JP2007225891A - Range finder and imaging apparatus - Google Patents

Range finder and imaging apparatus Download PDF

Info

Publication number
JP2007225891A
JP2007225891A JP2006046774A JP2006046774A JP2007225891A JP 2007225891 A JP2007225891 A JP 2007225891A JP 2006046774 A JP2006046774 A JP 2006046774A JP 2006046774 A JP2006046774 A JP 2006046774A JP 2007225891 A JP2007225891 A JP 2007225891A
Authority
JP
Japan
Prior art keywords
distance measuring
measuring device
imaging
distance
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046774A
Other languages
Japanese (ja)
Inventor
Tomonobu Yoshikawa
智延 吉川
Kyoichi Miyazaki
恭一 宮崎
Yoshiaki Kurioka
栗岡  善昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006046774A priority Critical patent/JP2007225891A/en
Publication of JP2007225891A publication Critical patent/JP2007225891A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a range finder which performs range-finding in an optional area on an imaging screen while a camera body is made compact. <P>SOLUTION: The range finder 10 is equipped with a condenser lens 1, a variable shape mirror 2, a photodetector 3 and a range finding part 7. The condenser lens 1 and the variable shape mirror 2 form a plurality of optical images of a range-finding object within the imaging screen. The photodetector 3 receives the plurality of optical images. The range finding part 7 measures a distance to the range-finding object based on space in a predetermined baseline direction of the plurality of optical images received by the photodetector 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一眼レフカメラなどの自動焦点調整機能を実現する測距装置に関する。   The present invention relates to a distance measuring device that realizes an automatic focus adjustment function such as a single-lens reflex camera.

近年の一眼レフカメラには、撮像光学系による結像位置と、フィルム面あるいはCCD(Charge Coupled Device)やCMOS(Complementary Metal−Oxide Semiconductor)などの撮像センサとの焦点ズレを検出し、自動的に焦点調整するための測距装置が搭載されている。
測距装置において多く用いられている方式には、三角測量に基づいた受動型測距方式がある。
図7を用いてその原理を説明する。撮像光学系によって所望の位置P’0に結像した被写体の像は、コンデンサーレンズ101、折り返しミラー102、そして二つの検出光学系103a,103bによって、所定の基線長d’0だけ離れた二つの像として受光素子104上で再結像する。例えば、被写体の像が位置P’0からずれた位置P’sにおいて結像した場合、受光素子104上での二つの像の間隔はd’sとなる。このとき、基線長d’sと、基線長d’0との差から、焦点ズレD’iを計測する。
また近年、撮影者が所望する領域(例えば、撮像画面の中心領域以外)で焦点を調整するために、撮像画面の複数の領域で焦点ズレが検出できるように複数の焦点検出モジュールを搭載するカメラも知られている(例えば、特許文献1参照。)。
特開平6−67088号公報
Recent single-lens reflex cameras automatically detect the focal position between the imaging position of the imaging optical system and the imaging surface of the film surface or CCD (Charge Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor). A ranging device for adjusting the focus is installed.
As a method often used in the distance measuring apparatus, there is a passive distance measuring method based on triangulation.
The principle will be described with reference to FIG. An object image formed at a desired position P′0 by the imaging optical system is divided into two images separated by a predetermined baseline length d′ 0 by the condenser lens 101, the folding mirror 102, and the two detection optical systems 103a and 103b. An image is formed again on the light receiving element 104 as an image. For example, when the image of the subject is formed at a position P ′s that is shifted from the position P′0, the distance between the two images on the light receiving element 104 is d′ s. At this time, the focus shift D′ i is measured from the difference between the baseline length d′ s and the baseline length d′ 0.
Further, in recent years, a camera equipped with a plurality of focus detection modules so that a focus shift can be detected in a plurality of areas of the imaging screen in order to adjust the focus in an area desired by the photographer (for example, other than the central area of the imaging screen). Is also known (for example, see Patent Document 1).
JP-A-6-67088

高精度な焦点検出モジュールを複数配置するためには、大きな空間が必要であり、カメラボディーの小型化が困難である。
また、検出光学系の配置によって基線方向が決まっているため、被写体のパターンによっては2つの検出光学系による像のズレ量の検出が困難となり測距精度が劣化するという問題がある。
そこで本発明は、カメラボディーの小型化を実現しつつ、撮像画面の任意領域における測距を行う測距装置を提供することを目的とする。また、別の本発明では、被写体のパターンに関わらず高精度で測距を行うことができる測距装置を提供することを目的とする。
In order to arrange a plurality of high-precision focus detection modules, a large space is required, and it is difficult to reduce the size of the camera body.
In addition, since the base line direction is determined by the arrangement of the detection optical system, it is difficult to detect the image shift amount by the two detection optical systems depending on the pattern of the subject, and there is a problem that the ranging accuracy is deteriorated.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a distance measuring device that performs distance measurement in an arbitrary area of an imaging screen while realizing miniaturization of a camera body. Another object of the present invention is to provide a distance measuring device that can perform distance measurement with high accuracy regardless of the pattern of the subject.

第1の発明としての測距装置は、複数の検出光学系と、受光手段と、測距手段とを備えている。複数の検出光学系は、撮像画面内の測距対象を複数の光学像として結像する。受光手段は、検出光学系による複数の光学像を受光する。測距手段は、受光手段により受光した複数の光学像の所定の基線方向の間隔に基づいて、測距対象までの距離を測定する。複数の検出光学系は、可変形状素子を含む。
ここで、受光手段は、例えば、受光した光の明暗を電荷の量に光電変換する撮像デバイスなどである。また、測距手段は、例えば、受光手段が受光した光の所定の基線長に沿った方向の分布から、複数の結像のズレ量を求める。さらに、測距手段は、ズレ量と距離との関係を予め記憶しており、求められたズレ量から測距対象までの距離を測定する。なお、測距手段が測定する距離とは、測距対象までの距離そのものの値であってもよいし、測距対象までの距離に換算できる値であってもよい。また、基線方向とは、例えば、受光手段上に仮想的に設定された線(基線)に沿った方向を意味し、より詳しくは、例えば、複数の検出光学系により複数の光学像が形成される場合に、その複数の光学像を重ね合わせるための平行移動方向を意味する。
本発明では、複数の検出光学系は、可変形状素子を含む。このため、例えば、検出光学系の光軸を任意の方向に向けることができ、撮像画面内の任意の位置での測距が可能となる。さらに、例えば、検出光学系の配置によって決まる所定の基線方向を可変とすることができ、撮像対象のパターン毎に検出光学系を適切に配置し、検出感度を向上することができる。
A distance measuring device as a first invention includes a plurality of detection optical systems, a light receiving means, and a distance measuring means. The plurality of detection optical systems form a range-finding object in the imaging screen as a plurality of optical images. The light receiving means receives a plurality of optical images by the detection optical system. The distance measuring means measures the distance to the distance measuring object based on the intervals in the predetermined baseline direction of the plurality of optical images received by the light receiving means. The plurality of detection optical systems include a variable shape element.
Here, the light receiving means is, for example, an imaging device that photoelectrically converts the brightness of received light into the amount of electric charge. The distance measuring unit obtains a plurality of image shift amounts from, for example, a distribution in a direction along a predetermined baseline length of light received by the light receiving unit. Further, the distance measuring means stores in advance the relationship between the amount of deviation and the distance, and measures the distance from the obtained amount of deviation to the object of distance measurement. Note that the distance measured by the distance measuring unit may be a value of the distance to the distance measuring object itself or a value that can be converted into a distance to the distance measuring object. The base line direction means, for example, a direction along a line (base line) virtually set on the light receiving means, and more specifically, for example, a plurality of optical images are formed by a plurality of detection optical systems. Means a parallel movement direction for superimposing the plurality of optical images.
In the present invention, the plurality of detection optical systems include a deformable element. For this reason, for example, the optical axis of the detection optical system can be directed in an arbitrary direction, and distance measurement can be performed at an arbitrary position in the imaging screen. Furthermore, for example, a predetermined baseline direction determined by the arrangement of the detection optical system can be made variable, and the detection optical system can be appropriately arranged for each pattern to be imaged to improve detection sensitivity.

第2の発明としての測距装置は、撮像画面内の測距対象の選択を促す対象選択手段と、選択された測距対象が受光手段上で結像するように可変形状素子の形状を制御する形状制御手段とをさらに備える。
対象選択手段は、例えば、撮影者に撮像画面内の位置を指定させる手段などである。形状制御手段は、例えば、撮像画面内の位置と可変形状素子の形状との関係を予め記憶しており、対象選択手段により指定された撮像画面内の位置に応じて、可変形状素子の形状を変化させる。
本発明では、撮影者の意図に応じて、撮像画面内の測距対象を選択し、測距を行うことが可能となる。さらに具体的には、撮像画面内で焦点調整する被写体を選択し、測距を行うことが可能となる。
第3の発明としての測距装置では、形状制御手段は、対象選択手段による選択に応じて、可変形状素子の傾きを制御する。
本発明では、可変形状素子の傾きを制御することにより、受光手段に結像する測距対象を変化させることが可能となる。これにより、複数の焦点検出モジュールを備えることなく、任意領域の焦点調整が可能となり、小型化が実現可能となる。
A distance measuring device as a second invention controls a shape of a variable shape element so that a selected distance measuring object forms an image on a light receiving means, and a target selecting means for prompting selection of a distance measuring object in an imaging screen. And a shape control means.
The object selecting means is, for example, means for causing the photographer to specify a position in the imaging screen. For example, the shape control means stores in advance the relationship between the position in the imaging screen and the shape of the variable shape element, and changes the shape of the variable shape element according to the position in the imaging screen designated by the target selection means. Change.
In the present invention, it is possible to select a distance measurement target in the imaging screen and perform distance measurement according to the photographer's intention. More specifically, it is possible to select a subject whose focus is to be adjusted in the imaging screen and perform distance measurement.
In the distance measuring apparatus as the third invention, the shape control means controls the inclination of the variable shape element in accordance with the selection by the object selection means.
In the present invention, it is possible to change the distance measuring object imaged on the light receiving means by controlling the inclination of the deformable element. Accordingly, it is possible to adjust the focus in an arbitrary region without providing a plurality of focus detection modules, and it is possible to realize downsizing.

第4の発明としての測距装置は、所定の基線方向を変化させるように、可変形状素子の形状を制御する基線方向制御手段をさらに備える。
本発明では、検出光学系の配置によって決まる所定の基線方向を可変とすることができ、撮像対象のパターン毎に検出光学系を適切に配置し、検出感度を向上することができる。
第5の発明としての測距装置では、基線方向制御手段は、複数の検出光学系が含むそれぞれの可変形状素子の配置を制御する。
本発明では、検出光学系の配置によって決まる所定の基線方向を可変とすることができ、撮像対象のパターン毎に検出光学系を適切に配置し、検出感度を向上することができる。
第6の発明としての測距装置では、複数の検出光学系が含むそれぞれの可変形状素子は、単一の可変形状部に設けられている。
本発明では、測距装置を構成する部品点数を削減し、組立が用意でかつ小型の測距装置を提供することが可能となる。
第7の発明としての測距装置では、可変形状素子は、分割された複数の反射部材を有している。
The distance measuring device as the fourth invention further includes a baseline direction control means for controlling the shape of the deformable element so as to change a predetermined baseline direction.
In the present invention, the predetermined baseline direction determined by the arrangement of the detection optical system can be made variable, and the detection optical system can be appropriately arranged for each pattern to be imaged to improve the detection sensitivity.
In the distance measuring apparatus as the fifth invention, the base line direction control means controls the arrangement of the variable shape elements included in the plurality of detection optical systems.
In the present invention, the predetermined baseline direction determined by the arrangement of the detection optical system can be made variable, and the detection optical system can be appropriately arranged for each pattern to be imaged to improve the detection sensitivity.
In the distance measuring apparatus as the sixth invention, each of the variable shape elements included in the plurality of detection optical systems is provided in a single variable shape portion.
According to the present invention, it is possible to reduce the number of parts constituting the distance measuring device, and to provide a compact distance measuring device that is ready for assembly.
In the distance measuring device as the seventh invention, the deformable element has a plurality of divided reflecting members.

本発明では、分割された複数の反射部材を制御することにより、検出光学系の特性を変化させることが可能となる。
第8の発明としての撮像装置は、撮像光学系と、第1〜第7の発明のいずれかの測距装置と、測距装置による測距に応じて、撮像光学系を制御する撮像光学系制御手段とを備える。
本発明では、第1〜第7の発明と同様の効果を奏する撮像装置を提供することが可能となる。
In the present invention, the characteristics of the detection optical system can be changed by controlling the plurality of divided reflection members.
An imaging apparatus as an eighth invention includes an imaging optical system, the distance measuring apparatus according to any one of the first to seventh inventions, and an imaging optical system that controls the imaging optical system according to distance measurement by the distance measuring apparatus. Control means.
In the present invention, it is possible to provide an imaging device that exhibits the same effects as those of the first to seventh inventions.

本発明の測距装置によれば、検出光学系の光軸を任意の方向に向けることができるので、カメラボディーの小型化を実現しつつ、撮像画面の任意領域における測距を行う測距装置を提供することが可能となる。また、検出光学系の配置によって決まる基線方向を可変とできるので、被写体のパターンに関わらず高精度で測距を行うことができる測距装置を提供することが可能となる。   According to the distance measuring apparatus of the present invention, since the optical axis of the detection optical system can be directed in an arbitrary direction, the distance measuring apparatus that performs distance measurement in an arbitrary area of the imaging screen while realizing downsizing of the camera body. Can be provided. In addition, since the base line direction determined by the arrangement of the detection optical system can be made variable, it is possible to provide a distance measuring device that can perform distance measurement with high accuracy regardless of the pattern of the subject.

(実施の形態1)
〈構成・作用〉
図1は、本発明の実施の形態1に係る測距装置10の概略構成図である。
測距装置10は、コンデンサーレンズ1と、第1ミラー部6aおよび第2ミラー部6bを有する可変形状ミラー2と、受光素子3と、検出領域制御部4と、検出領域選択部5と、測距部7とを備えている。
コンデンサーレンズ1は、撮像光学系などにより結像した被写体像(1次像)を可変形状ミラー2および受光素子3に導くレンズである。
可変形状ミラー2は、図2に示すように、マトリクス状に微細に分割された複数のミラー素子2aにより構成されている。図2Aは、可変形状ミラー2の側面図、図2Bは、可変形状ミラー2の正面図を示している。各ミラー素子2aの角度および高さは、任意に調節可能である。これにより、可変形状ミラー2の複数の領域のそれぞれが略凹面鏡を形成するように各ミラー素子2aの角度および高さを調節することで、可変形状ミラー2には、第1ミラー部6aと第2ミラー部6bとが形成されている。この第1ミラー部6aと第2ミラー部6bとにより、コンデンサーレンズ1により導かれた1次像は、受光素子3上で1対の2次像として再結像する。
(Embodiment 1)
<Configuration and action>
FIG. 1 is a schematic configuration diagram of a distance measuring device 10 according to Embodiment 1 of the present invention.
The distance measuring device 10 includes a condenser lens 1, a deformable mirror 2 having a first mirror unit 6a and a second mirror unit 6b, a light receiving element 3, a detection region control unit 4, a detection region selection unit 5, and a measurement unit. And a distance portion 7.
The condenser lens 1 is a lens that guides a subject image (primary image) formed by an imaging optical system or the like to the deformable mirror 2 and the light receiving element 3.
As shown in FIG. 2, the deformable mirror 2 includes a plurality of mirror elements 2a finely divided in a matrix. FIG. 2A is a side view of the deformable mirror 2, and FIG. 2B is a front view of the deformable mirror 2. The angle and height of each mirror element 2a can be adjusted arbitrarily. As a result, by adjusting the angle and height of each mirror element 2a so that each of the plurality of regions of the deformable mirror 2 forms a substantially concave mirror, the deformable mirror 2 includes the first mirror portion 6a and the first mirror portion 6a. 2 mirror portions 6b are formed. The primary image guided by the condenser lens 1 is re-imaged as a pair of secondary images on the light receiving element 3 by the first mirror portion 6a and the second mirror portion 6b.

以上のコンデンサーレンズ1と第1ミラー部6aおよび第2ミラー部6bとにより、複数の検出光学系が構成されている。
受光素子3(図1参照)は、受光した光の明暗を電荷の量に光電変換する撮像デバイスなどである。
測距部7は、受光素子3が受光した1対の2次像のズレ量から、1次像の結像位置のズレを測定する。これについては、詳しくは後述する。
検出領域選択部5は、撮影者に撮像画面中の任意の領域を指定させ、指定された領域を示す領域信号を検出領域制御部4に出力する。
検出領域制御部4は、検出領域選択部5から出力された領域信号を取得し、予めROMなどに記憶された、領域信号と可変形状ミラー2の各ミラー素子2aの設定(角度および高さ)との関係に基づいて、取得した領域信号に応じて各ミラー素子2aを制御する。
なお、検出領域選択部5は、予め設定された複数の領域(例えば、撮像画面をマトリクス状に分割した複数の領域)を撮影者に選択させ、選択された領域を示す領域信号を出力してもよい。
この検出領域制御部4の動作により、図示していない撮像光学系などにより結像した被写体像のいずれの領域に含まれる点(例えば、P0,Pw)であっても、結像位置にずれが無ければ、コンデンサーレンズ1と第1ミラー部6aおよび第2ミラー部6bとによって、所定の基線長d0だけ離れた1対の2次像として受光素子3上に再結像される。なお、図1では、検出領域選択部5によりP0を中心とする領域が選択された場合の光束と可変形状ミラー2の状態とを実線で示し、Pwを中心とする領域が選択された場合の光束と可変形状ミラー2の状態とを破線で示している。
The condenser lens 1, the first mirror unit 6a, and the second mirror unit 6b constitute a plurality of detection optical systems.
The light receiving element 3 (see FIG. 1) is an imaging device or the like that photoelectrically converts the brightness of received light into the amount of charge.
The distance measuring unit 7 measures the deviation of the image formation position of the primary image from the deviation amount of the pair of secondary images received by the light receiving element 3. This will be described in detail later.
The detection area selection unit 5 causes the photographer to specify an arbitrary area in the imaging screen, and outputs an area signal indicating the specified area to the detection area control unit 4.
The detection region control unit 4 acquires the region signal output from the detection region selection unit 5, and stores the region signal and the setting (angle and height) of each mirror element 2a of the deformable mirror 2 stored in advance in a ROM or the like. Each mirror element 2a is controlled according to the acquired area signal.
The detection area selection unit 5 causes the photographer to select a plurality of preset areas (for example, a plurality of areas obtained by dividing the imaging screen in a matrix), and outputs an area signal indicating the selected area. Also good.
Due to the operation of the detection area control unit 4, the image formation position is shifted at any point (for example, P0, Pw) included in any area of the subject image formed by an imaging optical system (not shown). If not, the condenser lens 1 and the first mirror unit 6a and the second mirror unit 6b re-image on the light receiving element 3 as a pair of secondary images separated by a predetermined baseline length d0. In FIG. 1, the light beam and the state of the deformable mirror 2 when the region centered on P0 is selected by the detection region selector 5 are indicated by solid lines, and the region centered on Pw is selected. The light beam and the state of the deformable mirror 2 are indicated by broken lines.

図3を用いて、選択された検出領域の焦点ズレを測距する動作を説明する。
撮像光学系などによって所望の位置P0に結像した被写体像は、コンデンサーレンズ1と第1ミラー部6aおよび第2ミラー部6bとによって、所定の基線長d0だけ離れた二つの像として受光素子3上に再結像する。一方、被写体像が所望の位置P0からずれた位置Psにおいて結像する場合、受光素子3上での1対の2次像の間隔は、所定の基線長d0からずれて、dsとなる。
受光素子3は、受光した2次像の明暗を電荷の量に光電変換し、電荷の量に応じた電気信号を出力する。
測距部7は、所定の基線方向に沿った電気信号の分布を導出し、1対の2次像の間隔を求める。具体的には、例えば、基線方向が受光素子3の水平方向である場合には、受光素子3からの電荷の量に応じた電気信号を受光素子3の垂直方向にそれぞれ加算する。1対の2次像を受光している部分では受光素子3が露光しており、電気信号の分布には、1対の2次像に応じた1対のピークが出現する。それぞれのピークの間隔を求めることで、受光素子3上での1対の2次像の間隔を求めることができる。
測距部7は、ROMなどに予め1対の2次像の間隔と結像位置のズレ量との関係を記憶しており、求められた1対の2次像の間隔から、結像位置のズレ量(図1では、距離Di)を求める。
With reference to FIG. 3, the operation of measuring the focus shift of the selected detection area will be described.
A subject image formed at a desired position P0 by an imaging optical system or the like is received as two images separated by a predetermined base line length d0 by the condenser lens 1, the first mirror unit 6a, and the second mirror unit 6b. Re-image on top. On the other hand, when the subject image is formed at a position Ps shifted from the desired position P0, the interval between the pair of secondary images on the light receiving element 3 is shifted from the predetermined base line length d0 to ds.
The light receiving element 3 photoelectrically converts light and darkness of the received secondary image into an amount of electric charge, and outputs an electrical signal corresponding to the amount of electric charge.
The distance measuring unit 7 derives a distribution of electric signals along a predetermined baseline direction, and obtains a distance between a pair of secondary images. Specifically, for example, when the base line direction is the horizontal direction of the light receiving element 3, an electrical signal corresponding to the amount of charge from the light receiving element 3 is added to the vertical direction of the light receiving element 3. The light receiving element 3 is exposed at a portion receiving a pair of secondary images, and a pair of peaks corresponding to the pair of secondary images appears in the distribution of the electrical signals. By obtaining the interval between the respective peaks, the interval between the pair of secondary images on the light receiving element 3 can be obtained.
The distance measuring unit 7 stores in advance a relationship between the distance between the pair of secondary images and the amount of deviation of the image formation position in a ROM or the like, and determines the image formation position from the obtained distance between the pair of secondary images. Is obtained (distance Di in FIG. 1).

〈効果〉
測距装置10は、可変形状ミラー2を備えるため、検出光学系の光軸を任意の方向に向けることができる。よって、撮像画面内任意の領域において測距が可能となる。
また、検出光学系の構成を簡易とすることができ、測距装置10を小型に構成することが可能となる。
(実施の形態2)
〈構成・作用〉
図4は、本発明の実施の形態2に係る測距装置20の概略構成図である。
測距装置20は、可変形状ミラー2を制御する基線方向制御部8を備える点において特徴を有している。なお、図1に示す測距装置10と同様の機能を実現する構成には、同様の符号を付して示し、その説明を省略する。
基線方向制御部8は、図5を用いて後述する制御ルーチンに基づいて、可変形状ミラー2を制御する。具体的には、基線方向制御部8は、ROMなどに予め記憶された基線方向と可変形状ミラー2の各ミラー素子2aの設定(角度および高さ)との関係に基づいて、可変形状ミラー2を制御する。より詳しくは、所望の結像位置において結像した1次像が受光素子3上に1対の2次像として再結像される場合に、どのような方向に基線方向を設定しても、それぞれの基線方向に対する2次像の間隔が所定の間隔d0となるように、基線方向制御部8は、可変形状ミラー2の各ミラー素子2aを制御する。
<effect>
Since the distance measuring device 10 includes the deformable mirror 2, the optical axis of the detection optical system can be directed in an arbitrary direction. Therefore, distance measurement can be performed in an arbitrary area in the imaging screen.
In addition, the configuration of the detection optical system can be simplified, and the distance measuring device 10 can be configured in a small size.
(Embodiment 2)
<Configuration / Function>
FIG. 4 is a schematic configuration diagram of the distance measuring device 20 according to the second embodiment of the present invention.
The distance measuring device 20 is characterized in that it includes a baseline direction control unit 8 that controls the deformable mirror 2. In addition, the same code | symbol is attached | subjected and shown to the structure which implement | achieves the function similar to the ranging apparatus 10 shown in FIG. 1, and the description is abbreviate | omitted.
The baseline direction control unit 8 controls the deformable mirror 2 based on a control routine described later with reference to FIG. Specifically, the baseline direction control unit 8 is based on the relationship between the baseline direction stored in advance in a ROM or the like and the setting (angle and height) of each mirror element 2a of the deformable mirror 2. To control. More specifically, when a primary image formed at a desired imaging position is re-imaged as a pair of secondary images on the light receiving element 3, no matter what direction the base line direction is set, The baseline direction control unit 8 controls each mirror element 2a of the deformable mirror 2 so that the interval between the secondary images with respect to each baseline direction becomes a predetermined interval d0.

図5を用いて、基線方向制御部8の制御ルーチンについてさらに詳しく説明する。
図5は、一方向に輝度分布を持つ被写体(輝度分布を矢印で示す)、可変形状ミラー2の第1ミラー部6aおよび第2ミラー部6bの配置、受光素子3上の2次像、受光素子3から得られる所定の基線方向に沿った電気信号の強度分布(信号パターン)をそれぞれ模式的に示すものである。
図5Aは、被写体の輝度分布と基線方向とが略直交している状態を示している。この場合、受光素子3から得られる電気信号の基線方向への分布は、急峻なピークを有する(ピーク間とピーク値との差が値Ia)を有する。このため、精度よくピークの検出ができ、さらには、精度よく2次像の間隔(間隔da)が検出できる。さらに、この間隔daと所定の間隔d0との差により、結像位置のズレ量が求められる。
一方、図5Bは、被写体の輝度分布と基線方向とが略直交しておらず、かつ可変形状ミラー2の配置を図5Aに示したものと同じ配置にした場合を示している。この場合、受光素子3から得られる電気信号の基線方向への分布は、急峻なピークを有さない(ピーク間とピーク値との差が値Ib)。このため、精度よくピークの検出ができず、精度よく2次像の間隔を検出することが難しい。
The control routine of the baseline direction control unit 8 will be described in more detail with reference to FIG.
FIG. 5 shows an object having a luminance distribution in one direction (the luminance distribution is indicated by an arrow), the arrangement of the first mirror unit 6a and the second mirror unit 6b of the deformable mirror 2, the secondary image on the light receiving element 3, and the light reception FIG. 3 schematically shows an intensity distribution (signal pattern) of an electric signal along a predetermined baseline direction obtained from the element 3.
FIG. 5A shows a state in which the luminance distribution of the subject and the baseline direction are substantially orthogonal. In this case, the distribution of the electric signal obtained from the light receiving element 3 in the baseline direction has a steep peak (the difference between the peaks and the peak value is the value Ia). Therefore, the peak can be detected with high accuracy, and further, the secondary image interval (interval da) can be detected with high accuracy. Further, a deviation amount of the image forming position is obtained by a difference between the interval da and the predetermined interval d0.
On the other hand, FIG. 5B shows a case where the luminance distribution of the subject and the baseline direction are not substantially orthogonal and the arrangement of the deformable mirror 2 is the same as that shown in FIG. 5A. In this case, the distribution of the electric signal obtained from the light receiving element 3 in the baseline direction does not have a steep peak (the difference between the peak and the peak value is the value Ib). For this reason, the peak cannot be detected with high accuracy, and it is difficult to detect the interval between the secondary images with high accuracy.

このため基線方向制御部8は、結像位置のズレ量を求める際に、受光素子3から得られる電気信号の所定の基線方向への分布が、急峻なピークを有するか否かを判定する。
具体的には、ピーク間とピーク値との差が所定の閾値よりも大きい場合(例えば、図5Aに示す場合)には、ピークの間隔から、2次像の間隔を検出し、結像位置のズレ量を求める。
一方、ピーク間とピーク値との差が所定の閾値よりも小さい場合(例えば、図5Bに示す場合)には、基線方向制御部8は、以下の制御ループを実行する。すなわち、基線方向制御部8は、まず基線方向を順次変化させ、その基線方向に応じて可変形状ミラー2を制御する。同時に、基線方向制御部8は、基線方向を示す信号を測距部7に出力する。測距部7は、入力された基線方向に沿った、受光素子3から得られる電気信号の分布を順次求め、1対の2次像に対応する電気信号の分布のピーク値とそのピーク間との差(値Ic)が最大となる基線方向を探索し、値Icが最大となる時のピークの間隔(基線方向間隔)を検出する。これにより、測距部7は、2次像の基線方向間隔(間隔dc)を検出し、間隔dcと所定の間隔d0との差により、結像位置のズレ量を求める。
以上の制御ループによれば、被写体像の輝度分布と基線方向とが略直交するように基線方向を決定し、可変形状ミラー2を制御することが可能となる。
For this reason, the baseline direction control unit 8 determines whether or not the distribution of the electrical signal obtained from the light receiving element 3 in the predetermined baseline direction has a steep peak when determining the amount of deviation of the imaging position.
Specifically, when the difference between the peaks and the peak value is larger than a predetermined threshold (for example, as shown in FIG. 5A), the interval between the secondary images is detected from the peak interval, and the imaging position Find the amount of misalignment.
On the other hand, when the difference between the peaks and the peak value is smaller than a predetermined threshold (for example, as shown in FIG. 5B), the baseline direction control unit 8 executes the following control loop. That is, the baseline direction control unit 8 first changes the baseline direction sequentially, and controls the deformable mirror 2 according to the baseline direction. At the same time, the baseline direction control unit 8 outputs a signal indicating the baseline direction to the distance measuring unit 7. The distance measuring unit 7 sequentially obtains the distribution of the electric signal obtained from the light receiving element 3 along the input base line direction, the peak value of the distribution of the electric signal corresponding to the pair of secondary images, and between the peaks. The base line direction in which the difference (value Ic) is maximum is searched, and the peak interval (base line direction interval) when the value Ic is maximum is detected. As a result, the distance measuring unit 7 detects the base-line-direction interval (interval dc) of the secondary image, and obtains the shift amount of the imaging position based on the difference between the interval dc and the predetermined interval d0.
According to the above control loop, the base line direction is determined so that the luminance distribution of the subject image and the base line direction are substantially orthogonal to each other, and the deformable mirror 2 can be controlled.

〈効果〉
測距装置20は、可変形状ミラー2を備えるため、検出光学系の配置によって決まる基線方向を可変とできる。このため、被写体の輝度分布などに関わらず、高精度で測距を行うことが可能となる。
また、検出光学系の構成を簡易とすることができ、測距装置20を小型に構成することが可能となる。
なお、測距装置20が備える基線方向制御部8は、測距装置10において備えられていてもよい。すなわち、本実施の形態で説明した動作は、実施の形態1で説明した動作と組み合わせて実現可能であり、撮像画面内任意の領域において、基線方向を変化させつつ測距を行うことが可能である。
(実施の形態3)
図6は、本発明の実施の形態3に係るカメラ30の概略構成図である。
カメラ30は、撮像光学系18と、CCD19と、可動ミラー21と、フォーカシングスクリーン11と、ペンタプリズム12と、接眼レンズ13と、補助ミラー14と、実施の形態1または実施の形態2で説明した測距装置10(20)と、撮像光学系制御部16とを備えている。
<effect>
Since the distance measuring device 20 includes the deformable mirror 2, the base line direction determined by the arrangement of the detection optical system can be made variable. Therefore, distance measurement can be performed with high accuracy regardless of the luminance distribution of the subject.
In addition, the configuration of the detection optical system can be simplified, and the distance measuring device 20 can be configured in a small size.
The baseline direction control unit 8 included in the distance measuring device 20 may be included in the distance measuring device 10. In other words, the operation described in this embodiment can be realized in combination with the operation described in Embodiment 1, and distance measurement can be performed while changing the baseline direction in an arbitrary area in the imaging screen. is there.
(Embodiment 3)
FIG. 6 is a schematic configuration diagram of the camera 30 according to Embodiment 3 of the present invention.
The camera 30 has been described in the imaging optical system 18, the CCD 19, the movable mirror 21, the focusing screen 11, the pentaprism 12, the eyepiece lens 13, the auxiliary mirror 14, and the first or second embodiment. A distance measuring device 10 (20) and an imaging optical system control unit 16 are provided.

撮影時に撮像光学系18によってCCD19の撮像面に結像される光束は、ファインダー観察時には、半透過の可動ミラー21で一部反射され、フォーカシングスクリーン11に結像され、ペンタプリズム12、接眼レンズ13によって撮影者の目へ導かれる。
可動ミラー21を透過した光束は、補助ミラー14によって反射され、測距装置10(20)の手前で空中像17として結像する。測距装置10(20)は、実施の形態1または実施の形態2で説明したように動作する。例えば、測距装置10(20)は、撮影者が選択した領域における焦点ズレ量を検出する。焦点ズレ量は、撮像光学系制御部16に出力され、撮像光学系制御部16は、光束がCCD19の撮像面に焦点ズレ無しに結像するように撮像光学系18を制御する。
以上の構成により、画面内の任意の領域で焦点調整を行うことができるカメラ30を提供することが可能となる。また、被写体の輝度分布などに関わらず、高精度で焦点調整を行うことができるカメラ30を提供することが可能となる。
A light beam focused on the imaging surface of the CCD 19 by the imaging optical system 18 at the time of shooting is partially reflected by the semi-transparent movable mirror 21 at the time of finder observation, and is focused on the focusing screen 11, and the pentaprism 12 and eyepiece 13. To the photographer's eyes.
The light beam transmitted through the movable mirror 21 is reflected by the auxiliary mirror 14 and forms an aerial image 17 in front of the distance measuring device 10 (20). The distance measuring device 10 (20) operates as described in the first embodiment or the second embodiment. For example, the distance measuring device 10 (20) detects a focus shift amount in an area selected by the photographer. The defocus amount is output to the imaging optical system control unit 16, and the imaging optical system control unit 16 controls the imaging optical system 18 so that the light beam forms an image on the imaging surface of the CCD 19 without defocusing.
With the above configuration, it is possible to provide the camera 30 that can perform focus adjustment in an arbitrary area in the screen. In addition, it is possible to provide the camera 30 that can perform focus adjustment with high accuracy regardless of the luminance distribution of the subject.

本発明は、画面内の任意の領域における高精度な焦点調整や被写体に関わらない高精度な焦点調整が要望されている分野において、デジタルスチルカメラ、デジタルビデオカメラなどとして好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable as a digital still camera, a digital video camera, or the like in a field where high-precision focus adjustment in an arbitrary area in a screen or high-precision focus adjustment not related to a subject is desired.

実施の形態1に係る測距装置の概略構成図Schematic configuration diagram of the distance measuring apparatus according to the first embodiment. 実施の形態1に係る可変形状ミラーの構成例を説明する模式図Schematic diagram illustrating a configuration example of a deformable mirror according to the first embodiment 実施の形態1に係る測距装置の測距動作を説明する説明図Explanatory drawing explaining the ranging operation of the ranging apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る測距装置の概略構成図Schematic configuration diagram of a distance measuring apparatus according to the second embodiment 実施の形態2に係る測距装置の測距動作を説明する説明図Explanatory drawing explaining the ranging operation of the ranging apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る撮像装置の概略構成図Schematic configuration diagram of an imaging apparatus according to Embodiment 3 従来技術に係る測距装置の概略構成図Schematic configuration diagram of a distance measuring device according to the prior art

符号の説明Explanation of symbols

1 コンデンサーレンズ
2 可変形状ミラー
3 受光素子
4 検出領域制御部
5 検出領域選択部
6a 第1ミラー部
6b 第2ミラー部
7 測距部
8 基線方向制御部
10 測距装置
11 フォーカシングスクリーン
12 ペンタプリズム
13 接眼レンズ
14 補助ミラー
16 撮像光学系制御部
17 空中像
18 撮像光学系
19 CCD
20 測距装置
21 可動ミラー
30 カメラ

DESCRIPTION OF SYMBOLS 1 Condenser lens 2 Deformable mirror 3 Light receiving element 4 Detection area control part 5 Detection area selection part 6a 1st mirror part 6b 2nd mirror part 7 Distance measuring part 8 Base line direction control part 10 Distance measuring device 11 Focusing screen 12 Penta prism 13 Eyepiece 14 Auxiliary mirror 16 Imaging optical system controller 17 Aerial image 18 Imaging optical system 19 CCD
20 Distance measuring device 21 Movable mirror 30 Camera

Claims (8)

撮像画面内の測距対象を複数の光学像として結像する複数の検出光学系と、
前記検出光学系による前記複数の光学像を受光する受光手段と、
前記受光手段により受光した前記複数の光学像の所定の基線方向の間隔に基づいて、前記測距対象までの距離を測定する測距手段と、
を備え、
前記複数の検出光学系は、可変形状素子を含む、
測距装置。
A plurality of detection optical systems that form an image of a distance measurement object in the imaging screen as a plurality of optical images;
A light receiving means for receiving the plurality of optical images by the detection optical system;
A distance measuring means for measuring a distance to the distance measuring object based on a predetermined baseline direction interval of the plurality of optical images received by the light receiving means;
With
The plurality of detection optical systems include a deformable element,
Distance measuring device.
前記撮像画面内の前記測距対象の選択を促す対象選択手段と、
選択された前記測距対象が前記受光手段上で結像するように前記可変形状素子の形状を制御する形状制御手段と、
をさらに備える、
請求項1に記載の測距装置。
Object selection means for prompting selection of the distance measurement object in the imaging screen;
Shape control means for controlling the shape of the deformable element so that the selected distance measuring object forms an image on the light receiving means;
Further comprising
The distance measuring device according to claim 1.
前記形状制御手段は、前記対象選択手段による選択に応じて、前記可変形状素子の傾きを制御する、
請求項2に記載の測距装置。
The shape control means controls the inclination of the deformable element in accordance with the selection by the object selection means;
The distance measuring device according to claim 2.
前記所定の基線方向を変化させるように、前記可変形状素子の形状を制御する基線方向制御手段、
をさらに備える、
請求項1に記載の測距装置。
Baseline direction control means for controlling the shape of the deformable element so as to change the predetermined baseline direction;
Further comprising
The distance measuring device according to claim 1.
前記基線方向制御手段は、前記複数の検出光学系が含むそれぞれの前記可変形状素子の配置を制御する、
請求項4に記載の測距装置。
The baseline direction control means controls the arrangement of the variable shape elements included in the plurality of detection optical systems;
The distance measuring device according to claim 4.
前記複数の検出光学系が含むそれぞれの可変形状素子は、単一の可変形状部に設けられている、
請求項1〜5のいずれか1項に記載の測距装置。
Each variable shape element included in the plurality of detection optical systems is provided in a single variable shape portion.
The distance measuring device according to any one of claims 1 to 5.
前記可変形状素子は、分割された複数の反射部材を有している、
請求項1〜6のいずれか1項に記載の測距装置。
The variable shape element has a plurality of divided reflection members.
The distance measuring device according to any one of claims 1 to 6.
撮像光学系と、
請求項1〜7のいずれか1項に記載の測距装置と、
前記測距装置による測距に応じて、前記撮像光学系を制御する撮像光学系制御手段と、
を備える、
撮像装置。

An imaging optical system;
The distance measuring device according to any one of claims 1 to 7,
Imaging optical system control means for controlling the imaging optical system in accordance with distance measurement by the distance measuring device;
Comprising
Imaging device.

JP2006046774A 2006-02-23 2006-02-23 Range finder and imaging apparatus Pending JP2007225891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046774A JP2007225891A (en) 2006-02-23 2006-02-23 Range finder and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046774A JP2007225891A (en) 2006-02-23 2006-02-23 Range finder and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2007225891A true JP2007225891A (en) 2007-09-06

Family

ID=38547779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046774A Pending JP2007225891A (en) 2006-02-23 2006-02-23 Range finder and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2007225891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059411A (en) * 2009-09-10 2011-03-24 Canon Inc Focus detecting device and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059411A (en) * 2009-09-10 2011-03-24 Canon Inc Focus detecting device and imaging apparatus

Similar Documents

Publication Publication Date Title
JP5168798B2 (en) Focus adjustment device and imaging device
US8736745B2 (en) Camera
US7405762B2 (en) Camera having AF function
JP5168797B2 (en) Imaging device
JP4972960B2 (en) Focus adjustment device and imaging device
JP4963569B2 (en) Imaging system and lens unit
US8526807B2 (en) Focus detecting apparatus
JP2010026177A (en) Phase difference detection device, imaging apparatus, phase difference detection method, and phase difference detection program
JP6489817B2 (en) Imaging apparatus and control method thereof
US11209262B2 (en) Electronic apparatus, control method thereof and computer readable storage medium
JP5157073B2 (en) Focus adjustment device and imaging device
JP5025527B2 (en) Imaging device
JP6131721B2 (en) Focus detection device and focus adjustment device
JP2008191391A (en) Focusing mechanism, and camera
JP2007225891A (en) Range finder and imaging apparatus
JP2018180135A (en) Imaging device
KR101026327B1 (en) Fast auto focusing device using multiple barrels and auto focusing method using the same
JP2000321482A (en) Automatic focusing device
JP4862297B2 (en) Electronic camera and camera system
JP5470985B2 (en) Focus detection apparatus and imaging apparatus
JP6508267B2 (en) interchangeable lens
JP2017191212A (en) Focus detection device
JP2001141985A (en) Electronic camera
JP2008070428A (en) Focusing apparatus and camera
JP2007256885A (en) Focusing apparatus and camera