JP2007224345A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2007224345A
JP2007224345A JP2006045084A JP2006045084A JP2007224345A JP 2007224345 A JP2007224345 A JP 2007224345A JP 2006045084 A JP2006045084 A JP 2006045084A JP 2006045084 A JP2006045084 A JP 2006045084A JP 2007224345 A JP2007224345 A JP 2007224345A
Authority
JP
Japan
Prior art keywords
blast furnace
partially reduced
ore
auxiliary fuel
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006045084A
Other languages
Japanese (ja)
Other versions
JP4807099B2 (en
Inventor
Michitaka Sato
道貴 佐藤
Yasuhei Nouchi
泰平 野内
Takeshi Sato
健 佐藤
Yusuke Kashiwabara
佑介 柏原
Kanji Takeda
幹治 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006045084A priority Critical patent/JP4807099B2/en
Publication of JP2007224345A publication Critical patent/JP2007224345A/en
Application granted granted Critical
Publication of JP4807099B2 publication Critical patent/JP4807099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace by which the reduction material ratio of a furnace can be reduced while preventing the permeability of the blast furnace from being deteriorated when injecting partially reduced ore from a tuyere in the blast furnace. <P>SOLUTION: In the blast furnace operation method, by which auxiliary fuel and the partially reduced iron ore are injected together with hot blast from the tuyere part in the blast furnace, the reduction rate of the iron ore is 40-80%, and the iron ore is injected to the hot blast from the downstream side than the auxiliary fuel. Alternatively, in the blast furnace operation method by which the auxiliary fuel and the partially reduced iron ore are injected from the tuyere part in the blast furnace through a lance inserted into a blowing pipe connected to the tuyere, the reducing ratio of the iron ore is 40-80%, and the lance has a double pipe structure composed of an inner pipe and an outer pipe, ther4eby injecting the iron ore and the auxiliary fuel from the outer pipe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は還元材比を低減させる高炉操業方法に関する。   The present invention relates to a blast furnace operating method for reducing a reducing material ratio.

高価なコークス使用量の削減のため、また、製銑工程からのCO2発生を抑制して、地球環境保全に資する観点からも、高炉の還元材比低減が重要な課題となっている。 Reducing the ratio of reducing material in the blast furnace has become an important issue in order to reduce the amount of expensive coke used, and from the viewpoint of contributing to global environmental conservation by suppressing the generation of CO 2 from the ironmaking process.

高炉の還元材比を低減させるには、還元効率(シャフト効率)の向上と、熱損失の低減が最も基本的な操作因子である。この2つの操作因子は、高炉の装入物分布制御を高精度に行うことにより、ある程度制御することができる。装入物分布制御により原料近傍の高炉内のガス流れを制御し、還元ガスの利用率(ガス利用率ηCO=CO2/(CO+CO2))を向上させることで還元効率を向上させるとともに、炉壁近傍のガス流れを適正化することにより、炉壁からの熱損失を低減させるものである。但し、還元効率(シャフト効率)や熱損失の制御が可能な範囲は、高炉で使用する装入物の性状(焼結鉱強度、還元性RI、還元粉化性RDI、コークス強度、反応性等)に大きく依存する。すなわち、高強度原燃料の使用下では通気性の制約条件が緩和されるため、還元材比(コークス比)の低減を図りやすく、結果的に還元効率(シャフト効率)向上、熱損失低減に結び付き易い。 In order to reduce the reducing material ratio of the blast furnace, improvement of reduction efficiency (shaft efficiency) and reduction of heat loss are the most basic operating factors. These two operating factors can be controlled to some extent by performing the blast furnace charge distribution control with high accuracy. By controlling the gas flow in the blast furnace near the raw material by controlling the distribution of charges, the reduction efficiency is improved by improving the utilization rate of the reducing gas (gas utilization rate η CO = CO 2 / (CO + CO 2 )) By optimizing the gas flow in the vicinity of the furnace wall, heat loss from the furnace wall is reduced. However, the range in which reduction efficiency (shaft efficiency) and heat loss can be controlled is the properties of the charge used in the blast furnace (sintered ore strength, reducible RI, reduced dusting RDI, coke strength, reactivity, etc.) ). In other words, since the restrictions on air permeability are relaxed under the use of high-strength raw fuel, it is easy to reduce the reducing material ratio (coke ratio), resulting in improved reduction efficiency (shaft efficiency) and reduced heat loss. easy.

上記に加え、還元材比を低下させる方策として、還元平衡を積極的に制御する2つの方法が知られている。   In addition to the above, two methods for actively controlling the reduction equilibrium are known as measures for reducing the reducing material ratio.

第一の方法は、還元平衡温度を低温化させる方法である。還元温度の低下によってFeO−Fe平衡におけるガス組成を高ガス利用率側に移行させ、還元ガス(COガス)の利用効率(ηCO)を上昇させることで、結果的に使用する還元材量を低下させるものである。還元平衡温度を低下させる手段として、いわゆる高反応性コークスの使用が知られている(例えば、非特許文献1参照。)。高反応性コークスの使用によって還元ガス利用効率ηCOの上昇、および還元材比の低減を図る技術も開示されている(例えば、非特許文献2、非特許文献3参照。)。非特許文献2では、反応性を促進する触媒成分(Ca)を含むコークスを配合すると、ドラム試験150回転指数DI(15、150)およびコークスの反応性を表すJIS反応性指数RIともに、ベース条件に比較して高いコークスの製造が可能なことを開示している。この結果、非特許文献3では還元材比15〜20kg/tの低減が可能であったとされている。 The first method is a method for lowering the reduction equilibrium temperature. By reducing the reduction temperature, the gas composition in the FeO-Fe equilibrium is shifted to the high gas utilization rate side, and the utilization efficiency (η CO ) of the reducing gas (CO gas) is increased, resulting in a reduction in the amount of reducing material used. It is to reduce. As a means for lowering the reduction equilibrium temperature, the use of so-called highly reactive coke is known (for example, see Non-Patent Document 1). Increase of the reducing gas utilization efficiency eta CO by the use of highly reactive coke, and techniques to reduce the reducing agent ratio has also been disclosed (e.g., Non-Patent Document 2, Non-Patent Document 3.). In Non-Patent Document 2, when coke containing a catalyst component (Ca) that promotes reactivity is blended, both the drum test 150 rotation index DI (15, 150) and the JIS reactivity index RI representing coke reactivity are the base conditions. It is disclosed that high coke can be produced compared to As a result, Non-Patent Document 3 states that reduction of the reducing material ratio of 15 to 20 kg / t was possible.

第二の方法は、金属鉄を高炉に装入する方法であり、還元負荷が低減できるので、熱源としての還元材比を低下できる。金属鉄としては、スクラップや直接還元鉄(DRI、HBI等)などが使用される。これら鉄源は炉頂から塊状で装入されるか、羽口から粉状物が吹き込まれる(例えば、非特許文献4参照。)。また、金属鉄ほどには金属化率の高くない、還元鉱石を装入する方法も知られている。高炉の炉頂および/または羽口から還元鉱石を装入する際には、金属化率が40〜80%の還元鉱石を用いることが適当であるとされている(例えば、特許文献1参照。)。
特開平8−253801号公報 内藤誠章他著 「鉄と鋼」2001年、87号、p.357―364 野村誠治他著 「CAMP−ISIJ」2003年、16号、p.1039 鮎川祐之他著 「CAMP−ISIJ」2003年、16号、p.1040 K.Kunimoto他著 「JJournal of Japan Institute of Energy」2005年、84号、p.126―133
The second method is a method of charging metallic iron into a blast furnace, and the reduction load can be reduced, so that the ratio of reducing material as a heat source can be reduced. As metallic iron, scrap, direct reduced iron (DRI, HBI, etc.), etc. are used. These iron sources are charged in a lump form from the top of the furnace, or powdered material is blown from the tuyere (for example, see Non-Patent Document 4). In addition, a method of charging reduced ore, which is not as high as metal iron, is also known. When charging reduced ore from the top and / or tuyeres of a blast furnace, it is considered appropriate to use reduced ore having a metallization rate of 40 to 80% (see, for example, Patent Document 1). ).
JP-A-8-253801 Naito Masaaki et al. "Iron and Steel" 2001, 87, p. 357-364 Nomura Seiji et al. “CAMP-ISIJ” 2003, No. 16, p. 1039 Yasuyuki Ninagawa et al. “CAMP-ISIJ” 2003, No. 16, p. 1040 K. Kunimoto et al. “JJournal of Japan Institute of Energy” 2005, 84, p. 126-133

前述した金属鉄の高炉羽口からの吹き込みは、多くの報告があり、広く知られている方法であるが、金属鉄の性状(例えば、還元率、金属化率、スラグ比、粒径など)に応じた適切な吹き込み条件を決定した例は見当たらない。また、金属鉄とは通常、金属化率が約90%以上のものを指すため、入手も困難であり、かつ高価であるため、金属鉄の高炉での使用量は拡大していない。   The above-described blowing of metallic iron from the blast furnace tuyere has many reports and is a well-known method, but the properties of metallic iron (for example, reduction rate, metalization rate, slag ratio, particle size, etc.) There are no examples of determining appropriate blowing conditions according to the conditions. Moreover, since metal iron usually refers to a metallization rate of about 90% or more, it is difficult to obtain and expensive, so the amount of metal iron used in a blast furnace has not increased.

従って、金属鉄よりも金属化率の低い鉄鉱石である還元鉱石(以下、部分還元鉱と記載する。)を高炉原料として適切に使用する技術を確立することで、還元負荷を低減し、熱源としての還元材比を低下することが、現実的で重要な技術課題であると考えられる。しかしながら、部分還元鉱はFeOを多量に含むため、単に羽口から吹き込んだ場合、FeOは還元されないままレースウェイ内に留まり、レースウェイ奥のコークス層にトラップされる。同時にスラグ成分もレースウェイ奥に供給されるので、レースウェイから炉芯表層部にかけての通気性が著しく悪化する原因となる。このような炉内の通気性に関する問題は、特許文献1に記載の技術では対応できない。   Therefore, by establishing a technology that appropriately uses reduced ore (hereinafter referred to as partially reduced ore), which is an iron ore with a metallization rate lower than that of metallic iron, as a raw material for blast furnace, the reduction load is reduced and the heat source is reduced. It is considered that the reduction of the reducing material ratio as a practical and important technical problem. However, since the partially reduced ore contains a large amount of FeO, when it is blown from the tuyere, FeO remains in the raceway without being reduced and is trapped in the coke layer at the back of the raceway. At the same time, the slag component is also supplied to the back of the raceway, which causes the air permeability from the raceway to the surface of the core of the furnace to deteriorate significantly. Such a problem relating to the air permeability in the furnace cannot be dealt with by the technique described in Patent Document 1.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉において部分還元鉱の羽口吹き込みを行なう際に、高炉の通気性の悪化を防止しながら、高炉の還元材比を低減させることができる、高炉の操業方法を提供することにある。   Therefore, the object of the present invention is to solve such a problem of the prior art and reduce the ratio of reducing material of the blast furnace while preventing the deterioration of the air permeability of the blast furnace when blowing partially reduced ore in the blast furnace. An object of the present invention is to provide a method of operating a blast furnace.

還元材比低減によるCO2削減やコスト合理化を達成するためには、高炉において微粉炭、重油、天然ガス等の補助燃料の吹き込みは必須条件であると考えられる。従って、本発明者等は、高炉において部分還元鉱の羽口吹き込みを行なう際にも、補助燃料の使用を前提として、レースウェイ内における部分還元鉱の還元を完全に進行させる方法について検討を重ねた。そして、補助燃料の着火により形成される高温燃焼場中に部分還元鉱を導入して、部分還元鉱を急速に昇温、還元することが効果的であることを見出し、吹込み用の部分還元鉱の還元率を所定の範囲としたうえで、部分還元鉱と補助燃料とを同一の羽口から吹き込み、その際に部分還元鉱を補助燃料より下流側から吹き込むか、部分還元鉱を吹き込むランスを2重管構造とし、内管から部分還元鉱石を、外管から微粉炭、重油、天然ガス等の補助燃料を吹き込むことにより、レースウェイ内における部分還元鉱の還元を完全に進行させつつ、レースウェイ奥の通気悪化も回避できることを見出して、本発明を完成させるに至った。本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)高炉の羽口部から熱風と共に、補助燃料と部分的に還元された鉄鉱石とを吹き込む高炉操業であって、前記鉄鉱石の還元率が40%以上、80%以下であり、前記熱風に対して、前記鉄鉱石を前記補助燃料より下流側から吹き込むことを特徴とする高炉操業方法。
(2)高炉の羽口部から補助燃料と部分的に還元された鉄鉱石とを、前記羽口に接続したブローパイプに挿入されたランスを介して吹き込む高炉操業であって、前記鉄鉱石の還元率が40%以上、80%以下であり、前記ランスが内管と外管からなる2重管構造を有し、前記内管から前記鉄鉱石を、前記外管から前記補助燃料を吹き込むことを特徴とする高炉操業方法。
(3)補助燃料が液体または気体であることを特徴とする(2)に記載の高炉操業方法。
In order to achieve CO 2 reduction and cost rationalization by reducing the reducing material ratio, it is considered that injecting auxiliary fuel such as pulverized coal, heavy oil, natural gas in the blast furnace is an essential condition. Therefore, the present inventors have repeatedly studied a method for completely proceeding the reduction of the partially reduced ore in the raceway on the premise that auxiliary fuel is used even when performing the tuyere of the partially reduced ore in the blast furnace. It was. Then, it was found that it is effective to introduce the partially reduced ore into the high-temperature combustion field formed by the ignition of the auxiliary fuel, and to rapidly raise and reduce the partially reduced ore. With the reduction rate of the ore within the specified range, the partially reduced ore and auxiliary fuel are blown from the same tuyere, and then the partially reduced ore is blown from the downstream side of the auxiliary fuel or the partially reduced ore is blown. , With a double pipe structure, partially reducing ore from the inner pipe, and auxiliary fuel such as pulverized coal, heavy oil, natural gas, etc. from the outer pipe, while the reduction of the partially reduced ore in the raceway is fully advanced, The inventors found that the deterioration of ventilation at the back of the raceway can be avoided and completed the present invention. The present invention has been made based on such findings, and the features thereof are as follows.
(1) A blast furnace operation in which auxiliary fuel and partially reduced iron ore are blown together with hot air from the tuyere of the blast furnace, and the reduction rate of the iron ore is 40% or more and 80% or less, A method for operating a blast furnace, wherein the iron ore is blown into the hot air from a downstream side of the auxiliary fuel.
(2) A blast furnace operation for blowing auxiliary fuel and partially reduced iron ore from a tuyere of a blast furnace through a lance inserted into a blow pipe connected to the tuyere, The reduction rate is 40% or more and 80% or less, the lance has a double pipe structure consisting of an inner pipe and an outer pipe, and the iron ore is blown from the inner pipe and the auxiliary fuel is blown from the outer pipe. Blast furnace operation method characterized by.
(3) The blast furnace operating method according to (2), wherein the auxiliary fuel is liquid or gas.

本発明によれば、部分還元鉱の吹込みにより、高炉の通気性を悪化させることなく、還元材比を低減できる。これに伴い、製鉄所に投入される炭素量を大幅に減らすことが可能となり、その結果、CO2の発生量減少により地球環境保全に資することができる。 According to the present invention, the ratio of the reducing material can be reduced by blowing the partially reduced ore without deteriorating the air permeability of the blast furnace. Along with this, the amount of carbon input to the steelworks can be greatly reduced, and as a result, it is possible to contribute to global environmental conservation by reducing the amount of CO 2 generated.

まず、微粉炭、重油、天然ガス等の補助燃料を高炉の羽口部から吹き込むと同時に、部分的に還元された鉄鉱石を吹き込む高炉操業において、吹込み用の部分還元鉱の還元率を40%以上、80%以下とし、部分還元鉱を補助燃料より下流側から吹き込むか、部分還元鉱を吹き込むランスを2重管構造とし、内管から部分還元鉱石を、外管から微粉炭、重油、天然ガス等の補助燃料を吹き込むことにより、レースウェイ内における部分還元鉱の還元を完全に進行させつつ、レースウェイ奥の通気悪化も回避できるという、本発明で得られた知見の元となった基礎実験の結果について述べる。   First, in the blast furnace operation in which auxiliary fuel such as pulverized coal, heavy oil and natural gas is blown from the tuyere of the blast furnace and at the same time partially reduced iron ore is blown, the reduction rate of the partially reduced ore for blowing is set to 40 % Or more and 80% or less. Partially reduced ore is blown from the downstream side of the auxiliary fuel, or the lance for blowing partially reduced ore is made into a double pipe structure, partially reduced ore from the inner pipe, pulverized coal, heavy oil from the outer pipe, By injecting auxiliary fuel such as natural gas, the reduction of the partially reduced ore in the raceway is completely advanced, and the deterioration of the ventilation at the back of the raceway can be avoided. The result of the basic experiment is described.

なお、本発明において、補助燃料とは高炉の上部から装入されるコークス以外の燃料であり、通常羽口から吹き込んで使用する、微粉炭、重油、天然ガス等の固体、液体、気体の燃料である。また、部分還元鉱とは、鉄鉱石の一部が還元されて還元率が40〜80%、金属化率がおよそ30〜75%ほどの状態とされた鉱石である。   In the present invention, the auxiliary fuel is a fuel other than coke charged from the upper part of the blast furnace, and is usually used by blowing from the tuyere, and is a solid, liquid or gaseous fuel such as pulverized coal, heavy oil or natural gas. It is. The partially reduced ore is an ore in which a part of iron ore is reduced to a reduction rate of 40 to 80% and a metallization rate of about 30 to 75%.

レースウェイ内の還元性や通気性に及ぼす部分還元鉱の還元率、あるいは吹き込み方法の影響を明確にするため、図1に示す小型熱間模型を用い、吹き込み実験を行った。小型熱間模型1は、炉部分が奥行き1000mm、幅400mm、高さ1400mmであり、上部のコークス装入孔2からコークスを炉内に装入し、排ガス流出孔3から排ガスを流出させるものである。補助燃料および部分還元鉱は、羽口4に接続したブローパイプ5から吹き込む熱風中に、ブローパイプ5に挿入したランス6を介して炉に吹き込んだ。7はレースウェイ、8は実験終了後に試料をサンプリングした位置である。   In order to clarify the effect of the reduction rate of partially reduced ore or the blowing method on the reducing property and air permeability in the raceway, a blowing experiment was conducted using a small hot model shown in FIG. The small hot model 1 has a furnace portion having a depth of 1000 mm, a width of 400 mm, and a height of 1400 mm. The coke is charged into the furnace from the upper coke charging hole 2 and the exhaust gas is discharged from the exhaust gas outflow hole 3. is there. The auxiliary fuel and the partially reduced ore were blown into the furnace through the lance 6 inserted into the blow pipe 5 into the hot air blown from the blow pipe 5 connected to the tuyere 4. 7 is the raceway, and 8 is the position where the sample was sampled after the experiment.

部分還元鉱の還元率は未還元(ヘマタイトFe23基準の還元率2.8%)のものから約90%まで還元されたNo.1〜5の5種類の鉄鉱石を準備した。各部分還元鉱の金属鉄(M.Fe)、酸化鉄(FeOX)、全鉄量(T.Fe)、還元率を表1に示す。 The reduction rate of the partially reduced ore is No. reduced to about 90% from the unreduced (reduction rate of 2.8% based on hematite Fe 2 O 3 ). Five types of iron ores 1 to 5 were prepared. Table 1 shows the metallic iron (M.Fe), iron oxide (FeO x ), total iron amount (T.Fe), and reduction rate of each partially reduced ore.

Figure 2007224345
Figure 2007224345

各部分還元鉱の粒度は、粒径2mm以下が80mass%(-2mm、80%)になるように調整した。熱間模型における送風温度は高炉と同様の1200℃とし、補助燃料および部分還元鉱吹き込み用のランスを下記Case1〜Case3のようにセットした。Case1は部分還元鉱を補助燃料より上流側から吹き込むケースであり、図2(a)において、ブローパイプ5に、ランス6aから部分還元鉱を、ランス6bから補助燃料を吹き込むものである。図2において、白矢印は熱風の吹き込み方向を示している。Case2は部分還元鉱を補助燃料より下流側から吹き込むケースであり、図2(a)において、ブローパイプ5に、ランス6aから補助燃料を、ランス6bから部分還元鉱を吹き込むものである。Case3は2重管ランスを用い、内管から部分還元鉱を外管から補助燃料を同時に吹き込むケースである。図2(b)において、ブローパイプ5に、内管6cから部分還元鉱を、外管6dから補助燃料を吹き込むものである。Case1、2のランス6先端内径は12mmφ、Case3の内管6cの内径は12mmφ、内径と外管のスリット幅は1mmである。それぞれのランス配置を用い、補助燃料としては微粉炭(-74μm、80%)、重油、またはLNGを模擬したCH4を用いた。部分還元鉱の吹き込み量は50kg/t相当で一定とし、補助燃料吹き込み比は全ての場合で100kg/t相当で一定とした。実験中は送風圧をモニターした。 The particle size of each partially reduced ore was adjusted so that the particle size of 2 mm or less would be 80 mass% (-2 mm, 80%). The blast temperature in the hot model was 1200 ° C., which was the same as that in the blast furnace, and the auxiliary fuel and the lance for partially reducing ore blowing were set as shown in Case 1 to Case 3 below. Case 1 is a case in which the partially reduced ore is blown from the upstream side of the auxiliary fuel. In FIG. 2A, the partially reduced ore is blown into the blow pipe 5 from the lance 6a and the auxiliary fuel is blown from the lance 6b. In FIG. 2, white arrows indicate the direction of hot air blowing. Case 2 is a case where partially reduced ore is blown from the downstream side of the auxiliary fuel. In FIG. 2A, auxiliary fuel is blown into the blow pipe 5 from the lance 6a, and partially reduced ore is blown from the lance 6b. Case 3 is a case in which a double pipe lance is used, and partially reduced ore is blown from the inner pipe and auxiliary fuel is simultaneously blown from the outer pipe. In FIG. 2B, partially reduced ore is blown into the blow pipe 5 from the inner pipe 6c, and auxiliary fuel is blown from the outer pipe 6d. The inner diameters of the lances 6 of Cases 1 and 2 are 12 mmφ, the inner diameter of the inner tube 6 c of Case 3 is 12 mmφ, and the slit width of the inner diameter and the outer tube is 1 mm. Each lance arrangement was used, and pulverized coal (-74 μm, 80%), heavy oil, or CH 4 simulating LNG was used as the auxiliary fuel. The amount of partially reduced ore injected was constant at an equivalent of 50 kg / t, and the auxiliary fuel injection ratio was constant at an equivalent of 100 kg / t in all cases. The air pressure was monitored during the experiment.

[実験1]実験1として、試料No.3(還元率約55%)の部分還元鉱を用い、補助燃料としては微粉炭を用い、ランス配置が吹き込み中の送風圧変化に及ぼす影響を調査した。図3に送風圧の時間変化の測定結果を示す。矢印で示す20分の時点に吹き込みを開始した。図3によれば、送風圧はCase1〜3の、どの場合も徐々に上昇するが、吹き込み開始後約60分後には飽和に達した。飽和後、例えば吹き込み開始後80分後の送風圧はCase1よりもCase2、3の方が明らかに低くなっていることが分かる。この要因を調査するため、実験終了後に炉体を解体し、目視観察を行うと共に、レースウェイ奥のサンプリング位置から吹込み物由来のスラグを採取し、化学分析を行った。ランス配置がCase1の場合はCase2、3の場合に比べ、レースウェイ奥に多量のスラグがホールドアップされている様子が観察された。また各Caseのスラグの化学分析結果を表2に示す。   [Experiment 1] As Experiment 1, a partially reduced ore of sample No. 3 (reduction rate of about 55%) was used, pulverized coal was used as the auxiliary fuel, and the influence of the lance arrangement on the change in blowing pressure during blowing was investigated. . FIG. 3 shows the measurement results of the time variation of the blowing pressure. Blowing started at 20 minutes indicated by the arrow. According to FIG. 3, the blowing pressure gradually increased in each case of Cases 1 to 3, but reached saturation about 60 minutes after the start of blowing. It can be seen that the air blowing pressure after saturation, for example 80 minutes after the start of blowing, is clearly lower in Cases 2 and 3 than in Case 1. In order to investigate this factor, the furnace body was disassembled after the experiment was completed and visually observed, and the slag derived from the blown material was collected from the sampling position at the back of the raceway and subjected to chemical analysis. When the lance arrangement was Case 1, it was observed that a large amount of slag was held up in the back of the raceway compared to Cases 2 and 3. Table 2 shows the chemical analysis results of the slag of each case.

Figure 2007224345
Figure 2007224345

表2によれば、Case1ではスラグ中のFeO濃度(FeOX)が最も高くなっていることから、部分還元鉱は十分に還元されないまま、FeO、SiO2、Al23などのスラグ成分が大量にレースウェイ奥に蓄積し、結果、レースウェイ奥の通気性が悪化し、送風圧の上昇を引き起こしたものと推定される。Case2、3で部分還元鉱の還元率が上昇した理由としては、次のように推定される。すなわち、Case2では部分還元鉱の吹き込み位置が補助燃料吹き込み位置の下流側にあるため、補助燃料が先に着火して高温の還元ガス(CO、H2)に富んだ雰囲気を形成し、この高温燃焼場中に部分還元鉱が導入されるため、急速に昇温、還元されるものと考えられる。Case3でも同様に周囲の補助燃料の燃焼場に包まれつつ部分還元鉱の昇温・還元が進行するため、十分な還元が進行するものと思われる。これに対し、Case1の場合には部分還元鉱は先に熱風中に導入されるため、再酸化を受け、還元率が低下すること、補助燃料の燃焼火炎との接触が不十分なことが還元性低下の要因と考えられる。レースウェイ奥へのFeOの供給量が多くなるとスラグ成分と同化してレースウェイ奥の低温部に蓄積し易くなることが送風圧上昇の原因と推察される。 According to Table 2, since the FeO concentration (FeO x ) in slag is the highest in Case 1, slag components such as FeO, SiO 2 , and Al 2 O 3 are not fully reduced and the partially reduced ore is not fully reduced. It is estimated that a large amount accumulated in the back of the raceway, and as a result, the air permeability in the back of the raceway deteriorated and the air pressure was increased. The reason why the reduction rate of the partially reduced ore is increased in Cases 2 and 3 is estimated as follows. That is, in Case 2, since the partially reduced ore blowing position is downstream of the auxiliary fuel blowing position, the auxiliary fuel ignites first to form an atmosphere rich in high-temperature reducing gas (CO, H 2 ). Since partially reduced ore is introduced into the combustion field, it is considered that the temperature is rapidly raised and reduced. Similarly, in Case 3, the temperature of the partially reduced ore is increased and reduced while being surrounded by the combustion field of the surrounding auxiliary fuel, so that it is considered that sufficient reduction proceeds. On the other hand, in the case of Case 1, since the partially reduced ore is first introduced into the hot air, it is reoxidized, the reduction rate is reduced, and the contact with the combustion flame of the auxiliary fuel is reduced. This is considered to be a factor of sex decline. It is presumed that the increase in the blowing pressure is due to the fact that as the amount of FeO supplied to the back of the raceway increases, it becomes assimilated with the slag component and easily accumulates in the low temperature part at the back of the raceway.

[実験2]次に実験2として、実験1で効果の大きかったCase2のランス配置を用い、同様に部分還元鉱の初期還元率が送風圧や還元率に及ぼす影響を調査した。部分還元鉱の試料としては、表1に示した5種類の他、還元率の影響を細かく調査するため、試料No.1と2、試料No.2と3、試料No.3と4、試料No.4と5を混合して、還元率を調整した混合試料も用いた。補助燃料としては微粉炭を用い、吹き込み比は実験1と同一とした。   [Experiment 2] Next, as Experiment 2, using the lance arrangement of Case 2 that was highly effective in Experiment 1, the influence of the initial reduction rate of the partially reduced ore on the blowing pressure and reduction rate was similarly investigated. As samples of partially reduced ores, in addition to the five types shown in Table 1, Sample No. 1 and 2, sample no. 2 and 3, sample no. 3 and 4, sample no. A mixed sample in which the reduction rate was adjusted by mixing 4 and 5 was also used. As auxiliary fuel, pulverized coal was used, and the blowing ratio was the same as in Experiment 1.

図4に、送風圧の変化がほとんどなくなる吹き込み開始から80分後の送風圧と部分還元鉱の初期還元率の関係を示す。図4によれば、初期還元率が約40%を超えると急激に送風圧が低下し、80%程度で飽和に達することが分かる。図5にはレースウェイ奥でサンプリングした鉱石の化学分析より得られた還元率の測定結果を示す。図4と同様、初期還元率が約40%を超えると急激に還元率が上昇し、60%以上ではほぼ95%以上の還元率に達している。図4、5より、通気性改善効果、還元率の上昇効果は部分還元鉱の初期還元率が40%以上で同時に発現し、80%以上ではこれら改善効果は両者ともに飽和する傾向にあることが分かる。還元率が高い部分還元鉱ほど高価であることを考慮すると、安価な溶銑を製造する観点から還元率は必要最小限であることが望ましい。よって、上述の知見から初期還元率は40%以上、80%以下であれば十分である。   FIG. 4 shows the relationship between the blowing pressure after 80 minutes from the start of blowing and the initial reduction rate of the partially reduced ore with almost no change in blowing pressure. According to FIG. 4, it can be seen that when the initial reduction rate exceeds about 40%, the blowing pressure rapidly decreases and reaches saturation at about 80%. FIG. 5 shows the measurement result of the reduction rate obtained from the chemical analysis of the ore sampled at the back of the raceway. As in FIG. 4, when the initial reduction rate exceeds about 40%, the reduction rate rapidly increases, and when it exceeds 60%, the reduction rate reaches approximately 95% or more. 4 and 5, the air permeability improvement effect and the reduction rate increase effect are manifested simultaneously when the initial reduction rate of the partially reduced ore is 40% or more, and both of these improvement effects tend to be saturated at 80% or more. I understand. Considering that partially reduced ores with a higher reduction rate are more expensive, it is desirable that the reduction rate be the minimum necessary from the viewpoint of producing cheap hot metal. Therefore, from the above knowledge, it is sufficient that the initial reduction rate is 40% or more and 80% or less.

[実験3]さらに実験3として、補助燃料種の影響を明らかにするため、実験2の微粉炭に代え、重油およびメタンガスの吹き込み実験を行った。絶対値はやや異なるものの、送風圧変化および還元率の変化ともに、微粉炭の場合と同様の変化を示した。従って、補助燃料としては微粉炭、廃プラスチックなどの固体燃料の他、重油やナフサ、DME(ジメチルエーテル)などの液体燃料、天然ガスやLPGなどの気体燃料等、吹き込み可能なほとんどの燃料を使用することができる。   [Experiment 3] Further, as Experiment 3, in order to clarify the influence of the auxiliary fuel type, an experiment of injecting heavy oil and methane gas was performed in place of the pulverized coal of Experiment 2. Although the absolute values were slightly different, both the blast pressure change and the reduction rate showed the same change as in the case of pulverized coal. Therefore, as the auxiliary fuel, in addition to solid fuels such as pulverized coal and waste plastics, most fuels that can be injected are used, such as liquid fuels such as heavy oil, naphtha, and DME (dimethyl ether), and gas fuels such as natural gas and LPG. be able to.

[実験4]実験4として、実験1で効果の大きかったCase3の2重管ランスを用い、試料No.3(還元率55%)の部分還元鉱、および実験3と同様の補助燃料(微粉炭または重油またはメタン)を用い、耐久性試験を実施した。実験はブローパイプ部の空間燃焼のみとし、20時間の連続燃焼実験を実施した。試験後、ランスを取り外し、外観チェックを行った。この結果、補助燃料として重油またはメタンを使用した場合は全く変化が認められなかったが、微粉炭を用いた場合には、ランス外管の先端付近が摩耗し、薄肉化している状況が観察された。これを抑制するには高価な耐摩耗材料を採用するなど、経済的でない。よって、Case3の2重管ランスでは配管摩耗に対して問題のなかった重油などの液体燃料、メタンなどの気体燃料を使用するのが望ましい。   [Experiment 4] As Experiment 4, a case 3 double tube lance, which was highly effective in Experiment 1, was used. A durability test was carried out using a partially reduced ore of 3 (reduction rate 55%) and an auxiliary fuel (pulverized coal or heavy oil or methane) similar to Experiment 3. The experiment was limited to the space combustion of the blow pipe part, and a continuous combustion experiment for 20 hours was performed. After the test, the lance was removed and the appearance was checked. As a result, no change was observed when heavy oil or methane was used as the auxiliary fuel. However, when pulverized coal was used, the tip of the outer lance pipe was worn and thinned. It was. In order to suppress this, it is not economical to use an expensive wear-resistant material. Therefore, it is desirable to use a liquid fuel such as heavy oil or a gaseous fuel such as methane, which has no problem with pipe wear in the case 3 double pipe lance.

以上、実験1から4を総括すると、微粉炭、重油、天然ガス等の補助燃料を高炉の羽口部から吹き込むと同時に、部分還元鉱を吹き込む高炉操業において、吹込み用の部分還元鉱の還元率を40%以上、80%以下とし、部分還元鉱を補助燃料より下流側から吹き込むか、部分還元鉱を吹き込むランスを2重管構造とし、内管から部分還元鉱石を、外管から重油などの液体燃料、天然ガスなどの気体燃料を吹き込むことにより、レースウェイ内における部分還元鉱の還元を十分に進行させつつ、レースウェイ奥の通気悪化も回避した安定な操業が可能なことが分かる。   As described above, when Experiments 1 to 4 are summarized, in the blast furnace operation in which auxiliary fuel such as pulverized coal, heavy oil, natural gas or the like is blown from the tuyere of the blast furnace and partially reduced ore is blown, reduction of partially reduced ore for injection The rate is 40% or more and 80% or less, and the partially reduced ore is blown from the downstream side of the auxiliary fuel, or the lance for blowing the partially reduced ore has a double pipe structure, the partially reduced ore from the inner pipe, heavy oil from the outer pipe, etc. It can be seen that by blowing gaseous fuel such as liquid fuel and natural gas, the reduction of the partially reduced ore in the raceway can be sufficiently advanced, and stable operation can be performed while avoiding deterioration of the airflow behind the raceway.

図6に、微粉炭吹き込み量を110kg/t一定とし、還元率の異なる部分還元鉱を吹き込んだ場合、高炉の還元材比の変化を計算した例を示す。部分還元鉱の吹き込み比が0の場合をベース条件(Base)として示す。図6によれば、40%以上の還元率の部分還元鉱の使用により、ベース条件に比べて還元材比は低減でき、その効果は吹き込み量が多いほど大きいことが分かる。例えば、還元率60%の部分還元鉱を100kg/tで吹き込んだ場合、約8kg/tの還元材比低減が図れることが分かる。これに伴い、製鉄所に投入される炭素量を大幅に減らすことが可能となる。   FIG. 6 shows an example in which the change in the reducing material ratio of the blast furnace is calculated when the amount of pulverized coal injection is fixed at 110 kg / t and partially reduced ores with different reduction rates are injected. The case where the blowing ratio of the partially reduced ore is 0 is shown as the base condition (Base). According to FIG. 6, it can be seen that the use of the partially reduced ore having a reduction rate of 40% or more can reduce the reducing material ratio as compared with the base condition, and the effect is larger as the blowing amount is larger. For example, when partially reduced ore with a reduction rate of 60% is blown at 100 kg / t, it can be seen that the reducing material ratio can be reduced by about 8 kg / t. Along with this, the amount of carbon input to the steelworks can be greatly reduced.

上記の高炉吹き込みの目的を満足する部分還元鉱の製造法は特に限定するものではない。係る部分還元鉱の製造法としては種々の方法が知られており、鉄鉱石ペレットをシャフト炉または回転炉床炉にて還元する方法、鉄鉱石微粉を流動層で還元する方法、炭材を内外装したペレットを焼結機で焼成しながら部分的に還元を行わせる方法などが挙げられる。焼結機を用いる方法は必ずしも高い還元率を目指す方法ではないため、結果的に還元率も40〜80%程度であり、先に挙げたシャフト炉法等による方法に比べて部分還元鉱を安価に製造できる利点を有する。よって、還元率および価格の観点から適正な部分還元鉱を選択すればよい。   There is no particular limitation on the method for producing the partially reduced ore that satisfies the purpose of the blast furnace injection. Various methods are known for producing such partially reduced ores, such as a method of reducing iron ore pellets in a shaft furnace or a rotary hearth furnace, a method of reducing iron ore fines in a fluidized bed, For example, a method of partially reducing the packaged pellets while firing with a sintering machine. Since the method using a sintering machine is not necessarily a method aiming at a high reduction rate, as a result, the reduction rate is also about 40 to 80%, and the partially reduced ore is less expensive than the method using the shaft furnace method mentioned above. It has the advantage that it can be manufactured. Therefore, an appropriate partially reduced ore may be selected from the viewpoint of the reduction rate and price.

上記のようにして製造された部分還元鉱を、粉砕、篩い分け等により、望ましくは粒径2mm以下に調整する。2mm以上の粉体は気送が困難になるばかりか、配管摩耗を促進させるので、粒径2mm以下が80mass%以上(-2mm、80%)程度に粒度調整することが特に望ましい。   The partially reduced ore produced as described above is desirably adjusted to a particle size of 2 mm or less by pulverization, sieving or the like. It is particularly desirable to adjust the particle size of particles having a particle size of 2 mm or less to 80 mass% or more (−2 mm, 80%), since powder of 2 mm or more not only becomes difficult to be pneumatically fed but also promotes pipe wear.

部分還元鉱は専用のタンクに受け入れ、気流輸送など公知の方法によって高炉の羽口部から吹き込む。吹き込み量は高炉レースウェイ部の温度を著しく低下させない限り特に限定されるものではない。通常の高炉操業の範囲で吹き込み量に応じて酸素富化率、水蒸気添加量などを調整し、高炉レースウェイ部の温度(断熱理論燃焼温度などで代表)を適正に設定することができる。   The partially reduced ore is received in a dedicated tank and blown from the tuyere of the blast furnace by a known method such as air transport. The blowing amount is not particularly limited as long as the temperature of the blast furnace raceway portion is not significantly lowered. The temperature of the blast furnace raceway part (represented by the adiabatic theoretical combustion temperature, etc.) can be set appropriately by adjusting the oxygen enrichment rate, the amount of steam added, etc. according to the amount blown in the range of normal blast furnace operation.

部分還元鉱ランスとして単管ランスを使用する場合、係るランスの先端位置は、炉に吹き込まれる熱風の流れに対して、微粉炭やLNGなど補助燃料吹き込み用ランスの下流側にあればよく、燃料の燃焼によって最高温度が得られる範囲、すなわち補助燃料の種類に応じ、補助燃料ランスから50〜100mm程度下流にセットするのが好ましい。   When a single pipe lance is used as the partially reduced ore lance, the tip position of the lance may be located downstream of the lance for blowing auxiliary fuel such as pulverized coal or LNG with respect to the flow of hot air blown into the furnace. Depending on the range in which the maximum temperature can be obtained by combustion, that is, depending on the type of auxiliary fuel, it is preferable to set the auxiliary fuel lance about 50-100 mm downstream.

部分還元鉱としては、流動層で部分還元した微粉鉱石を用い、実高炉における吹き込み試験を行った。部分還元鉱の還元率は化学分析の結果、68%であった。これを篩い分けにより-2mm、80%程度の粒度に調整した。高炉は内容積2828m3のベルレス式装入装置を有する高炉であり、標準的な操業条件は微粉炭吹き込み比120kg/t、コークス比370kg/tである。部分還元鉱を吹き込むに当たり、前述の知見から、微粉炭ランスの下流側100mmの位置に部分還元鉱吹込み用単管ランスを1本セットした。吹き込み量は100kg/tとした。この結果、コークス比は360kg/tとなり、10kg/tの低減が図られた。この値は図6に示した理論値とほぼ一致する。よって、上述の部分還元鉱の吹込みにより、高価なコークスの使用量削減が可能となり、溶銑コストの低減、ならびに乾留熱量低減によるCO2発生量の低減に結び付くことが実証された。 As a partially reduced ore, a fine ore partially reduced in a fluidized bed was used, and a blow test in an actual blast furnace was performed. As a result of chemical analysis, the reduction rate of the partially reduced ore was 68%. The particle size was adjusted to -2 mm and about 80% by sieving. The blast furnace is a blast furnace having a bell-less charging device with an internal volume of 2828 m 3 , and standard operating conditions are a pulverized coal injection ratio of 120 kg / t and a coke ratio of 370 kg / t. In blowing the partially reduced ore, one single tube lance for blowing partially reduced ore was set at a position 100 mm downstream of the pulverized coal lance based on the above knowledge. The blowing amount was 100 kg / t. As a result, the coke ratio was 360 kg / t, which was a reduction of 10 kg / t. This value almost coincides with the theoretical value shown in FIG. Therefore, it was proved that the use of the above-mentioned partially reduced ore enables the use of expensive coke to be reduced, leading to a reduction in hot metal costs and a reduction in CO 2 generation amount due to a reduction in heat of dry distillation.

実施例1における部分還元鉱吹込みを停止し、一時的に、標準操業条件に戻した。この結果、微粉炭吹き込み比120kg/tの条件下、コークス比はベース条件の370kg/tまで上昇した。次に、部分還元鉱吹込み用単管ランスを取り外し、2重管ランスに交換した。設置位置は実施例1と同様、微粉炭ランスの下流側100mmとした。次いで、2重管ランスの内管と外管の間のスリットから天然ガスを吹き込み、レースウェイ内の理論燃焼温度があまり変化しないように酸素富化率を上昇させながら徐々に吹き込み量を増し、最終的には50kg/tまで増加させた。本操作に伴い、コークス比も徐々に低下し、310kg/tまで低下した。この条件下で実施例1と同じ部分還元鉱を2重管ランスの内管から50kg/tで吹き込んだ。この結果、コークス比はさらに304kg/tまで低下できたことから、50kg/tの部分還元鉱の吹き込みによって、約6kg/tのコークス比削減が図れることが検証された。   Partially reduced ore blowing in Example 1 was stopped and temporarily returned to standard operating conditions. As a result, the coke ratio increased to the base condition of 370 kg / t under the condition of the pulverized coal injection ratio of 120 kg / t. Next, the single pipe lance for partially reducing ore injection was removed and replaced with a double pipe lance. The installation position was 100 mm downstream of the pulverized coal lance, as in Example 1. Then, natural gas is blown from the slit between the inner pipe and outer pipe of the double pipe lance, and the blow amount is gradually increased while increasing the oxygen enrichment rate so that the theoretical combustion temperature in the raceway does not change much, The final increase was 50 kg / t. Along with this operation, the coke ratio gradually decreased to 310 kg / t. Under this condition, the same partially reduced ore as in Example 1 was blown from the inner pipe of the double pipe lance at 50 kg / t. As a result, the coke ratio was further reduced to 304 kg / t, and it was verified that the coke ratio could be reduced by about 6 kg / t by blowing partially reduced ore at 50 kg / t.

部分還元鉱吹き込みに伴う高炉炉下部の通気抵抗指数(K値:K=(Pblast 2−P2)/V1.7。但し、Pblast:送風圧(kg/cm2)、P:羽口軸上6.7m位置における炉壁部静圧(kg/cm2)、V:ボッシュガス量(Nm3/t))は吹き込み前の値とほとんど変化することもなく、安定な操業が実現できた。これより、吹き込まれた部分還元鉱はその未燃物がレースウェイ内部にホールドアップして通気性を阻害することなく、十分に還元が進行しているものと推察される。 Partially reduced ore blowing blast furnace bottom of the ventilation resistance index associated with (K l values:. K l = (P blast 2 -P 2) / V 1.7 However, P blast: feed air pressure (kg / cm 2), P : feather The furnace wall static pressure (kg / cm 2 ), V: Bosch gas amount (Nm 3 / t)) at 6.7 m above the mouth axis is almost unchanged from the value before blowing, and stable operation is realized. did it. From this, it is surmised that the partially reduced ore that has been blown in is sufficiently reduced without the unburned matter being held up inside the raceway and impairing the air permeability.

小型熱間模型の概略図。Schematic of a small hot model. ランスの配置を示す図。The figure which shows arrangement | positioning of a lance. ランスの配置と送風圧の時間変化を示すグラフ。The graph which shows the time change of arrangement | positioning of a lance and a ventilation pressure. 送風圧と部分還元鉱の還元率の関係を示すグラフ。The graph which shows the relationship between a ventilation pressure and the reduction rate of a partial reduction ore. レースウェイ奥の鉱石の還元率と部分還元鉱の還元率の関係を示すグラフ。The graph which shows the relationship between the reduction rate of the ore behind a raceway, and the reduction rate of a partial reduction ore. 部分還元鉱の吹き込み比を変化させた際の、高炉の還元材比と部分還元鉱の還元率の変化を示すグラフ。The graph which shows the change of the reducing material ratio of a blast furnace and the reduction rate of a partial reduction ore when changing the blowing ratio of a partial reduction ore.

符号の説明Explanation of symbols

1 小型熱間模型
2 コークス装入孔
3 排ガス流出孔
4 羽口
5 ブローパイプ
6 ランス
6a ランス
6b ランス
6c 内管
6d 外管
7 レースウェイ
8 サンプリング位置
DESCRIPTION OF SYMBOLS 1 Small hot model 2 Coke charging hole 3 Exhaust gas outflow hole 4 Tuyere 5 Blow pipe 6 Lance 6a Lance 6b Lance 6c Inner pipe 6d Outer pipe 7 Raceway 8 Sampling position

Claims (3)

高炉の羽口部から熱風と共に、補助燃料と部分的に還元された鉄鉱石とを吹き込む高炉操業であって、前記鉄鉱石の還元率が40%以上、80%以下であり、前記熱風に対して、前記鉄鉱石を前記補助燃料より下流側から吹き込むことを特徴とする高炉操業方法。   A blast furnace operation for blowing auxiliary fuel and partially reduced iron ore together with hot air from the tuyere of the blast furnace, wherein the iron ore reduction rate is 40% or more and 80% or less, The blast furnace operating method is characterized in that the iron ore is blown from the downstream side of the auxiliary fuel. 高炉の羽口部から補助燃料と部分的に還元された鉄鉱石とを、前記羽口に接続したブローパイプに挿入されたランスを介して吹き込む高炉操業であって、前記鉄鉱石の還元率が40%以上、80%以下であり、前記ランスが内管と外管からなる2重管構造を有し、前記内管から前記鉄鉱石を、前記外管から前記補助燃料を吹き込むことを特徴とする高炉操業方法。   Blast furnace operation for blowing auxiliary fuel and partially reduced iron ore from the tuyere of the blast furnace through a lance inserted into a blow pipe connected to the tuyere, wherein the reduction rate of the iron ore is 40% or more and 80% or less, wherein the lance has a double pipe structure including an inner pipe and an outer pipe, and the iron ore is blown from the inner pipe and the auxiliary fuel is blown from the outer pipe. How to operate the blast furnace. 補助燃料が液体または気体であることを特徴とする請求項2に記載の高炉操業方法。   The blast furnace operating method according to claim 2, wherein the auxiliary fuel is liquid or gas.
JP2006045084A 2006-02-22 2006-02-22 Blast furnace operation method Active JP4807099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045084A JP4807099B2 (en) 2006-02-22 2006-02-22 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045084A JP4807099B2 (en) 2006-02-22 2006-02-22 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2007224345A true JP2007224345A (en) 2007-09-06
JP4807099B2 JP4807099B2 (en) 2011-11-02

Family

ID=38546421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045084A Active JP4807099B2 (en) 2006-02-22 2006-02-22 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4807099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544291A (en) * 2019-03-28 2021-10-22 株式会社神户制钢所 Method for operating blast furnace
JP2022054397A (en) * 2020-09-25 2022-04-06 Jfeスチール株式会社 Blast furnace operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153216A (en) * 1984-12-27 1986-07-11 Kawasaki Steel Corp Method for blowing powder into blast furnace
JPH06172826A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Operation of blast furnace
JPH09157712A (en) * 1995-12-04 1997-06-17 Nippon Steel Corp Operation for simultaneously blowing pulverized coal and powdery iron source in blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153216A (en) * 1984-12-27 1986-07-11 Kawasaki Steel Corp Method for blowing powder into blast furnace
JPH06172826A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Operation of blast furnace
JPH09157712A (en) * 1995-12-04 1997-06-17 Nippon Steel Corp Operation for simultaneously blowing pulverized coal and powdery iron source in blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544291A (en) * 2019-03-28 2021-10-22 株式会社神户制钢所 Method for operating blast furnace
JP2022054397A (en) * 2020-09-25 2022-04-06 Jfeスチール株式会社 Blast furnace operation method
JP7310858B2 (en) 2020-09-25 2023-07-19 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP4807099B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4807103B2 (en) Blast furnace operation method
CN104131122B (en) A kind of iron-smelting process based on winding-up coal gas of high temperature
KR101355325B1 (en) Blast furnace operation method
Mathieson et al. Potential for the use of biomass in the iron and steel industry
Zuo et al. Direct reduction of iron ore by biomass char
Murai et al. Design of innovative blast furnace for minimizing CO2 emission based on optimization of solid fuel injection and top gas recycling
JP4807099B2 (en) Blast furnace operation method
KR102080705B1 (en) Method for injecting pulverized coal into oxygen blast furnace
CN102382915A (en) Method by adopting carbon dioxide as transmission medium for blast furnace coal injection
JP2003247008A (en) Method for operating blast furnace injecting a large amount of pulverized fine coal
Nogami et al. Numerical analysis of blast furnace operations with top gas recycling
JP5614517B1 (en) Blast furnace operation method
CN102206725A (en) Process for producing and reducing iron powder through two-step method
JP2011190471A (en) Method for operating blast furnace
WO2018180892A1 (en) Method for operating blast furnace
JP2020132928A (en) Determination method of blowing amount of reducing gas and operation method of blast furnace
JP2020045508A (en) Operation method of blast furnace
JP5855536B2 (en) Blast furnace operation method
US20230366047A1 (en) Blast furnace for ironmaking production
JP7310858B2 (en) Blast furnace operation method
CN101503745A (en) Dimeit ironmaking method directly using coal for ironmaking and Dimeit furnace
JP3562506B2 (en) Blast furnace operation method
JP3651443B2 (en) Blast furnace operation method
CN114622090A (en) High-proportion magnetic fine powder sintering method for material surface hydrogen-oxygen composite injection
Naboka et al. Pulverized-coal injection in blast furnaces at OAO Zaporozhstal’

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4807099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250