JP2007225008A - Fixing structure of rotor and rotating shaft - Google Patents

Fixing structure of rotor and rotating shaft Download PDF

Info

Publication number
JP2007225008A
JP2007225008A JP2006046314A JP2006046314A JP2007225008A JP 2007225008 A JP2007225008 A JP 2007225008A JP 2006046314 A JP2006046314 A JP 2006046314A JP 2006046314 A JP2006046314 A JP 2006046314A JP 2007225008 A JP2007225008 A JP 2007225008A
Authority
JP
Japan
Prior art keywords
rotating shaft
rotating body
torque
fixing
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046314A
Other languages
Japanese (ja)
Inventor
Masayuki Hiyama
昌之 桧山
Toshiaki Iwasaki
俊明 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006046314A priority Critical patent/JP2007225008A/en
Publication of JP2007225008A publication Critical patent/JP2007225008A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable rotor and rotating shaft fixing structure having simple construction eliminating the need for special assembling devices and fixing means without depending on the diameter of a rotating shaft. <P>SOLUTION: The rotating shaft 6 has a tap screw portion 61 and a stepped portion 62 at predetermined sites and a rotor 4 has a boss portion 41 with a preparing hole 41a whose inner diameter is fitted to the tap screw portion. The tap screw portion of the rotating shaft is screwed into the preparing hole of the rotor, and the boss portion of the rotor is seated and fastened onto the stepped portion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば食器洗い乾燥機、電磁調理器、空調機の室外機等の家電製品などに搭載される、例えば送風機や電動機の冷却ファンなどに好ましく用いることができる回転体と回転軸との固定構造に関するものである。   The present invention is, for example, mounted on a household appliance such as a dishwasher, an electromagnetic cooker, an outdoor unit of an air conditioner, and the like, and can be preferably used for, for example, a blower or a cooling fan of an electric motor. Concerning structure.

以下、食器洗い乾燥機を例にして、説明する。食器洗い乾燥機では、ヒータにより暖められた温風を洗浄後の食器類にあて乾燥させる送風機として、樹脂製羽根車からなる回転体が電動機の駆動軸(出力軸)からなる回転軸に固定されたものが用いられている。また、洗浄あるいは、排水ポンプの駆動電動機を空冷するための樹脂製冷却ファンからなる回転体も同様に電動機の駆動軸に固定されて、製品の筐体内部に収容されている。これらの回転体と電動機等の回転軸との固定構造は、抜け止めや回り止めが施されており、回転体が電動機の回転軸と同期すると共に、軸より外れることなく、送風や空冷などの機能を実現している。   Hereinafter, a dishwasher will be described as an example. In the dishwasher, a rotating body made of a resin impeller is fixed to a rotating shaft consisting of a drive shaft (output shaft) of an electric motor as a blower for drying the hot air heated by a heater against the washed dishes. Things are used. Further, a rotating body composed of a resin cooling fan for washing or cooling the drive motor of the drainage pump is similarly fixed to the drive shaft of the motor and accommodated inside the housing of the product. The fixed structure of the rotating body and the rotating shaft of the electric motor is provided with a stopper and a rotation stopper, and the rotating body is synchronized with the rotating shaft of the electric motor and is not separated from the shaft. The function is realized.

さらに、これら回転体は家電製品の筐体内部に搭載されるため、修理する場合は大掛かりとなる。このため、電動機と同程度の高い信頼性が求められる。また、回転体の着脱は、一般家庭の換気扇等のように清掃の度に頻繁に着脱されるものではなく、電動機の故障時に電動機と一緒に家電製品より取外された後に、電動機から取外されることとなり、外す機会は非常に少ないため、ある程度簡単に外せれば良い用途の軸着構造となる。
従来の固定構造について、回転軸が太い場合と、細い場合に分けて説明する。太い回転軸と回転体との固定は、回転軸及び回転体に貫通孔を形成しピンを挿入したり、D字型断面等で係合する回転軸及び回転体に対して止めネジで固定したり、して実現していた。一方、細い回転軸にも適用可能な締結方法として、回転体に設けられた軸穴への回転軸の圧入や、回転軸への弾性を有する止め輪の設置、回転軸先端に形成したネジ部へのナット固定など、が利用されている。
Furthermore, since these rotating bodies are mounted inside the housing of household electrical appliances, a large amount is required for repair. For this reason, the same high reliability as an electric motor is calculated | required. In addition, the rotating body is not frequently attached and detached every time it is cleaned, such as a general household ventilation fan, but is removed from the home appliance after being removed from the home appliance together with the motor when the motor fails. As a result, since there are very few opportunities to remove the shaft, it is possible to provide a shaft mounting structure that can be easily removed to some extent.
The conventional fixing structure will be described separately for a case where the rotation shaft is thick and a case where the rotation shaft is thin. The thick rotating shaft and the rotating body are fixed by forming a through hole in the rotating shaft and the rotating body, inserting a pin, or fixing the rotating shaft and the rotating body engaged with a D-shaped cross section with a set screw. Or was realized. On the other hand, as a fastening method applicable to a thin rotating shaft, press-fitting of the rotating shaft into a shaft hole provided in the rotating body, installation of a retaining ring having elasticity to the rotating shaft, and a screw portion formed at the tip of the rotating shaft For example, fixing nuts to

しかし、これらの固定構造では次のような課題があり、より少ない構成要素で、かつ、高い信頼性を有する固定構造が求められている。
・回転体と回転軸以外の構成要素が不可欠。
・回転軸が細い場合にも適用可能で構成要素の少ない圧入方式では、樹脂弾性を利用した締結方法であり、常に応力が発生し、寸法精度の管理はもとより、周囲環境を考慮した耐クリープ特性を確保することが必要。
However, these fixing structures have the following problems, and a fixing structure with fewer components and high reliability is required.
-Components other than the rotating body and rotating shaft are indispensable.
・ Applicable even when the rotating shaft is thin and the press-fitting method with few components is a fastening method that uses resin elasticity. Stress is always generated, dimensional accuracy is controlled, and creep resistance characteristics considering the surrounding environment It is necessary to ensure.

上記の課題を解決するために、例えば、スナップフィット構造を回転体に設けると共に、これに係合するような溝や切欠き、あるいは平面状のカット部を有する回転軸としたものがある(例えば特許文献1、2参照)。
また、回転軸を挿入する回転体のボス部内径部に突起を設置すると共に、その突起に係合させる凹部を有する回転軸とし、樹脂製回転体を高温環境にて熱膨張させボス内径を回転軸径よりも大きくし、組み立てることにより、冷却後にはしっかりと締結させるようにしたものがある(例えば特許文献3参照)。
In order to solve the above-mentioned problem, for example, there is a rotating shaft having a snap fit structure provided on a rotating body and a groove or notch that engages with the rotating body, or a planar cut portion (for example, (See Patent Documents 1 and 2).
In addition, a protrusion is installed on the inner diameter of the boss portion of the rotating body into which the rotating shaft is inserted, and a rotating shaft having a recess to be engaged with the protrusion is used to rotate the resin rotating body in a high temperature environment to rotate the inner diameter of the boss. Some have been made larger than the shaft diameter and assembled to be firmly fastened after cooling (for example, see Patent Document 3).

特開平06−66296号公報(第2頁段落番号0005、図1)Japanese Patent Laid-Open No. 06-66296 (paragraph number 0005, second page, FIG. 1) 特開2003−106294号公報(第3頁段落番号0010〜0011、図1)Japanese Patent Laying-Open No. 2003-106294 (3rd page, paragraph numbers 0010 to 0011, FIG. 1) 特開2000−14085号公報(第2頁段落番号0007〜0009、図1)JP 2000-14085 A (paragraph numbers 0007 to 0009, second page, FIG. 1)

前者のスナップフィット構造を利用する軸着構造においては、圧入締結方法と異なり、常時応力が発生しない。しかし、電動機動作により回転軸が回転している間は、ケーシング内の不均一な圧力分布や、振動による衝撃力等により、回転体は回転軸から取外される方向の力を受けるため、スナップフィット根本部には繰返し応力が発生する。これより、高い信頼性を確保するためには、使用樹脂特性、成形精度などに十分な注意を払う必要がある。さらに、回転軸が細い場合には例えばD字型断面形状のような非円形形状の回り止め効果が小さくなるため、十分な軸着ができない。   Unlike the press-fit fastening method, stress is not always generated in the shaft-attached structure using the former snap-fit structure. However, while the rotating shaft is rotated by the motor operation, the rotating body receives a force in the direction to be removed from the rotating shaft due to uneven pressure distribution in the casing, impact force due to vibration, etc. Repeated stress is generated at the fitting root. Therefore, in order to ensure high reliability, it is necessary to pay sufficient attention to the characteristics of the resin used and the molding accuracy. Furthermore, when the rotation shaft is thin, the non-circular anti-rotation effect such as a D-shaped cross-sectional shape is reduced, so that sufficient shaft attachment cannot be achieved.

後者の樹脂製回転体を高温環境にて熱膨張させて固定する場合には、回転軸が細い場合であっても適用可能であるものの、冷却ファンを十分熱膨張させる高温装置が必要となると共に、冷めた後では圧入状態となるため、寸法精度の管理はもとより、周囲環境を考慮した耐クリープ特性の確保が必要となってしまう。   When the latter resin rotating body is fixed by thermally expanding in a high temperature environment, it is applicable even if the rotating shaft is thin, but a high temperature device that sufficiently expands the cooling fan is required. Since it is in a press-fit state after being cooled, it is necessary to secure creep resistance characteristics in consideration of the surrounding environment as well as management of dimensional accuracy.

この発明は、上記のような従来技術の課題を解消するためになされたものであり、構成が簡単で、回転軸の径に依存せず、特別な組立装置も不要な、高い信頼性を有する回転体と回転軸の固定構造を提供することを目的としている。   The present invention has been made to solve the above-described problems of the prior art, has a simple structure, does not depend on the diameter of the rotating shaft, and does not require a special assembly device, and has high reliability. It aims at providing the fixed structure of a rotary body and a rotating shaft.

この発明に係る回転体と回転軸との固定構造は、回転軸の所定部にタップネジと、このタップネジよりも大径の段部からなる段差部を設け、回転体に上記タップネジに適合する内径の下穴を有するボス部を設け、上記回転軸のタップネジが上記下穴にネジ込まれ、上記段差部に固定されてなるものである。   In the fixing structure of the rotating body and the rotating shaft according to the present invention, a tap screw and a stepped portion made of a step having a diameter larger than the tap screw are provided in a predetermined portion of the rotating shaft, and the rotating body has an inner diameter suitable for the tap screw. A boss portion having a pilot hole is provided, and a tap screw of the rotating shaft is screwed into the pilot hole and fixed to the stepped portion.

この発明によれば、最小限の構成要素である回転体と回転軸のみで軸着、固定が実現できるため安価にできる。また、弾性変形ではなく塑性変形による締結を利用するため、応力緩和の影響を受けにくく、高い信頼性の固定構造が実現できると共に、回転体のボス部に設けた下穴径の寸法管理が容易となり、成形金型費・保守費などが低減できる。さらに、タップネジ締結強度データが利用でき、信頼性評価試験の短縮が可能となる、といった従来にない顕著な効果が得られる。   According to the present invention, it is possible to reduce the cost because it can be mounted and fixed with only the rotating body and the rotating shaft, which are the minimum components. In addition, since fastening by plastic deformation rather than elastic deformation is used, it is difficult to be affected by stress relaxation, a highly reliable fixing structure can be realized, and dimensional management of the pilot hole diameter provided in the boss portion of the rotating body is easy. Thus, mold costs and maintenance costs can be reduced. Furthermore, a remarkable effect that is not possible in the past can be obtained such that the tap screw fastening strength data can be used and the reliability evaluation test can be shortened.

実施の形態1.
図1〜図5はこの発明の実施の形態1による回転体と回転軸との固定構造を食器洗い乾燥機の乾燥用の送風機に適用した場合を説明するもので、図1は回転体としての樹脂製の軸流ファンと、回転軸としての駆動軸を有する電動機を示す一部断面組立図、図2は図1に示す軸流ファンのボス部に対するタップネジの締付量と必要となる締付トルクの関係について測定された特性図、図3は図1に示す回転体と回転軸とを固定したものを回転させたときの動作説明図、図4は図1に示す回転体と回転軸とを固定するときに用いる組立治具例とその組立動作を示す説明図、図5は図1に示す回転体と回転軸とを固定したものを食器洗い乾燥機に利用した場合の全体構成を示す要部断面図である。なお、各図を通じて同一符号は同一もしくは相当部分を示すものとし、説明の重複を避けている。
Embodiment 1 FIG.
1 to 5 illustrate a case where the structure for fixing a rotating body and a rotating shaft according to Embodiment 1 of the present invention is applied to a drying fan of a dishwasher, and FIG. 1 is a resin as a rotating body. FIG. 2 is a partially sectional assembly view showing an electric motor having a manufactured axial flow fan and a drive shaft as a rotating shaft. FIG. 2 is a tightening amount of a tap screw and a required tightening torque with respect to a boss portion of the axial flow fan shown in FIG. 3 is a characteristic diagram measured for the relationship, FIG. 3 is a diagram for explaining the operation when a rotating body and a rotating shaft shown in FIG. 1 are fixed, and FIG. 4 shows the rotating body and the rotating shaft shown in FIG. FIG. 5 is an explanatory view showing an example of an assembling jig used for fixing and its assembling operation, and FIG. 5 is a main part showing an entire configuration when the rotating body and rotating shaft shown in FIG. 1 are fixed to a dishwasher. It is sectional drawing. Throughout the drawings, the same reference numerals indicate the same or corresponding parts, and overlapping description is avoided.

図5に例示するように、食器洗い乾燥機1には、洗浄槽2に送風機3が搭載され、洗浄後の食器類(図示省略)の乾燥を行う。この例では、回転体4として軸流ファンを利用し、送風機3を洗浄槽2の裏面に設置した場合を示しているが、送風機の機能を有すればファンの形式、設置場所などは特に限定されるものではない。送風機3は図1に示すように回転体4としての軸流ファンと、電動機5からなる。回転体4は中心部のボス部41と羽根部42とで一体成形された樹脂成形品からなり、ボス部41の中心には下穴41aが設けられている。電動機5の外側には駆動軸である回転軸6が電動機5の一方から外側に突出されている。   As illustrated in FIG. 5, the dishwasher 1 is equipped with a blower 3 in the washing tub 2 to dry the dishes (not shown) after washing. In this example, an axial fan is used as the rotating body 4 and the blower 3 is installed on the back surface of the cleaning tank 2. However, the fan type, installation location, etc. are particularly limited as long as it has the function of the blower. Is not to be done. As shown in FIG. 1, the blower 3 includes an axial fan as a rotating body 4 and an electric motor 5. The rotating body 4 is formed of a resin molded product integrally formed by a boss portion 41 and a blade portion 42 at the center, and a pilot hole 41 a is provided at the center of the boss portion 41. On the outside of the electric motor 5, a rotating shaft 6 that is a drive shaft protrudes outward from one side of the electric motor 5.

なお、回転体4を電動機5の空冷ファンとして設置する場合には、回転軸6が電動機5の両側から突出されているもの(図示省略)もあり、その場合には電動機本来の機能を一方の回転軸で果たし、他方の回転軸に空冷ファンからなる回転体が軸着、固定される。上記回転軸6の先端部にはタップネジ部61と、このタップネジ部61よりも軸径を大にして形成された段差部62とが設けられている。一方、ボス部41の下穴41aの径はタップネジ部61の径に適応した寸法に形成されている。なお組立時には、後段で詳述するように、軸θに同軸に配設された回転体4の下穴41aに回転軸6のタップネジ部61をネジ込み、回転体4のボス部41の端面41bを回転軸6の段差部62に着座させ、所定のトルクで締結する。   In the case where the rotating body 4 is installed as an air cooling fan for the electric motor 5, there is a rotating shaft 6 protruding from both sides of the electric motor 5 (not shown). A rotating body consisting of an air cooling fan is attached to and fixed to the other rotating shaft. A tap screw portion 61 and a step portion 62 formed with a shaft diameter larger than that of the tap screw portion 61 are provided at the distal end portion of the rotating shaft 6. On the other hand, the diameter of the pilot hole 41 a of the boss portion 41 is formed to a size adapted to the diameter of the tap screw portion 61. At the time of assembly, as will be described in detail later, the tap screw portion 61 of the rotating shaft 6 is screwed into the pilot hole 41a of the rotating body 4 disposed coaxially with the axis θ, and the end surface 41b of the boss portion 41 of the rotating body 4 is inserted. Is seated on the stepped portion 62 of the rotating shaft 6 and fastened with a predetermined torque.

次に、上記のように構成された回転体4と回転軸6の固定構造について、送風機3の動作中における回転体4と回転軸6との締結原理に基づいて説明する。回転体4と回転軸6との締結強度は、樹脂製のボス部41に対するタップネジ部61の締結強度に帰着されるため、まずは、これらを説明する。樹脂製のボス部41に対するタップネジ部61の締付量と必要となる締付トルクの関係は図2に示す曲線となっている。タップネジ部61を樹脂製のボス部41に締め付けはじめると、徐々にトルクが上昇後、緩やかにトルクが増加する。その後、樹脂製のボス部41の端面41bとタップネジ部61のネジ頭に相当する段差部62が当接(着座)し、図2中A点で示す部分で急激にトルクが上昇し、最後には図2中B点で示す位置でボス部41が破壊(破断)に到る。   Next, the structure for fixing the rotating body 4 and the rotating shaft 6 configured as described above will be described based on the fastening principle between the rotating body 4 and the rotating shaft 6 during the operation of the blower 3. Since the fastening strength between the rotating body 4 and the rotating shaft 6 is reduced to the fastening strength of the tap screw portion 61 with respect to the resin boss portion 41, these will be described first. The relationship between the tightening amount of the tap screw 61 and the required tightening torque with respect to the resin boss 41 is a curve shown in FIG. When the tap screw portion 61 starts to be fastened to the resin boss portion 41, the torque gradually increases and then gradually increases. Thereafter, the stepped portion 62 corresponding to the end face 41b of the resin boss portion 41 and the screw head of the tap screw portion 61 comes into contact (sitting), and the torque suddenly increases at the portion indicated by point A in FIG. 2 breaks (breaks) the boss 41 at the position indicated by point B in FIG.

ここで、図中A点での締付トルクを着座トルク、図中B点での締付トルクを破断トルクと呼ぶ。このトルク特性より、樹脂製のボス部41にタップネジ部61を締め付ける際の適正締付トルクが算定される。また、タップネジ部61は、着座トルク近傍で着座トルク以上、適正締付トルク以下となるトルク値(緩めトルクと呼ぶ)にて緩みはじめる。つまり、締め付け回転方向には破断トルク以下の回転トルクにて、また、緩め回転方向には着座トルク以下の回転トルクにて、締め付け、あるいは、緩み方向に回転される場合には、樹脂製のボス部41の破断及びゆるみは発生せずに締結状態を保つことがわかる。   Here, the tightening torque at point A in the figure is called seating torque, and the tightening torque at point B in the figure is called breaking torque. From this torque characteristic, an appropriate tightening torque when the tap screw 61 is tightened to the resin boss 41 is calculated. Further, the tap screw portion 61 starts to loosen at a torque value (referred to as a loosening torque) that is not less than the seating torque and not more than the proper tightening torque in the vicinity of the seating torque. In other words, a resin boss is used when tightening or rotating in the loosening direction with a rotational torque less than the breaking torque in the tightening rotation direction and with a rotational torque less than the seating torque in the loosening rotation direction. It can be understood that the fastening state is maintained without causing breakage and loosening of the portion 41.

以上のことに基づき、回転体4と回転軸6の固定状態について説明する。先の着座トルクは、回転体4の端面41bに回転軸6の段差部62が着座(当接)したときの締付トルクに相当し、破断トルクは回転体4のボス部41が破壊する際の締付トルクに相当する。また、電動機5の定格トルクなどの設計は、送風機3の動作中に回転体4が受ける反モーメントに対して、十分大きな値とする必要がある。これより、一方向の回転のみでその機能が実現可能な送風機3用の電動機5の場合には、ボス部41の適正締付トルクを電動機5の定格トルク近傍とし、ボス部41の破断トルクを電動機5の瞬時最大発生トルクと同程度以上とする設計を行えば良い。一方、両方向の回転を行う電動機5等の場合には、ボス部41の着座トルクを電動機5の連続最大発生トルクと同程度以上とする設計を行うことにより、緩みトルクは着座トルクよりも大きいことから、両方向の回転でも緩みが発生することはない。   Based on the above, the fixed state of the rotating body 4 and the rotating shaft 6 will be described. The preceding seating torque corresponds to the tightening torque when the stepped portion 62 of the rotating shaft 6 is seated (contacted) on the end surface 41b of the rotating body 4, and the breaking torque is when the boss portion 41 of the rotating body 4 breaks. It corresponds to the tightening torque. Moreover, the design of the rated torque of the electric motor 5 needs to be a sufficiently large value with respect to the reaction moment that the rotating body 4 receives during the operation of the blower 3. Accordingly, in the case of the electric motor 5 for the blower 3 that can realize the function only by rotation in one direction, the proper tightening torque of the boss portion 41 is set in the vicinity of the rated torque of the electric motor 5, and the breaking torque of the boss portion 41 is set. What is necessary is just to design so as to be equal to or higher than the instantaneous maximum generated torque of the electric motor 5. On the other hand, in the case of the motor 5 or the like that rotates in both directions, the loosening torque is larger than the seating torque by designing the seating torque of the boss portion 41 to be equal to or greater than the continuous maximum generated torque of the motor 5. Therefore, no looseness occurs even in rotation in both directions.

ここで、瞬時最大発生トルクは、瞬時最大電機子電流時に発生するトルクのことで、連続最大発生トルクは、連続領域内における出力トルクの最大値のことである。瞬時最大電機子電流は、電動機が冷状態、あるいは、熱状態にある電機子に流し得る最大電流で、マグネットの減磁特性、電機子反作用及び各部の温度上昇限度から制限される電流のことである。連続領域は、限界回転速度以下で連続運転し、電動機各部の温度上昇値が、その温度上昇限度を超えないトルクと回転速度の範囲のことである。   Here, the instantaneous maximum generated torque is torque generated at the time of the instantaneous maximum armature current, and the continuous maximum generated torque is the maximum value of the output torque in the continuous region. The instantaneous maximum armature current is the maximum current that can flow through the armature when the motor is cold or hot, and is limited by the demagnetization characteristics of the magnet, the armature reaction, and the temperature rise limit of each part. is there. The continuous region is a range of torque and rotational speed at which the temperature rise value of each part of the electric motor does not exceed the temperature rise limit when continuous operation is performed below the limit rotational speed.

図3は送風機3の動作時における回転体4と回転軸6のみ抜粋して示しており、図中、・印を○で囲った標記は紙面の奥から手前への向きを、×印を○で囲った標記は紙面の手前から奥への向きをそれぞれ表わし、これら2つの標記により回転物体の回転の向きを表現するものとする。なお、タップネジ部61は右ネジの場合を示す。
送風機3が停止状態のときには、回転体4と回転軸6は両方とも停止しているため、両者間に発生するトルクは零であり、締め付けも緩みもしない。一方、送風機3の始動直後には、回転軸6は図中矢印Cの方向から見て時計回りに回転し始めるが、回転体4は回転と共に羽根部42が受ける反モーメントが増加するため回転軸6の回転よりも遅い回転速度にて回転しようとする(図3上側)。つまり、回転体4からみると、停止している回転体4のボス部41に、電動機5の発生する回転トルクがタップネジ部61を締め付ける方向に作用することとなる(図3下側)。
FIG. 3 shows only the rotating body 4 and the rotating shaft 6 extracted during the operation of the blower 3. In the figure, the mark surrounded by ○ is the direction from the back to the front of the paper, and the × mark is ○ Each of the marks enclosed in (1) represents the direction from the front to the back of the page, and the rotation direction of the rotating object is represented by these two marks. The tap screw portion 61 is a right-hand screw.
When the blower 3 is in a stopped state, since both the rotating body 4 and the rotating shaft 6 are stopped, the torque generated between them is zero and neither tightens nor loosens. On the other hand, immediately after the blower 3 is started, the rotating shaft 6 starts to rotate clockwise as viewed from the direction of the arrow C in the figure. However, since the rotating body 4 increases the reaction moment received by the blade portion 42 with the rotation, the rotating shaft 6 rotates. Attempts to rotate at a rotational speed slower than 6 (upper side in FIG. 3). That is, when viewed from the rotating body 4, the rotational torque generated by the electric motor 5 acts on the boss portion 41 of the rotating body 4 that is stopped in the direction in which the tap screw portion 61 is tightened (lower side in FIG. 3).

しかし、上記したように、ボス部41の破断トルクを電動機5の瞬時最大発生トルクと同程度以上に設定しているため、ボス部41が破断することはない。これより、回転体4は破壊せずに回転軸6の回転に同期して回転することとなり、回転体4からみると回転体4と回転軸6は締め付けも緩みもしない。
さらに、送風機3が停止直前の場合には、回転軸6の回転速度の低下にともない、回転体4の羽根部42に働く反モーメントも小さくなるため、回転体4と回転軸6は締め付けも緩みもしない。
以上のことより、送風機3が始動時のみ締め付け状態となるが、電動機5の瞬時最大発生トルク値をボス部41の破断トルク以下に設定しているため、該締結方法によって回り止め、抜け止めが施された固定構造となる。
However, as described above, since the breaking torque of the boss portion 41 is set to be equal to or higher than the instantaneous maximum generated torque of the electric motor 5, the boss portion 41 is not broken. As a result, the rotating body 4 rotates in synchronism with the rotation of the rotating shaft 6 without breaking, and when viewed from the rotating body 4, the rotating body 4 and the rotating shaft 6 are neither tightened nor loosened.
Further, when the blower 3 is just before stopping, the reaction moment acting on the blade portion 42 of the rotating body 4 decreases as the rotating speed of the rotating shaft 6 decreases, so that the rotating body 4 and the rotating shaft 6 are loosely tightened. If not.
From the above, the blower 3 is tightened only at the start, but since the instantaneous maximum generated torque value of the electric motor 5 is set to be equal to or less than the rupture torque of the boss portion 41, the fastening method prevents the rotation and the retaining. The fixed structure is applied.

一方、電動機5の逆回転に対しては、ボス部41の着座トルクを電動機5等の連続最大発生トルク以上とすることにより、両方向に回転する締結にも適用可能である。また、送風機3の動作中には、圧力勾配によるスラスト力や、振動による衝撃力が締結部に加わることから、従来は実機を用いた試験を行う必要があった。しかし、この実施の形態1の固定構造によれば、実際の送風機3を利用せずに、単純な樹脂製ボスとタップネジとの引抜強度や、耐振動性を評価すれば良い。
なお、1方向のみの電動機5の回転方向が上記と逆の場合には、タップネジ部61を左ネジにすれば、同様となることは言うまでもない。
On the other hand, the reverse rotation of the electric motor 5 can also be applied to fastening that rotates in both directions by setting the seating torque of the boss portion 41 to be equal to or greater than the continuous maximum generated torque of the electric motor 5 or the like. Further, during the operation of the blower 3, since a thrust force due to a pressure gradient or an impact force due to vibration is applied to the fastening portion, it has been conventionally necessary to perform a test using an actual device. However, according to the fixing structure of the first embodiment, the pullout strength and vibration resistance between a simple resin boss and a tap screw may be evaluated without using the actual blower 3.
Needless to say, if the direction of rotation of the electric motor 5 in only one direction is opposite to that described above, the tap screw 61 is left-handed.

次に、図4に例示する組立治具を用いて、回転体4を回転軸6のタップネジ部61にネジ込み、固定する組立方法について説明する。なお、組立は基本的にはネジを電動ドライバにて締め付ける場合と同様である。組立治具は、図4(a)に示すように、回転体4を収容する少なくとも一面が開口された外箱7と、外箱7の中心部底部から開口部に向けて立設され回転体4のボス部41を軸心に沿って図の上下方向に移動可能に保持すると共に、羽根部42の回動を阻止するガイド8と、ガイド8の中心部に収容されボス部41の図の下端部を保持する弾性体9と、外箱7の開口部を塞ぐ蓋状に形成され所定部に電動機5を固定、保持すると共に、保持したときに回転軸6のタップネジ部61を図の下方向に突出させ、外箱7の開口部に取り付けたときに、図4(b)に示すようにタップネジ部61とボス部41の軸心が同軸となり、タップネジ部61先端部がボス部41を弾性体9に抗して押し下げる押さえ部材10からなっている。なお、組立時に、電動機5はトルクリミッタ付き駆動回路11によって駆動される。   Next, an assembly method in which the rotating body 4 is screwed into the tap screw portion 61 of the rotating shaft 6 and fixed using the assembly jig illustrated in FIG. 4 will be described. The assembly is basically the same as when the screw is tightened with an electric screwdriver. As shown in FIG. 4A, the assembly jig includes an outer box 7 having at least one surface opened to accommodate the rotating body 4, and a rotating body standing from the center bottom of the outer box 7 toward the opening. 4 bosses 41 are held so as to be movable in the vertical direction in the figure along the axis, and the guides 8 that prevent the blades 42 from rotating, and the bosses 41 accommodated in the center of the guides 8 are shown in the figure. The elastic body 9 that holds the lower end portion and the lid 5 that closes the opening of the outer box 7 are fixed and held at a predetermined portion, and the tap screw portion 61 of the rotary shaft 6 is held at the bottom of the figure when held. 4, when the shaft is attached to the opening of the outer box 7, the axis of the tap screw 61 and the boss 41 are coaxial, and the tip of the tap screw 61 is connected to the boss 41 as shown in FIG. The pressing member 10 is pressed down against the elastic body 9. At the time of assembly, the electric motor 5 is driven by a drive circuit 11 with a torque limiter.

先ず図4(a)に示すように、回転体4は、ガイド8と弾性体9により、外箱7における開放面の法線外向きに保持した状態で外箱7に挿入した後、図示省略している固定手段にて固定される押さえ部材10によって図中下方向に押し付けられる。この状態にて電動機5を外箱7の開放面外側から押さえ部材10の所定位置に設置する。これに伴い、図4(b)に示すように回転体4は電動機5の回転軸6に押し下げられて外箱7の底部方向に移動した状態となる。電動機5は図示しない固定方法にて押さえ部材10を介して外箱7に対して固定される。次に、トルクリミッタ付き駆動回路11を電動機5に接続し、電動機5の回転軸6を回転させることで、回転軸6に押し付けられた回転体4はボス部41をタップネジ部61によりタッピングされながら、図4(c)に示すように電動機5に接近してくる。さらに回転を継続することで、図4(d)に示すように回転軸6の段差部62にボス部41の端面41bが当接・着座され、適正締付トルクにて締結が完了する。   First, as shown in FIG. 4A, the rotating body 4 is inserted into the outer box 7 while being held by the guide 8 and the elastic body 9 so that the open surface of the outer box 7 is normal outward, and is not shown. The pressing member 10 fixed by the fixing means is pressed downward in the figure. In this state, the electric motor 5 is installed at a predetermined position of the pressing member 10 from the outside of the open surface of the outer box 7. Accordingly, as shown in FIG. 4B, the rotating body 4 is pushed down by the rotating shaft 6 of the electric motor 5 and moved toward the bottom of the outer box 7. The electric motor 5 is fixed to the outer box 7 via the pressing member 10 by a fixing method (not shown). Next, the drive circuit 11 with a torque limiter is connected to the electric motor 5, and the rotating shaft 6 of the electric motor 5 is rotated so that the rotating body 4 pressed against the rotating shaft 6 is tapped on the boss portion 41 by the tap screw portion 61. As shown in FIG. 4C, the electric motor 5 is approached. By continuing the rotation, the end surface 41b of the boss 41 is brought into contact with and seated on the stepped portion 62 of the rotating shaft 6 as shown in FIG. 4D, and the fastening is completed with an appropriate tightening torque.

上記のようにこの実施の形態1によれば、下穴41aが開けられたボス部41を有する回転体4と先端部に段差部62とタップネジ部61を設けた回転軸6という最小限の構成要素で締結が実現できるため、部品数が減らせることはもとより、構造が簡単で安価にできる。また、弾性変形ではなく塑性変形を利用した固定構造であるため、応力緩和の影響を受けにくく、高い信頼性の固定が実現可能となると共に、下穴41aの径の寸法管理が緩和され、成形金型費・保守費が低減可能となる。さらに、タップネジ締結強度データが利用でき、信頼性評価試験の短縮が可能となる。
また、回転軸6が1方向のみの回転にて機能を実現し、ボス部41の適正締付トルクを電動機5の定格トルク近傍とし、ボス部41の破断トルクを電動機5の瞬時最大発生トルクと同程度以上としたボス部設計を行うことにより、一方向回転の電動機等に対して、細い回転軸でも十分な強度を有する固定構造が提供できる。
As described above, according to the first embodiment, the minimum configuration of the rotating body 4 having the boss portion 41 with the prepared hole 41a and the rotating shaft 6 provided with the stepped portion 62 and the tap screw portion 61 at the tip portion is provided. Since fastening can be realized with elements, the number of parts can be reduced and the structure can be simplified and inexpensive. In addition, since the fixing structure uses plastic deformation instead of elastic deformation, it is difficult to be affected by stress relaxation, and high-reliability fixing can be realized, and dimensional control of the diameter of the pilot hole 41a is relaxed, and molding is performed. Mold costs and maintenance costs can be reduced. Furthermore, tap screw fastening strength data can be used, and the reliability evaluation test can be shortened.
Further, the function is realized by the rotation of the rotating shaft 6 in only one direction, the proper tightening torque of the boss portion 41 is set near the rated torque of the electric motor 5, and the breaking torque of the boss portion 41 is the instantaneous maximum generated torque of the electric motor 5. By designing the boss portion to the same degree or more, it is possible to provide a fixing structure having sufficient strength even with a thin rotating shaft for a one-way rotating motor or the like.

さらに、電動機5の回転軸6が両方向の回転にて機能を実現し、ボス部41の着座トルクを電動機5の連続最大発生トルクと同程度以上、かつ、ボス部41の適正締付トルクを電動機5の瞬時最大発生トルクとしたボス部設計を行うことにより、両方向回転の電動機等に対して、タップネジ部61の締付回転方向には瞬時最大発生トルク以下、つまり、常時使用可能となり、タップネジ部61の緩め回転方向には連続最大発生トルク以下のトルク範囲にて使用可能となる高い信頼性を有する締結構造が提供できる。
さらにまた、回転体4を簡単な組立治具に固定し、電動機5を動作させ回転軸6を回転させるタップネジ部61の締め付け動作によって、回転体4と回転軸6とを組み立てられるので、ネジ締めと同様に組み立てることができ、組立性が向上すると共に、同時に電動機の動作確認も可能となるなどの、顕著な効果が得られる。
Further, the rotating shaft 6 of the electric motor 5 realizes the function by rotating in both directions, the seating torque of the boss part 41 is equal to or higher than the continuous maximum generated torque of the electric motor 5, and the proper tightening torque of the boss part 41 is set to the electric motor. By designing the boss part with the instantaneous maximum generated torque of 5, it becomes possible to always use the torque screw below the instantaneous maximum generated torque in the tightening rotation direction of the tap screw part 61, ie, the tap screw part. A highly reliable fastening structure that can be used in a torque range equal to or less than the continuous maximum generated torque in the loose rotation direction of 61 can be provided.
Furthermore, the rotating body 4 and the rotating shaft 6 can be assembled by the fastening operation of the tap screw portion 61 that fixes the rotating body 4 to a simple assembly jig and operates the electric motor 5 to rotate the rotating shaft 6. Assembling can be performed in the same manner as described above, and the assemblability can be improved, and at the same time, the operation of the motor can be confirmed.

実施の形態2.
図6、図7はこの発明の実施の形態2による回転体と回転軸との固定構造を説明する図であり、図6は一部断面組立図、図7は動作説明図である。図において、回転軸6には軸端部方向に、段差部62、タップネジ部61、段差部63、及びタップネジまたは通常のネジからなるネジ部64が形成されている。なお、タップネジ部61とネジ部64のネジの向きは反転している。一方、回転体4のボス部41の中心部には、タップネジ部61に適合する内径で、長さがボス部41の略半分程度の下穴41aと、この下穴41aに隣接して径を拡大して形成された段部41cと、ネジ部64に螺合またはねじ込まれるナット状の固定体12を受け入れる固定体収容部41dとが形成されている。なお、上記ネジ部64、段部41c、及び固定体12で締結手段13を構成している。その他の符号は上記実施の形態1と同様である。
Embodiment 2. FIG.
6 and 7 are diagrams for explaining a structure for fixing a rotating body and a rotating shaft according to Embodiment 2 of the present invention. FIG. 6 is a partially sectional assembly view, and FIG. In the figure, the rotary shaft 6 is formed with a stepped portion 62, a tap screw portion 61, a stepped portion 63, and a screw portion 64 made of a tap screw or a normal screw in the axial end direction. In addition, the direction of the screw of the tap screw part 61 and the screw part 64 is reversed. On the other hand, the central portion of the boss portion 41 of the rotating body 4 has an inner diameter suitable for the tap screw portion 61 and is approximately half the length of the boss portion 41 and a diameter adjacent to the lower hole 41a. An enlarged step portion 41c and a fixed body accommodating portion 41d that receives the nut-like fixed body 12 that is screwed or screwed into the screw portion 64 are formed. The screw part 64, the step part 41c, and the fixed body 12 constitute the fastening means 13. Other reference numerals are the same as those in the first embodiment.

上記のように構成された実施の形態2においては、タップネジ部61には実施の形態1と同様に回転体4の下穴41a部を軸θに沿ってねじ込み、端面41bを段差部62に着座させ締結する。ネジ部64には固定体12をネジ込み、固定体12を回転体4の段部41cに当接させて締め付け、回転体4を回転軸6に締結する。ここで、固定体12は、ネジ部64がタップネジならばボスを有する樹脂材を、ネジ部64が一般的なネジならば通常のナット等を利用して締結することができる。   In the second embodiment configured as described above, the pilot hole 41a portion of the rotating body 4 is screwed into the tap screw portion 61 along the axis θ as in the first embodiment, and the end surface 41b is seated on the stepped portion 62. Let them conclude. The fixed body 12 is screwed into the screw portion 64, the fixed body 12 is brought into contact with the stepped portion 41 c of the rotating body 4 and tightened, and the rotating body 4 is fastened to the rotating shaft 6. Here, the fixing body 12 can be fastened using a resin material having a boss if the screw portion 64 is a tap screw, and using a normal nut or the like if the screw portion 64 is a general screw.

次にこの固定構造の締結原理を図7にて説明する。ここでは、タップネジ部61は右ネジ、ネジ部64は左ネジとする。回転軸6が図中矢印D方向から見て時計回りに回転する場合は、実施の形態1にて説明したように、回転体4は緩む方向には回転しないため、図示しない。ここで、固定体12に対しては緩む方向の回転であるが、回転に伴う固定体12に働く反モーメントはほとんど零であるため、回転体4の押付け力に比例した摩擦力により、回転体4、及び、回転軸6と同期して回転する。   Next, the fastening principle of this fixing structure will be described with reference to FIG. Here, the tap screw portion 61 is a right-hand screw, and the screw portion 64 is a left-hand screw. When the rotating shaft 6 rotates clockwise as viewed from the direction of arrow D in the figure, as described in the first embodiment, the rotating body 4 does not rotate in the loosening direction and is not shown. Here, although the rotation is in a loosening direction with respect to the fixed body 12, the counter-moment acting on the fixed body 12 due to the rotation is almost zero. 4 and rotate in synchronization with the rotating shaft 6.

一方、図中矢印Dから見て反時計回りに回転する場合を考える。実施の形態1にて説明したタップネジ部61が1つのみの場合には、回転体4のボス部41の適正締付トルクを電動機5の瞬時最大発生トルク近傍にする必要がある。ここで、同一ボスに対して適性締付トルクは破断トルクよりも十分小さな値となるため、実施の形態1ではタップネジ部61のネジ長さが大きくなってしまう。しかし、図6、7に示すように、回転体4を挟み込んで回転軸6に締結された固定体12が追加されていることにより小型化ができる。回転軸6の反時計回りの回転に対して、回転体4は遅い速度で回転しようとする。この時、摩擦力が回転体4と回転軸6間だけではなく、回転体4と固定体12間(図中太線で示すE部)にも反時計回りに働く。   On the other hand, consider the case of rotating counterclockwise as viewed from the arrow D in the figure. When there is only one tap screw portion 61 described in the first embodiment, it is necessary that the proper tightening torque of the boss portion 41 of the rotating body 4 be close to the instantaneous maximum generated torque of the electric motor 5. Here, since the appropriate tightening torque is sufficiently smaller than the breaking torque for the same boss, the screw length of the tap screw portion 61 is increased in the first embodiment. However, as shown in FIGS. 6 and 7, the size can be reduced by adding a fixed body 12 sandwiched between the rotating body 4 and fastened to the rotating shaft 6. The rotating body 4 tries to rotate at a slow speed with respect to the counterclockwise rotation of the rotating shaft 6. At this time, the frictional force acts not only between the rotating body 4 and the rotating shaft 6 but also between the rotating body 4 and the fixed body 12 (E portion indicated by a thick line in the figure) counterclockwise.

この反時計回りの摩擦力により、固定体12は緩められず回転軸6にさらに締め付けられる。このため、回転体4は回転軸6の段差部62と固定体12によって、より強固に締結され増し締めされた状態となる。これによって、ボス部41の適正締付トルクを電動機5の瞬時最大発生トルク近傍にする必要は無く、同一ボスに対して着座トルクよりも十分大きな値となる破断トルクを瞬時最大発生トルクと同程度以上とすれば良く、適正締付トルクは回転軸6の定格トルク近傍で良いこととなる。ここで、着座トルクや破断トルクは、タップネジ部61のネジ長さとほぼ比例関係にあることから、ネジ長さを短縮することができ、回転体4は回転軸6、及び、固定体12と同期して反時計回りに回転することとなる。   Due to the counterclockwise frictional force, the fixed body 12 is not loosened and is further tightened to the rotating shaft 6. For this reason, the rotating body 4 is in a state of being tightened and tightened more firmly by the stepped portion 62 of the rotating shaft 6 and the fixed body 12. As a result, it is not necessary that the proper tightening torque of the boss portion 41 be close to the instantaneous maximum generated torque of the electric motor 5, and the breaking torque that is sufficiently larger than the seating torque for the same boss is about the same as the instantaneous maximum generated torque. The proper tightening torque may be in the vicinity of the rated torque of the rotating shaft 6. Here, since the seating torque and the breaking torque are substantially proportional to the screw length of the tap screw portion 61, the screw length can be shortened, and the rotating body 4 is synchronized with the rotating shaft 6 and the fixed body 12. Thus, it will rotate counterclockwise.

上記のように、実施の形態2によれば、回転軸6の先端部に2つの段差部62、63とタップネジ部61、及びネジ部64を構成し、追加した固定体12によって締結し、ボス部41の適正締付トルクを電動機5の定格トルク近傍とし、ボス部41の破断トルクを電動機5の瞬時最大発生トルクと同程度以上とし、固定体12の破断トルクを電動機5の定格トルクと同程度以上としたことにより、ネジ長さが大幅に短縮化され、回転軸方向寸法の小型化ができる。また、両方向に回転する電動機5等の回転軸6に対しても適用できる。   As described above, according to the second embodiment, the two stepped portions 62 and 63, the tap screw portion 61, and the screw portion 64 are formed at the tip portion of the rotating shaft 6, and are fastened by the added fixing body 12, and the boss The proper tightening torque of the portion 41 is set to the vicinity of the rated torque of the electric motor 5, the breaking torque of the boss portion 41 is set to be equal to or higher than the instantaneous maximum generated torque of the electric motor 5, and the breaking torque of the fixed body 12 is the same as the rated torque of the electric motor 5. By setting it to about or more, the screw length is greatly shortened, and the size in the direction of the rotation axis can be reduced. The present invention can also be applied to a rotating shaft 6 such as an electric motor 5 that rotates in both directions.

実施の形態3.
図8はこの発明の実施の形態3による回転体と回転軸の固定構造を示す一部断面組立図である。この実施の形態3は上記実施の形態2の変形例に相当するもので、回転軸6の軸端部65側から、タップネジ部61と同軸にタップネジ部61より小径でネジの螺設方向がタップネジ部61と反対の雌ネジ66を螺設し、固定手段13として、雌ネジ66に螺合するネジ部14aを有する固定ネジ14を用いるようにしたものである。その他は上記実施の形態2と同様であるので説明を省略する。
Embodiment 3 FIG.
FIG. 8 is a partially sectional assembly view showing a structure for fixing a rotating body and a rotating shaft according to Embodiment 3 of the present invention. The third embodiment corresponds to a modification of the second embodiment. From the shaft end portion 65 side of the rotary shaft 6, the screw screw 61 is coaxial with the tap screw portion 61 and has a smaller diameter than the tap screw portion 61, and the screwing direction of the screw is a tap screw. A female screw 66 opposite to the portion 61 is screwed, and a fixing screw 14 having a screw portion 14 a that is screwed into the female screw 66 is used as the fixing means 13. Others are the same as those in the second embodiment, and the description thereof is omitted.

このように構成された実施の形態3においては、上記実施の形態2と同様に動作し、同様の効果が得られることは言うまでもない。なお、この実施の形態3では、タップネジ部61の長さ、及び固定ネジ14の長さの双方とも長くすることができるので、同一のボス部41の長さに対しては許容トルクを大にすることができ、あるいは同一の許容トルクに対してはボス部41の長さを小さくすることもできる。   Needless to say, the third embodiment configured as described above operates in the same manner as in the second embodiment, and the same effect can be obtained. In the third embodiment, since both the length of the tap screw portion 61 and the length of the fixing screw 14 can be increased, the allowable torque is increased for the same boss portion 41 length. Alternatively, the length of the boss portion 41 can be reduced for the same allowable torque.

ところで、上記実施の形態1〜3においては、回転体4が軸流ファンである場合について説明したが、もとよりこれに限定されるものではなく、例えばシロッコファンやターボファンなどの他のファン類、あるいは、例えば歯車、プーリ、カム、レバー、円板など、回転軸に固定して用いられるファン以外の回転体でもよく、また、素材は樹脂のみに限定されるものではない。また、回転軸6は、駆動源として用いる電動機5の駆動軸の場合について説明したが、この他の回転駆動源の回転軸、あるいは従動回転軸などでも同様な効果が得られることは言うまでもない。さらに、羽根車の対象流体は空気を想定し、送風機及び空冷ファンなどについて説明したが、回転軸の定格トルクが大きな例えば液体ポンプなどの羽根車の固定構造に適用しても、同様な効果が得られることは言うまでもない。   By the way, in the said Embodiment 1-3, although the case where the rotary body 4 was an axial flow fan was demonstrated, it is not limited to this from the first, For example, other fans, such as a sirocco fan and a turbo fan, Alternatively, for example, a rotating body other than a fan used by being fixed to a rotating shaft, such as a gear, a pulley, a cam, a lever, or a disk, may be used, and the material is not limited to resin. Although the description has been given of the case where the rotary shaft 6 is the drive shaft of the electric motor 5 used as a drive source, it is needless to say that the same effect can be obtained by using the rotary shaft of another rotary drive source or the driven rotary shaft. Furthermore, the target fluid of the impeller is assumed to be air, and the blower and the air cooling fan have been described. However, the same effect can be obtained even when applied to a fixed structure of an impeller such as a liquid pump having a large rated torque of the rotating shaft. It goes without saying that it is obtained.

この発明の実施の形態1による回転体と回転軸との固定構造における回転体としての樹脂製の軸流ファンと、回転軸としての電動機の駆動軸を示す一部断面組立図。FIG. 3 is a partial cross-sectional assembly view showing a resin axial fan as a rotating body and a drive shaft of an electric motor as a rotating shaft in a structure for fixing the rotating body and the rotating shaft according to Embodiment 1 of the present invention. 図1に示す軸流ファンのボスに対するタップネジの締付量と必要となる締付トルクの関係について測定された特性図。The characteristic view measured about the relationship between the tightening amount of the tap screw with respect to the boss | hub of the axial fan shown in FIG. 1, and required tightening torque. 図1に示す回転体と回転軸を固定したものを回転させたときの動作説明図。Operation | movement explanatory drawing when rotating what fixed the rotary body and rotating shaft shown in FIG. 図1に示す回転体と回転軸とを固定するときに用いる組立治具例とその組立動作を示す説明図。FIG. 2 is an explanatory view showing an example of an assembling jig used when fixing the rotating body and the rotating shaft shown in FIG. 図1に示す回転体と回転軸とを固定したものを食器洗い乾燥機に利用した場合の全体構成を示す要部断面図。The principal part sectional drawing which shows the whole structure at the time of using what fixed the rotary body and rotating shaft shown in FIG. 1 for a dishwasher. この発明の実施の形態2による回転体と回転軸との固定構造を説明する一部断面組立図。The partial cross-section assembly figure explaining the fixation structure of the rotary body and rotating shaft by Embodiment 2 of this invention. 図6に示す回転体と回転軸との固定構造の動作説明図。Operation | movement explanatory drawing of the fixing structure of the rotary body shown in FIG. 6, and a rotating shaft. この発明の実施の形態3による回転体と回転軸の固定構造を示す一部断面組立図。The partial cross section assembly figure which shows the fixed structure of the rotary body and rotating shaft by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 食器洗い乾燥機、 2 洗浄槽、 3 送風機、 4 回転体(軸流ファン)、 41 ボス部、 41a 下穴、 41b 底部、 41c 段部、 41d 固定体収容部、 42 羽根部、 5 電動機、 6 回転軸(駆動軸)、 61 タップネジ部、 62 段差部、 63 段差部、 64 ネジ部、 65 軸端部、 66 雌ネジ、 7 外箱、8 ガイド、 9 弾性体、 10 押さえ部材、 11 トルクリミッタ付き駆動回路、 12 固定体、 13 締結手段、 14 固定ネジ、 14a ネジ部。
DESCRIPTION OF SYMBOLS 1 Dishwasher, 2 Washing tank, 3 Blower, 4 Rotor (Axial fan), 41 Boss part, 41a Pilot hole, 41b Bottom part, 41c Step part, 41d Fixed body accommodating part, 42 Blade part, 5 Electric motor, 6 Rotating shaft (drive shaft), 61 Tap screw portion, 62 Step portion, 63 Step portion, 64 Screw portion, 65 Shaft end portion, 66 Female screw, 7 Outer box, 8 Guide, 9 Elastic body, 10 Holding member, 11 Torque limiter Drive circuit, 12 fixed body, 13 fastening means, 14 fixing screw, 14a screw part.

Claims (9)

回転軸の所定部にタップネジ部と段差部を設け、回転体に上記タップネジ部に適合する内径の下穴を有するボス部を設け、上記回転軸のタップネジ部が上記回転体の下穴にネジ込まれ、上記回転体のボス部が上記段差部に着座されてなることを特徴とする回転体と回転軸との固定構造。   A tap screw portion and a stepped portion are provided in a predetermined portion of the rotating shaft, a boss portion having a pilot hole with an inner diameter matching the tap screw portion is provided in the rotating body, and the tap screw portion of the rotating shaft is screwed into the pilot hole of the rotating body. A structure for fixing a rotating body and a rotating shaft, wherein a boss portion of the rotating body is rarely seated on the stepped portion. 上記回転軸は、一方向に回転する駆動軸からなり、ネジ込み時の上記ボス部の適正締付トルクを上記回転軸の定格トルク近傍とし、上記ボス部の破断トルクを上記回転軸の瞬時最大発生トルクと同程度以上としてなることを特徴とする請求項1に記載の回転体と回転軸との固定構造。   The rotating shaft is composed of a drive shaft that rotates in one direction, and the appropriate tightening torque of the boss portion when screwed is in the vicinity of the rated torque of the rotating shaft, and the breaking torque of the boss portion is the instantaneous maximum of the rotating shaft. The structure for fixing a rotating body and a rotating shaft according to claim 1, wherein the fixing structure is equal to or greater than the generated torque. 上記回転軸は、両方向に回転される駆動軸からなり、上記回転体は、上記ボス部が上記段差部に着座されたときの締付トルクが上記回転軸の連続最大発生トルクと同程度以上で、かつ適正締付トルクが上記回転軸の瞬間最大発生トルク近傍にて締結され、上記タップネジ部の緩め回転方向には連続最大発生トルク近傍以下のトルク範囲にて上記回転軸を駆動させてなることを特徴とする請求項1に記載の回転体と回転軸との固定構造。   The rotating shaft is composed of a drive shaft that is rotated in both directions, and the rotating body has a tightening torque when the boss portion is seated on the stepped portion is equal to or more than the continuous maximum generated torque of the rotating shaft. In addition, the proper tightening torque is fastened in the vicinity of the instantaneous maximum generated torque of the rotary shaft, and the rotary shaft is driven within the torque range below the continuous maximum generated torque in the loosening rotation direction of the tap screw portion. The structure for fixing a rotating body and a rotating shaft according to claim 1. 上記回転軸は、両方向に回転される駆動軸からなり、上記タップネジ部に対する上記段差部の反対側に上記回転体のボス部を該段差部の方向に固定するための締結手段を備えてなることを特徴とする請求項1に記載の回転体と回転軸との固定構造。   The rotating shaft is composed of a drive shaft that is rotated in both directions, and is provided with fastening means for fixing the boss portion of the rotating body in the direction of the stepped portion on the opposite side of the stepped portion with respect to the tap screw portion. The structure for fixing a rotating body and a rotating shaft according to claim 1. 上記締結手段は、上記回転軸の軸端部に上記タップネジ部に隣接して設けられた、上記タップネジ部よりも小径で、該タップネジ部とは螺設方向が逆向きのネジ部と、このネジ部に螺合またはネジ込まれた上記回転体のボス部を上記段差部に固定する固定体からなることを特徴とする請求項4に記載の回転体と回転軸との固定構造。   The fastening means includes a screw portion that is provided adjacent to the tap screw portion at the shaft end portion of the rotating shaft and has a smaller diameter than the tap screw portion, and a screw direction opposite to the tap screw portion. 5. The structure for fixing a rotating body and a rotating shaft according to claim 4, comprising a fixing body for fixing a boss portion of the rotating body screwed or screwed to the step to the stepped portion. 上記締結手段は、上記回転軸の上記タップネジ部の軸心部に設けられた、上記タップネジ部よりも小径で、該タップネジ部とは螺設方向が逆向きの雌ネジと、この雌ネジに螺合され上記回転体のボス部を上記段差部に固定する固定ネジからなることを特徴とする請求項4に記載の回転体と回転軸との固定構造。   The fastening means includes a female screw provided at an axial center of the tap screw portion of the rotating shaft and having a diameter smaller than that of the tap screw portion, and a screwing direction opposite to the tap screw portion, and a screw threaded on the female screw. The fixing structure for a rotating body and a rotating shaft according to claim 4, comprising a fixing screw for fixing the boss portion of the rotating body to the stepped portion. 上記回転軸は、上記ボス部及び上記締結手段との適正締付トルクが上記回転軸の定格トルク近傍とし、かつ、破断トルクを上記回転軸の瞬時最大発生トルクとすることを特徴とする請求項4ないし請求項6の何れかに記載の回転体と回転軸との固定構造。   The rotation shaft has an appropriate tightening torque between the boss portion and the fastening means in the vicinity of a rated torque of the rotation shaft, and a breaking torque is an instantaneous maximum generation torque of the rotation shaft. The structure for fixing a rotating body and a rotating shaft according to any one of claims 4 to 6. 上記回転軸は、電動機の駆動軸からなることを特徴とする請求項1ないし請求項7の何れかに記載の回転体と回転軸との固定構造。   8. The structure for fixing a rotating body and a rotating shaft according to claim 1, wherein the rotating shaft comprises a drive shaft of an electric motor. 上記回転体は、樹脂成形体からなることを特徴とする請求項1ないし請求項8の何れかに記載の回転体と回転軸との固定構造。
The structure for fixing a rotating body and a rotating shaft according to any one of claims 1 to 8, wherein the rotating body is made of a resin molded body.
JP2006046314A 2006-02-23 2006-02-23 Fixing structure of rotor and rotating shaft Pending JP2007225008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046314A JP2007225008A (en) 2006-02-23 2006-02-23 Fixing structure of rotor and rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046314A JP2007225008A (en) 2006-02-23 2006-02-23 Fixing structure of rotor and rotating shaft

Publications (1)

Publication Number Publication Date
JP2007225008A true JP2007225008A (en) 2007-09-06

Family

ID=38547007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046314A Pending JP2007225008A (en) 2006-02-23 2006-02-23 Fixing structure of rotor and rotating shaft

Country Status (1)

Country Link
JP (1) JP2007225008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194170A (en) * 2013-03-28 2014-10-09 Ihi Corp Method for installing compressor impeller
JP2017044126A (en) * 2015-08-26 2017-03-02 株式会社Ihi Rotary machine
KR20200095756A (en) * 2019-02-01 2020-08-11 엘지전자 주식회사 Fan noise control apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194170A (en) * 2013-03-28 2014-10-09 Ihi Corp Method for installing compressor impeller
JP2017044126A (en) * 2015-08-26 2017-03-02 株式会社Ihi Rotary machine
KR20200095756A (en) * 2019-02-01 2020-08-11 엘지전자 주식회사 Fan noise control apparatus
KR102294605B1 (en) 2019-02-01 2021-08-27 엘지전자 주식회사 Fan noise control apparatus

Similar Documents

Publication Publication Date Title
JP3815028B2 (en) Electric motor and heat sink device using the same
JP4857631B2 (en) Fan motor
JP7241531B2 (en) blower fan
JP2008240526A (en) Motor, and blowing fan and its manufacturing method
JP2012526941A (en) Blower-rotor combination for automotive cooling fans
JPWO2012023160A1 (en) Electric actuator
JP2007225008A (en) Fixing structure of rotor and rotating shaft
KR20110089407A (en) Impeller for a fan
US8297914B2 (en) Fan with impellers coupled in series and fan frame thereof
CN108418385B (en) Linear stepping motor and valve
KR101079856B1 (en) Electric motor for electric fan and assembly method therefor
EP1653591A1 (en) Self-cooling electric machine
KR101114392B1 (en) Water pump of electromagnetic clutch type
ATE400211T1 (en) DEVICE FOR REINFORCEMENT FOR A HOUSEHOLD APPLIANCE FOR THE PRODUCTION OF BEAN MILK AND BEAN CRUCES
CN110553061B (en) Motor and valve drive device
JP3561316B2 (en) Axial fan
WO2021130924A1 (en) Outer fan and rotating electric machine
CN213392797U (en) Fan structure and baking cooking appliance
JP3579928B2 (en) Cooking utensil fan motor
JP2003232296A (en) Blower fan
JPH0775279A (en) Resin-molded motor
JP3788247B2 (en) Plastic magnet rotor, electric motor using this plastic magnet rotor, and air conditioner using this electric motor
EP3170434B1 (en) System for connection between shaft and clutch
JP4036196B2 (en) Electric motor and heat sink device using the same
KR20240062760A (en) Inverter unit and electric compressor including it