JP2007226756A - Method and device for evaluating left image such as footprint using ridgelet transform - Google Patents

Method and device for evaluating left image such as footprint using ridgelet transform Download PDF

Info

Publication number
JP2007226756A
JP2007226756A JP2006079720A JP2006079720A JP2007226756A JP 2007226756 A JP2007226756 A JP 2007226756A JP 2006079720 A JP2006079720 A JP 2006079720A JP 2006079720 A JP2006079720 A JP 2006079720A JP 2007226756 A JP2007226756 A JP 2007226756A
Authority
JP
Japan
Prior art keywords
image
ridgelet
conversion
transform
radon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006079720A
Other languages
Japanese (ja)
Inventor
Makoto Hasegawa
誠 長谷川
Kazumoto Tanaka
一基 田中
Seiji Ishihara
聖司 石原
Masakazu Kanezashi
正和 金指
Hiroshi Moriwaki
博史 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROSHIMA INFORMATION SYMPHONY
HIROSHIMA INFORMATION SYMPHONY CO Ltd
Kinki University
Original Assignee
HIROSHIMA INFORMATION SYMPHONY
HIROSHIMA INFORMATION SYMPHONY CO Ltd
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROSHIMA INFORMATION SYMPHONY, HIROSHIMA INFORMATION SYMPHONY CO Ltd, Kinki University filed Critical HIROSHIMA INFORMATION SYMPHONY
Priority to JP2006079720A priority Critical patent/JP2007226756A/en
Publication of JP2007226756A publication Critical patent/JP2007226756A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for evaluating a left image such as footprints by which personal authentication in criminal investigation is effectively performed by performing Ridgelet transform of the left image. <P>SOLUTION: In the Ridgelet transform, an edge on a straight line is effectively expressed, noise is effectively removed, magnification, reduction, parallel translation and rotation are easily performed in a transformation domain by nature of Radon transform for performing linear integration of a luminance value. Furthermore, a Radon domain is reproduced while raising resolution of a footprint image subjected to the Ridgelet transform stepwise and pattern matching is allowed by Hough transformation since the Radon transform is equal to a parameter space of the Hough transformation. The luminance value is differentiated in the arbitrary direction and applied to general Hough transformation by using the Ridgelet transform. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、足跡などの遺留画像をRidgelet変換することで犯罪捜査における個人認証を有効に行うことを可能にした遺留画像鑑定方法及び装置に関する技術分野に属する。  The present invention belongs to a technical field related to a method and apparatus for identifying a residual image that enables effective personal authentication in a criminal investigation by performing Ridgelet conversion of a residual image such as a footprint.

これまでの遺留画像鑑定では、Fourier変換した例えば足跡画像を円、炬形、波型、山型、直線、その他のパターンによって分類し、キーワードを付与して足跡画像データベースを構築し、バンドパスフィルタを適用したテンプレートマッチングを行っている。また、データベースに登録されている画像と足跡画像とを手作業により照合している。近年、コンピュータシステムが導入されてキーワード検索が自動化されたが、足跡画像の分類は手作業のままである。以下、本発明に関連する従来の技術について説明する。  In the so-called remains image appraisal, for example, footstep images that have undergone Fourier transformation are classified according to circle, saddle shape, wave shape, mountain shape, straight line, and other patterns, and a footstep image database is constructed by assigning keywords, and a bandpass filter Template matching is applied. Further, the image registered in the database and the footprint image are manually collated. In recent years, computer systems have been introduced to automate keyword searches, but the classification of footprint images remains manual. Hereinafter, conventional techniques related to the present invention will be described.

遺留足跡からのデータ照合等に役立つ靴底模様のデータベースの作成、並びにそのための便利な検索方法とした「靴底データベース及びその作成方法」の中でデジタルカメラもしくはイメージスキャナから取り込んだ画像を正規化しコード化する発明がある。(特許文献1参照)
特開2005−27951(図1)
Normalize images taken from a digital camera or image scanner in the creation of a shoe sole database that is useful for collating data from left footsteps and a convenient search method for this. There is an invention to code. (See Patent Document 1)
JP-A-2005-27951 (FIG. 1)

P.Chazal,J.Flynn及びB.Reillyは、足跡画像をFourier変換し、パターンマッチングによって検索するシステムを提案している。(非特許文献1参照)
P.Chazal,J.Flynn.and B.Reilly,“Automated Processing of Images Basedon theFourier Transform for Use in Forensic Science”,IEEE Trans.,Vol.PAMI−27,3,pp.341−350(Mar.2005)
P. Chazal, J .; Flynn and B.M. Reilly has proposed a system in which footprint images are subjected to Fourier transform and searched by pattern matching. (See Non-Patent Document 1)
P. Chazal, J .; Flynn. and B. Reilly, “Automated Processing of Images Based on the Fourier Transform for Use in Forensic Science”, IEEE Trans. , Vol. PAMI-27,3, pp. 341-350 (Mar. 2005)

Ridgelet変換は、E.J.Candesによって提案された信号処理技術であり、信号をRadon変換した後にWavelet変換して得られるものである。(非特許文献2参照)
E.J.Candes,“Ridgelets: Theory andapplication”,Ph.D.dissertation,Dept.Statistics,Stanford Univ.,Stanford,CA(1998)
The Ridgelet transform is an E.I. J. et al. This is a signal processing technique proposed by Candes, which is obtained by performing Wavelet conversion after Radon conversion of a signal. (See Non-Patent Document 2)
E. J. et al. Candes, “Ridgelets: Theory and application”, Ph. D. dissertation, Dept. Statistics, Stanford Univ. , Stanford, CA (1998)

Radon変換は、輝度値を線積分する性質を持つため、直線上のエッジを効果的に表現することが可能である。また、雑音を効果的に除去できる。(非特許文献3参照)
Minh N.Do and M.Vetterli,“The Finite Ridgelet Transform for Image Representation”,IEEE Trans.Image Processing,12,pp.16−28(Jan.2003)
Since the Radon transform has the property of linearly integrating the luminance value, it is possible to effectively represent an edge on a straight line. Moreover, noise can be effectively removed. (See Non-Patent Document 3)
Minh N. Do and M.M. Vetterli, “The Fine Ridgelet Transform for Image Representation”, IEEE Trans. Image Processing, 12, pp. 16-28 (Jan. 2003)

Radon変換が極座標で表現されていることを利用して、画像から被写体を抽出した後にRidgelet変換することによって物体を容易に回転できる。(非特許文献4及び5参照)
M.Hasegawa and S.Tajima,“A RidgeletRepresentation of Semantic Object Using Watershed Segmentation”,in Proc.of IEEE ISCIT2004,Sapporo,Japan,(Oct.2004) 長谷川誠,田島慎一“Watershed分割によるSemantic ObjectのRidgelet表現”,映像情報メディア学会誌, 59,5,pp.786−790(May 2005)
Using the fact that the Radon transform is expressed in polar coordinates, the object can be easily rotated by extracting the subject from the image and then performing the Ridgelet transform. (See Non-Patent Documents 4 and 5)
M.M. Hasegawa and S.H. Tajima, “A Ridgelet Representation of Semantic Object Using Watered Segment”, Proc. of IEEE ISCIT 2004, Sapporo, Japan, (Oct. 2004) Makoto Hasegawa, Shinichi Tajima “Ridgelet expression of Semantic Object by Watershed division”, Journal of the Institute of Image Information and Television Engineers, 59, 5, pp. 786-790 (May 2005)

RadonドメインはHough変換のパラメータ空間と等しいため、Ridgelet変換された画像を段階的に解像度を上げながらRadonドメインを再生し、Hough変換によってパターンマッチングすることができる。(非特許文献6参照)
松山隆司,興水大和,“Hough変換とパターンマッチング”,情報処理,30,9,pp.1035−1046(Sep.1989)
Since the Radon domain is equal to the Hough transform parameter space, it is possible to reproduce the Radon domain while gradually increasing the resolution of the Ridgelet transformed image and perform pattern matching by the Hough transform. (See Non-Patent Document 6)
Matsuyama Takashi, Komizu Yamato, “Hough transform and pattern matching”, Information Processing, 30, 9, pp. 1035-1046 (Sep. 1989)

R.Krishnapuram及びD.Casasentは、直線の検出のみならずHoughパラメータ空間をテンプレートとして相互関係を求め、任意形状の物体を認識する方法を提案している。(非特許文献7参照)
R. Krishnapuram and D.Casasent,“Hough Space Transformations for Discrimination and Distortion Estimation”,Computer Vision,Graphics.and Image Processing,38,pp.299−316(1987)
R. Krishnapuram and D.K. Casasent proposes a method of recognizing an object of arbitrary shape by obtaining a correlation with a Hough parameter space as a template as well as detecting a straight line. (See Non-Patent Document 7)
R. Krishnapuram and D.K. Cassent, “Hough Space Transformations for Discrimination and Distribution Estimation”, Computer Vision, Graphics. and Image Processing, 38, pp. 299-316 (1987)

Radon変換は、変換ドメイン内の操作によって輝度値を任意の方向に微分することができる。(非特許文献8参照)
S.R.Deans,The Radon Transform and Some of Its Applications,John Wileyans Sons(1983)
The Radon transform can differentiate a luminance value in an arbitrary direction by an operation in the transform domain. (See Non-Patent Document 8)
S. R. Deans, The Radon Transform and Some of It Applications, John Wileyans Sons (1983)

Fourier変換では、拡大縮小は前処理で実施し、並行移動については変換係数のエネルギーを用いることによって移動量を不変としている。また、回転は変換ドメインを回転させているため、補正のタイミングが一致せず靴底画像などのパターンマッチング対象画像との柔軟な位置合わせが難しい。更に足跡など遺留画像は劣悪な環境で遺留するため欠損や雑音が多く、理想的な画像を用いたシミュレーション段階であり、実用化に至っていない。  In the Fourier transform, enlargement / reduction is performed by pre-processing, and for parallel movement, the amount of movement is made unchanged by using the energy of the conversion coefficient. In addition, since the rotation rotates the transformation domain, the correction timing does not match and flexible alignment with the pattern matching target image such as the shoe sole image is difficult. Furthermore, since the remains of images such as footprints remain in a poor environment, there are many defects and noises. This is a simulation stage using ideal images and has not yet been put into practical use.

Ridgelet変換は、信号をRadon変換した後にWavelet変換して得られるが、輝度値を線積分するRadon変換の性質により、直線上のエッジを効果的に表現しまた雑音を効果的に除去できる。Radon変換が極座標で表現されていることを利用することで、変換ドメイン内の操作画像の拡大縮小、並行移動、回転を容易に行える。また、Radon変換はHough変換のパラメータ空間と等しいため、Ridgelet変換された足跡画像を段階的に解像度を上げながらRadonドメインを再生し、Hough変換によってパターンマッチングを容易に行える。  The Ridgelet transform is obtained by performing a Wavelet transform after performing a Radon transform on a signal. However, due to the nature of the Radon transform that linearly integrates luminance values, edges on a straight line can be effectively expressed and noise can be effectively removed. By utilizing the fact that the Radon transform is expressed in polar coordinates, the operation image in the transform domain can be easily scaled, translated, and rotated. Further, since the Radon transform is equal to the Hough transform parameter space, it is possible to reproduce the Radon domain while gradually increasing the resolution of the Ridgelet transformed footprint image, and easily perform pattern matching by the Hough transform.

足跡など遺留画像による個人認証は、犯罪捜査の有効な手段となっており、被疑者が犯罪を否認した場合でも犯罪現場から採取した足跡画像を鑑定し、特徴が合致すれば同人の犯行を認定できる場合があるが、この鑑定に要求される精密性、迅速性を実現し、コンピュータを用いた情報処理に活用することができる。  Personal identification based on remains images such as footprints is an effective means of criminal investigation, and even if the suspect denies the crime, the footprint image collected from the crime scene is identified, and if the characteristics match, the crime of the same person is authorized Although there are cases where it can be performed, the accuracy and speed required for this appraisal can be realized and utilized for information processing using a computer.

以下、遺留画像の内、足跡画像についてRidgelet変換してデータベースに保存し検索する方法と、Hough変換によってパターン認識する方法と一般Hough変換へ応用する方法及その装置の構成について説明する。装置の構成は図1で示す。
また、処理の流れを図2、図3及び図4で示す。
In the following, a method for Ridgelet conversion of footstep images among the remnant images, storing and searching in a database, a method for recognizing patterns by Hough conversion, a method for applying to general Hough conversion, and the configuration of the apparatus will be described. The configuration of the apparatus is shown in FIG.
The processing flow is shown in FIGS.

遺留画像抽出手段(デジタルカメラ、イメージスキャナなど)で足跡画像を取り込み、Ridgelet変換手段を用いてデータベースに保存するまでの具体的な形状を表現し雑音を除去することが可能となる。  It is possible to remove a noise by expressing a specific shape from a footprint image taken by a residual image extraction means (digital camera, image scanner, etc.) and stored in a database using a Ridgelet conversion means.

足跡画像は図5のように与えられる。図5(a)を犯罪現場に遺留された足跡画像とし、(b)を該当している靴の靴底写真とする。図5(a)は雑音や欠損が多く、複数の足跡が重なっている。靴底素材による濃淡は図5(a)には見られず、靴底の突起物が白く表示されている。すなわち、2つの画像における輝度値の相関は小さい。そこで、輝度値を直接マッチングするのではなく、微分フィルタによって輪郭線を抽出した画像を用いる。  The footprint image is given as shown in FIG. FIG. 5A is a footprint image left at the crime scene, and FIG. 5B is a shoe sole photograph of the corresponding shoe. In FIG. 5A, there are many noises and defects, and a plurality of footprints overlap. The shading due to the sole material is not seen in FIG. 5 (a), and the projections on the sole are displayed in white. That is, the correlation between the luminance values in the two images is small. Therefore, instead of directly matching luminance values, an image obtained by extracting a contour line using a differential filter is used.

ここでは、微分フィルタとしてSobelフィルタ適用し、その後輝度値を2値化する。図6は輪郭線画像の例である。図6の画像をRidgelet変換する。画像が与えられている2次元領域Rの座標を位置ベクトルxで表し、輝度値をf(x)とする。なお、前処理直後の輝度値f(x)は0または1となる。f(x)のRidgelet

Figure 2007226756
ことができる。
Figure 2007226756
Figure 2007226756
Here, a Sobel filter is applied as a differential filter, and then the luminance value is binarized. FIG. 6 is an example of a contour image. The image shown in FIG. 6 is Ridgelet transformed. Represents a 2-dimensional region R 2 of the coordinate image is given by the position vector x, to the luminance value f (x). Note that the luminance value f (x) immediately after the preprocessing is 0 or 1. Ridgelet of f (x)
Figure 2007226756
be able to.
Figure 2007226756
Figure 2007226756

ξ=(cosθ,sinθ)とすると、Ridgelet変換DはRadon変換(数3の式)を用いて数4の式に置き換えることができる。すなわち、Ridgelet変換は濃淡画像をRadon変換した後にWavelet変換することと等しい。

Figure 2007226756
Figure 2007226756
If ξ = (cos θ, sin θ), the Ridgelet transform D can be replaced with the equation of equation 4 using the Radon transform (equation of equation 3). That is, the Ridgelet conversion is equivalent to the Wavelet conversion after the Radon conversion of the grayscale image.
Figure 2007226756
Figure 2007226756

図6をRidgelet変換した結果を図8に示す。ここではWavelet変換で4つのサブバンドに分解する。また、基底関数としてHaar基底を用いている。  FIG. 8 shows the result of Ridgelet conversion of FIG. Here, it is decomposed into four subbands by Wavelet transform. Further, the Haar basis is used as the basis function.

Ridgeletドメインを逆Wavelet変換してRadonドメインを再生した結果を図6に示す。  FIG. 6 shows the result of reproducing the Radon domain by performing inverse Wavelet transformation on the Ridgelet domain.

Ridgeletドメインにおけるサブバンドの一部を用いて、Radonドメインを再生した結果を図10に示す。  The result of reproducing the Radon domain using a part of the subbands in the Ridgelet domain is shown in FIG.

図9のRadonドメインを縦方向に拡大縮小すると、図6の原画像は縦横方向に拡大縮小される。また、数5の式を用いてRadonドメインを偏角θ(またはζ)に応じて上下すると、図6がベクトルa方向へ並行移動する。

Figure 2007226756
When the Radon domain in FIG. 9 is scaled in the vertical direction, the original image in FIG. 6 is scaled in the vertical and horizontal directions. Further, when the Radon domain is moved up and down in accordance with the declination angle θ (or ζ) using the equation of Formula 5, FIG. 6 moves in parallel in the vector a direction.
Figure 2007226756

Ridgeletドメインを左右にシフトすることによって図11のように図6を回転することができる。  6 can be rotated as shown in FIG. 11 by shifting the Ridgelet domain left and right.

Hough変換によってパターン認識する方法について説明する。RadonドメインとHough変換パラメータ空間は等しいことが知られている。すなわち、Radonドメインを用いて直線成分を検出することが可能である。図12は直線成分を検出した例である。絶対値の大きなRadon変換係数を抽出し、逆Radon変換して直線成分を検出する。靴の踵における直線状の溝が検出されている。検出された直線をマッチングすることによって靴を同定することが考えられる。なお、直線上にのらない雑音が検出されている。直線成分のみを抽出することによって雑音を除去することが可能である。  A method for recognizing a pattern by Hough conversion will be described. It is known that the Radon domain and the Hough transform parameter space are equal. That is, it is possible to detect a linear component using the Radon domain. FIG. 12 shows an example in which a linear component is detected. A Radon transform coefficient having a large absolute value is extracted, and inverse Radon transform is performed to detect a linear component. A straight groove in the shoe heel has been detected. It is conceivable to identify shoes by matching detected straight lines. Noise that does not fall on a straight line is detected. It is possible to remove noise by extracting only the linear component.

Ridgeletドメインから解像度ごとに段階的に再生されたRadonドメインを用い、その相関を算出してパターンマッチングする。2つの画像のRadonドメインをそ

Figure 2007226756
標準偏差とする。また、pはドメイン内における係数の個数である。
Figure 2007226756
Using the Radon domain reproduced stepwise from the Ridgelet domain for each resolution, the correlation is calculated and pattern matching is performed. The Radon domain of the two images
Figure 2007226756
Use standard deviation. P is the number of coefficients in the domain.
Figure 2007226756

パターンマッチングの対象候補となる靴底画像の論理和画像を作成し、その画像と足跡画像との論理積画像を抽出することによって、足跡画像における雑音や不必要なパターンの除去が可能となる。雑音除去された画像を再度Ridgelet変換し、高解像度におけるマッチングへと処理を進めることができる。  By creating a logical sum image of shoe sole images that are candidates for pattern matching and extracting a logical product image of the images and footprint images, noise and unnecessary patterns in the footprint images can be removed. The image from which noise has been removed can be subjected to Ridgelet conversion again, and processing can proceed to matching at a high resolution.

ここでは、Radonドメインをマッチングしたが、直接Ridgeletドメインをマッチングすることも考えられる。Ridgeletドメインの縦方向の拡大縮小で画像のサイズを変更することができる。また、Ridgeletドメインを左右にシフトすることによって画像を回転させることも可能である。  Here, the Radon domain is matched, but it is also possible to match the Ridgelet domain directly. The size of the image can be changed by vertically scaling the Ridgelet domain. It is also possible to rotate the image by shifting the Ridgelet domain left and right.

一般Hough変換へ応用する方法について説明する。ドメイン内の操作で原画像の輝度値を任意の方向に任意の方向に微分することが可能である。(数7の式参照)輪郭線の法線方向を検出し、一般化Hough変換へ応用することで、足跡画像の輪郭線を示す各点について、その位置と法線方向をRテーブルに配列し、一般化Hough変換する。一般化Hough変換によって、より柔軟に任意の形状を検出することが可能となる。

Figure 2007226756
A method applied to general Hough conversion will be described. It is possible to differentiate the luminance value of the original image in an arbitrary direction in an arbitrary direction by an operation in the domain. (See Equation 7) By detecting the normal direction of the contour line and applying it to the generalized Hough transform, the position and normal direction of each point indicating the contour line of the footprint image are arranged in the R table. , Generalized Hough transform. An arbitrary shape can be detected more flexibly by the generalized Hough transform.
Figure 2007226756

靴底の模様を一般Hough変換によって分類してメタデータを生成し、データベース化する。メタデータを用いたパターンマッチングも可能となる。  The shoe sole pattern is classified by general Hough transformation to generate metadata and create a database. Pattern matching using metadata is also possible.

構成図 遺留画像の符号化フロー 遺留画像検索フロー Ridgeletドメインの操作による画像の変形フロー 足跡画像の例 足跡画像(a)、靴底の画像(b) 前処理後の画像の例 足跡画像(a)、靴底の画像(b)

Figure 2007226756
Ridgeletドメインの例 足跡画像(a)、靴底の画像(b) Radonドメインの例 足跡画像(a)、靴底の画像(b) 各解像度におけるRadonドメインの例 バイアス成分のみ(a)、第2サブバンドを含む(b)、第3サブバンドを含む(c) Radonドメイン内での操作による回転 ドメインの左シフト(a)、時計回りの回転(b) Hough変換による直線検出 Diagram Remaining image coding flow Remaining image search flow Deformation flow of images by operation of Ridgelet domain Examples of footprint images Footprint images (a), shoe sole images (b) Example of pre-processed image Footprint image (a), shoe sole image (b)
Figure 2007226756
Ridgelet domain example Footprint image (a), shoe sole image (b) Example of Radon domain Footprint image (a), shoe sole image (b) Example of Radon domain at each resolution Bias component only (a), second subband included (b), third subband included (c) Rotation by operation within Radon domain Left shift of domain (a), clockwise rotation (b) Straight line detection by Hough transform

Claims (5)

足跡などの遺留画像を被写体から抽出した後にRidgelet変換し具体的な形状を表現し雑音を除去し、データベースへの保存と検索を可能とした特徴を持つ遺留画像鑑定方法。  A method for appraisal of a survivor image such as a footprint image, which is extracted from a subject and then subjected to Ridgelet transform to express a specific shape, remove noise, and can be stored and searched in a database. 請求項1記載の遺留画像鑑定方法において、Ridgelet変換時の変換ドメイン内の操作によって拡大縮小、並行移動、回転させることを特徴とする遺留画像鑑定方法。  2. The method for appraisal of a residual image according to claim 1, wherein the image is subjected to enlargement / reduction, parallel movement, and rotation by an operation in a conversion domain at the time of Ridgelet conversion. 請求項1又は2記載の遺留画像鑑定方法においてRidgelet変換された遺留画像を段階的に解像度を上げながらRadonドメインを再生し、足跡画像をHough変換によって靴底画像とのパターンマッチングを可能にしたことを特徴とする遺留画像鑑定方法。  The Radon domain is reproduced while gradually increasing the resolution of the Ridgelet transformed residual image in the method for identifying a residual image according to claim 1 or 2, and the footprint image can be pattern-matched with the shoe sole image by Hough transformation. A method for appraisal of a residual image. 請求項1記載の遺留画像鑑定方法においてRidgelet変換時のRadonドメイン操作で原画像の輝度値を任意の方向に微分し、輪郭線の法線方向を検出して一般化Hough変換し、メタデータを生成して検索することを特徴とする遺留画像鑑定方法。  The method of claim 1, wherein the luminance value of the original image is differentiated in an arbitrary direction by a Radon domain operation at the time of Ridgelet conversion, the normal direction of the contour line is detected, generalized Hough conversion is performed, and the metadata is A method of appraisal of a remnant image characterized by generating and searching. 請求項1、2、3又は4記載の遺留画像鑑定方法において、遺留画像抽出手段、Ridgelet変換手段、Radon変換手段、Wavelet変換手段、Hough変換手段、保存手段、検索手段、直線検出によるマッチング手段、再生手段、拡大縮小手段、移動手段、回転手段、微分手段、一般Hough変換によるメタデータ作成とマッチング手段で構成された遺留画像鑑定装置。  Claim 1, 2, 3, or 4, wherein the residual image extraction means, Ridgelet conversion means, Radon conversion means, Wavelet conversion means, Hough conversion means, storage means, search means, matching means by straight line detection, A remnant image examination apparatus comprising reproduction means, enlargement / reduction means, movement means, rotation means, differentiation means, metadata creation by general Hough conversion and matching means.
JP2006079720A 2006-02-22 2006-02-22 Method and device for evaluating left image such as footprint using ridgelet transform Pending JP2007226756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079720A JP2007226756A (en) 2006-02-22 2006-02-22 Method and device for evaluating left image such as footprint using ridgelet transform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079720A JP2007226756A (en) 2006-02-22 2006-02-22 Method and device for evaluating left image such as footprint using ridgelet transform

Publications (1)

Publication Number Publication Date
JP2007226756A true JP2007226756A (en) 2007-09-06

Family

ID=38548480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079720A Pending JP2007226756A (en) 2006-02-22 2006-02-22 Method and device for evaluating left image such as footprint using ridgelet transform

Country Status (1)

Country Link
JP (1) JP2007226756A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278556A (en) * 2008-05-16 2009-11-26 Canon Inc Image processing apparatus, image processing method and program therefor, and computer readable storage medium with the program stored thereon
WO2015143948A1 (en) * 2014-03-27 2015-10-01 大连恒锐科技股份有限公司 Extraction method and extraction device for crime scene footprint through photographing
KR101781359B1 (en) 2016-02-12 2017-09-26 대한민국 A Method Of Providing For Searching Footprint And The System Practiced The Method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278556A (en) * 2008-05-16 2009-11-26 Canon Inc Image processing apparatus, image processing method and program therefor, and computer readable storage medium with the program stored thereon
JP4565016B2 (en) * 2008-05-16 2010-10-20 キヤノン株式会社 Image processing apparatus, image processing method and program thereof, and computer-readable storage medium storing the program
WO2015143948A1 (en) * 2014-03-27 2015-10-01 大连恒锐科技股份有限公司 Extraction method and extraction device for crime scene footprint through photographing
US9990545B2 (en) 2014-03-27 2018-06-05 Dalian Everspry Sci & Tech Co., Ltd Extraction method and extraction device for crime scene footprint through photographing
KR101781359B1 (en) 2016-02-12 2017-09-26 대한민국 A Method Of Providing For Searching Footprint And The System Practiced The Method

Similar Documents

Publication Publication Date Title
Tao et al. Deep learning for unsupervised anomaly localization in industrial images: A survey
Ansari et al. Pixel-based image forgery detection: A review
Cozzolino et al. Image forgery detection through residual-based local descriptors and block-matching
Qureshi et al. A review on copy move image forgery detection techniques
Alamro et al. Copy-move forgery detection using integrated DWT and SURF
Liu et al. Detection of JPEG double compression and identification of smartphone image source and post-capture manipulation
Guo et al. Rethinking gradient operator for exposing AI-enabled face forgeries
Bai et al. Robust texture-aware computer-generated image forensic: Benchmark and algorithm
Bharathiraja et al. A deep learning framework for image authentication: an automatic source camera identification Deep-Net
JP2007226756A (en) Method and device for evaluating left image such as footprint using ridgelet transform
Mahmood et al. Copy-move forgery detection technique based on DWT and Hu Moments
Dixit et al. Copy-move image forgery detection a review
Raskar et al. VFDHSOG: copy-move video forgery detection using histogram of second order gradients
Guruprasad et al. Multimodal recognition framework: an accurate and powerful Nandinagari handwritten character recognition model
Wilscy Pretrained convolutional neural networks as feature extractor for image splicing detection
Ghosh et al. GSD-Net: compact network for pixel-level graphical symbol detection
Ansari et al. Copy-Move Image Forgery Detection using Ring Projection and Modi_ed Fast Discrete Haar Wavelet Transform.
Kaur et al. State-of-the-art techniques for passive image forgery detection: a brief review
Qu An approach based on object detection for image forensics
Das et al. Person identification through IRIS recognition
Rai et al. A Thorough Investigation on Image Forgery Detection.
Birajdar et al. A Systematic Survey on Photorealistic Computer Graphic and Photographic Image Discrimination
Kumar et al. Text detection and localization in low quality video images through image resolution enhancement technique
Rajkumar et al. A robust and forensic transform for copy move digital image forgery detection based on dense depth block matching
Baykal et al. Image forgery detection based on SIFT and k-means++