JP2007226108A - Optical scanner and image forming apparatus - Google Patents

Optical scanner and image forming apparatus Download PDF

Info

Publication number
JP2007226108A
JP2007226108A JP2006049927A JP2006049927A JP2007226108A JP 2007226108 A JP2007226108 A JP 2007226108A JP 2006049927 A JP2006049927 A JP 2006049927A JP 2006049927 A JP2006049927 A JP 2006049927A JP 2007226108 A JP2007226108 A JP 2007226108A
Authority
JP
Japan
Prior art keywords
frequency
fixed electrode
mirror
optical scanning
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049927A
Other languages
Japanese (ja)
Other versions
JP4663550B2 (en
JP2007226108A5 (en
Inventor
Mitsuyoshi Fujii
光美 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006049927A priority Critical patent/JP4663550B2/en
Publication of JP2007226108A publication Critical patent/JP2007226108A/en
Publication of JP2007226108A5 publication Critical patent/JP2007226108A5/ja
Application granted granted Critical
Publication of JP4663550B2 publication Critical patent/JP4663550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce variation in oscillation angle even when ambient temperature varies and to reduce variance of oscillation angle due to the variance of resonance frequency. <P>SOLUTION: First fixed electrodes 51 and 52 are connected to second fixed electrodes 53 and 54 via an insulation layer 48. The frequency of a driving signal is compared with the resonance frequency which is decided by the inertia of a mirror 44 and the torsion spring constant of a beam 45. The driving signal is applied on the first fixed electrodes 51 and 52 when the driving frequency is larger than the resonance frequency and the mirror is oscillated by the electrostatic force acting on a movable electrode 46 and the first fixed electrodes, and the driving signal is applied on the second fixed electrodes 53 and 54 when the driving frequency is smaller than the resonance frequency and the mirror is oscillated by the electrostatic force acting on the movable electrode 46 and the second fixed electrodes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マイクロマシニング技術を応用した微小光学系を有する光走査装置に関し、例えば、デジタル複写機、及びレーザプリンタ等の書込系に用いられる光走査装置、あるいはバーコードリーダー等の読み取り装置などに好適な技術に関する。   The present invention relates to an optical scanning device having a micro optical system to which micromachining technology is applied, for example, an optical scanning device used in a writing system such as a digital copying machine and a laser printer, or a reading device such as a barcode reader. The present invention relates to a technology suitable for

従来の振動ミラーでは、同一直線上に設けられた2本の梁で支持されたミラー基板を、ミラー基板に対向する位置に設けた電極との間の静電引力で、2本の梁をねじり回転軸として往復振動させている(例えば、非特許文献1参照)。マイクロマシニング技術で形成されるこの光走査装置は、従来のモーターを使ったポリゴンミラーの回転による光走査装置と比較して、構造が簡単で半導体プロセスでの一括形成が可能なため、小型化が容易で製造コストも低く、また単一の反斜面であるため複数面による精度のばらつきがなく、さらに往復走査であるため高速化にも対応できる等の効果が期待できる。   In a conventional oscillating mirror, a mirror substrate supported by two beams provided on the same straight line is twisted by electrostatic attraction between an electrode provided at a position facing the mirror substrate. A reciprocating vibration is used as a rotating shaft (see Non-Patent Document 1, for example). This optical scanning device formed by micromachining technology has a simple structure and can be formed in a batch in a semiconductor process compared to a conventional optical scanning device using a polygon mirror rotation using a motor. It is easy and low in production cost, and since it is a single anti-slope, there are no variations in accuracy due to multiple surfaces, and further, since it is reciprocating scanning, it can be expected to be effective in speeding up.

このような静電駆動の振動ミラーとしては、梁をS字型として剛性を下げ、小さな駆動力で大きな振れ角が得られるようにしたもの(例えば、特許文献1参照)、梁の厚さをミラー基板、フレーム基板よりも薄くしたもの(例えば、特許文献2参照)、固定電極をミラー部の振動方向に重ならない位置に配置したもの(例えば、特許文献3、非特許文献2参照)、また、対向電極をミラーの振れの中心位置から傾斜させて設置することで、ミラーの振れ角を変えずに駆動電圧を下げたものがある(例えば、非特許文献3参照)。   As such an electrostatically driven vibrating mirror, the beam is made into an S-shape to reduce the rigidity so that a large deflection angle can be obtained with a small driving force (for example, see Patent Document 1). A mirror substrate, a substrate thinner than the frame substrate (for example, refer to Patent Document 2), a fixed electrode disposed at a position that does not overlap the vibration direction of the mirror part (for example, refer to Patent Document 3, Non-Patent Document 2), or In some cases, the drive voltage is lowered without changing the deflection angle of the mirror by installing the counter electrode so as to be inclined from the center position of the deflection of the mirror (for example, see Non-Patent Document 3).

IBM J.Res.Develop Vol.24 (1980)IBM J.M. Res. Develop Vol. 24 (1980) The 13th Annual International Workshop on MEMS2000 (2000)p.473−478The 13th Annual International Workshop on MEMS2000 (2000) p. 473-478 The 13th Annual International Workshop on MEMS2000 (2000)p.645−650The 13th Annual International Workshop on MEMS2000 (2000) p. 645-650 特許第2924200号公報Japanese Patent No. 2924200 特開平7−92409号公報Japanese Patent Laid-Open No. 7-92409 特許第3011144号公報Japanese Patent No. 30111144 特開平9−197334号公報JP-A-9-197334

図17を参照して、従来の問題点を説明する。図17(a)に示される光偏向素子において、環境温度が変化したとき光偏向素子の共振周波数が変化し、そのために光偏向素子の振れ角が減少するという問題がある。   A conventional problem will be described with reference to FIG. The optical deflection element shown in FIG. 17A has a problem that when the environmental temperature changes, the resonance frequency of the optical deflection element changes, and therefore the deflection angle of the optical deflection element decreases.

図17(a)、(b)に示す、同一直線上に設けた2本の梁を回転軸として支持されたミラー基板(可動部)44と、ミラー基板44に設けた可動電極46と、可動電極46に対向して設けた固定電極20を有し、可動電極46と固定電極20との間の静電引力で、2本の梁45をねじり回転軸としてミラー基板44を往復振動させる光偏向素子において、共振周波数は、近似的に以下の式で与えられる。   17 (a) and 17 (b), a mirror substrate (movable part) 44 supported by two beams provided on the same straight line as a rotation axis, a movable electrode 46 provided on the mirror substrate 44, and a movable Light deflection that has a fixed electrode 20 provided opposite to the electrode 46, and causes the mirror substrate 44 to reciprocately vibrate with the two beams 45 being twisted and rotated by the electrostatic attraction between the movable electrode 46 and the fixed electrode 20. In the element, the resonance frequency is approximately given by the following equation.

f=(1/2π)v(Kθ/I) (1)
但しKθ=捻りバネ定数、
Kθ=β・t・c^3・E/L(1+v)
t;バネ厚さ、L;長さ、c;幅 v;ポアッソン比
I=ミラー慣性モーメント
Siの温度係数をΔhtとするとき、温度Tにおけるヤング率は、以下の式で与えられる。
f = (1 / 2π) v (Kθ / I) (1)
Where Kθ = torsion spring constant,
Kθ = β · t · c ^ 3 · E / L (1 + v)
t; spring thickness, L; length, c; width v; Poisson's ratio I = Miller moment of inertia
When the temperature coefficient of Si is Δht, the Young's modulus at the temperature T is given by the following equation.

ヤング率E=E0(1−Δht*T) (2)
但しE0=1.9e+12(dyne/cm2)、
Δht=75e−6/°c
式(2)より、温度Tが高くなれば、ヤング率Eが小さくなることが分かる。これにより、(1)において、温度Tが大きくなれば共振周波数は、小さくなることが分かる。
Young's modulus E = E0 (1-Δht * T) (2)
However, E0 = 1.9e + 12 (dyne / cm2),
Δht = 75e−6 / ° c
From equation (2), it can be seen that the Young's modulus E decreases as the temperature T increases. Thereby, in (1), if the temperature T becomes large, it turns out that a resonant frequency becomes small.

図17(c)は、温度と共振周波数の関係の実測結果を示す。同図において、温度変化に応じて共振周波数が変化しているのが分かる。   FIG. 17C shows the actual measurement result of the relationship between temperature and resonance frequency. In the figure, it can be seen that the resonance frequency changes according to the temperature change.

そこで、図18(a)、(b)に示すように、このような共振周波数のばらつきを抑えるため、弾性変形部13に電気抵抗素子6を設けて、電気抵抗素子6に通電することにより電気抵抗素子6が発熱し、弾性変形部13の温度が変化し、これにより弾性変形部13のバネ定数が変化し、振動の共振周波数を変化させる方法が提案されている(例えば、特許文献4を参照)。   Therefore, as shown in FIGS. 18A and 18B, in order to suppress such a variation in the resonance frequency, an electric resistance element 6 is provided in the elastic deformation portion 13 and the electric resistance element 6 is energized to thereby generate electricity. A method has been proposed in which the resistance element 6 generates heat and the temperature of the elastic deformation portion 13 changes, thereby changing the spring constant of the elastic deformation portion 13 and changing the resonance frequency of vibration (see, for example, Patent Document 4). reference).

弾性変形部13に電気抵抗素子6を設けることにより、環境温度の変動による共振周波数の変動を抑えることも可能となる。しかし、弾性変形部13に電気抵抗素子6を設けるためのプロセスが複雑でありコストアップの原因となる。また電気抵抗素子6の温度制御回路30が必要となり、同じくコストアップの要因となる。
また、共振周波数のばらつきによる振れ角のばらつきという問題もある。上記したように、共振周波数は近似的に(1)式で与えられる。ミラー形状のばらつきにより慣性モーメントIがばらつく。また、ねじり梁形状のばらつきによりバネ定数Kθがばらつく。これにより、(1)式より共振周波数のばらつきが発生する。
By providing the electric resistance element 6 in the elastic deformation portion 13, it is also possible to suppress the fluctuation of the resonance frequency due to the fluctuation of the environmental temperature. However, the process for providing the electric resistance element 6 in the elastic deformation portion 13 is complicated, which causes an increase in cost. Further, the temperature control circuit 30 for the electric resistance element 6 is required, which also causes an increase in cost.
There is also a problem of variation in deflection angle due to variation in resonance frequency. As described above, the resonance frequency is approximately given by equation (1). The moment of inertia I varies due to variations in the mirror shape. Further, the spring constant Kθ varies due to variations in the shape of the torsion beam. Thereby, the dispersion | variation in a resonant frequency generate | occur | produces from (1) Formula.

このような共振周波数のばらつき特性をもった光走査装置を、レーザープリンタ等の光書き込み装置に用いた場合の問題点について検討する。   Consideration will be given to problems when the optical scanning device having such resonance frequency variation characteristics is used in an optical writing device such as a laser printer.

図16(a)に示されるレーザープリンタの書き込み装置は、複数個の光走査装置から構成され、主走査方向に配置されている。書き込み幅に対して、複数個の光走査装置により書き込みを行う。この光走査装置の共振周波数のばらつきを測定した結果を図19(a)に示す。また、光走査装置の振れ角周波数特性の測定結果を図19(b)に示す。このようなレーザープリンタの場合、光書き込み装置は、同一周波数の駆動信号Fdにより駆動される。この駆動信号Fdにおける各光走査装置の振れ角周波数特性を図19(c)に示す。図19(c)において、各走査装置の振れ角は、駆動信号と各周波数特性との交点で与えられ、振れ角のばらつきは図19(c)に示される範囲で与えられる。   The writing device of the laser printer shown in FIG. 16A is composed of a plurality of optical scanning devices and is arranged in the main scanning direction. Writing is performed with respect to the writing width by a plurality of optical scanning devices. FIG. 19A shows the result of measuring the variation in the resonance frequency of this optical scanning device. Further, FIG. 19B shows the measurement result of the shake angular frequency characteristic of the optical scanning device. In such a laser printer, the optical writing device is driven by a drive signal Fd having the same frequency. FIG. 19C shows the shake angular frequency characteristics of each optical scanning device at the drive signal Fd. In FIG. 19C, the deflection angle of each scanning device is given by the intersection of the drive signal and each frequency characteristic, and the variation of the deflection angle is given in the range shown in FIG. 19C.

本発明は上記した問題点に鑑みてなされたもので、
本発明の目的は、従来例のような電気抵抗素子などによる温度制御を行うことなく、環境温度が変化しても振れ角の変動が少ない光偏向素子構造を提供し、また、共振周波数のばらつきによる振れ角のばらつきの少ない光走査装置および画像形成装置を提供することにある。
The present invention has been made in view of the above problems,
An object of the present invention is to provide an optical deflector structure in which the fluctuation of the swing angle is small even when the environmental temperature changes without performing temperature control by an electric resistance element or the like as in the conventional example, and the variation in resonance frequency. It is an object of the present invention to provide an optical scanning device and an image forming apparatus in which variation in the deflection angle due to the above is small.

本発明は、ミラーの両端面に設けた可動電極と、それと対向して各々設けた第1の固定電極と、前記第1の固定電極の揺動方向同一面に重ねて設けた第2の固定電極とから構成されて、第1の固定電極、ミラーは一直線上に配置されており、ミラー側面に同一直線上に設けた梁を捻り回転軸として往復振動し、光源からのビームを偏向走査する光走査装置において、ミラーの両端面可動電極と第1の固定電極間に作用する静電気力と、ミラーの両端面可動電極と第2の固定電極間に作用する静電気力のどちらか一方の静電気力によりミラーを振動させることを最も主要な特徴とする。   The present invention provides a movable electrode provided on both end faces of a mirror, a first fixed electrode provided opposite to the movable electrode, and a second fixed provided overlapping the same plane in the swing direction of the first fixed electrode. The first fixed electrode and the mirror are arranged in a straight line, and reciprocally vibrate using a beam provided on the same side of the mirror as a torsional rotation axis to deflect and scan the beam from the light source. In the optical scanning device, one of the electrostatic force acting between the movable electrode at both ends of the mirror and the first fixed electrode and the electrostatic force acting between the movable electrode at both ends of the mirror and the second fixed electrode. The most important feature is to vibrate the mirror.

本発明(請求項1)によると、振れ角の周波数特性が、従来構成の周波数特性よりブロードな特性になり、また、振れ角のばらつきが低減する。   According to the present invention (claim 1), the frequency characteristic of the deflection angle becomes broader than the frequency characteristic of the conventional configuration, and the variation of the deflection angle is reduced.

本発明(請求項2)によると、周波数変化に対して、振れ角変化の大きい領域を除外できるので、光走査装置が安定に動作する。   According to the present invention (Claim 2), since the region where the deflection angle change is large with respect to the frequency change can be excluded, the optical scanning device operates stably.

本発明(請求項3)によると、定格振れ角θmを満足する周波数帯域を大きくとることができる。   According to the present invention (Claim 3), a large frequency band satisfying the rated deflection angle θm can be obtained.

本発明(請求項4)によると、第二の固定電極とミラー電極間に作用する静電気力の作用角度を広げることができ、これにより振れ角周波数特性の帯域を拡大することができる。   According to the present invention (Claim 4), the working angle of the electrostatic force acting between the second fixed electrode and the mirror electrode can be widened, whereby the band of the deflection angular frequency characteristic can be widened.

本発明(請求項5)によると、ミラー基板がベース基板とカバーガラスとの空間に減圧封止されているので、粘性抵抗係数が小さくなり、振れ角を大きくできる。   According to the present invention (Claim 5), since the mirror substrate is sealed under reduced pressure in the space between the base substrate and the cover glass, the viscosity resistance coefficient is reduced and the deflection angle can be increased.

本発明(請求項6)によると、ミラーの振れ角を大きくできる。   According to the present invention (Claim 6), the deflection angle of the mirror can be increased.

本発明(請求項7)によると、第一の固定電極と第二の固定電極が櫛歯形状をしているので、電極間の対向面積を大きくすることができる。その結果、対向面積に比例する静電気力が大きくなり、これより振動振幅を大きくできる。   According to the present invention (Claim 7), since the first fixed electrode and the second fixed electrode have a comb shape, the facing area between the electrodes can be increased. As a result, the electrostatic force proportional to the facing area is increased, and the vibration amplitude can be increased.

本発明(請求項8)によると、従来のポリゴンスキャナーに比較して部品数が非常に少ないので、ローコスト化が期待できる。   According to the present invention (Claim 8), since the number of parts is very small as compared with the conventional polygon scanner, a reduction in cost can be expected.

以下、発明の実施の形態について図面により詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例1:
図1は、本発明の実施例1の構成を示す。図1(b)は、図1(a)の断面図である。図1(a)において、42は第一の基板、43は第二の基板である。第一の基板42には、エッチングによる加工により可動部44の両側面に、捻りバネ45,45’が設けられている。また、可動部44の両端面に可動電極46,46’が設けられ、それと対向して第一の固定電極51、52を形成している。第一の基板42は、分離溝49により、ミラー面を有する可動部44と第一固定電極51と第一固定電極52に分割される。
Example 1:
FIG. 1 shows the configuration of Embodiment 1 of the present invention. FIG. 1B is a cross-sectional view of FIG. In FIG. 1A, 42 is a first substrate and 43 is a second substrate. The first substrate 42 is provided with torsion springs 45 and 45 ′ on both side surfaces of the movable portion 44 by etching. In addition, movable electrodes 46 and 46 ′ are provided on both end faces of the movable portion 44, and first fixed electrodes 51 and 52 are formed facing the movable electrodes 46 and 46 ′. The first substrate 42 is divided into a movable part 44 having a mirror surface, a first fixed electrode 51, and a first fixed electrode 52 by a separation groove 49.

第二の基板43が、第一の基板42と絶縁層48を介して接合され、可動部44の揺動空間59が形成されている。第二の基板43は、分離溝49により、2つの第二固定電極53、54に分割される。   The second substrate 43 is bonded to the first substrate 42 via the insulating layer 48 to form a swing space 59 of the movable portion 44. The second substrate 43 is divided into two second fixed electrodes 53 and 54 by the separation groove 49.

本実施例では、第一の固定電極と可動電極間に電圧を印加し、二つの電極間に作用する静電気力を駆動力とする場合と、第二の固定電極と可動電極間に電圧を印加し、二つの電極間に作用する静電気力を駆動力とする場合がある。   In this embodiment, a voltage is applied between the first fixed electrode and the movable electrode, and an electrostatic force acting between the two electrodes is used as the driving force, and a voltage is applied between the second fixed electrode and the movable electrode. In some cases, the driving force is an electrostatic force acting between the two electrodes.

光走査装置の力学的モデルとして、一自由度振動系を取り上げて、光走査装置の動作を説明する。   The operation of the optical scanning device will be described by taking a one-degree-of-freedom vibration system as a mechanical model of the optical scanning device.

一自由度系振動系で、バネが非線形性を有するモデルにより解析を行う(duffingの方程式)。   The analysis is performed using a model having a one-degree-of-freedom vibration system in which the spring has nonlinearity (duffing equation).

図2において、
・ねじりバネ/静電気トルクを、線形バネ定数k、非線形バネ常数βのバネでモデル化し、
・ミラーの慣性を、質点(I)でモデル化し、
・空気粘性を、ダシュポット(c)でモデル化し、
・外力を、振幅q、角速度ω0の正弦波でモデル化とすると、
I・X”+c・X’+(k・X+β・X^3)=q・cosωt (3)
となる(Xは変位、X’は1階微分、X”は2階微分、X^3は3階微分)。
In FIG.
・ Torsion spring / electrostatic torque is modeled by a spring with linear spring constant k and nonlinear spring constant β,
・ Model the inertia of the mirror with the mass (I),
・ Air viscosity is modeled in a dashpot (c),
・ When external force is modeled as a sine wave with amplitude q and angular velocity ω0,
I · X ″ + c · X ′ + (k · X + β · X ^ 3) = q · cos ωt (3)
(X is displacement, X ′ is the first derivative, X ″ is the second derivative, and X ^ 3 is the third derivative).

この一自由度振動系に正弦波外力が作用するモデルにより、振動特性解析を行う。
(A)第一の固定電極と可動電極間に電圧を印加し、二つの電極間に作用する静電気力を駆動力とする場合:
図3(a)は、第一の固定電極51,52と可動電極間46の間に作用するトルクを示している。(3)式における戻りバネ力は、捻りバネ力と静電気トルクTrqの和で与えられる。
Vibration characteristics are analyzed using a model in which a sinusoidal external force acts on this one-degree-of-freedom vibration system.
(A) When a voltage is applied between the first fixed electrode and the movable electrode, and the electrostatic force acting between the two electrodes is used as the driving force:
FIG. 3A shows torque acting between the first fixed electrodes 51 and 52 and the movable electrode 46. The return spring force in the equation (3) is given by the sum of the torsion spring force and the electrostatic torque Trq.

図3(b)は、図3(a)に示される第一の固定電極と可動電極間の静電気力を求めた結果を示す。計算は有限要素法により求めた。この静電トルクとねじりバネ力を加え合わせた力が、ミラーの戻り力として作用する。   FIG. 3B shows the result of obtaining the electrostatic force between the first fixed electrode and the movable electrode shown in FIG. The calculation was obtained by the finite element method. A force obtained by adding the electrostatic torque and the torsion spring force acts as a return force of the mirror.

図3(c)は、静電トルクとねじりバネ力を加え合わせた力、戻り力(k・X+βX^3)を示す。この戻り力は、原点に対して対称であり、振れ角θ>0において、上に凸、振れ角θ<0において、下に凸である。よって、3次の多項式(k・X+βX^3、但しβ<0)で近似できる。   FIG. 3C shows a force obtained by adding the electrostatic torque and the torsion spring force, and a return force (k · X + βX ^ 3). This return force is symmetric with respect to the origin, and is convex upward at a deflection angle θ> 0 and convex downward at a deflection angle θ <0. Therefore, it can be approximated by a cubic polynomial (k · X + βX ^ 3, where β <0).

方程式(3)から、定常状態での周波数応答特性を求めた結果を、図5(b)に示す。   FIG. 5B shows the result of obtaining the frequency response characteristic in the steady state from the equation (3).

図5(b)において、斜線部は(3)式の定常状態の解が存在しない範囲を示す。この解の存在範囲により、非線形振動系に特有な跳躍減少とヒステリシス減少が発生する。斜線部に定常解が存在し得ないため、駆動周波数の上昇及び下降に応じて、周波数応答が不連続に変化する。駆動周波数を上昇させていくとき、A’−>B’の跳躍が生じる。また、駆動周波数を減少させていくとき、C’−>D’の跳躍が生じる。   In FIG. 5B, the shaded area indicates a range where there is no steady-state solution of equation (3). Due to the existence range of this solution, a jump decrease and a hysteresis decrease that are characteristic of the nonlinear vibration system occur. Since a steady solution cannot exist in the shaded area, the frequency response changes discontinuously as the drive frequency increases and decreases. When the drive frequency is increased, a jump of A '-> B' occurs. Further, when the drive frequency is decreased, a jump of C ′-> D ′ occurs.

図5(b)は、上記結果から得られる周波数を下降させた場合の応答曲線を示し、いわゆるソフトスプリング効果(駆動周波数が低くなるに従って共振点C’が低くなる現象)が現れていることがわかる。
(B)第二の固定電極と可動電極間に電圧を印加し、二つの電極間に作用する静電気力を駆動力とする場合:
図4(a)は、第二の固定電極53,54と可動電極間46の間に作用するトルクを示している。(3)式における戻りバネ力は、捻りバネ力と静電トルクの和で与えられる。
FIG. 5B shows a response curve when the frequency obtained from the above result is lowered, and a so-called soft spring effect (a phenomenon in which the resonance point C ′ becomes lower as the drive frequency becomes lower) appears. Recognize.
(B) When a voltage is applied between the second fixed electrode and the movable electrode, and the electrostatic force acting between the two electrodes is used as the driving force:
FIG. 4A shows torque acting between the second fixed electrodes 53 and 54 and the movable electrode 46. The return spring force in the equation (3) is given by the sum of the torsion spring force and the electrostatic torque.

図4(b)は、図4(a)に示される第二の固定電極と可動電極間の静電気力を求めた結果を示す。計算は有限要素法により求めた。この静電トルクとねじりバネ力を加え合わせた力が、ミラーの戻りバネ力として作用する。   FIG. 4B shows the result of obtaining the electrostatic force between the second fixed electrode and the movable electrode shown in FIG. The calculation was obtained by the finite element method. A force obtained by adding the electrostatic torque and the torsion spring force acts as a return spring force of the mirror.

図4(c)は、静電トルクとねじりバネ力を加え合わせた力、戻り力を示す。この戻り力は、原点に対して対称であり、振れ角θ>0において、下に凸、振れ角θ<0において、上に凸である。よって、3次の多項式(k・X+βX^3、但しβ>0)で近似できる。これは、上記(A)の場合と全く逆になる。   FIG. 4C shows the return force and the force obtained by adding the electrostatic torque and the torsion spring force. This return force is symmetric with respect to the origin, and is convex downward at a deflection angle θ> 0 and convex upward at a deflection angle θ <0. Therefore, it can be approximated by a cubic polynomial (k · X + βX ^ 3, where β> 0). This is completely opposite to the case of (A) above.

方程式(3)から、定常状態での周波数応答特性を求めた結果を、図5(a)に示す。   FIG. 5A shows the result of obtaining the frequency response characteristic in the steady state from the equation (3).

図5(a)において、斜線部は式(3)の定常状態の解が存在する範囲を示す。この解の存在範囲により、非線形振動系に特有な跳躍減少とヒステリシス減少が発生する。斜線部に定常解が存在し得ないため、駆動周波数の上昇及び下降に応じて周波数応答が不連続に変化する。駆動周波数を上昇させていくとき、A−>Bの跳躍が生じる。また、駆動周波数を減少させていくとき、C−>Dの跳躍が生じる。   In FIG. 5A, the shaded area indicates a range where the steady state solution of Equation (3) exists. Due to the existence range of this solution, a jump decrease and a hysteresis decrease that are characteristic of the nonlinear vibration system occur. Since a steady solution cannot exist in the shaded area, the frequency response changes discontinuously as the drive frequency increases and decreases. When the drive frequency is increased, a jump of A-> B occurs. Further, when the drive frequency is decreased, a jump of C-> D occurs.

図5(a)は、上記結果から得られる周波数を上昇させた場合の応答曲線を示し、ハードスプリング効果(駆動周波数が高くなるに従って共振点Aが高くなる現象)が現れていることがわかる。   FIG. 5A shows a response curve when the frequency obtained from the above results is increased, and it can be seen that a hard spring effect (a phenomenon in which the resonance point A increases as the drive frequency increases) appears.

図5(c)は、上記した(A)、(B)の場合の解析結果を基に両方の場合の振れ角周波数応答を、同一グラフに示した図である。(A)、(B)の両方の応答曲線は、ミラーの慣性と捻り梁の捻りバネ定数で定まる共振周波数でピーク値をもつ。そして、図5(c)に示すように、振れ角周波数特性において、従来構成の周波数特性より、ブロードな特性になっていることがわかる。図6は、本発明の光走査装置を複数個、同時に使用した場合の振れ角のばらつきを示す。単一の駆動信号周波数(Fd)に対する振れ角を、各光走査装置の振れ角応答特性から求める。周波数Fdと各走査装置の振れ角応答特性との交点が、周波数(Fd)での振れ角を与える。これにより、振れ角ばらつきを求めると、図6に示すように、従来例に比較して振れ角のばらつきが低減しているのがわかる。   FIG. 5C is a graph showing the angular frequency response in both cases based on the analysis results in the cases (A) and (B) described above. Both response curves (A) and (B) have a peak value at the resonance frequency determined by the inertia of the mirror and the torsion spring constant of the torsion beam. As shown in FIG. 5C, it can be seen that the deflection angular frequency characteristic is broader than the frequency characteristic of the conventional configuration. FIG. 6 shows variation in deflection angle when a plurality of optical scanning devices of the present invention are used simultaneously. A deflection angle with respect to a single drive signal frequency (Fd) is obtained from a deflection angle response characteristic of each optical scanning device. The intersection of the frequency Fd and the deflection angle response characteristic of each scanning device gives the deflection angle at the frequency (Fd). Thus, when the fluctuation of the deflection angle is obtained, it can be seen that the fluctuation of the deflection angle is reduced as compared with the conventional example as shown in FIG.

光偏向素子として必要とされる振れ角をθmとする。図7は、この振れ角θmを振れ角周波数特性に追加した図である。図7において、以下の方法により振れ角θ以上の帯域を求めると、f1〜f2、f3〜f4となる。
(1)共振周波数近傍は、周波数変化に対する振れ角の変化が著しいこと、更に周波数帯域として、非常に狭い帯域であるので除外しても実用上差し支えない。
(2)振れ角は静電気力に比例し、静電気力は印加電圧に比例する。振れ角θmより振れ角が大きい領域では、印加電圧を低下させることにより、振れ角θmに調整一致させることが出来る。よって、共振周波数近傍を除いた領域を駆動領域として設定する。
The deflection angle required for the optical deflection element is θm. FIG. 7 is a diagram in which the deflection angle θm is added to the deflection angular frequency characteristic. In FIG. 7, when a band greater than the deflection angle θ is obtained by the following method, f1 to f2 and f3 to f4 are obtained.
(1) In the vicinity of the resonance frequency, the change of the deflection angle with respect to the frequency change is remarkable, and since it is a very narrow band as a frequency band, it can be excluded from practical use.
(2) The deflection angle is proportional to the electrostatic force, and the electrostatic force is proportional to the applied voltage. In a region where the deflection angle is larger than the deflection angle θm, the applied voltage can be lowered to make the adjustment angle coincide with the deflection angle θm. Therefore, the region excluding the vicinity of the resonance frequency is set as the drive region.

(第1の駆動方法)
図1(b)において、光走査装置55には駆動回路60、比較回路61が追加されている。可動部44はGNDに接続されていて、第一の固定電極51、52、第二の固定電極53、54はそれぞれ駆動回路60に接続されている。
(First driving method)
In FIG. 1B, a drive circuit 60 and a comparison circuit 61 are added to the optical scanning device 55. The movable portion 44 is connected to GND, and the first fixed electrodes 51 and 52 and the second fixed electrodes 53 and 54 are connected to the drive circuit 60, respectively.

画像信号生成装置(図示せず)からの画像信号に応じた光偏向素子駆動信号62は、最初に比較回路61に入力される。比較回路61では、駆動信号周波数62と、図1(a)に示すミラー可動部の慣性と捻りバネによって決定される共振周波数を比較する。駆動信号周波数62が共振周波数より高い場合、比較回路61は第一の固定電極51、52を選択し、駆動回路60は可動部の可動電極46と第一の固定電極51、52間に電圧を印加する。   An optical deflection element drive signal 62 corresponding to an image signal from an image signal generation device (not shown) is first input to the comparison circuit 61. The comparison circuit 61 compares the drive signal frequency 62 with the resonance frequency determined by the inertia of the mirror movable part and the torsion spring shown in FIG. When the drive signal frequency 62 is higher than the resonance frequency, the comparison circuit 61 selects the first fixed electrodes 51 and 52, and the drive circuit 60 generates a voltage between the movable electrode 46 of the movable part and the first fixed electrodes 51 and 52. Apply.

駆動信号周波数62が共振周波数より低い場合、比較回路61は第二の固定電極53、54を選択し、駆動回路60は可動部の可動電極46と第二の固定電極53、54間に電圧を印加する。   When the drive signal frequency 62 is lower than the resonance frequency, the comparison circuit 61 selects the second fixed electrodes 53 and 54, and the drive circuit 60 generates a voltage between the movable electrode 46 of the movable part and the second fixed electrodes 53 and 54. Apply.

上記したように、光走査装置の駆動信号と共振周波数を比較した結果を基に、第1の固定電極に駆動信号を印加するか、第2の固定電極に駆動信号を印加するかを判定しているので、図7に示すように、定格振れ角θmを満足する周波数帯域を大きくとれる。   As described above, it is determined whether to apply the drive signal to the first fixed electrode or to apply the drive signal to the second fixed electrode based on the result of comparing the drive signal of the optical scanning device and the resonance frequency. Therefore, as shown in FIG. 7, a large frequency band satisfying the rated deflection angle θm can be obtained.

図8に示すように、第二の固定電極53、54の厚さを、第一の固定電極51,52の厚さよりも厚くする。典型的には、第二の固定電極53,54の厚さは、第一の固定電極51,52の2倍程度に設定される。   As shown in FIG. 8, the thickness of the second fixed electrodes 53 and 54 is made larger than the thickness of the first fixed electrodes 51 and 52. Typically, the thickness of the second fixed electrodes 53 and 54 is set to about twice that of the first fixed electrodes 51 and 52.

このような構成を採る、第二の固定電極53,54と可動電極間46に電圧を印加し、二つの電極間に作用する静電気力を求めた結果を図9(b)に示す。電極の厚さを厚くすることにより、静電気力がほぼ作用しなくなる角度θ0‘が、厚くしない場合の角度θ0より広くなっていることがわかる。なお、図9(a)は第二の固定電極と可動電極間に作用するトルクを示し、図9(c)は戻り力を示す。図10は、求めた定常状態での振れ角の周波数特性を示す。これにより、静電トルクの作用範囲が増加し、振れ角の帯域幅が増加していることがわかる。   FIG. 9B shows the result of obtaining the electrostatic force acting between the two electrodes by applying a voltage between the second fixed electrodes 53 and 54 and the movable electrode 46 having such a configuration. It can be seen that by increasing the thickness of the electrode, the angle θ0 ′ at which the electrostatic force almost does not act is wider than the angle θ0 when the electrode is not thickened. FIG. 9A shows the torque acting between the second fixed electrode and the movable electrode, and FIG. 9C shows the return force. FIG. 10 shows the obtained frequency characteristic of the deflection angle in the steady state. As a result, it can be seen that the operating range of the electrostatic torque is increased, and the bandwidth of the deflection angle is increased.

図11は、光走査装置を組み立てる図を示す。(b)はアッセンブリーされた状態の断面図である。図11(a)において、31はガラス等の透明部材からなるカバー基板、42は捻り回転軸45と可動部44を有する第一基板、35は第一基板42に電気的に接続するための貫通電極36を有し、封止するためのベース基板である。第一基板42は、分離溝49により、可動電極46とミラー33を有する可動部44と、固定電極51、52を有する固定部58に分割されている。ベース基板35には、固定電極51〜54と可動電極46にそれぞれ接続される貫通電極36が設けられている。図11(b)において、貫通電極36は固定部47に接触し、電気的に接続されている。同様に、可動部は貫通電極36に接触し、電気的な接続がとられている。   FIG. 11 shows a diagram for assembling the optical scanning device. (B) is sectional drawing of the assembled state. In FIG. 11A, 31 is a cover substrate made of a transparent member such as glass, 42 is a first substrate having a twist rotating shaft 45 and a movable portion 44, and 35 is a through hole for electrically connecting to the first substrate 42. This is a base substrate for sealing with the electrode. The first substrate 42 is divided by a separation groove 49 into a movable portion 44 having a movable electrode 46 and a mirror 33 and a fixed portion 58 having fixed electrodes 51 and 52. The base substrate 35 is provided with through electrodes 36 connected to the fixed electrodes 51 to 54 and the movable electrode 46, respectively. In FIG. 11B, the through electrode 36 is in contact with and electrically connected to the fixing portion 47. Similarly, the movable part contacts the through electrode 36 and is electrically connected.

(第2の駆動方法)
本発明の光走査装置の共振点付近での振れ角θresは以下の式(4)で与えられる。
θres=(Trq/I)*K(f0,C) (4)
但し、K(f0、C)は、共振周波数f0、粘性抵抗Cの関数であり、f0、Cに反比例する。
(Second driving method)
The deflection angle θres near the resonance point of the optical scanning device of the present invention is given by the following equation (4).
θres = (Trq / I) * K (f0, C) (4)
However, K (f0, C) is a function of the resonance frequency f0 and the viscous resistance C, and is inversely proportional to f0 and C.

Kθ:捻りバネ定数
Trq:電極間静電トルク
I:ミラー慣性モーメント
C:粘性抵抗係数
K(f0,c)は、共振周波数f0=constとした場合、粘性抵抗係数cに反比例する。
Kθ: Torsion spring constant Trq: Electrostatic torque between electrodes I: Mirror inertia moment C: Viscous resistance coefficient K (f0, c) is inversely proportional to the viscous resistance coefficient c when the resonance frequency f0 = const.

図12に示すように、粘性抵抗は、圧力とほぼ比例関係にある。圧力が低くなると、粘性抵抗係数を小さくできる。そのため、K(f0,c)は大きくなり、振れ角θresは大きくなる。   As shown in FIG. 12, the viscous resistance is approximately proportional to the pressure. When the pressure is lowered, the viscous drag coefficient can be reduced. Therefore, K (f0, c) increases and the deflection angle θres increases.

駆動回路60は、第一の固定電極51,52に対しては、駆動信号62の2倍の周波数の駆動パルスを生成する。駆動回路60は、第二の固定電極53,54に対しては、駆動信号62と同じ周波数の駆動パルスを生成する。これらの駆動パルスにより、可動部44は、第一、第二の固定電極とミラー可動電極46間に発生する静電気力により振動を開始する。振動開始時は、固有振動数で振動を開始し、定常状態になると、駆動信号62の周波数と同じ周波数で振動する。   The drive circuit 60 generates a drive pulse having a frequency twice that of the drive signal 62 for the first fixed electrodes 51 and 52. The drive circuit 60 generates drive pulses having the same frequency as the drive signal 62 for the second fixed electrodes 53 and 54. With these drive pulses, the movable portion 44 starts to vibrate due to the electrostatic force generated between the first and second fixed electrodes and the mirror movable electrode 46. At the start of vibration, vibration is started at the natural frequency, and when it reaches a steady state, it vibrates at the same frequency as that of the drive signal 62.

図13、14を参照して動作を説明する。可動電極46と第一の固定電極間51,52に発生する静電気力により加振される場合について説明する(図13(a))。可動電極46と第一の固定電極間に発生する静電気力は、可動部44を振動中心63に引き戻す方向の力が作用する。そのため、可動部44が中心に向かって回転するタイミングで印加することが出来る。可動部の振動は、中心に向かって動いている状態であるので、可動部の回転方向と一致し加速する。したがって、図14に示すように、駆動周波数の2倍の周波数の駆動信号で加振することが出来る。   The operation will be described with reference to FIGS. A case will be described in which vibration is applied by electrostatic force generated between the movable electrode 46 and the first fixed electrode 51, 52 (FIG. 13A). The electrostatic force generated between the movable electrode 46 and the first fixed electrode acts as a force in a direction that pulls the movable portion 44 back to the vibration center 63. Therefore, it can be applied at a timing when the movable portion 44 rotates toward the center. Since the vibration of the movable part is in a state of moving toward the center, the vibration is accelerated in accordance with the rotation direction of the movable part. Therefore, as shown in FIG. 14, excitation can be performed with a drive signal having a frequency twice as high as the drive frequency.

次に、可動電極46と第二の固定電極間に発生する静電気力により加振される場合について説明する(図13(b))。可動電極46と第二の固定電極間に発生する静電気力は、可動電極44を振動中心に引き戻す方向の力を利用する。第二の固定電極53,54の場合、振動中心に対して電極配置が非対称である。可動部が中心に向かって運動するタイミングで印加する場合、可動部の振動一サイクルに対して一回の加振が出来る。これにより、ミラー33の振れ角を大きくできる。   Next, a description will be given of a case where vibration is applied by an electrostatic force generated between the movable electrode 46 and the second fixed electrode (FIG. 13B). The electrostatic force generated between the movable electrode 46 and the second fixed electrode uses a force in a direction in which the movable electrode 44 is pulled back to the vibration center. In the case of the second fixed electrodes 53 and 54, the electrode arrangement is asymmetric with respect to the vibration center. When applying at the timing when the movable part moves toward the center, one excitation can be performed for one cycle of vibration of the movable part. Thereby, the deflection angle of the mirror 33 can be increased.

実施例2:
図15は、本発明の実施例2の構成を示す。図15において、42は第一の基板、43は第二の基板である。第一の基板42は、エッチングによる加工により、可動部44の両側面に捻りバネ45,45’が設けられている。また可動部44の両端面に可動電極46,46’が設けられ、それと対向して第一の固定電極(A),(B)を形成している。可動電極46、46’は櫛歯状に形成されている。第一の基板42は、分離溝49により、ミラーを有する可動部44と第一固定電極(A)51と第一固定電極(B)52に分割される。同じく第一固定電極(A),(B)は櫛歯状に形成されている。第二の基板43が、第一の基板42と絶縁層48を介して接合され、可動部44の揺動空間59が形成されている。第二の基板43は、分離溝49により、2つの第二固定電極(A)、(B)に分割される。第二固定電極(A),(B)は櫛歯状に形成され、第一、第二固定電極と可動電極は狭いギャップで、入れ子状態で対向している。
Example 2:
FIG. 15 shows the configuration of the second embodiment of the present invention. In FIG. 15, 42 is a first substrate and 43 is a second substrate. The first substrate 42 is provided with torsion springs 45 and 45 ′ on both side surfaces of the movable portion 44 by etching. Further, movable electrodes 46 and 46 ′ are provided on both end faces of the movable portion 44, and the first fixed electrodes (A) and (B) are formed facing the movable electrodes 46 and 46 ′. The movable electrodes 46 and 46 'are formed in a comb shape. The first substrate 42 is divided into a movable part 44 having a mirror, a first fixed electrode (A) 51, and a first fixed electrode (B) 52 by a separation groove 49. Similarly, the first fixed electrodes (A) and (B) are formed in a comb shape. The second substrate 43 is bonded to the first substrate 42 via the insulating layer 48 to form a swing space 59 of the movable portion 44. The second substrate 43 is divided into two second fixed electrodes (A) and (B) by the separation groove 49. The second fixed electrodes (A) and (B) are formed in a comb-tooth shape, and the first and second fixed electrodes and the movable electrode are opposed to each other in a nested state with a narrow gap.

可動部の両端面に設けられた可動電極とそれに対向して各々設けられた第一の固定電極と、上記第一の固定電極と揺動方向に重ねて設けられた第二の固定電極は、それぞれ櫛歯形状をしているので、電極間の対向面積を大きくでき、また、静電気力は対向面積に比例するので、振動振幅を大きくできる。   A movable electrode provided on both end faces of the movable part, a first fixed electrode provided opposite to the movable electrode, and a second fixed electrode provided overlapping the first fixed electrode in the swinging direction, Since each has a comb-teeth shape, the facing area between the electrodes can be increased, and the electrostatic force is proportional to the facing area, so that the vibration amplitude can be increased.

実施例3:
図16は、本発明の実施例3の構成を示す。図16(a)は本発明の光走査装置を備えた光書き込み手段を示し、(b)は本発明の光走査装置を備えた画像形成装置を示す。図16において、本発明の光走査装置からなる光書き込み装置は、複数個の光走査装置40を主走査方向に配置されている。書き込み幅に対して、複数個の光走査装置40により書き込みを行う。85は半導体レーザーであり、画像信号生成装置(図示せず)による画像信号に基づき発光する。レーザー光86は光走査装置40に入射し、光走査装置のミラーにより偏向された反射レーザー光は感光体87に静電潜像を形成する。現像定着手段88により、感光体に形成された静電潜像は、被記録体搬送手段89により給送される記録紙にトナー像を生成する。
Example 3:
FIG. 16 shows the configuration of Embodiment 3 of the present invention. FIG. 16A shows an optical writing means provided with the optical scanning device of the present invention, and FIG. 16B shows an image forming apparatus provided with the optical scanning device of the present invention. In FIG. 16, the optical writing device comprising the optical scanning device of the present invention has a plurality of optical scanning devices 40 arranged in the main scanning direction. Writing is performed with respect to the writing width by a plurality of optical scanning devices 40. A semiconductor laser 85 emits light based on an image signal from an image signal generator (not shown). The laser beam 86 enters the optical scanning device 40, and the reflected laser beam deflected by the mirror of the optical scanning device forms an electrostatic latent image on the photoconductor 87. The electrostatic latent image formed on the photosensitive member by the developing and fixing unit 88 generates a toner image on the recording paper fed by the recording medium conveying unit 89.

本発明の光走査装置からなる光書き込み手段は、複数個の光走査装置を主走査方向に配置されている。レーザープリンタにおいて、一般的に用いられている光走査装置はポリゴンスキャナーである。本発明の光走査装置からなる光書き込み手段は、ポリゴンスキャナーに比較して、部品数が非常に少ないので、ローコスト化が期待できる。   The optical writing means comprising the optical scanning device of the present invention has a plurality of optical scanning devices arranged in the main scanning direction. In a laser printer, a commonly used optical scanning device is a polygon scanner. Since the optical writing means comprising the optical scanning device of the present invention has a very small number of parts compared to a polygon scanner, a reduction in cost can be expected.

本発明の実施例1の構成を示す。The structure of Example 1 of this invention is shown. 振動特性解析を行うモデル例を示す。A model example for performing vibration characteristic analysis is shown. 第一の固定電極と可動電極間に電圧を印加した場合の静電トルクと戻り力を示す。The electrostatic torque and the return force when a voltage is applied between the first fixed electrode and the movable electrode are shown. 第二の固定電極と可動電極間に電圧を印加した場合の静電トルクと戻り力を示す。The electrostatic torque and the return force when a voltage is applied between the second fixed electrode and the movable electrode are shown. 駆動周波数に対する振れ角の特性を示す。The characteristic of the deflection angle with respect to the driving frequency is shown. 本発明の光走査装置を複数個、同時に使用した場合の振れ角のばらつきを示す。The fluctuation of the deflection angle when a plurality of optical scanning devices of the present invention are used simultaneously is shown. 振れ角θmを振れ角周波数特性に追加した図である。It is the figure which added deflection angle (theta) m to the deflection angular frequency characteristic. 第二の固定電極の厚さを第一の固定電極よりも厚く構成した例を示す。The example which comprised the thickness of the 2nd fixed electrode thicker than the 1st fixed electrode is shown. 第二の固定電極の厚さを第一の固定電極よりも厚く構成した場合の静電トルクなどの特性を示す。Characteristics such as electrostatic torque when the thickness of the second fixed electrode is made thicker than that of the first fixed electrode are shown. 図8の構成における振れ角の周波数特性を示す。The frequency characteristic of the deflection angle in the configuration of FIG. 8 is shown. 光走査装置を組み立てる図を示す。The figure which assembles an optical scanning device is shown. 粘性抵抗と圧力の関係を示す。The relationship between viscous resistance and pressure is shown. 第2の駆動方法を説明する図である。It is a figure explaining the 2nd drive method. 第2の駆動方法を説明する図である。It is a figure explaining the 2nd drive method. 本発明の実施例2の構成を示す。The structure of Example 2 of this invention is shown. 本発明の実施例3の構成を示す。The structure of Example 3 of this invention is shown. 第1の従来技術を説明する図である。It is a figure explaining 1st prior art. 第2の従来技術を説明する図である。It is a figure explaining the 2nd prior art. 従来技術の問題点を説明する図である。It is a figure explaining the problem of a prior art.

符号の説明Explanation of symbols

42 第1の基板
43 第2の基板
44 可動部
45 梁
46 可動電極
51、52 第1の固定電極
53、54 第2の固定電極
42 1st board | substrate 43 2nd board | substrate 44 Movable part 45 Beam 46 Movable electrode 51, 52 1st fixed electrode 53, 54 2nd fixed electrode

Claims (8)

ミラーの両端面に設けた可動電極と、それと対向して各々設けた第1の固定電極と、前記第1の固定電極に重ねて設けた第2の固定電極から構成され、前記ミラーの側面に同一直線上に設けた梁を捻り回転軸として前記ミラーを往復振動し、光源からのビームを偏向走査する光走査装置において、前記可動電極と前記第1の固定電極間に作用する静電気力と、前記可動電極と前記第2の固定電極間に作用する静電気力の何れか一方の静電気力により前記ミラーを振動させることを特徴とする光走査装置。   A movable electrode provided on both end faces of the mirror, a first fixed electrode provided opposite to the movable electrode, and a second fixed electrode provided so as to overlap the first fixed electrode. An electrostatic force acting between the movable electrode and the first fixed electrode in an optical scanning device that reciprocally vibrates the mirror using a beam provided on the same straight line as a rotation axis and deflects and scans the beam from the light source; An optical scanning device characterized in that the mirror is vibrated by one of electrostatic forces acting between the movable electrode and the second fixed electrode. 前記静電気力の駆動周波数を、ミラーの慣性と梁の捻りバネ定数で定まる共振周波数の帯域でピークを外した周波数に設定することを特徴とする請求項1記載の光走査装置。   2. The optical scanning device according to claim 1, wherein the driving frequency of the electrostatic force is set to a frequency that does not have a peak in a resonance frequency band determined by the inertia of the mirror and the torsion spring constant of the beam. 前記静電気力の駆動周波数を、ミラーの慣性と梁の捻りバネ定数で定まる共振周波数と比較して、駆動周波数が共振周波数より大きい場合、第1の固定電極に駆動信号を印加し、駆動周波数が共振周波数より小さい場合、第2の固定電極に駆動信号を印加することを特徴とする請求項1記載の光走査装置。   When the drive frequency of the electrostatic force is compared with the resonance frequency determined by the inertia of the mirror and the torsion spring constant of the beam, and the drive frequency is greater than the resonance frequency, a drive signal is applied to the first fixed electrode, 2. The optical scanning device according to claim 1, wherein when the frequency is lower than the resonance frequency, a drive signal is applied to the second fixed electrode. 前記第2の固定電極の厚さを、前記第1の固定電極の厚さより厚くすることを特徴とする請求項1記載の光走査装置。   The optical scanning device according to claim 1, wherein a thickness of the second fixed electrode is made larger than a thickness of the first fixed electrode. ベース基板とカバーガラスを備え、ベース基板、前記ミラーと第1、第2の固定電極から構成されるミラー基板、カバーガラスの順に接合することにより前記ミラー基板を減圧封止することを特徴とする請求項1記載の光走査装置。   A base substrate and a cover glass are provided, and the mirror substrate is vacuum-sealed by bonding the base substrate, the mirror substrate composed of the mirror and the first and second fixed electrodes, and the cover glass in this order. The optical scanning device according to claim 1. 前記第1の固定電極と第2の固定電極に駆動信号を印加する場合の周波数が異なり、第1の固定電極に印加する場合は前記駆動信号の2倍の周波数であり、第2の固定電極に印加する場合は前記駆動信号と同じ周波数であることを特徴とする請求項1記載の光走査装置。   When the drive signal is applied to the first fixed electrode and the second fixed electrode, the frequency is different. When the drive signal is applied to the first fixed electrode, the frequency is twice that of the drive signal. The optical scanning device according to claim 1, wherein the frequency is the same as that of the drive signal when applied to. 前記可動電極と、それに対向して各々設けられた第1の固定電極と、前記第1の固定電極に重ねて設けられた第2の固定電極のそれぞれの形状が櫛歯形状であることを特徴とする請求項1記載の光走査装置。   Each shape of the movable electrode, the first fixed electrode provided opposite to the movable electrode, and the second fixed electrode provided so as to overlap the first fixed electrode is a comb-like shape. The optical scanning device according to claim 1. 電子写真プロセスで光書き込みを行って画像を形成する画像形成装置において、回動可能に保持されて形成画像を担持する画像担持体と、前記画像担持体上を光書き込みを行って潜像を形成する請求項1乃至7のいずれか1項に記載の光走査装置からなる潜像形成手段と、前記潜像形成手段の前記光走査装置によって形成された潜像を顕在化してトナー画像を形成する現像手段と、前記現像手段で形成されたトナー画像を被転写体に転写する転写手段と、被転写体に転写されたトナー像を定着する定着手段を備えたことを特徴とする画像形成装置。   In an image forming apparatus that forms an image by performing optical writing in an electrophotographic process, an image carrier that is held rotatably and carries a formed image, and a latent image is formed by performing optical writing on the image carrier. A latent image forming unit comprising the optical scanning device according to claim 1 and a latent image formed by the optical scanning device of the latent image forming unit are formed to form a toner image. An image forming apparatus comprising: a developing unit; a transfer unit that transfers a toner image formed by the developing unit to a transfer target; and a fixing unit that fixes the toner image transferred to the transfer target.
JP2006049927A 2006-02-27 2006-02-27 Optical scanning apparatus and image forming apparatus Expired - Fee Related JP4663550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049927A JP4663550B2 (en) 2006-02-27 2006-02-27 Optical scanning apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049927A JP4663550B2 (en) 2006-02-27 2006-02-27 Optical scanning apparatus and image forming apparatus

Publications (3)

Publication Number Publication Date
JP2007226108A true JP2007226108A (en) 2007-09-06
JP2007226108A5 JP2007226108A5 (en) 2009-04-02
JP4663550B2 JP4663550B2 (en) 2011-04-06

Family

ID=38547969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049927A Expired - Fee Related JP4663550B2 (en) 2006-02-27 2006-02-27 Optical scanning apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4663550B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310301A (en) * 2007-05-17 2008-12-25 Canon Inc Oscillator device, optical deflector and image forming apparatus using the optical deflector
JP2010217520A (en) * 2009-03-17 2010-09-30 Denso Corp Optical scanner
CN103323946A (en) * 2012-03-22 2013-09-25 日立视听媒体股份有限公司 Light scanning mirror device, control method for the same, and image drawing device employing the same
JP2016033529A (en) * 2014-07-30 2016-03-10 リコー光学株式会社 Light transmissive member for cover of optical deflector, optical deflector, optical lens and optical mirror
US10048490B2 (en) 2015-08-18 2018-08-14 Ricoh Company, Ltd. Drive system, video device, image projection device, and drive control method
US10491866B2 (en) 2015-08-26 2019-11-26 Ricoh Company, Ltd. Actuator controlling device, drive system, video device, image projection device, and actuator controlling method
JP2019215583A (en) * 2018-05-11 2019-12-19 浜松ホトニクス株式会社 Optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279947A (en) * 2003-03-18 2004-10-07 Ricoh Co Ltd Optical scanner and image forming device
JP2005010320A (en) * 2003-06-18 2005-01-13 Ricoh Co Ltd Optical scanner, method of driving oscillating mirror, optical write device and image forming device
JP2005024721A (en) * 2003-06-30 2005-01-27 Ricoh Co Ltd Deflection mirror, optical scanner and image formation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279947A (en) * 2003-03-18 2004-10-07 Ricoh Co Ltd Optical scanner and image forming device
JP2005010320A (en) * 2003-06-18 2005-01-13 Ricoh Co Ltd Optical scanner, method of driving oscillating mirror, optical write device and image forming device
JP2005024721A (en) * 2003-06-30 2005-01-27 Ricoh Co Ltd Deflection mirror, optical scanner and image formation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310301A (en) * 2007-05-17 2008-12-25 Canon Inc Oscillator device, optical deflector and image forming apparatus using the optical deflector
JP2010217520A (en) * 2009-03-17 2010-09-30 Denso Corp Optical scanner
CN103323946A (en) * 2012-03-22 2013-09-25 日立视听媒体股份有限公司 Light scanning mirror device, control method for the same, and image drawing device employing the same
JP2016033529A (en) * 2014-07-30 2016-03-10 リコー光学株式会社 Light transmissive member for cover of optical deflector, optical deflector, optical lens and optical mirror
US10048490B2 (en) 2015-08-18 2018-08-14 Ricoh Company, Ltd. Drive system, video device, image projection device, and drive control method
US10491866B2 (en) 2015-08-26 2019-11-26 Ricoh Company, Ltd. Actuator controlling device, drive system, video device, image projection device, and actuator controlling method
JP2019215583A (en) * 2018-05-11 2019-12-19 浜松ホトニクス株式会社 Optical device
JP7221180B2 (en) 2018-05-11 2023-02-13 浜松ホトニクス株式会社 optical device
US11899199B2 (en) 2018-05-11 2024-02-13 Hamamatsu Photonics K.K. Optical device

Also Published As

Publication number Publication date
JP4663550B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
US8395834B2 (en) Deflecting mirror for deflecting and scanning light beam
JP5229704B2 (en) Optical scanning device
JP4416117B2 (en) Deflection mirror, optical scanning device, and image forming apparatus
KR101264136B1 (en) Micro-mirror device using a moving structure
JP4663550B2 (en) Optical scanning apparatus and image forming apparatus
JP5458837B2 (en) Optical scanning device
JP5500016B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP2011018026A (en) Optical deflector, optical scanner, image forming device, and image projector
JP4982814B2 (en) Optical beam scanning device
JP5400925B2 (en) Oscillator device, optical deflector, and optical apparatus using the same
JP4390194B2 (en) Deflection mirror, deflection mirror manufacturing method, optical writing apparatus, and image forming apparatus
JP6743353B2 (en) Optical deflector, optical scanning device, image forming device, image projection device, and head-up display
JP4471271B2 (en) Deflection mirror
JP2006115683A (en) Electrostatic actuator and optical scanning device
JP2006195290A (en) Image reader and image forming apparatus
JP5554895B2 (en) Oscillator structure and oscillator device using the oscillator structure
JP2010008609A (en) Movable structure and micromirror element using the same
KR20080041126A (en) Actuation device
JP2009122293A (en) Oscillating body apparatus, optical deflector, and optical equipment using the same
JP2006313216A (en) Oscillator device and optical deflector using the same
JP5716992B2 (en) Optical deflection apparatus, optical scanning apparatus, image forming apparatus, and image projection apparatus
JP4462602B2 (en) Optical scanning apparatus, optical writing apparatus, and image forming apparatus
JP4409858B2 (en) Vibration mirror, optical writing device, and image forming apparatus
JP5084385B2 (en) Torsion spring, optical deflector, and image forming apparatus using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

R151 Written notification of patent or utility model registration

Ref document number: 4663550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees