(1990),P.1271
On the other hand, it is also important to increase the brightness of the ion beam and to efficiently focus the ion beam. For this purpose, it is effective to suppress the beam divergence angle at the ion beam generation stage. In order to suppress this beam divergence angle, for example, Non-Patent Document 1 describes a high-intensity ion beam using a method of forming a protrusion (superchip) on the order of several nm on a needle-like electrode on the order of several hundred nm. Has been. Non-Patent Document 2 describes that the ion beam current increases as the radius of the needle-like electrode serving as a base for forming the protrusion increases.
JP-A-64-63247 S. Kalbitzer: Nuclear Instruments and Methods in Physics Research B 158 (1999), p. 53 R. Borret et al: Applied Physics 23 (1990), P. 1271

前記の、イオンビーム電流Iを大きくするためにガス温度Tを数十K程度まで低くして放出イオンの輝度を高めるような装置構成では、温度を下げるために、通常、液体ヘリウムや液体窒素などの冷媒、または圧縮機などを用いた冷凍機が用いられる。しかし、いずれを用いる場合でも、装置の大型化、複雑化が避けられないだけではなく、冷媒を用いる場合には、冷媒補充の煩雑さがあり、冷凍機を用いる場合には、集束ビームシステムとしては致命的な振動の問題がある。   In the apparatus configuration in which the gas temperature T is lowered to about several tens of K in order to increase the ion beam current I and the luminance of emitted ions is increased, liquid helium, liquid nitrogen, etc. are usually used to lower the temperature. Or a refrigerator using a compressor or the like. However, in any case, not only an increase in size and complexity of the apparatus is unavoidable, but also the refrigerant replenishment is complicated when the refrigerant is used, and the focused beam system is used when the refrigerator is used. Has a fatal vibration problem.

前記特許文献1に開示されたイオン源では、エミッタ11は、依然として、イオン化室15に配置された冷却器により、10〜20K程度の低温域に冷却されており、前記イオンビームの集束を効率よく行うことについては何も記載されていない。また、非特許文献1および2に記載された、突起(スーパーチップ)形成により高輝度化を行なう方法では、この突起の生成に1000K以上の高温が必要となり、突起(スーパーチップ)の形成に大がかりな装置が必要となるだけではなく、原理上、突起を任意の場所に形成することはできないために針状電極製作のスループット、すなわち生産性がわるく、実用的ではない。   In the ion source disclosed in Patent Document 1, the emitter 11 is still cooled to a low temperature range of about 10 to 20 K by a cooler disposed in the ionization chamber 15, and the ion beam is focused efficiently. There is nothing listed about what to do. Further, in the method of increasing the brightness by forming the protrusion (super chip) described in Non-Patent Documents 1 and 2, a high temperature of 1000 K or more is required to generate the protrusion, and the formation of the protrusion (super chip) is large. In addition, not only a simple apparatus is required, but also, in principle, the projections cannot be formed at an arbitrary place, so that the throughput of the needle-shaped electrode, that is, the productivity is unsatisfactory.

そこで、この発明の課題は、極低温の冷却が不要であり、簡易な装置構造で、高輝度かつビーム発散角が小さく、ビーム集束の効率がよいイオンビームが得られるイオン源を提供することである。   Therefore, an object of the present invention is to provide an ion source that does not require cryogenic cooling, has a simple device structure, has high brightness, has a small beam divergence angle, and has high beam focusing efficiency. is there.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

請求項1に係るイオン源は、原料ガスが充填された容器と、前記容器内に配置された針状電極と、前記容器の外壁に設けられた微小開孔とを備え、前記容器内は、前記容器外に比べて高圧とし、前記原料ガスを前記容器内から前記微小開孔を介して容器外へ噴射させる構成とし、前記微小開孔周囲が開孔部電極とされ、前記針状電極と前記開孔部電極とを同電位とし、前記針状電極および開孔部電極と、前記容器外側に配置された外部電極との電位差により、前記針状電極の先端部に強電界を印加して前記原料ガスを電界電離によりイオン化し、前記イオンを引き出すことを特徴とするイオン源である。   The ion source according to claim 1 includes a container filled with a source gas, a needle-like electrode disposed in the container, and a minute opening provided in an outer wall of the container, The pressure is higher than the outside of the container, and the raw material gas is injected from the inside of the container to the outside of the container through the minute hole, and the periphery of the minute hole is an opening portion electrode, Applying a strong electric field to the tip of the needle electrode due to a potential difference between the needle electrode and the hole electrode and the external electrode arranged outside the container An ion source characterized in that the source gas is ionized by field ionization and the ions are extracted.

請求項2に係るイオン源は、前記針状電極の先端が、前記開孔部電極の外表面より突出しているイオン源である。   The ion source according to claim 2 is an ion source in which a tip of the needle electrode protrudes from an outer surface of the aperture electrode.

請求項3に係るイオン源は、イオンの引き出し方向に向かって先細りのテーパ形状に形成されているイオン源である。   An ion source according to a third aspect is an ion source formed in a tapered shape that tapers in an ion extraction direction.

請求項4に係るイオン源は、前記容器が真空チャンバ内に設置され、前記容器外を真空領域としたイオン源である。   The ion source according to claim 4 is an ion source in which the container is installed in a vacuum chamber and the outside of the container is a vacuum region.

この発明では、原料ガスが充填される容器の外側に外部電極を配置し、針状電極と容器に設けた微小開孔の周りの開孔部電極とを同電位とし、前記針状電極および開孔部電極と、前記外部電極との電位差により、前記針状電極の先端部に強電界を印加して原料ガスをイオン化しており、このイオン化する原料ガスを前記微小開孔から噴出させるようにしたので、前記微小開孔の出側で急激な圧力勾配を発生する。この急激な圧力勾配により、極めて効率良く原料ガスをイオン化しながら、生成したイオンが雰囲気ガスと衝突する確率すなわちイオン消滅確率を低く抑えることが可能となる。これらによって、針状電極の極低温域への冷却が不要になるなど、簡易な構造で、イオン化を効率よく行うことができるイオン源を得ることが可能となる。   In this invention, an external electrode is disposed outside the container filled with the source gas, and the needle electrode and the aperture electrode around the micro-opening provided in the container are set to the same potential, and the needle electrode and the open electrode are opened. The source gas is ionized by applying a strong electric field to the tip of the needle electrode due to a potential difference between the hole electrode and the external electrode, and the ionized source gas is ejected from the minute aperture. Therefore, a sudden pressure gradient is generated on the exit side of the minute aperture. This rapid pressure gradient makes it possible to suppress the probability that the generated ions collide with the atmospheric gas, that is, the probability of ion annihilation, while ionizing the source gas extremely efficiently. As a result, it is possible to obtain an ion source capable of efficiently performing ionization with a simple structure, such as eliminating the need for cooling the needle-like electrode to a cryogenic temperature range.

また、針状電極の先端を開孔部電極の外表面から突出させるようにしたので、前記針状電極の先端部に非常に局所的な強電界を印加することが可能となり、ビーム発散角が小さく、一定した高輝度のイオンビームを効率よく得ることができる。   In addition, since the tip of the needle electrode protrudes from the outer surface of the aperture electrode, it is possible to apply a very strong local electric field to the tip of the needle electrode, and the beam divergence angle is reduced. A small and constant high-intensity ion beam can be obtained efficiently.

以下に、この発明の実施形態を添付の図1から図3に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying FIGS.

図1は、実施形態の微小径イオンビーム発生用のイオン源1を示したものである。このイオン源1は、通常、イオン化後のイオン消滅を最小限におさえるため、10−3Pa程度以下の高真空チャンバ(図示省略)内に設置され、先細り部2aの先端2bの直径が100nm程度以下で、軸対称形状のタングステンまたはインジウムで作製された針状電極2と、この針状電極2の軸心に中心を一致させた微小開孔3aを有するステンレスまたは導電性シリコンの開孔部電極3を備えている。この開孔部電極3は、アルゴン等の不活性ガスや酸素などの原料ガスが導入され、これらの原料ガスが充填される容器4の外壁の一部を構成すればよいが、図1に示したように、この開孔部電極3が、前記容器4を形成することもできる。容器4内の圧力は、1000Paから1MPaとしており、容器4内は容器4外の真空領域に比べて高圧とし、原料ガスが容器内から微小開孔を介して容器外へ噴射させる構成としている。前記針状電極2は、その先端2bが微小開孔3aから突出して配置され、その突出量aは、通常、2mm程度以下である。また、前記微小開孔3aは、図2に示すように、開孔部の厚さcが0.5mm程度で、イオンの引き出し方向に向かって先細りのテーパ形状に形成され、イオン化される原料ガスが微小開孔3aから噴出しやすく、かつ、微小開孔3a先端部での絞り効果により、容器4の出側で、より急激な圧力勾配を発生させるようにしている。前記テーパ状の微小開孔3aのその小径側の孔径d1は、通常、100μm以下であり、本実施形態では50μmであり、この微小開孔3aのテーパ角度θは、30°〜80°程度で、本実施形態では約54.7°である。前記容器4の外側のイオンの引き出し方向に、イオンビーム5の通過部6aを備えた外部電極6が、そのイオンビーム通過部6aの中心が微小開孔3aの中心と一致するようにして配置されている。前記針状電極2と開孔部電極3は同電位とし、外部電極6に対して、針状電極2と開孔部電極3は、10V〜30KV程度の広範囲の正電位が印加されるようになっている。この針状電極2および開孔部電極3と、外部電極6との間の前記正電位(電位差)により、針状電極2の先端周りに強電界が形成される。そして、微小開孔3aを介して容器4から噴射された原料ガスは、イオン化されて引き出され、イオンビーム5が形成される。また、突出した針状電極2の先端2bに強電界が集中してイオンビーム5の発散角を小さくすることができ、イオンビーム5が効率よく集束される。 FIG. 1 shows an ion source 1 for generating a minute-diameter ion beam according to an embodiment. This ion source 1 is usually installed in a high vacuum chamber (not shown) of about 10 −3 Pa or less in order to minimize ion annihilation after ionization, and the diameter of the tip 2 b of the tapered portion 2 a is about 100 nm. In the following, a stainless steel or conductive silicon aperture electrode having a needle-like electrode 2 made of axisymmetric tungsten or indium and a micro-aperture 3a whose center coincides with the axis of the needle-like electrode 2 3 is provided. The aperture electrode 3 may be configured by forming a part of the outer wall of the container 4 into which an inert gas such as argon or a source gas such as oxygen is introduced and filled with these source gases. As described above, the opening electrode 3 can also form the container 4. The pressure in the container 4 is set to 1000 Pa to 1 MPa, the inside of the container 4 is set to a pressure higher than that in the vacuum region outside the container 4, and the raw material gas is injected from the inside of the container to the outside of the container through the minute holes. The needle-like electrode 2 is arranged such that the tip 2b protrudes from the minute hole 3a, and the protruding amount a is usually about 2 mm or less. Further, as shown in FIG. 2, the minute opening 3a has a thickness c of about 0.5 mm and is formed in a tapered shape that tapers in the ion extraction direction, and is ionized. However, a more rapid pressure gradient is generated on the outlet side of the container 4 by the throttling effect at the tip of the minute opening 3a. The diameter d1 on the small diameter side of the tapered fine opening 3a is usually 100 μm or less, and in this embodiment is 50 μm. The taper angle θ of the fine opening 3a is about 30 ° to 80 °. In this embodiment, it is about 54.7 °. An external electrode 6 having an ion beam 5 passage 6a is arranged in the ion extraction direction outside the container 4 so that the center of the ion beam passage 6a coincides with the center of the minute aperture 3a. ing. The needle electrode 2 and the aperture electrode 3 are set to the same potential, and the external electrode 6 is applied with a wide positive potential of about 10 V to 30 KV with respect to the needle electrode 2 and the aperture electrode 3. It has become. Due to the positive potential (potential difference) between the needle electrode 2 and the aperture electrode 3 and the external electrode 6, a strong electric field is formed around the tip of the needle electrode 2. Then, the raw material gas injected from the container 4 through the minute opening 3a is ionized and extracted, and the ion beam 5 is formed. In addition, a strong electric field concentrates on the tip 2b of the protruding needle electrode 2 so that the divergence angle of the ion beam 5 can be reduced, and the ion beam 5 is efficiently focused.

図3は、前記微小開孔3a周りの圧力勾配を模式的に示したもので、i1〜i3は等圧線を示している。前記のように、外部電極6に対して、針状電極2を、微小開孔部3aを有する開孔部電極3と同電位とし、針状電極2の先端2bを開孔部電極3、すなわち微小開孔3aの外表面より突出した装置構成とすることによって針状電極2の先端2bに強電界が集中し、イオン化ビームの発散角が小さくなる。また、原料ガスを、前記微小開孔3aから噴出させることにより、微小開孔3aの出側では急激な圧力勾配領域7(図中の微小開孔3a付近から等圧線i3付近までの領域)が発生する。前記等圧線i1より内側の針状電極2bの周辺部、すなわち原料ガスが存在する高ガス圧の部分で、原料ガスを電界電離によりイオン化し、イオン化後、引き出された直後の、高真空チャンバ内の等圧線i2〜i3にかけての領域では、引き出されたイオンが雰囲気ガスと衝突する確率が低い、すなわちイオン消滅確率が低い高真空領域となる。この高真空領域8は、生成したイオンが雰囲気ガスと衝突する確率すなわちイオン消滅確率を低く抑えるに十分な高真空領域である。このようにして、イオン消滅確率を低く抑えてイオンビーム電流を多く発生させることができるため、針状電極2を極低温域に冷却することが不要であり、簡易な構造で、発散角がさらに小さく一定し、ビーム集束を効率よく行うことができる高輝度イオンビームを得ることが可能となる。なお、前記針状電極2の突出量aおよび、外部電極6に対する針状電極2と開孔部電極3の正電位(電圧)を調節することにより、電界強度の調節を行なうことができる。また、容器4内の圧力および容器4外の圧力等によって、微小開孔3aの大きさや針状電極2の突出量aを適宜設定することができる。また、外部電極6はビーム通過部6aを備えた一体電極が望ましいが、ビーム通過部を備えた非一体構造の電極とすることもできる。なお、前記開孔部電極3は、容器4の外壁の一部を構成する代わりに、容器4とは別体として、前記微小開孔3aの周囲に設けることもできる。   FIG. 3 schematically shows a pressure gradient around the minute aperture 3a, and i1 to i3 indicate isobaric lines. As described above, the needle electrode 2 has the same potential as the aperture electrode 3 having the minute aperture 3a with respect to the external electrode 6, and the tip 2b of the needle electrode 2 is the aperture electrode 3, that is, By adopting a device configuration that protrudes from the outer surface of the minute aperture 3a, a strong electric field is concentrated on the tip 2b of the needle electrode 2 and the divergence angle of the ionized beam is reduced. Further, by ejecting the raw material gas from the minute opening 3a, a sudden pressure gradient region 7 (region from the vicinity of the minute opening 3a to the vicinity of the isobaric line i3 in the figure) is generated on the exit side of the minute opening 3a. To do. The source gas is ionized by field ionization at the periphery of the needle-like electrode 2b inside the isobaric line i1, that is, the portion of the high gas pressure where the source gas is present. In the region extending from the isobaric lines i2 to i3, a high vacuum region in which the extracted ions have a low probability of colliding with the atmospheric gas, that is, the ion annihilation probability is low. The high vacuum region 8 is a high vacuum region sufficient to suppress the probability that generated ions collide with the atmospheric gas, that is, the probability of ion annihilation. In this way, since the ion annihilation probability can be kept low and a large amount of ion beam current can be generated, it is not necessary to cool the needle-like electrode 2 to the cryogenic temperature range, and the divergence angle is further improved with a simple structure. It is possible to obtain a high-intensity ion beam that is small and constant and can perform beam focusing efficiently. The electric field strength can be adjusted by adjusting the protruding amount a of the needle electrode 2 and the positive potential (voltage) of the needle electrode 2 and the aperture electrode 3 with respect to the external electrode 6. Further, the size of the minute opening 3a and the protruding amount a of the needle-like electrode 2 can be appropriately set depending on the pressure inside the container 4, the pressure outside the container 4, and the like. The external electrode 6 is preferably an integrated electrode having a beam passage portion 6a, but may be a non-integral structure electrode having a beam passage portion. The aperture electrode 3 may be provided around the minute aperture 3a as a separate body from the vessel 4 instead of constituting a part of the outer wall of the vessel 4.

この発明の実施形態のイオン源を示す説明図である。It is explanatory drawing which shows the ion source of embodiment of this invention. 図1のイオン源の要部を示す説明図である。It is explanatory drawing which shows the principal part of the ion source of FIG. 図1のイオン源の開孔部電極の微小開孔周りの圧力勾配を模式的に示す説明図である。It is explanatory drawing which shows typically the pressure gradient around the micro opening of the opening part electrode of the ion source of FIG. 従来技術のイオン源を示す説明図である。It is explanatory drawing which shows the ion source of a prior art.

符号の説明Explanation of symbols

1:イオン源 2:針状電極 2a:先細り部 2b:先端
3:開孔部電極 3a:微小開孔 4:容器
5:イオンビーム 6:外部電極 6a:イオンビーム通過部
7:圧力勾配領域 8:高真空領域 i1〜i3:等圧線
1: ion source 2: needle-like electrode 2a: tapered portion 2b: tip 3: aperture electrode 3a: minute aperture 4: container 5: ion beam 6: external electrode 6a: ion beam passage 7: pressure gradient region 8 : High vacuum region i1 to i3: Isobaric lines

Claims (4)

原料ガスが充填された容器と、前記容器内に配置された針状電極と、前記容器の外壁に設けられた微小開孔とを備え、前記容器内は、前記容器外に比べて高圧とし、前記原料ガスを前記容器内から前記微小開孔を介して容器外へ噴射させる構成とし、
前記微小開孔周囲が開孔部電極とされ、前記針状電極と前記開孔部電極とを同電位とし、前記針状電極および開孔部電極と、前記容器外側に配置された外部電極との電位差により、前記針状電極の先端部に強電界を印加して前記原料ガスを電界電離によりイオン化し、前記イオンを引き出すことを特徴とするイオン源。
A container filled with source gas, a needle-like electrode disposed in the container, and a minute opening provided in the outer wall of the container, the interior of the container is at a higher pressure than the outside of the container, The source gas is configured to be jetted from the inside of the container to the outside of the container through the minute opening,
The periphery of the minute aperture is an aperture electrode, the needle electrode and the aperture electrode are at the same potential, the needle electrode and the aperture electrode, and an external electrode disposed outside the container; An ion source characterized in that a strong electric field is applied to the tip of the needle-like electrode by the potential difference to ionize the source gas by field ionization and extract the ions.
前記針状電極の先端が、前記開孔部電極の外表面より突出している請求項1に記載のイオン源。   The ion source according to claim 1, wherein a tip of the needle electrode protrudes from an outer surface of the aperture electrode. 前記微小開孔が、イオンの引き出し方向に向かって先細りのテーパ形状に形成されている請求項1または2に記載のイオン源。   The ion source according to claim 1, wherein the minute aperture is formed in a tapered shape that tapers in a direction in which ions are extracted. 前記容器が真空チャンバ内に設置され、前記容器外を真空領域とした請求項1から3のいずれかに記載のイオン源。   The ion source according to claim 1, wherein the container is installed in a vacuum chamber, and the outside of the container is a vacuum region.
JP2006045743A 2006-02-22 2006-02-22 Ion source Pending JP2007227102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045743A JP2007227102A (en) 2006-02-22 2006-02-22 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045743A JP2007227102A (en) 2006-02-22 2006-02-22 Ion source

Publications (1)

Publication Number Publication Date
JP2007227102A true JP2007227102A (en) 2007-09-06

Family

ID=38548729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045743A Pending JP2007227102A (en) 2006-02-22 2006-02-22 Ion source

Country Status (1)

Country Link
JP (1) JP2007227102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114082A (en) * 2008-11-04 2010-05-20 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Gas electric field ion source of dual mode
JP2010205446A (en) * 2009-02-27 2010-09-16 Kobe Steel Ltd Ion source
JP2011238630A (en) * 2007-12-14 2011-11-24 Hitachi High-Technologies Corp Gas field ionization ion source and scanning charged particle microscope
JP2020187909A (en) * 2019-05-14 2020-11-19 株式会社日立製作所 Gas field ionization ion source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238630A (en) * 2007-12-14 2011-11-24 Hitachi High-Technologies Corp Gas field ionization ion source and scanning charged particle microscope
JP2010114082A (en) * 2008-11-04 2010-05-20 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Gas electric field ion source of dual mode
JP2010205446A (en) * 2009-02-27 2010-09-16 Kobe Steel Ltd Ion source
JP2020187909A (en) * 2019-05-14 2020-11-19 株式会社日立製作所 Gas field ionization ion source
JP7189078B2 (en) 2019-05-14 2022-12-13 株式会社日立製作所 gas field ion source

Similar Documents

Publication Publication Date Title
JP5194154B2 (en) Gas field ionization ion source, scanning charged particle microscope
US7670455B2 (en) Magnetically enhanced, inductively coupled plasma source for a focused ion beam system
Smith et al. Advances in source technology for focused ion beam instruments
JP6220749B2 (en) Ion gun, ion milling apparatus, and ion milling method
JP4982161B2 (en) Gas field ion source and scanning charged particle microscope
US7755065B2 (en) Focused ion beam apparatus
JP2011124099A (en) Emitter of charged particle beam device, manufacturing method thereof, and charged particle beam device equipped with the emitter
JP2007227102A (en) Ion source
JP2011171009A (en) Focused ion beam device
JP5989959B2 (en) Focused ion beam device
JP2011238480A (en) Emitter of field ionization type gas ion source and focused ion beam device and method of manufacturing emitter of field ionization type gas ion source
JP2014191872A (en) Emitter structure, gas ion source, and focused ion beam device
JP6584787B2 (en) Plasma ion source and charged particle beam device
US10971329B2 (en) Field ionization source, ion beam apparatus, and beam irradiation method
JP2010205446A (en) Ion source
JP4977557B2 (en) Ion source
TWI713671B (en) Charged particle beam device and plasma ignition method
JP4977558B2 (en) Ion source
JPH03266336A (en) Gas ion source apparatus
JPS6297242A (en) Ion gun for focus ion beam apparatus
JPS6381736A (en) Ion beam device
JPH0261941A (en) Electric field dissociative ion source
Bonnie et al. Resonance‐enhanced multiphoton ionization for diagnosis of a weakly ionized plasma
JP2018170295A (en) Ion gun, and ion milling apparatus, ion milling method
Maskrey et al. Performance of a glow discharge microbeam electron gun