JP2007227012A - Planar light emitting device and display device - Google Patents

Planar light emitting device and display device Download PDF

Info

Publication number
JP2007227012A
JP2007227012A JP2006044022A JP2006044022A JP2007227012A JP 2007227012 A JP2007227012 A JP 2007227012A JP 2006044022 A JP2006044022 A JP 2006044022A JP 2006044022 A JP2006044022 A JP 2006044022A JP 2007227012 A JP2007227012 A JP 2007227012A
Authority
JP
Japan
Prior art keywords
lighting
organic
liquid crystal
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006044022A
Other languages
Japanese (ja)
Inventor
Shunichi Tanaka
俊一 田中
Fujio Matsu
不二雄 松
Teruo Ebihara
照夫 海老原
Naoyuki Hirayama
尚幸 平山
Shigeaki Nakayama
成明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006044022A priority Critical patent/JP2007227012A/en
Publication of JP2007227012A publication Critical patent/JP2007227012A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin planar light emitting device capable of application to a liquid crystal display device of field sequential drive type and a liquid crystal display device. <P>SOLUTION: In the planar light emitting device 20, rectangular lighting regions a, b, c, d which emit light emitted by a blue organic EL element 24, a green organic EL element 26, and a red organic EL element 28 from the whole face are arranged in a plurality of stages, and each lighting region a, b, c, d is constituted to be lighted or turned off independently. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、平面発光装置及びその平面発光装置を用いた非自発光型の表示装置に係り、特に、薄型で大型化が可能な平面発光装置及び表示装置に関する。   The present invention relates to a flat light emitting device and a non-self light emitting display device using the flat light emitting device, and more particularly, to a flat light emitting device and a display device that are thin and can be enlarged.

従来から、強誘電性液晶表示素子に対して、互いに異なる色の光を継時的に照射することができる複数の光源よりなる平面光源を具備した強誘電性液晶カラー電気光学装置が知られている(例えば特許文献1参照。)。   Conventionally, a ferroelectric liquid crystal color electro-optical device provided with a planar light source composed of a plurality of light sources capable of continuously irradiating light of different colors to a ferroelectric liquid crystal display element has been known. (For example, refer to Patent Document 1).

特許文献1に記載の強誘電性液晶カラー電気光学装置の平面光源は、強誘電性液晶表示素子の走査電極に沿って同時に点灯・消灯されるように配置・配線された光源を1群とする複数の群によって構成されており、光源の各群は、それぞれ別個に点灯・消灯が可能であって、強誘電性液晶表示素子が印加される走査信号によって順次選択されるに従って、光源の各群を順次点灯・消灯している。   The planar light source of the ferroelectric liquid crystal color electro-optical device described in Patent Document 1 includes a group of light sources arranged and wired so as to be simultaneously turned on / off along the scanning electrodes of the ferroelectric liquid crystal display element. Each group of light sources can be turned on / off individually, and each group of light sources is sequentially selected by a scanning signal to which a ferroelectric liquid crystal display element is applied. Are turned on and off sequentially.

そして、平面発光素子の各群の点灯及び消灯のタイミングを、強誘電性液晶表示素子の画面書き換え時の走査信号に同期させることによって、最上段と最下段の画素の光量差を小さくする発明である。
特許第2518625号公報(第1−2頁、第1図、第7図)
In addition, by synchronizing the timing of turning on and off each group of flat light emitting elements with the scanning signal at the time of screen rewriting of the ferroelectric liquid crystal display element, the invention reduces the light quantity difference between the uppermost and lowermost pixels. is there.
Japanese Patent No. 2518625 (page 1-2, FIGS. 1 and 7)

特許文献1の図7には、平面発光素子の構造が斜視図で示されている。同図に示されるように、特許文献1に記載の強誘電性液晶カラー電気光学装置では、LEDの光源を強誘電性液晶表示素子の直下に配置しているので、サイドライト形の液晶表示装置と比較すると液晶表示素子の大型化が可能である。ところが、トップビュータイプのLED光源を液晶表示素子の直下に配置すると、そのLED光源の指向性のために、LEDから液晶表示素子までの光路長を長く取って光を拡散させ、発光面の光量のむらを減少させる必要があった。   FIG. 7 of Patent Document 1 shows a perspective view of the structure of the planar light emitting device. As shown in the figure, in the ferroelectric liquid crystal color electro-optical device described in Patent Document 1, since the light source of the LED is arranged directly below the ferroelectric liquid crystal display element, a sidelight type liquid crystal display device is provided. Compared with, the size of the liquid crystal display element can be increased. However, when a top view type LED light source is arranged directly below the liquid crystal display element, the light from the light emitting surface is diffused by taking a long optical path length from the LED to the liquid crystal display element due to the directivity of the LED light source. It was necessary to reduce unevenness.

図5に、直下型の平面発光装置920を備えた、従来の液晶表示装置910の断面図を示す。平面発光装置920は、所定の領域から光を放射する複数のLED光源930と、複数のLED光源930に電力を供給する配線を有すると共に複数のLED光源930を保持するLED基板934と、LED光源930が発光した光を更に全方向に拡散させて光量むらを減少させる拡散部材964と、拡散部材964が全方向に拡散した光をX方向及びY方向に立たせて、射した光を垂直方向に集光させて利用者が垂直方向から液晶表示装置910を見た際の明るさを増大させる働きをするプリズムシート966X、966Yと、LED光源930が発する広い発光スペクトラムを狭めてバックライト特性を補償する補償板968とを備えている。   FIG. 5 shows a cross-sectional view of a conventional liquid crystal display device 910 provided with a direct type flat light emitting device 920. The flat light emitting device 920 includes a plurality of LED light sources 930 that emit light from a predetermined region, a wiring that supplies power to the plurality of LED light sources 930, an LED substrate 934 that holds the plurality of LED light sources 930, and an LED light source. A diffusion member 964 that further diffuses the light emitted by the light source 930 in all directions to reduce unevenness in the amount of light, and the light diffused in all directions by the diffusion member 964 stands in the X direction and the Y direction, and the emitted light is directed in the vertical direction. Prism sheets 966X and 966Y that work to increase the brightness when the user looks at the liquid crystal display device 910 from the vertical direction and the light emission spectrum emitted from the LED light source 930 is narrowed to compensate for backlight characteristics. Compensation plate 968 is provided.

次に、液晶表示素子970の構成について説明する。液晶表示素子970は、平面発光装置920が発光した光のうち、一方向に振動している成分の光を透過させる偏光板972、992と、液晶層984を保持するガラス基板974、990と、画素を構成する液晶に電圧を印加する画素電極976及び共通電極988とを有している。ガラス基板974の表面にはTFTや画素電極976、配光膜(図示せず)を形成することができる。また、ガラス基板990の表面には、共通電極988や配光膜(図示せず)を形成することができる。   Next, the configuration of the liquid crystal display element 970 will be described. The liquid crystal display element 970 includes polarizing plates 972 and 992 that transmit light of a component oscillating in one direction out of light emitted from the flat light emitting device 920, glass substrates 974 and 990 that hold a liquid crystal layer 984, It has a pixel electrode 976 and a common electrode 988 for applying a voltage to the liquid crystal constituting the pixel. A TFT, a pixel electrode 976, and a light distribution film (not shown) can be formed on the surface of the glass substrate 974. Further, a common electrode 988 or a light distribution film (not shown) can be formed on the surface of the glass substrate 990.

図5に示すように、液晶表示装置910に設けられている直下型の平面発光装置920は、LED光源930が発光した光を均一に散らすために、LED光源930から液晶表示素子970までの距離を長く取る必要がある。したがって、液晶表示装置910が厚くなってしまうという不具合を生じていた。また、平面発光装置920の輝度を発光面内で均一に整えるために、拡散部材964、プリズムシート966X、966Y等の光学シートが必要になるという不具合を生じていた。   As shown in FIG. 5, the direct type flat light emitting device 920 provided in the liquid crystal display device 910 has a distance from the LED light source 930 to the liquid crystal display element 970 in order to uniformly scatter the light emitted from the LED light source 930. Need to take longer. Therefore, there is a problem that the liquid crystal display device 910 becomes thick. In addition, in order to uniformly adjust the luminance of the flat light emitting device 920 in the light emitting surface, an optical sheet such as the diffusing member 964 and the prism sheets 966X and 966Y is required.

本発明は上記課題を解決するためになされたもので、フィールドシーケンシャル駆動方式の液晶表示装置にも適用可能な薄型の平面発光装置、及びその平面発光装置を用いた色むらの少ない液晶表示装置を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a thin flat light emitting device applicable to a field sequential drive type liquid crystal display device and a liquid crystal display device with less color unevenness using the flat light emitting device. It is intended to provide.

上記の課題を解決するために、本発明の表示装置は、以下のような構成である。すなわち、(1)本発明に係る平面発光装置は、有機ELが発した光を全面から出射する矩形の点灯領域を複数段配列し、前記各点灯領域が独立して点灯・消灯する構成とした。また、(2)本発明に係る液晶表示装置は、有機ELが発した光を全面から出射する矩形の点灯領域を複数段配列し、前記各点灯領域が独立して点灯・消灯する平面発光装置と、2枚の透明部材により挟持された液晶薄膜に、前記点灯領域の一辺に平行な信号電極及び前記信号電極に直交する走査電極をマトリクス状に配置して画素を形成し、前記平面発光装置の各点灯領域から発光された光を前記画素毎に遮光する液晶表示素子とを備え、前記複数段の各点灯領域の点灯・消灯を、当該点灯領域を遮光する画素の走査電極に印加する走査信号と同期して順次行う構成とした。   In order to solve the above problems, the display device of the present invention has the following configuration. That is, (1) the planar light emitting device according to the present invention has a configuration in which a plurality of rectangular lighting areas for emitting light emitted from the organic EL from the entire surface are arranged in a plurality of stages, and each of the lighting areas is turned on / off independently. . (2) In the liquid crystal display device according to the present invention, a plurality of rectangular lighting areas for emitting light emitted from the organic EL from the entire surface are arranged in a plurality of stages, and each lighting area is turned on / off independently. And forming a pixel by arranging a signal electrode parallel to one side of the lighting region and a scanning electrode perpendicular to the signal electrode in a matrix on a liquid crystal thin film sandwiched between two transparent members, and the planar light emitting device And a liquid crystal display element that blocks light emitted from each of the lighting regions for each pixel, and applies lighting to the scanning electrodes of the pixels that block the lighting regions to turn on / off the lighting regions of the plurality of stages. The configuration is such that it is sequentially performed in synchronization with the signal.

上記(1)の平面発光装置によれば、独立して点灯・消灯することが可能な複数段の点灯領域を有する、薄型の平面発光装置を提供することができる。この平面発光装置を液晶表示装置に適用することによって、薄型で大画面の液晶表示装置を提供することが可能となる。また、高解像度で開口率を高くすることが可能なフィールドシーケンシャル駆動方式の液晶表示装置に適用可能である。また、上記(2)によれば、最上段と最下段の画素の光量差を減少させて、画面上の輝度むらや色むらが少ない薄型の液晶表示装置を提供することができる。また、消費電力の少ない大画面の液晶表示装置を提供することができ、フィールドシーケンシャル駆動方式を採用することによって、高解像度で開口率が高い液晶表示装置を提供することができる。   According to the planar light emitting device of (1) above, it is possible to provide a thin planar light emitting device having a plurality of lighting regions that can be turned on and off independently. By applying this flat light emitting device to a liquid crystal display device, a thin and large screen liquid crystal display device can be provided. Further, the present invention can be applied to a field sequential liquid crystal display device capable of increasing the aperture ratio with high resolution. In addition, according to the above (2), it is possible to provide a thin liquid crystal display device with less luminance unevenness and color unevenness on the screen by reducing the light amount difference between the uppermost pixel and the lowermost pixel. In addition, a large-screen liquid crystal display device with low power consumption can be provided, and a liquid crystal display device with high resolution and a high aperture ratio can be provided by employing a field sequential driving method.

本発明による平面発光装置は、有機ELが発した光を全面から出射する矩形の点灯領域を複数段配列し、各点灯領域が独立して点灯・消灯する構成とした。この平面発光装置を液晶表示装置に適用することによって、薄型で大画面の液晶表示装置を提供することが可能となる。更に、平面発光装置の光源を、複数色の有機EL層を積層して構成し、各点灯領域が複数種類の単一色を独立して点灯・消灯する構成とした。これにより、各点灯領域毎に複数種類の単一色を別個に点灯・消灯することが可能となる。   The planar light emitting device according to the present invention has a configuration in which a plurality of rectangular lighting regions that emit light emitted from the organic EL from the entire surface are arranged in a plurality of stages, and each lighting region is turned on and off independently. By applying this flat light emitting device to a liquid crystal display device, a thin and large screen liquid crystal display device can be provided. Further, the light source of the flat light emitting device is configured by laminating organic EL layers of a plurality of colors, and each lighting region is configured to be turned on / off independently of a plurality of types of single colors. Thereby, it is possible to individually turn on / off a plurality of types of single colors for each lighting region.

更に、平面発光装置の有機EL層を、光の出射面から下層に向けて、青色有機EL層、緑色有機EL層、赤色有機EL層の順に積層し、各点灯領域が複数種類の単一色を独立して点灯・消灯する構成とした。   Further, the organic EL layer of the flat light emitting device is laminated in the order of the blue organic EL layer, the green organic EL layer, and the red organic EL layer from the light emitting surface to the lower layer, and each lighting region has a plurality of types of single colors. It is configured to turn on and off independently.

このような平面発光装置を、高解像度で開口率を高くすることが可能なフィールドシーケンシャル駆動方式の液晶表示装置のバックライトとして適用することにより、最上段と最下段の画素の光量差に起因する色むらが少ない薄型の液晶表示装置を提供することが可能となる。   By applying such a flat light-emitting device as a backlight of a field sequential liquid crystal display device capable of increasing the aperture ratio with high resolution, it is caused by a light amount difference between the uppermost and lowermost pixels. A thin liquid crystal display device with little color unevenness can be provided.

また、本発明の表示装置は、有機ELの発光を全面から出射する矩形の点灯領域が複数段配列され、各点灯領域が独立して点灯・消灯する平面発光装置と、信号電極と点灯領域の一辺に平行な走査電極が形成する画素を備え、平面発光装置の各点灯領域から発光された光を画素毎に遮光する表示素子とを備え、複数段の各点灯領域の点灯・消灯を、当該点灯領域を遮光する画素の走査電極に印加する走査信号と同期して順次行う構成とした。   In addition, the display device of the present invention includes a planar light emitting device in which a plurality of rectangular lighting areas for emitting organic EL light emission from the entire surface are arranged, and each lighting area is turned on and off independently, and a signal electrode and a lighting area. A pixel formed by a scanning electrode parallel to one side, and a display element that blocks light emitted from each lighting region of the flat light-emitting device for each pixel. The lighting region is sequentially configured in synchronization with the scanning signal applied to the scanning electrode of the pixel that blocks the light.

これにより、最上段と最下段の画素の光量差を減少させて、画面上の輝度むらや色むらが少ない薄型の液晶表示装置を提供することができる。また、大画面の液晶表示装置を提供することができ、フィールドシーケンシャル駆動方式を採用することによって、高解像度で開口率が高い液晶表示装置を提供することができる。   Thereby, a light amount difference between the uppermost pixel and the lowermost pixel can be reduced, and a thin liquid crystal display device with less luminance unevenness and color unevenness on the screen can be provided. In addition, a large-screen liquid crystal display device can be provided, and a liquid crystal display device with high resolution and a high aperture ratio can be provided by employing a field sequential driving method.

あるいは、本発明の表示装置は、積層された複数色の有機EL層が発した光を全面から出射する矩形の点灯領域が複数段配列され、各点灯領域が独立して複数種類の単一色を順次時分割して点灯・消灯する平面発光装置と、信号電極と点灯領域の一辺に平行な走査電極が形成する画素を備え、平面発光装置の各点灯領域から発光された光を画素毎に遮光する表示素子と、複数種類の単一色毎に、当該点灯領域を遮光する画素の走査電極に印加する走査信号と同期して、複数段の各点灯領域の点灯・消灯を順次行うドライバと、を備える構成とした。これにより、最上段と最下段の画素の光量差を減少させて、画面上の輝度むらや色むらが少ない薄型のフィールドシーケンシャル駆動方式の液晶表示装置を提供することができる。また、大画面で明るく精細な液晶表示装置を提供することができる。   Alternatively, in the display device of the present invention, a plurality of rectangular lighting regions that emit light emitted from the entire surface of the stacked organic EL layers are arranged in a plurality of stages, and each lighting region independently has a plurality of types of single colors. A flat light-emitting device that turns on and off sequentially in a time-division manner and a pixel that is formed by a scanning electrode that is parallel to one side of the signal electrode and the lighting region, and blocks light emitted from each lighting region of the flat light-emitting device for each pixel And a driver for sequentially turning on / off each of the lighting regions in a plurality of stages in synchronization with a scanning signal applied to a scanning electrode of a pixel that blocks the lighting region for each of a plurality of types of single colors. It was set as the structure provided. Thus, a thin field sequential drive type liquid crystal display device with less luminance unevenness and color unevenness on the screen can be provided by reducing the light amount difference between the uppermost pixel and the lowermost pixel. In addition, a bright and fine liquid crystal display device with a large screen can be provided.

更に、表示装置のドライバが、複数段の点灯領域を、当該点灯領域を遮光する画素への走査信号の印加開始から第一所定時間経過後に点灯させ、第二所定時間経過後に消灯させる構成とした。これにより、最上段と最下段の画素の光量差を減少させて、画面上の輝度むらや色むらが少ない薄型のフィールドシーケンシャル駆動方式の液晶表示装置を提供することができる。また、液晶表示装置の平面発光装置における消費電力を減少させることができる。   Further, the driver of the display device is configured to turn on the lighting regions in a plurality of stages after the first predetermined time has elapsed from the start of applying the scanning signal to the pixels that shield the lighting regions, and to turn off the lighting after the second predetermined time has elapsed. . Thus, a thin field sequential drive type liquid crystal display device with less luminance unevenness and color unevenness on the screen can be provided by reducing the light amount difference between the uppermost pixel and the lowermost pixel. Further, power consumption in the flat light emitting device of the liquid crystal display device can be reduced.

以下、本発明の実施例について図面を用いて詳細に説明する。図1は、本発明に係る平面発光装置とその点灯領域の配列を説明する外観斜視図である。先ず、平面発光装置の発光面に存在する、複数段の点灯領域の配列について、図1を用いて説明する。図1に示す実施例では、平面発光装置20の発光面には、矩形の点灯領域a、b、c、dを4段配列してある。各点灯領域a、b、c、dは、独立して全面を点灯・消灯することが可能であり、特に本実施例では、青、緑、赤の各色、又はこれらを組み合わせた複数の色を独立して点灯・消灯することが可能となっている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an external perspective view for explaining an arrangement of a flat light emitting device and its lighting areas according to the present invention. First, the arrangement of a plurality of lighting regions existing on the light emitting surface of the flat light emitting device will be described with reference to FIG. In the embodiment shown in FIG. 1, rectangular lighting areas a, b, c, and d are arranged in four stages on the light emitting surface of the flat light emitting device 20. Each of the lighting areas a, b, c, and d can be turned on / off independently, and in this embodiment, in particular, each color of blue, green, and red, or a plurality of colors that are a combination thereof can be selected. It can be turned on and off independently.

平面発光装置20は、発光面を形成するガラス基板22と、青色を発光する青色有機EL24と、緑色を発光する緑色有機EL26と、赤色を発光する赤色有機EL28の光源を積層して構成している。また、青色有機EL24と緑色有機EL26との間、及び緑色有機EL26と赤色有機EL28との間には、各有機EL層を絶縁する絶縁膜30と、各有機ELが発光した光を発光面側に反射させる反射膜32とを積層して構成している。有機ELを積層する順番は、ガラス基板22側から発光輝度の低い順番に積層するとよい。   The flat light emitting device 20 is configured by laminating a light source of a glass substrate 22 that forms a light emitting surface, a blue organic EL 24 that emits blue light, a green organic EL 26 that emits green light, and a red organic EL 28 that emits red light. Yes. Further, between the blue organic EL 24 and the green organic EL 26, and between the green organic EL 26 and the red organic EL 28, the insulating film 30 that insulates each organic EL layer, and the light emitted from each organic EL emits light. A reflection film 32 to be reflected is laminated. The order in which the organic EL layers are stacked is preferably stacked in the order of low emission luminance from the glass substrate 22 side.

青色有機EL24、緑色有機EL26、及び赤色有機EL28は、例えば、透明共通電極、ホール輸送層、発光層、電子輸送層、透明電極の各層から構成されている。各点灯領域a、b、c、dを独立して点灯・消灯させるために、透明電極は点灯領域a、b、c、d毎に別個に設けてある。青色有機EL24が発光した光は、ガラス基板22側を透過して各点灯領域a、b、c、dの全面から出射する。他方、緑色有機EL26側に出射した光は、緑色有機EL26及び赤色有機EL28を透過した後に反射膜32で反射し、再び赤色有機EL28、緑色有機EL26、青色有機EL24及びガラス基板22を透過して各点灯領域a、b、c、dの全面から出射する。緑色有機EL26が発光してガラス基板22側に出射した光は、青色有機EL24及びガラス基板22を透過して各点灯領域a、b、c、dの全面から出射する。他方、赤色有機EL28側に出射した光は、赤色有機EL28を透過した後に反射膜32で反射し、再び赤色有機EL28、緑色有機EL26、青色有機EL24及びガラス基板22を透過して各点灯領域a、b、c、dの全面から出射する。赤色有機EL28が発光してガラス基板22側に出射した光は、緑色有機EL26、青色有機EL24及びガラス基板22を透過して各点灯領域a、b、c、dの全面から出射する。他方、反射膜32側に向かった光は反射膜32で反射し、再び赤色有機EL28、緑色有機EL26、青色有機EL24及びガラス基板22を透過して点灯領域a、b、c、dの全面から出射する。   The blue organic EL 24, the green organic EL 26, and the red organic EL 28 are composed of, for example, a transparent common electrode, a hole transport layer, a light emitting layer, an electron transport layer, and a transparent electrode. In order to turn on / off each lighting region a, b, c, d independently, a transparent electrode is provided separately for each lighting region a, b, c, d. The light emitted from the blue organic EL 24 passes through the glass substrate 22 side and is emitted from the entire surface of each lighting region a, b, c, d. On the other hand, the light emitted to the green organic EL 26 side is transmitted through the green organic EL 26 and the red organic EL 28, then reflected by the reflective film 32, and again transmitted through the red organic EL 28, the green organic EL 26, the blue organic EL 24, and the glass substrate 22. It emits from the entire surface of each lighting area a, b, c, d. The light emitted from the green organic EL 26 and emitted toward the glass substrate 22 is transmitted through the blue organic EL 24 and the glass substrate 22 and emitted from the entire surface of each lighting region a, b, c, d. On the other hand, the light emitted to the red organic EL 28 side is transmitted through the red organic EL 28 and then reflected by the reflective film 32, and is again transmitted through the red organic EL 28, the green organic EL 26, the blue organic EL 24, and the glass substrate 22 to each lighting region a. , B, c, and d are emitted from the entire surface. The light emitted from the red organic EL 28 and emitted toward the glass substrate 22 passes through the green organic EL 26, the blue organic EL 24, and the glass substrate 22 and is emitted from the entire surface of each lighting region a, b, c, d. On the other hand, the light directed toward the reflective film 32 is reflected by the reflective film 32, passes through the red organic EL 28, the green organic EL 26, the blue organic EL 24, and the glass substrate 22 again, and from the entire surface of the lighting areas a, b, c, d. Exit.

次に、平面発光装置20を用いた液晶表示装置10の構成について、図2に示す断面図を用いて説明する。なお、図1にて説明した構成要素と同一の構成要素については、同一の符番を付して説明を省略する。   Next, the configuration of the liquid crystal display device 10 using the flat light emitting device 20 will be described with reference to the cross-sectional view shown in FIG. In addition, about the component same as the component demonstrated in FIG. 1, the same number is attached | subjected and description is abbreviate | omitted.

図2に示すように、液晶表示装置10は、例えば青色有機EL24、緑色有機EL26、又は赤色有機EL28が発した光を全面から出射する平面発光装置20と、点灯領域a、b、c、dの一辺に平行(図2に示す例では紙面の上下方向)な信号電極及び、その信号電極に直交する走査電極をマトリクス状に配置して画素を形成して平面発光装置20の各点灯領域a、b、c、dから発光された光を画素毎に遮光する液晶表示素子70とから構成されている。   As shown in FIG. 2, the liquid crystal display device 10 includes, for example, a planar light emitting device 20 that emits light emitted from a blue organic EL 24, a green organic EL 26, or a red organic EL 28 from the entire surface, and lighting regions a, b, c, d. Each of the lighting regions a of the flat light emitting device 20 is formed by arranging a signal electrode parallel to one side (in the example shown in FIG. 2 in the vertical direction of the paper surface) and a scanning electrode orthogonal to the signal electrode in a matrix to form a pixel. , B, c, d, and a liquid crystal display element 70 that shields light emitted from each pixel.

平面発光装置20のガラス基板22には、各有機ELに水分が接触するのを防止するキャップ34を設けて、各有機ELが外気と接触しないように遮断している。キャップ34の内部には、例えばN2等の不活性ガスを充填して乾燥剤を封入し、各有機ELの寿命を確保する。 The glass substrate 22 of the flat light emitting device 20 is provided with a cap 34 for preventing moisture from coming into contact with each organic EL so as to prevent each organic EL from coming into contact with outside air. The cap 34 is filled with an inert gas such as N 2 and sealed with a desiccant to ensure the lifetime of each organic EL.

液晶表示素子70は、平面発光装置20が発光した光のうち、一方向の振動成分の光を透過させる偏光板72、92と、液晶層84を保持する2枚の透明部材から構成されるガラス基板74、90と、画素を構成する液晶に電圧を印加する画素電極76及び共通電極88とを有している。   The liquid crystal display element 70 is a glass composed of polarizing plates 72 and 92 that transmit light of a vibration component in one direction out of the light emitted from the flat light emitting device 20, and two transparent members that hold the liquid crystal layer 84. It has the board | substrates 74 and 90, and the pixel electrode 76 and the common electrode 88 which apply a voltage to the liquid crystal which comprises a pixel.

ガラス基板74の表面には、画像を走査するラインを選択する信号電極、信号電極と直交し走査信号を伝達する走査電極、信号電極及び走査電極に囲まれた領域にマトリックス状に配置したTFT素子及び画素電極76、配向膜(図示せず)が形成される。また、ガラス基板90の表面には、共通電極88や配向膜(図示せず)が形成される。   On the surface of the glass substrate 74, a signal electrode for selecting a line for scanning an image, a scanning electrode orthogonal to the signal electrode and transmitting a scanning signal, and a TFT element arranged in a matrix in a region surrounded by the signal electrode and the scanning electrode In addition, a pixel electrode 76 and an alignment film (not shown) are formed. Further, a common electrode 88 and an alignment film (not shown) are formed on the surface of the glass substrate 90.

液晶表示素子がノーマリーホワイトモードの表示素子である場合には、偏光板72の偏光軸と液晶層84の下面に整列している液晶の偏光特性を一致させておく。ノーマリーホワイトモードの液晶表示素子とは、無電圧印加時に光の透過率が高く電圧印加時に光の透過率が低い液晶表示装置をいう。液晶分子は、それぞれの配向方向に従って、例えば90度ねじれた配列で並んでいるので、偏光板92の偏光特性と液晶層84の上面に整列している液晶の偏光特性を一致させておくことによって、液晶の分子に沿う形で90度回転した光が偏光板92を透過して、液晶表示素子70から出力される。   When the liquid crystal display element is a normally white mode display element, the polarization characteristics of the liquid crystal aligned on the polarization axis of the polarizing plate 72 and the lower surface of the liquid crystal layer 84 are matched. The normally white mode liquid crystal display element refers to a liquid crystal display device that has a high light transmittance when no voltage is applied and a low light transmittance when a voltage is applied. Since the liquid crystal molecules are arranged in a 90-degree twisted arrangement according to the respective orientation directions, the polarization characteristics of the polarizing plate 92 and the polarization characteristics of the liquid crystal aligned on the upper surface of the liquid crystal layer 84 are matched. The light rotated 90 degrees along the liquid crystal molecules passes through the polarizing plate 92 and is output from the liquid crystal display element 70.

平面発光装置20の点灯領域a、b、c、dの一辺は、液晶表示素子70の信号電極と平行に配置して、一つの点灯領域に1乃至複数本の信号電極群が入るように構成する。そして、その1乃至複数本の信号電極群によって選択された画素群が、一つの点灯領域が発光した光を遮光して画像を形成する。点灯領域の発光は、当該点灯領域が発光した光を遮光する画素の走査信号と同期して、順次点灯・消灯を行う。例えば、点灯領域aの光を遮光する位置に存在する画素の走査開始と同期して、点灯領域aを点灯させ、当該画素の走査終了と同期して消灯を行い、同様の動作を他の点灯領域b、c、dについても順次同様に行うことができる。また、点灯領域の光を遮光する画素の走査終了と同期して点灯・消灯を行うように構成してもよい。   One side of the lighting areas a, b, c, and d of the flat light emitting device 20 is arranged in parallel with the signal electrodes of the liquid crystal display element 70 so that one or a plurality of signal electrode groups are included in one lighting area. To do. Then, the pixel group selected by the one or more signal electrode groups forms an image by blocking the light emitted from one lighting region. Light emission in the lighting area is sequentially turned on / off in synchronization with a scanning signal of a pixel that blocks light emitted from the lighting area. For example, the lighting region a is turned on in synchronization with the start of scanning of a pixel existing at a position where the light in the lighting region a is shielded, and the light is turned off in synchronization with the end of scanning of the pixel. It can carry out similarly similarly about area | region b, c, d. Alternatively, the light may be turned on / off in synchronization with the end of scanning of the pixels that block the light in the lighting region.

この走査信号に同期した点灯・消灯の処理を行うことによって、最初に画素データを書き込む上方の走査線が光を透過する時間が長いことにより液晶表示装置の上方が明るくなり、最後に画素データを書き込む下方の走査線が光を透過する時間が短いために下方が暗くなる現象を改善することができる。   By performing the on / off process in synchronization with this scanning signal, the upper scanning line for writing the pixel data first takes a long time to transmit light, so that the upper part of the liquid crystal display device becomes brighter, and finally the pixel data is saved. It is possible to improve the phenomenon in which the lower scanning line to be written is dark because the time during which light is transmitted is short.

液晶表示素子70の各画素毎に明るさを設定して画像を表示する場合には、液晶表示素子70の外部に設けられているドライバの走査電極駆動回路が、液晶表示素子70の走査電極(図示せず)を順次一本ずつ選択し、その選択した走査電極に画素の明るさに対応した電圧を印加する。走査電極に電圧が印加されると、TFTを介して画素電極76と共通電極88との間に電圧が印加されて、液晶分子は電圧に応じた位置まで回転する。電圧を印加しない状態では偏光板72を透過した光の全てが液晶の分子に沿って90度回転していたが、液晶分子が回転したことにより偏光板72を透過した光の一部は直接偏光板92に到達する。偏光板92の偏光方向は、偏光板72の偏光方向と90度異なるので、液晶層84を直接透過した光は液晶表示素子70の外部には出力されず、その画素電極76の部分だけ光の透過率が低下して暗くなる。全ての画素電極76について同様な状況を作り出すことによって、液晶表示装置10に画像を表示することができる。   When an image is displayed with brightness set for each pixel of the liquid crystal display element 70, a driver scan electrode driving circuit provided outside the liquid crystal display element 70 is connected to the scan electrode ( (Not shown) are sequentially selected one by one, and a voltage corresponding to the brightness of the pixel is applied to the selected scan electrodes. When a voltage is applied to the scan electrode, a voltage is applied between the pixel electrode 76 and the common electrode 88 via the TFT, and the liquid crystal molecules rotate to a position corresponding to the voltage. In the state where no voltage was applied, all of the light transmitted through the polarizing plate 72 was rotated 90 degrees along the liquid crystal molecules. However, a part of the light transmitted through the polarizing plate 72 was directly polarized because the liquid crystal molecules were rotated. The plate 92 is reached. Since the polarization direction of the polarizing plate 92 is 90 degrees different from the polarization direction of the polarizing plate 72, the light directly transmitted through the liquid crystal layer 84 is not output to the outside of the liquid crystal display element 70, and only the portion of the pixel electrode 76 transmits light. The transmittance decreases and darkens. By creating a similar situation for all the pixel electrodes 76, an image can be displayed on the liquid crystal display device 10.

次に、液晶表示素子70の駆動タイミングと、平面発光装置20における点灯領域a、b、c、dの発光タイミングとを、図3を用いて説明する。図3は、液晶表示素子の駆動タイミングと平面発光装置における各点灯領域の発光タイミングを示す図である。図3に示す実施例では、平面光源20がR、G、Bの三原色の各色を順次時分割して発光し、その発光した光を液晶表示素子70が三原色毎に同期させて遮光している。これにより、時分割された各色のフィールド画像(Rフィールド、Gフィールド、Bフィールド)が順次形成されてゆく。   Next, the drive timing of the liquid crystal display element 70 and the light emission timings of the lighting regions a, b, c, and d in the flat light emitting device 20 will be described with reference to FIG. FIG. 3 is a diagram showing the drive timing of the liquid crystal display element and the light emission timing of each lighting region in the flat light emitting device. In the embodiment shown in FIG. 3, the planar light source 20 emits light by sequentially time-dividing each of the three primary colors of R, G, and B, and the liquid crystal display element 70 shields the emitted light in synchronization with each of the three primary colors. . As a result, field images (R field, G field, and B field) of each color that are time-divided are sequentially formed.

図3は、その時分割された各色のフィールド画像の時間的な混色により、一つのフレーム画像を形成するフィールドシーケンシャル駆動方式の駆動を行う液晶表示装置10の駆動タイミングを示す図である。図3の縦軸方向には、液晶表示素子70におけるn本の走査信号線を表し、横軸方向には、走査電極に書き込まれる信号の内容とその順序を、時間の単位で表している。液晶表示素子70は、最上段の1行目から最下段のn行目までのn本の走査線を備えている。図3では、最上段の1行目の走査線から最下段のn行目の走査線まで順次走査信号Sを書き込んでゆく状態を、斜めの実線で表している。なお、画素電極に画像を表示するための走査信号Sを印加しても、液晶層はすぐには応答せず、所定の遅延時間D経過後になって初めて指定した透過量の光を透過するようになる。   FIG. 3 is a diagram showing the driving timing of the liquid crystal display device 10 that performs the driving in the field sequential driving method in which one frame image is formed by temporal color mixing of the field images of the respective colors divided at that time. The vertical axis direction of FIG. 3 represents n scanning signal lines in the liquid crystal display element 70, and the horizontal axis direction represents the contents and order of signals written to the scanning electrodes in units of time. The liquid crystal display element 70 includes n scanning lines from the first row at the top to the nth row at the bottom. In FIG. 3, a state in which the scanning signal S is sequentially written from the uppermost first scanning line to the lowermost nth scanning line is indicated by an oblique solid line. It should be noted that even when a scanning signal S for displaying an image is applied to the pixel electrode, the liquid crystal layer does not respond immediately, and only after a predetermined delay time D has passed, the specified amount of light is transmitted. become.

図3に示した例では、液晶表示装置10のドライバが各走査信号線に走査信号Sを書き込む書き込み時間Wと、全ての画素について一括して単色の表示を指示することにより液晶を所定の状態に揃えるリセット時間Eとを設けてある。書き込み時間Rとリセット時間Eとの間の時間は、入力した走査信号Sに対して液晶表示素子70が応答し、平面発光装置20が出射した光の透過時間を確保するための待ち時間である。いわゆるノーマリーホワイトの液晶表示装置70の場合には、リセット時間Eの間では黒表示を行うための走査信号を各画素電極に書き込む処理を行う。   In the example shown in FIG. 3, the driver of the liquid crystal display device 10 writes the scanning signal S to each scanning signal line, and the liquid crystal is in a predetermined state by instructing the monochrome display for all the pixels at once. And a reset time E to be aligned with each other. The time between the writing time R and the reset time E is a waiting time for ensuring the transmission time of the light emitted from the flat light emitting device 20 when the liquid crystal display element 70 responds to the input scanning signal S. . In the case of the so-called normally white liquid crystal display device 70, during the reset time E, a process of writing a scanning signal for performing black display to each pixel electrode is performed.

また、図1に示したように、本発明に係る液晶表示装置10は、有機ELが発した光を全面から出射する矩形の点灯領域a、b、c、dを4段配列してある。例えば、1行目からn/4行目までの画素は、点灯領域aが出射した光を遮光して画像の一部を形成する。同様に、(n+1)/4行目から2n/4行目までの画素は、点灯領域bが出射した光を遮光し、(2n+1)/4行目から3n/4行目までの画素は、点灯領域cが出射した光を遮光し、(3n+1)/4行目からn行目までの画素は、点灯領域dが出射した光を遮光するように構成する。液晶表示装置10のドライバは、1行目からn/4行目までの走査線に走査信号Sを書き込んだ後、第一所定時間T1経過後に点灯領域aの赤色有機EL28に対して点灯を指示し、第二所定時間T2経過後に点灯領域aの赤色有機EL28に対して消灯を指示する。図3では、点灯領域aが赤色を発光するタイミングをRaで表してある。また同様に、点灯領域aが緑色を発光するタイミングをGaで表し、青色を発光するタイミングをBaで表している。   In addition, as shown in FIG. 1, the liquid crystal display device 10 according to the present invention has rectangular lighting areas a, b, c, and d that emit light emitted from the organic EL from the entire surface, arranged in four stages. For example, the pixels from the first row to the n / 4th row form a part of the image by blocking the light emitted from the lighting region a. Similarly, the pixels from the (n + 1) / 4th row to the 2n / 4th row block the light emitted from the lighting region b, and the pixels from the (2n + 1) / 4th row to the 3n / 4th row are The light emitted from the lighting region c is shielded, and the pixels from the (3n + 1) / 4th row to the nth row are configured to shield the light emitted from the lighting region d. The driver of the liquid crystal display device 10 writes the scanning signal S to the scanning lines from the first row to the n / 4th row, and then instructs the red organic EL 28 in the lighting region a to turn on after the first predetermined time T1 has elapsed. Then, after the second predetermined time T2 has elapsed, the red organic EL 28 in the lighting region a is instructed to be turned off. In FIG. 3, the timing at which the lighting region a emits red light is represented by Ra. Similarly, the timing at which the lighting region a emits green is represented by Ga, and the timing at which blue is emitted is represented by Ba.

次に、(n+1)/4行目〜2n/4行目までの走査線に走査信号Sを書き込んだ後、第一所定時間T1経過後に点灯領域bの赤色有機EL28に対して点灯を指示し、第二所定時間T2経過後に点灯領域bの赤色有機EL28に対して消灯を指示する。この点灯領域bが赤色を発光するタイミングをRbで表し、以下同様に、緑色を発光するタイミングをGbで表し、青色を発光するタイミングをBbで表している。次に、(2n+1)/4行目から3n/4行目までの走査線に走査信号Sを書き込んだ後、第一所定時間T1経過後に点灯領域cの赤色有機EL28に対して点灯を指示し、第二所定時間T2経過後に点灯領域cの赤色有機EL28に対して消灯を指示する。この点灯領域cが赤色を発光するタイミングをRcで表し、以下同様に、緑色を発光するタイミングをGcで表し、青色を発光するタイミングをBcで表している。同様に、(3n+1)/4行目からn行目までの走査線を書き込んだ後、第一所定時間T1経過後に点灯領域dの赤色有機EL28に対して点灯を指示し、第二所定時間T2経過後に点灯領域dの赤色有機EL28に対して消灯を指示する。この点灯領域dが赤色を発光するタイミングをRdで表し、同様に、緑色を発光するタイミングをGdで表し、青色を発光するタイミングをBdで表している。   Next, after writing the scanning signal S to the scanning lines from the (n + 1) / 4th row to the 2n / 4th row, the lighting is instructed to the red organic EL 28 in the lighting region b after the first predetermined time T1 has elapsed. Then, after the second predetermined time T2 has elapsed, the red organic EL 28 in the lighting region b is instructed to be turned off. The timing at which the lighting region b emits red is represented by Rb, and similarly, the timing at which green is emitted is represented by Gb, and the timing at which blue is emitted is represented by Bb. Next, after the scanning signal S is written to the scanning lines from the (2n + 1) / 4th row to the 3n / 4th row, after the first predetermined time T1 has elapsed, the red organic EL 28 in the lighting region c is instructed to be lit. Then, after the second predetermined time T2 has elapsed, the red organic EL 28 in the lighting region c is instructed to be turned off. The timing at which the lighting region c emits red is represented by Rc, and similarly, the timing at which green is emitted is represented by Gc, and the timing at which blue is emitted is represented by Bc. Similarly, after writing the scanning lines from the (3n + 1) / 4th row to the nth row, after the first predetermined time T1, the red organic EL 28 in the lighting region d is instructed to turn on, and the second predetermined time T2 After the elapse of time, the red organic EL 28 in the lighting area d is instructed to be turned off. The timing at which the lighting region d emits red light is represented by Rd. Similarly, the timing at which green light is emitted is represented by Gd, and the timing at which blue light is emitted is represented by Bd.

これにより、各点灯領域a、b、c、dは、全て同一の時間(T2−T1)点灯して画像を形成するので、各点灯領域a、b、c、d間における輝度のむらを減少させることができる。また、液晶が走査信号に応答した後のタイミングで有機ELを発光させ、所定の時間経過後に有機ELを消灯させることによって、無駄な発光を省き、省電力化を図ることができる。   As a result, the lighting areas a, b, c, and d are all lit for the same time (T2-T1) to form an image, thereby reducing uneven brightness between the lighting areas a, b, c, and d. be able to. Further, by causing the organic EL to emit light at a timing after the liquid crystal responds to the scanning signal and turning off the organic EL after a predetermined time has elapsed, unnecessary light emission can be eliminated and power saving can be achieved.

次に、平面発光装置における点灯領域を増やした実施例について、図4を用いて説明する。なお、図1にて説明した構成要素と同一の構成要素については、同一の符番を付して説明を省略する。図1では、有機ELが発した光を出射する点灯領域a、b、c、dを4段配列した実施形態を示したが、本発明は4段に限定するものではなく、図4に示す平面発光装置120のように、更に多くの段を配列するように構成してもよい。   Next, the Example which increased the lighting area | region in a planar light-emitting device is described using FIG. In addition, about the component same as the component demonstrated in FIG. 1, the same number is attached | subjected and description is abbreviate | omitted. Although FIG. 1 shows an embodiment in which the lighting regions a, b, c, and d that emit light emitted from the organic EL are arranged in four stages, the present invention is not limited to four stages, and is shown in FIG. As in the flat light emitting device 120, more stages may be arranged.

本発明の平面発光装置とその点灯領域の配列を説明する外観斜視図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の平面発光装置を用いた液晶表示装置の断面図。Sectional drawing of the liquid crystal display device using the planar light-emitting device of this invention. 液晶表示素子の駆動タイミングと平面発光装置における各点灯領域の発光タイミングとを示す図。The figure which shows the drive timing of a liquid crystal display element, and the light emission timing of each lighting area | region in a planar light-emitting device. 平面発光装置の点灯領域を増やした実施形態を説明する外観斜視図。The external appearance perspective view explaining embodiment which increased the lighting area of the plane light-emitting device. 従来の直下型の平面発光装置を備えた液晶表示装置の断面図。Sectional drawing of the liquid crystal display device provided with the conventional direct type flat light-emitting device.

符号の説明Explanation of symbols

10、910 液晶表示装置
20、120、920 平面発光装置
22 ガラス基板
24 青色有機EL
26 緑色有機EL
28 赤色有機EL
30 絶縁膜
32 反射膜
34 キャップ
70、970 液晶表示素子
72、92、972、992 偏光板
84、984 液晶層
74、90、974、990 ガラス基板
76、976 画素電極
88、988 共通電極
930 LED光源
934 LED基板
964 拡散部材
966X、966Y プリズムシート
968 補償板
a、b、c、d 点灯領域
E リセット時間
R 書き込み時間
10, 910 Liquid crystal display device 20, 120, 920 Flat light emitting device 22 Glass substrate 24 Blue organic EL
26 Green organic EL
28 Red organic EL
30 Insulating film 32 Reflecting film 34 Cap 70, 970 Liquid crystal display element 72, 92, 972, 992 Polarizing plate 84, 984 Liquid crystal layer 74, 90, 974, 990 Glass substrate 76, 976 Pixel electrode 88, 988 Common electrode 930 LED light source 934 LED substrate 964 Diffusing member 966X, 966Y Prism sheet 968 Compensation plate a, b, c, d Lighting area E Reset time R Write time

Claims (6)

有機ELが発した光を全面から出射する矩形の点灯領域が複数段配列され、前記各点灯領域が独立して点灯・消灯することを特徴とする平面発光装置。   A flat light-emitting device, wherein a plurality of rectangular lighting areas for emitting light emitted from an organic EL from the entire surface are arranged, and each of the lighting areas is turned on and off independently. 前記有機ELは、複数色の有機EL層を積層して構成し、前記各点灯領域が複数種類の単一色を独立して点灯・消灯することを特徴とする請求項1に記載の平面発光装置。   The planar light emitting device according to claim 1, wherein the organic EL is formed by stacking a plurality of colors of organic EL layers, and each lighting region is turned on / off independently of a plurality of types of single colors. . 前記有機ELは、光の出射面から下層に向けて、青色有機EL層、緑色有機EL層、赤色有機EL層の順に積層した構成である請求項2に記載の平面発光装置。   The planar light emitting device according to claim 2, wherein the organic EL has a configuration in which a blue organic EL layer, a green organic EL layer, and a red organic EL layer are stacked in this order from the light emitting surface toward the lower layer. 有機ELが発した光を全面から出射する矩形の点灯領域が複数段配列され、前記各点灯領域が独立して点灯・消灯する平面発光装置と、
信号電極と前記点灯領域の一辺に平行な走査電極が形成する画素を備え、前記平面発光装置の各点灯領域から発光された光を前記画素毎に遮光する表示素子とを備え、
前記複数段の各点灯領域の点灯・消灯を、当該点灯領域を遮光する画素の走査電極に印加する走査信号と同期して順次行うことを特徴とする表示装置。
A planar light emitting device in which a plurality of rectangular lighting areas that emit light emitted from the organic EL from the entire surface are arranged, and each lighting area is turned on and off independently;
A signal electrode and a pixel formed by a scanning electrode parallel to one side of the lighting region, and a display element that blocks light emitted from each lighting region of the planar light emitting device for each pixel.
A display device comprising: sequentially turning on / off each of the plurality of lighting regions in synchronization with a scanning signal applied to a scanning electrode of a pixel that shields the lighting region.
積層された複数色の有機EL層が発した光を全面から出射する矩形の点灯領域が複数段配列され、前記各点灯領域が独立して複数種類の単一色を順次時分割して点灯・消灯する平面発光装置と、
信号電極と前記点灯領域の一辺に平行な走査電極が形成する画素を備え、前記平面発光装置の各点灯領域から発光された光を前記画素毎に遮光する表示素子と、
前記複数種類の単一色毎に、当該点灯領域を遮光する画素の走査電極に印加する走査信号と同期して、前記複数段の各点灯領域の点灯・消灯を順次行うドライバと、を備えることを特徴とする表示装置。
A plurality of rectangular lighting areas that emit light emitted from the stacked organic EL layers of the plurality of colors from the entire surface are arranged in a plurality of stages, and each lighting area is independently turned on and off by sequentially time-dividing a plurality of types of single colors. A planar light emitting device,
A display element that includes a pixel formed by a scanning electrode parallel to a signal electrode and one side of the lighting region, and that blocks light emitted from each lighting region of the planar light emitting device for each pixel;
A driver that sequentially turns on and off the lighting regions of the plurality of stages in synchronization with a scanning signal applied to a scanning electrode of a pixel that blocks the lighting region for each of the plurality of types of single colors. Characteristic display device.
前記ドライバは、前記複数段の点灯領域を、当該点灯領域を遮光する画素への走査信号の印加開始から第一所定時間経過後に点灯させ、第二所定時間経過後に消灯させることを特徴とする請求項5に記載の表示装置。   The driver turns on the lighting regions of the plurality of stages after a first predetermined time elapses from the start of application of a scanning signal to a pixel that blocks the lighting regions, and turns off the light after a second predetermined time elapses. Item 6. The display device according to Item 5.
JP2006044022A 2006-02-21 2006-02-21 Planar light emitting device and display device Pending JP2007227012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044022A JP2007227012A (en) 2006-02-21 2006-02-21 Planar light emitting device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044022A JP2007227012A (en) 2006-02-21 2006-02-21 Planar light emitting device and display device

Publications (1)

Publication Number Publication Date
JP2007227012A true JP2007227012A (en) 2007-09-06

Family

ID=38548648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044022A Pending JP2007227012A (en) 2006-02-21 2006-02-21 Planar light emitting device and display device

Country Status (1)

Country Link
JP (1) JP2007227012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004781A (en) * 2013-09-19 2020-01-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Security device and information processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004781A (en) * 2013-09-19 2020-01-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Security device and information processing device
KR102231537B1 (en) * 2013-09-19 2021-03-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Security device and information processing device

Similar Documents

Publication Publication Date Title
US7928970B2 (en) Display device and control method thereof
JP4579204B2 (en) Display device
JP5324068B2 (en) Backlight assembly and display device having the same
US8723785B2 (en) Liquid crystal display and driving method of liquid crystal display
KR100959576B1 (en) Display device and display method
US20130321495A1 (en) Display device
JP2006234849A (en) Liquid crystal display device, driving method used for the liquid crystal display device
US20090153462A1 (en) Illumination device and display apparatus provided with the same
KR20150033437A (en) Backlight assembly, display apparatus having the same and method of manufacturing the same
WO2016026181A1 (en) Colour liquid crystal display module structure and backlight module thereof
JP4611604B2 (en) Image display device
WO2014087875A1 (en) Display device and television reception device
US8179348B2 (en) Driving method, driving circuit, electro-optical device, and electronic apparatus
WO2007058448A1 (en) Liquid crystal display device and driving method thereof
JP3750392B2 (en) Liquid crystal display device and driving method thereof
JP2021021875A (en) Display device
US20120175650A1 (en) Illuminating device and display device
KR20150055319A (en) Backlight assembly and display apparatus having the same
JP2006106074A (en) Illuminator, electrooptical device and electronic appliance
JP2007227012A (en) Planar light emitting device and display device
JP2004206003A (en) Driving method for field sequential liquid crystal display device
WO2018137434A1 (en) Display panel, display control method, and display apparatus
KR100814750B1 (en) Color flat fluorescent lamp and lcd using the same
JP2007226973A (en) Surface light-emitting device and liquid crystal display device
JP2005077691A (en) Liquid crystal display device