JP2007225704A - Method for manufacturing optical waveguide - Google Patents

Method for manufacturing optical waveguide Download PDF

Info

Publication number
JP2007225704A
JP2007225704A JP2006044162A JP2006044162A JP2007225704A JP 2007225704 A JP2007225704 A JP 2007225704A JP 2006044162 A JP2006044162 A JP 2006044162A JP 2006044162 A JP2006044162 A JP 2006044162A JP 2007225704 A JP2007225704 A JP 2007225704A
Authority
JP
Japan
Prior art keywords
resin liquid
photocurable resin
self
transparent container
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006044162A
Other languages
Japanese (ja)
Other versions
JP4670678B2 (en
Inventor
Masaaki Tsuchimori
正昭 土森
Shuri Kawasaki
朱里 河崎
Takayuki Matsui
崇行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006044162A priority Critical patent/JP4670678B2/en
Publication of JP2007225704A publication Critical patent/JP2007225704A/en
Application granted granted Critical
Publication of JP4670678B2 publication Critical patent/JP4670678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve adhesive property of a self-forming optical waveguide to a transparent container or the like. <P>SOLUTION: An optical fibre 4 is fixed to the transparent container 3 (1.A), and a photo-setting resin liquid 1 is injected in (1.B) and is removed immediately. Then, unset photo-setting resin liquid 1 adheres to the inner surface of the transparent container 3 and the surface of the core 40 (1.C). When a photo-setting resin liquid 2 is injected, the photo-setting resin liquid 1 and the photo-setting resin liquid 2 are partly mixed with each other, but are not completely nor uniformly mixed with each other (1.D). The photo-setting resin liquids are irradiated with laser light through the optical fiber 4 to form an axial form self-forming optical waveguide core 20 by self-condensing property (1.E). The hardened part of the photo-setting resin liquid 1 condensed in density is formed on the connecting part 10. When removing the unset photo-setting resin liquids 1, 2, the self-forming optical wave guide core 20 is firmly stuck to the optical fiber and the transparent container, and is fixed without deviation even if touching the self-forming optical waveguide core 20 (1.F). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光硬化性樹脂液を自己形成的に光硬化させてコアを形成し、その外周をクラッド材で覆うことによる光導波路の製造方法に関する。   The present invention relates to a method of manufacturing an optical waveguide by photocuring a photocurable resin liquid in a self-forming manner to form a core and covering the outer periphery with a clad material.

本願出願人は、「光硬化性樹脂組成物を自己形成的に光硬化させる」ことで、光導波路のコアとして用いることができる軸状の硬化物を開発し、現在に至るまで様々な提案を行ってきた。例えば下記特許文献1及び2が挙げられる。   The applicant of the present application has developed a shaft-like cured product that can be used as a core of an optical waveguide by “photocuring a photocurable resin composition in a self-forming manner” and has made various proposals up to the present. I went. For example, the following patent documents 1 and 2 are mentioned.

特許文献2の技術は、自己形成光導波路のコアを形成する光硬化性樹脂液に、容器内面、フィルタ又はミラー等の保持部材に対して硬化時に接着性を有する樹脂液を使用するものである。この保持部材への接着性を高める手段としては、光硬化性樹脂中にシランカップリング剤を添加する方法や、シランカップリング剤又はウレタン系、エポキシ系等のプライマーを保持部材の表面に塗布する方法がある。これにより、光導波路の保持部材への接着性が高められる。また、特許文献3には、光伝送構造体の接合に際し、「粗化面」の形成やプラズマ処理等による光配線の表面改質処理が開示されている。
特許第3444352号公報 特開2002−365459号公報 特開2004−004487号公報
The technique of patent document 2 uses the resin liquid which has adhesiveness at the time of hardening with respect to holding members, such as a container inner surface, a filter, or a mirror, to the photocurable resin liquid which forms the core of a self-forming optical waveguide. . As means for improving the adhesion to the holding member, a method of adding a silane coupling agent to the photocurable resin, or a primer such as a silane coupling agent or a urethane type or an epoxy type is applied to the surface of the holding member. There is a way. Thereby, the adhesiveness to the holding member of an optical waveguide is improved. Further, Patent Document 3 discloses a surface modification process of an optical wiring by forming a “roughened surface”, a plasma process or the like when bonding an optical transmission structure.
Japanese Patent No. 3444352 JP 2002-365594 A JP 2004-004487 A

上記従来の第1の方法である、光硬化性樹脂液にシランカップリング剤を添加すると、シランカップリング剤の反応により経時的に光硬化性樹脂液の粘度が上昇する可能性がある。粘度変化は、作製した自己形成光導波路の特性変化につながる。すなわち、光硬化性樹脂液の経時安定性に問題が生じる。また、光硬化性樹脂液にシランカップリング剤を添加すると、シランカップリング剤の反応に伴い生じる低分子成分などが硬化後の樹脂(自己形成光導波路)の安定性や伝送特性に影響する。更に光硬化性樹脂液にシランカップリング剤を添加すると、硬化樹脂のミクロな不均一性によって光散乱が生じ、自己形成光導波路の伝送特性が悪化する。   When a silane coupling agent is added to the photocurable resin liquid, which is the first conventional method, the viscosity of the photocurable resin liquid may increase over time due to the reaction of the silane coupling agent. The change in viscosity leads to a change in characteristics of the produced self-formed optical waveguide. That is, a problem arises in the temporal stability of the photocurable resin liquid. In addition, when a silane coupling agent is added to the photocurable resin liquid, low molecular components and the like generated by the reaction of the silane coupling agent affect the stability and transmission characteristics of the cured resin (self-formed optical waveguide). Further, when a silane coupling agent is added to the photocurable resin liquid, light scattering occurs due to micro nonuniformity of the cured resin, and the transmission characteristics of the self-forming optical waveguide deteriorate.

上記従来の第2の方法である、保持部材にカップリング剤又はプライマーを塗布する場合、塗布工程の他に乾燥工程もしくは硬化工程を必要とするため、生産性が低下する。   When a coupling agent or primer is applied to the holding member, which is the second conventional method, productivity is reduced because a drying process or a curing process is required in addition to the application process.

上記従来の第3の方法である、保持部材に粗化面を形成する処理工程は、環境負荷の高い有害な化学薬品を用いたり、大がかりな装置を用いる必要があったり、洗浄工程などの工程が必要となったりするため、処理そのものが容易ではなく、生産性の点からも問題であった。さらに、面粗度の条件によっては伝送特性の劣化を生じる。   The process of forming a roughened surface on the holding member, which is the third conventional method, requires the use of harmful chemicals with high environmental impact, requires the use of a large-scale apparatus, and is a process such as a cleaning process. Therefore, the process itself is not easy, and it is a problem in terms of productivity. Further, transmission characteristics are deteriorated depending on the condition of surface roughness.

上記従来の第4の方法である、保持部材のプラズマ処理などの表面処理は、大がかりな処理装置が必要となり、また、その処理工程は従来の自己形成光導波路作製法で行っている光硬化性樹脂液を用いたプロセスとは一貫性に欠ける。   The surface treatment such as the plasma treatment of the holding member, which is the above-mentioned conventional fourth method, requires a large-scale processing apparatus, and the treatment process is a photo-curing property performed by a conventional self-forming optical waveguide manufacturing method. It is inconsistent with the process using resin liquid.

本発明は、従来の自己形成光導波路作製法と同様に光硬化性樹脂液を用いる一貫したプロセスにより、伝送特性や生産性を損ねることなく自己形成光導波路と透明容器、光ファイバ、光部品などとの密着性を向上させることを、特別な装置を用いることなく安価で容易に、かつ、安定して実現することを目的とする。   The present invention uses a self-forming optical waveguide and a transparent container, an optical fiber, an optical component, etc. without sacrificing transmission characteristics and productivity by a consistent process using a photocurable resin liquid as in the conventional self-forming optical waveguide manufacturing method. It is an object of the present invention to improve the adhesiveness with a low-cost, easily and stably without using a special device.

請求項1に係る発明は、開口部を有する透明容器に光硬化性樹脂液を充填し、当該光硬化性樹脂液を自己形成的に光硬化させて軸状のコアを形成する光導波路の製造方法において、第1の光硬化性樹脂液を、少なくとも透明容器内部のコアが接すべき部分に付着させる第1液付着工程と、第2の光硬化性樹脂液を、透明容器内部のコアが形成されるべき部分に充填する第2液充填工程と、第1の光硬化性樹脂液と第2の光硬化性樹脂液とをいずれも硬化させる波長の光で軸状のコアを形成する硬化工程とを有し、第1の光硬化性樹脂液と第2の光硬化性樹脂液とは共重合可能であり、第1の光硬化性樹脂液の硬化物は、透明容器と密着性が良いことを特徴とする。   The invention according to claim 1 is a method of manufacturing an optical waveguide in which a transparent container having an opening is filled with a photocurable resin liquid, and the photocurable resin liquid is photocured in a self-forming manner to form an axial core. In the method, the first photo-curing resin liquid is adhered to at least a portion to which the core inside the transparent container should contact, and the second photo-curing resin liquid is added to the core inside the transparent container. A second liquid filling step for filling a portion to be formed, and curing to form an axial core with light of a wavelength that cures both the first photocurable resin liquid and the second photocurable resin liquid. The first photocurable resin liquid and the second photocurable resin liquid can be copolymerized, and the cured product of the first photocurable resin liquid has adhesion to the transparent container. Characterized by good things.

本願出願人による一連の自己形成光導波路においては、一般に密着性が低いと言われている光硬化性樹脂を主要な材料として用いている。対象となる材料(接着する相手、容器内面、フィルタ又はミラー等の保持部材)に合わせて密着性の良い光硬化性樹脂を選択すると、得られる自己形成光導波路の伝送特性や生産性が必ずしも良いものとはならなかった。そこで本発明は、密着性の良い光硬化性樹脂をコアの全体に用いないとの発想により、密着性の必要なコア端と、その必要性の無いコア主要部で実質的に異なる光硬化性樹脂を選択可能とするものである。   In a series of self-forming optical waveguides by the applicant of the present application, a photo-curing resin, which is generally said to have low adhesion, is used as a main material. When a photo-curing resin with good adhesion is selected in accordance with the target material (partner to be bonded, inner surface of container, filter, mirror, etc.), the transmission characteristics and productivity of the resulting self-formed optical waveguide are necessarily good. It did not become a thing. Therefore, the present invention is based on the idea that a photo-curing resin with good adhesion is not used for the entire core, and the photo-curing properties that are substantially different between the core end that requires adhesion and the core main portion that does not require adhesion. The resin can be selected.

本発明がいわゆるプライマーによる技術と異なる部分は、あくまでも前処理を行う必要がないことであり、それは第1の光硬化性樹脂液と第2の光硬化性樹脂液とをいずれも硬化させる波長の光で軸状のコアを形成する硬化工程を有することに特徴付けられる。当該硬化工程が、コアの容器内面への密着性を生じさせるものである。   The part in which the present invention differs from the so-called primer technique is that it is not necessary to perform pretreatment, and it has a wavelength for curing both the first photocurable resin liquid and the second photocurable resin liquid. It is characterized by having a curing process that forms an axial core with light. The said hardening process produces the adhesiveness to the container inner surface of a core.

第1の光硬化性樹脂液と第2の光硬化性樹脂液は共重合可能であるので、それらが混合した部分においても、硬化物は渾然一体的に形成される。また、第1の光硬化性樹脂液と第2の光硬化性樹脂液の組み合わせとして、相溶性の良好な組み合わせを使用すれば、両者の混合による白濁等の不具合を避けることができる。また、第1の光硬化性樹脂液は透明容器内面との接着性の面から、第2の光硬化性樹脂液は他の伝送特性の面から選択できるので、光硬化性樹脂液の選択の自由度が著しく向上する。また、これにより、透明容器内面との接着性と、コアにおける伝送特性の向上を困難無く両立させることができる。   Since the first photocurable resin liquid and the second photocurable resin liquid can be copolymerized, the cured product is naturally formed integrally even in the portion where they are mixed. Moreover, if a combination with good compatibility is used as a combination of the first photocurable resin liquid and the second photocurable resin liquid, problems such as white turbidity due to mixing of both can be avoided. Moreover, since the 1st photocurable resin liquid can be selected from the surface of adhesiveness with the transparent container inner surface, and the 2nd photocurable resin liquid can be selected from the surface of other transmission characteristics, selection of a photocurable resin liquid is possible. The degree of freedom is significantly improved. Thereby, the adhesiveness with the inner surface of the transparent container and the improvement of the transmission characteristics in the core can be achieved without difficulty.

第1の光硬化性樹脂液の第1液付着工程は、低粘度樹脂液の選択により短時間で終了することができ、また、乾燥工程や硬化工程を必要としないため、自己形成光導波路の生産性を低下させない。   The first liquid adhering step of the first photocurable resin liquid can be completed in a short time by selecting a low-viscosity resin liquid, and does not require a drying process or a curing process. Does not reduce productivity.

以上のように、自己形成光導波路コアと透明容器(筐体)との密着性、及び、自己形成光導波路コアと光ファイバとの密着性に優れる。さらに、フィルターやミラーなどの光部品を挿入する際は、光部品と自己形成光導波路コアとの密着性も優れたものとすることができる。この時、低伝送損失な自己形成光導波路を短時間に作製することができる。コアの両端を除く大部分において、密着性の良くない光硬化性樹脂材料を用いて自己形成光導波路を作製することができる。コアの両端は容器その他の保持部材と良好に密着しているので、例えばクラッド材を充填する前にコア表面と容器内面を洗浄する工程を設けても、コアが剥がれることがない。   As described above, the adhesiveness between the self-forming optical waveguide core and the transparent container (housing) and the adhesiveness between the self-forming optical waveguide core and the optical fiber are excellent. Furthermore, when optical components such as filters and mirrors are inserted, the adhesion between the optical components and the self-forming optical waveguide core can be improved. At this time, a self-formed optical waveguide with low transmission loss can be produced in a short time. A self-forming optical waveguide can be produced by using a photo-curing resin material having poor adhesion in most of the cores except for both ends. Since both ends of the core are in good contact with the container and other holding members, for example, even if a step of cleaning the core surface and the container inner surface before filling with the clad material is provided, the core will not peel off.

第1の光硬化性樹脂液と第2の光硬化性樹脂液とは適度に相溶し、硬化後に十分密着する組み合わせを使用すると良い。例えば、それら両者ともアクリレートモノマーを用いたり、両者ともエポキシモノマーを用いたりすれば、どちらの場合も共重合可能であって、強固な密着性を示す。   It is preferable to use a combination in which the first photocurable resin liquid and the second photocurable resin liquid are appropriately compatible and sufficiently adhere to each other after curing. For example, if both use an acrylate monomer, or both use an epoxy monomer, they can be copolymerized in both cases and exhibit strong adhesion.

第1の光硬化性樹脂液として比較的低粘度の材料を使用すれば、取扱いが容易で、材料の充填及び除去、或いは塗布の時間を短縮できる。尚、「密着性が良い」ものとしては、重合性官能基1個あたりの分子量が小さいモノマー又はオリゴマーが好ましい。この点で、2官能性モノマー(オリゴマー)が好ましく、3官能性以上がより好ましい。また、より分子量の小さいものが好ましい。第2の光硬化性樹脂液は、その硬化物がコアとなるので、屈折率の高い材料が好ましい。例えば芳香環を有するものが好ましい。或いは他の観点から、ポリオキシエチレン鎖やポリオキシプロピレン鎖を有するものが好ましい。尚、第1の光硬化性樹脂液、第2の光硬化性樹脂液共、各々が混合物であることは構わない。   If a relatively low-viscosity material is used as the first photocurable resin liquid, the handling is easy, and the filling and removing of the material or the application time can be shortened. The “adhesiveness” is preferably a monomer or oligomer having a small molecular weight per polymerizable functional group. In this respect, a bifunctional monomer (oligomer) is preferable, and trifunctional or higher is more preferable. Moreover, the thing with smaller molecular weight is preferable. Since the cured product of the second photocurable resin liquid is a core, a material having a high refractive index is preferable. For example, what has an aromatic ring is preferable. Or the thing which has a polyoxyethylene chain and a polyoxypropylene chain from another viewpoint is preferable. The first photocurable resin liquid and the second photocurable resin liquid may each be a mixture.

透明容器及び光ファイバ表面に付着した第1の光硬化性樹脂液の量を少なくすれば、第1の光硬化性樹脂液の硬化物における伝送特性の劣化を無視できる程度にすることができる。第1の光硬化性樹脂液の硬化後の屈折率を透明容器、光ファイバ、自己形成光導波路コアとマッチングさせれば、伝送特性の劣化を引き起こさないと言う意味でさらによい。   If the amount of the first photocurable resin liquid adhered to the transparent container and the optical fiber surface is reduced, the deterioration of the transmission characteristics in the cured product of the first photocurable resin liquid can be negligible. If the refractive index after curing of the first photocurable resin liquid is matched with the transparent container, the optical fiber, and the self-forming optical waveguide core, it is even better in the sense that the transmission characteristics are not deteriorated.

和光純薬工業社製トリメチロールプロパントリアクリレート10gに、チバ・スペシャルティ・ケミカルズ社製DAROCUR 1173光重合開始剤を0.1g加え、十分に攪拌して溶解させた。この組成物を光硬化性樹脂液1とする(第1の光硬化性樹脂液)。新中村化学工業社製A−BPE−10(変性ビスフェノールAジアクリレート)6gと、APG−400(ポリプロピレングリコールジアクリレート)4gに、チバ・スペシャルティ・ケミカルズ社製DAROCUR 1173光重合開始剤を0.04g加え、十分に攪拌して溶解させた。この組成物を光硬化性樹脂液2とする(第2の光硬化性樹脂液)。   0.1 g of DAROCUR 1173 photopolymerization initiator manufactured by Ciba Specialty Chemicals was added to 10 g of trimethylolpropane triacrylate manufactured by Wako Pure Chemical Industries, Ltd. and dissolved with sufficient stirring. This composition is designated as photocurable resin liquid 1 (first photocurable resin liquid). To 6 g of A-BPE-10 (modified bisphenol A diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. and 4 g of APG-400 (polypropylene glycol diacrylate), 0.04 g of DAROCUR 1173 photopolymerization initiator manufactured by Ciba Specialty Chemicals In addition, it was sufficiently stirred to dissolve. This composition is designated as photocurable resin liquid 2 (second photocurable resin liquid).

図1.Aのように、直方体の上面が開口となった形のアクリル製の透明容器3に光ファイバ(三菱レイヨン社製エスカメガ)4を固定し、コア40の端面40cを透明容器3の内部に配置させた。そこに光硬化性樹脂液1をスポイトで注入し(図1.B)、すぐに、その透明容器から、光硬化性樹脂液1を未硬化のままスポイトで吸い出して除去した。この時、透明容器3の内面及び透明容器3内の光ファイバ4のコア40の表面には、未硬化の光硬化性樹脂液1が付着し、残存した(図1.C)。次に、その透明容器3へ光硬化性樹脂液2を追加して注入した(図1.D)。この時、図1.Cの段階で透明容器3表面に付着していた光硬化性樹脂液1と追加した光硬化性樹脂液2とは一部混合したが、完全に均一に混じり合うことはなかった。即ち透明容器3の内面及びコア40表面部分では、光硬化性樹脂液1のみか、或いはその濃度が高くなっていた。次に、光ファイバ4を通して波長408nm、強度30mWのレーザー光を透明容器3内部に照射し、自己集光性によって軸状の自己形成光導波路コア20を形成した(図1.E)。このとき自己形成光導波路20の透明容器3及び光ファイバ4のコア40の端面40cとの接続部分10は、光硬化性樹脂液1の硬化物の濃度が高くなっていたと考えられる。未硬化の光硬化性樹脂液1及び2を取り除いたところ、自己形成光導波路コア20は光ファイバ4と透明容器3にしっかりと接着しており、自己形成光導波路コア20に触れてもずれることなく固定されていた(図1.F)。   FIG. As shown in A, an optical fiber (Escamega manufactured by Mitsubishi Rayon Co., Ltd.) 4 is fixed to an acrylic transparent container 3 whose upper surface is a rectangular parallelepiped, and the end face 40c of the core 40 is disposed inside the transparent container 3. It was. The photocurable resin liquid 1 was injected there with a dropper (FIG. 1.B), and immediately, the photocurable resin liquid 1 was sucked and removed from the transparent container with a dropper without being cured. At this time, the uncured photocurable resin liquid 1 adhered and remained on the inner surface of the transparent container 3 and the surface of the core 40 of the optical fiber 4 in the transparent container 3 (FIG. 1.C). Next, the photocurable resin liquid 2 was additionally injected into the transparent container 3 (FIG. 1.D). At this time, FIG. The photocurable resin liquid 1 adhering to the surface of the transparent container 3 at the stage C and a part of the added photocurable resin liquid 2 were mixed, but they were not mixed completely uniformly. That is, only the photocurable resin liquid 1 or the concentration thereof was high on the inner surface of the transparent container 3 and the surface of the core 40. Next, a laser beam having a wavelength of 408 nm and an intensity of 30 mW was irradiated into the transparent container 3 through the optical fiber 4 to form an axial self-forming optical waveguide core 20 by self-condensing property (FIG. 1.E). At this time, it is considered that the concentration of the cured product of the photocurable resin liquid 1 is high in the connection portion 10 between the transparent container 3 of the self-forming optical waveguide 20 and the end face 40c of the core 40 of the optical fiber 4. When the uncured photocurable resin liquids 1 and 2 are removed, the self-forming optical waveguide core 20 is firmly adhered to the optical fiber 4 and the transparent container 3, and is displaced even when touching the self-forming optical waveguide core 20. It was fixed without any change (Fig. 1.F).

こうして作製した自己形成光導波路コア20の周辺に、特許文献2と同様な方法でクラッドを形成した。クラッド材料には新中村化学工業社製APG−700(ポリプロピレングリコールジアクリレート)にチバ・スペシャルティ・ケミカルズ社製IRGACURE 1800光重合開始剤を0.5wt%添加した組成物を使用し、紫外線ランプにより硬化した。作製した長さ14mmの直線光導波路デバイスに関して、波長640nmにおける挿入損失を測定したところ、0.13dBという優れた伝送特性を示した。   A clad was formed around the self-formed optical waveguide core 20 thus manufactured by the same method as in Patent Document 2. For the cladding material, a composition obtained by adding 0.5 wt% of IRGACURE 1800 photopolymerization initiator manufactured by Ciba Specialty Chemicals to APG-700 (polypropylene glycol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. is cured with an ultraviolet lamp. did. When the insertion loss at a wavelength of 640 nm was measured for the produced linear optical waveguide device having a length of 14 mm, it showed excellent transmission characteristics of 0.13 dB.

〔比較例1〕
実施例1と同様に、直方体の上面が開口となった形のアクリル製の透明容器3に光ファイバ(三菱レイヨン社製エスカメガ)4を固定し、コア40の端面40cを透明容器3の内部に配置させた(図2.A)。そこに実施例1で調整した光硬化性樹脂液2を注入した(図2.B)。次に、光ファイバ4を通して波長408nm、強度30mWのレーザー光を照射し、自己集光性によって軸状の自己形成光導波路コア20を形成した(図2.C)。未硬化の光硬化性樹脂液2を取り除いたところ(図2.D)、自己形成光導波路コア20と透明容器3内面との密着性は不十分であり、自己形成光導波路コア20を軽く触れると、自己形成光導波路コア20と透明容器3内面との接触部分がずれてしまった。
[Comparative Example 1]
As in the first embodiment, an optical fiber (Escamega manufactured by Mitsubishi Rayon Co.) 4 is fixed to an acrylic transparent container 3 having a rectangular parallelepiped upper surface, and the end face 40c of the core 40 is placed inside the transparent container 3. Arranged (Figure 2.A). The photocurable resin liquid 2 adjusted in Example 1 was inject | poured there (FIG. 2.B). Next, laser light having a wavelength of 408 nm and an intensity of 30 mW was irradiated through the optical fiber 4 to form an axial self-forming optical waveguide core 20 by self-condensing property (FIG. 2.C). When the uncured photocurable resin liquid 2 is removed (FIG. 2.D), the adhesion between the self-forming optical waveguide core 20 and the inner surface of the transparent container 3 is insufficient, and the self-forming optical waveguide core 20 is lightly touched. The contact portion between the self-forming optical waveguide core 20 and the inner surface of the transparent container 3 has shifted.

新中村化学工業社製701A(2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート)10gにチバ・スペシャルティ・ケミカルズ社製IRGACURE 1800光重合開始剤を0.08g加え、十分に攪拌して溶解させた。この組成物を光硬化性樹脂液11とする(第1の光硬化性樹脂液)。新中村化学工業社製A−BPE−10(変性ビスフェノールAジアクリレート)6gと、APG−400(ポリプロピレングリコールジアクリレート)4gに、チバ・スペシャルティ・ケミカルズ社製IRGACURE 1800光重合開始剤を0.04g加え、十分に攪拌して溶解させた。この組成物を光硬化性樹脂液12とする(第2の光硬化性樹脂液)。   0.08 g of IRGACURE 1800 photopolymerization initiator manufactured by Ciba Specialty Chemicals was added to 10 g of 701A (2-hydroxy-3-acryloyloxypropyl methacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., and dissolved with sufficient stirring. This composition is referred to as a photocurable resin liquid 11 (first photocurable resin liquid). 6 g of A-BPE-10 (modified bisphenol A diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. and 4 g of APG-400 (polypropylene glycol diacrylate), 0.04 g of IRGACURE 1800 photopolymerization initiator manufactured by Ciba Specialty Chemicals In addition, it was sufficiently stirred to dissolve. This composition is designated as photocurable resin liquid 12 (second photocurable resin liquid).

図3.Aのように、直方体の上面が開口となった形のガラス製の透明容器3外側に光ファイバ4(三菱レイヨン社製エスカメガ)を固定し、コア40の端面40cを透明容器3の外壁に接着して光ファイバ4の他端から透明容器3の内部に光を導入できるようにした。その透明容器3に光硬化性樹脂液11をスポイトで注入し(図3.B)、すぐに、その透明容器3から、光硬化性樹脂液11を未硬化のままスポイトで吸い出して除去した。この時、透明容器3の内面には未硬化の光硬化性樹脂液11が付着し、残存した(図3.C)。次に、その透明容器3内部に光硬化性樹脂液12を追加して注入した(図3.D)。この時、図3.Cの段階で透明容器3の表面に付着していた光硬化性樹脂液11と追加した光硬化性樹脂液12とは一部混合したが、完全に均一に混じり合うことはなかった。即ち、透明容器3の内面では、光硬化性樹脂液11のみか、或いはその濃度が高くなっていた。次に、光ファイバ4を通して波長457nm、強度4mWのレーザー光を透明容器3内部に照射し、自己集光性によって軸状の自己形成光導波路コア120を形成した(図3.E)。このとき自己形成光導波路20の透明容器3との接続部分110には、光硬化性樹脂液11の硬化物の濃度が高くなっていたと考えられる。未硬化の光硬化性樹脂液11及び12を取り除いたところ、自己形成光導波路コア20は透明容器3にしっかりと接着していた(図3.F)。   FIG. As shown in A, the optical fiber 4 (Escamega manufactured by Mitsubishi Rayon Co., Ltd.) is fixed to the outside of the glass transparent container 3 whose upper surface is a rectangular parallelepiped, and the end face 40c of the core 40 is bonded to the outer wall of the transparent container 3. Thus, light can be introduced into the transparent container 3 from the other end of the optical fiber 4. The photocurable resin liquid 11 was poured into the transparent container 3 with a dropper (FIG. 3.B), and immediately, the photocurable resin liquid 11 was sucked and removed from the transparent container 3 with the dropper uncured. At this time, the uncured photocurable resin liquid 11 adhered to the inner surface of the transparent container 3 and remained (FIG. 3.C). Next, the photocurable resin liquid 12 was additionally injected into the transparent container 3 (FIG. 3.D). At this time, FIG. The photocurable resin liquid 11 adhering to the surface of the transparent container 3 in the stage C and a part of the added photocurable resin liquid 12 were mixed, but they were not mixed completely uniformly. That is, on the inner surface of the transparent container 3, only the photocurable resin liquid 11 or the concentration thereof was high. Next, a laser beam having a wavelength of 457 nm and an intensity of 4 mW was irradiated through the optical fiber 4 into the transparent container 3 to form an axial self-forming optical waveguide core 120 by self-condensing property (FIG. 3.E). At this time, it is considered that the concentration of the cured product of the photocurable resin liquid 11 was high in the connection portion 110 of the self-forming optical waveguide 20 with the transparent container 3. When the uncured photocurable resin liquids 11 and 12 were removed, the self-forming optical waveguide core 20 was firmly adhered to the transparent container 3 (FIG. 3.F).

〔比較例2〕
光硬化性樹脂液11を透明容器3に注入及び除去する工程を行わないこと以外は実施例2と同様に自己形成光導波路コア120を作製した。自己形成光導波路コア120と透明容器3内面との密着性は不十分であり、自己形成光導波路コア120を軽く触れると、自己形成光導波路コア120と透明容器3内面との接触部分がずれてしまった。
[Comparative Example 2]
A self-forming optical waveguide core 120 was produced in the same manner as in Example 2 except that the step of injecting and removing the photocurable resin liquid 11 from the transparent container 3 was not performed. Adhesion between the self-forming optical waveguide core 120 and the inner surface of the transparent container 3 is insufficient, and when the self-forming optical waveguide core 120 is lightly touched, the contact portion between the self-forming optical waveguide core 120 and the inner surface of the transparent container 3 is shifted. Oops.

実施例2と同様に、直方体の上面が開口となった形のガラス製の透明容器3外側に光ファイバ(三菱レイヨン社製エスカメガ)4を固定した(図4.A)。その透明容器3内面で、後に形成する自己形成光導波路コアと接続させる予定の場所に光硬化性樹脂液11を塗布した(図4.B)。次に、光硬化性樹脂液11が未硬化の状態のまま、その透明容器3に光硬化性樹脂液12を注入した(図4.C)。この時、図4.Bの段階で透明容器3内面に塗布していた光硬化性樹脂液11と注入した光硬化性樹脂液12とは一部混合したが、完全に均一に混じり合うことはなかった。即ち、透明容器3の内面では、光硬化性樹脂液11のみか、或いはその濃度が高くなっていた。次に、光ファイバを通して波長457nm、強度4mWのレーザー光を照射し、自己集光性によって軸状の自己形成光導波路コア120を形成した(図4.D)。このとき自己形成光導波路120の透明容器3内面との接続部分110には、光硬化性樹脂液11の硬化物の濃度が高くなっていたと考えられる。未硬化の光硬化性樹脂液11及び12を取り除いたところ、自己形成光導波路コア120は光ファイバと透明容器3にしっかりと接着していた(図4.E)。   In the same manner as in Example 2, an optical fiber (Escamega manufactured by Mitsubishi Rayon Co., Ltd.) 4 was fixed to the outside of the glass transparent container 3 having an open top surface of the rectangular parallelepiped (FIG. 4.A). On the inner surface of the transparent container 3, a photocurable resin liquid 11 was applied to a place to be connected to a self-forming optical waveguide core to be formed later (FIG. 4.B). Next, the photocurable resin liquid 12 was poured into the transparent container 3 while the photocurable resin liquid 11 was in an uncured state (FIG. 4.C). At this time, FIG. Although the photocurable resin liquid 11 applied to the inner surface of the transparent container 3 in the stage B and the injected photocurable resin liquid 12 were partially mixed, they were not mixed completely and uniformly. That is, on the inner surface of the transparent container 3, only the photocurable resin liquid 11 or the concentration thereof was high. Next, laser light having a wavelength of 457 nm and an intensity of 4 mW was irradiated through an optical fiber to form an axial self-forming optical waveguide core 120 by self-condensing property (FIG. 4.D). At this time, it is considered that the concentration of the cured product of the photocurable resin liquid 11 was high in the connection portion 110 between the self-forming optical waveguide 120 and the inner surface of the transparent container 3. When the uncured photocurable resin liquids 11 and 12 were removed, the self-forming optical waveguide core 120 was firmly adhered to the optical fiber and the transparent container 3 (FIG. 4.E).

本発明の具体的な一実施例に係る光導波路の製造方法を示す工程図(断面図)。Process drawing (sectional drawing) which shows the manufacturing method of the optical waveguide which concerns on one specific Example of this invention. 比較例に係る光導波路の製造方法を示す工程図(断面図)。Process drawing (sectional drawing) which shows the manufacturing method of the optical waveguide which concerns on a comparative example. 本発明の具体的な他の実施例に係る光導波路の製造方法を示す工程図(断面図)。Process drawing (sectional drawing) which shows the manufacturing method of the optical waveguide which concerns on the concrete other Example of this invention. 本発明の具体的な更に他の実施例に係る光導波路の製造方法を示す工程図(断面図)。Process drawing (sectional drawing) which shows the manufacturing method of the optical waveguide which concerns on another specific Example of this invention.

符号の説明Explanation of symbols

1、11:第1の光硬化性樹脂液
2、12:第2の光硬化性樹脂液
10、110:自己形成光導波路コアの端部で透明容器3又は光ファイバ4のコア40の端面40cと接続する部分
20、120:自己形成光導波路コア
3:透明容器
4:光ファイバ
40:光ファイバ4のコア
40c:光ファイバ4のコア40の端面
DESCRIPTION OF SYMBOLS 1, 11: 1st photocurable resin liquid 2, 12: 2nd photocurable resin liquid 10, 110: End surface 40c of the core 40 of the transparent container 3 or the optical fiber 4 in the edge part of a self-forming optical waveguide core 20, 120: Self-forming optical waveguide core 3: Transparent container 4: Optical fiber 40: Core of optical fiber 4 40c: End face of core 40 of optical fiber 4

Claims (1)

開口部を有する透明容器に光硬化性樹脂液を充填し、当該光硬化性樹脂液を自己形成的に光硬化させて軸状のコアを形成する光導波路の製造方法において、
第1の光硬化性樹脂液を、少なくとも前記透明容器内部のコアが接すべき部分に付着させる第1液付着工程と、
第2の光硬化性樹脂液を、前記透明容器内部のコアが形成されるべき部分に充填する第2液充填工程と、
前記第1の光硬化性樹脂液と前記第2の光硬化性樹脂液とをいずれも硬化させる波長の光で前記軸状のコアを形成する硬化工程とを有し、
前記第1の光硬化性樹脂液と前記第2の光硬化性樹脂液とは共重合可能であり、
前記第1の光硬化性樹脂液の硬化物は、前記透明容器と密着性が良いことを特徴とする光導波路の製造方法。
In a method of manufacturing an optical waveguide in which a transparent container having an opening is filled with a photocurable resin liquid and the photocurable resin liquid is photocured in a self-forming manner to form an axial core.
A first liquid adhering step of adhering the first photocurable resin liquid to at least a portion that should contact the core inside the transparent container;
A second liquid filling step of filling the second photocurable resin liquid into a portion where the core inside the transparent container is to be formed;
A curing step of forming the axial core with light of a wavelength that cures both the first photocurable resin liquid and the second photocurable resin liquid;
The first photocurable resin liquid and the second photocurable resin liquid can be copolymerized,
The method for producing an optical waveguide, wherein the cured product of the first photocurable resin liquid has good adhesion to the transparent container.
JP2006044162A 2006-02-21 2006-02-21 Manufacturing method of optical waveguide Expired - Fee Related JP4670678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044162A JP4670678B2 (en) 2006-02-21 2006-02-21 Manufacturing method of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044162A JP4670678B2 (en) 2006-02-21 2006-02-21 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
JP2007225704A true JP2007225704A (en) 2007-09-06
JP4670678B2 JP4670678B2 (en) 2011-04-13

Family

ID=38547621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044162A Expired - Fee Related JP4670678B2 (en) 2006-02-21 2006-02-21 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP4670678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034054A (en) * 2009-07-10 2011-02-17 Toyota Central R&D Labs Inc Optical device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365459A (en) * 2001-06-12 2002-12-18 Toyota Central Res & Dev Lab Inc Method of manufacturing optical waveguide device
JP2005331779A (en) * 2004-05-20 2005-12-02 Ngk Spark Plug Co Ltd Optical waveguide structure, its manufacturing method, and optical waveguide device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365459A (en) * 2001-06-12 2002-12-18 Toyota Central Res & Dev Lab Inc Method of manufacturing optical waveguide device
JP2005331779A (en) * 2004-05-20 2005-12-02 Ngk Spark Plug Co Ltd Optical waveguide structure, its manufacturing method, and optical waveguide device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034054A (en) * 2009-07-10 2011-02-17 Toyota Central R&D Labs Inc Optical device and method for manufacturing the same

Also Published As

Publication number Publication date
JP4670678B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP3841656B2 (en) Manufacturing method of optical waveguide device
JP5359889B2 (en) Clad layer forming resin composition, clad layer forming resin film using the same, optical waveguide and optical module using the same
US9069128B2 (en) Opto-electric combined circuit board and electronic devices
JP4894348B2 (en) Flexible optical waveguide and manufacturing method thereof
JP5321899B2 (en) Clad layer forming resin composition, optical waveguide and optical module
KR20100110350A (en) Opto-electric hybrid board and electronic device
JP2011085647A (en) Optical waveguide substrate and method for manufacturing the same
JP5212141B2 (en) Method for manufacturing flexible optical waveguide
JP5585578B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide
JP4670678B2 (en) Manufacturing method of optical waveguide
JP4848986B2 (en) Optical waveguide and method for manufacturing the same
JP4179947B2 (en) Manufacturing method of self-forming optical waveguide
JP5118168B2 (en) Optical device and manufacturing method thereof
JP2010091733A (en) Resin composition for forming core part and resin film for forming core part using the same, and optical waveguide using these
WO2010087378A1 (en) Method for producing optical waveguide, optical waveguide, and photoelectric composite wiring board
JP2007212792A (en) Method of manufacturing optical waveguide
JP2010091734A (en) Resin composition for forming core part and resin film for forming core part using the same, and optical waveguide using these
JP2008122742A (en) Optical waveguide and method of manufacturing the same
JP2007121503A (en) Method for splicing optical fibers
JP2009003337A (en) Method of splicing optical fibre
JP2006189615A (en) Multi-core optical filament and its manufacturing method
EP0121987A1 (en) Article for and method of joining optical fibres
JP2007033830A (en) Flexible optical waveguide
JP2010271371A (en) Flexible optical waveguide
JPH1123886A (en) Manufacture of optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees