JP2007224283A - Resin composition, prepreg and metal foil-clad laminate for print wiring board - Google Patents

Resin composition, prepreg and metal foil-clad laminate for print wiring board Download PDF

Info

Publication number
JP2007224283A
JP2007224283A JP2007005654A JP2007005654A JP2007224283A JP 2007224283 A JP2007224283 A JP 2007224283A JP 2007005654 A JP2007005654 A JP 2007005654A JP 2007005654 A JP2007005654 A JP 2007005654A JP 2007224283 A JP2007224283 A JP 2007224283A
Authority
JP
Japan
Prior art keywords
compound
resin composition
phenol
cyanate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007005654A
Other languages
Japanese (ja)
Inventor
Shinichi Kamoshita
真一 鴨志田
Hiroshi Shimizu
浩 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007005654A priority Critical patent/JP2007224283A/en
Publication of JP2007224283A publication Critical patent/JP2007224283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition which can present a metal foil clad laminate for print wiring boards having a low dielectric constant, low water absorption, a high glass transition temperature (Tg), excellent in insulation reliability and heat resistance and giving little roughness in a holed wall and little abrasion of a drill blade during drilling, and a prepreg and a metal foil clad laminate for print wiring boards. <P>SOLUTION: The resin composition is prepared by blending a phenol-modified cyanate ester oligomer (A) prepared by reacting a cyanate compound containing ≥2 cyanate groups in a molecule (a<SB>1</SB>) with a phenol compound (a<SB>2</SB>) with an epoxy resin (B) containing ≥2 epoxy groups in a molecule and has 0.01-0.03 equivalent ratio of the phenol compound (a<SB>2</SB>) to a cyanate group of the cyanate compound (a<SB>1</SB>). The prepreg and the metal foil clad laminate for print wiring boards are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂組成物、プリプレグ及びプリント配線板用金属箔張積層板に関し、詳しくは低誘電率、低吸水で、ガラス転移温度(Tg)が高く、絶縁信頼性、耐燃性に優れた、しかも、ドリル切削時の穴壁粗さが小さくかつドリル刃の磨耗が少ないプリント配線板用金属箔張積層板及びそれを得るための樹脂組成物及びプリプレグに関する。   The present invention relates to a resin composition, a prepreg, and a metal foil-clad laminate for printed wiring boards. Specifically, it has a low dielectric constant, low water absorption, high glass transition temperature (Tg), and excellent insulation reliability and flame resistance. In addition, the present invention relates to a metal foil-clad laminate for printed wiring boards having a small hole wall roughness during drill cutting and little wear on the drill blade, and a resin composition and prepreg for obtaining the same.

電子機器用のプリント配線板として、主にエポキシ樹脂を用いた積層板が広く使用されている。しかしながら、電子機器における実装密度の増大に伴うパターンの細密化、表面実装方式の定着並びに信号伝播速度の高速化と取り扱う信号の高周波化に伴い、プリント配線板材料の低誘電損失化、さらに耐熱性及び耐電食性の向上が強く要望されている。また、近年の環境問題に対する意識の高まりを受けて、ハロゲン系の難燃剤を使用せず、非ハロゲン系(ハロゲンフリー)であって、かつ良好な難燃性を有する材料が強く要望されている。   As a printed wiring board for electronic equipment, a laminated board mainly using an epoxy resin is widely used. However, as the mounting density of electronic equipment increases, the pattern density becomes finer, the surface mounting method is fixed, the signal propagation speed is increased, and the signal frequency is increased. There is a strong demand for improvement in resistance to electric corrosion. Further, in response to the recent increase in awareness of environmental issues, there is a strong demand for materials that do not use halogen-based flame retardants, are non-halogen-based (halogen-free), and have good flame retardancy. .

エポキシ樹脂を硬化剤とし、スチレンと無水マレイン酸からなる共重合樹脂を使用する樹脂組成物又は積層板の事例としては、例えば、可撓性付与のために、反応性エポキシ希釈剤とアクリロニトリル−ブタジエン共重合体とを必須とする、可撓性エポキシ樹脂、スチレンと無水マレイン酸からなる共重合樹脂等による可撓性プリント配線板が知られている(例えば特許文献1参照)。   Examples of a resin composition or laminate using an epoxy resin as a curing agent and a copolymer resin composed of styrene and maleic anhydride include, for example, a reactive epoxy diluent and acrylonitrile-butadiene for imparting flexibility. There is known a flexible printed wiring board made of a flexible epoxy resin, a copolymer resin composed of styrene and maleic anhydride, which requires a copolymer (for example, see Patent Document 1).

プリント配線板用金属箔張積層板としては、電気絶縁性樹脂(以下、ベース樹脂という)と繊維基材とからなる積層板が用いられている。ベース樹脂としては、通常、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドートリアジン樹脂等が用いられている。繊維基材としては、紙、例えば、クラフト紙やリンター紙、ガラス繊維の布、例えば、ガラス織布やガラス不織布、有機繊維の布、例えば、アラミド不織布等が用いられている。特にコンピュータや産業用電子機器のプリント配線板用には、エポキシ樹脂をベース樹脂とし、ガラス繊維布を繊維基材とする積層板が広く用いられている。   As a metal foil-clad laminate for a printed wiring board, a laminate comprising an electrically insulating resin (hereinafter referred to as a base resin) and a fiber substrate is used. As the base resin, phenol resin, epoxy resin, polyimide resin, bismaleimide-triazine resin or the like is usually used. As the fiber substrate, paper, for example, craft paper or linter paper, glass fiber cloth, for example, glass woven cloth, glass nonwoven cloth, organic fiber cloth, for example, aramid nonwoven cloth, or the like is used. In particular, for printed wiring boards of computers and industrial electronic devices, laminated boards having epoxy resin as a base resin and glass fiber cloth as a fiber base material are widely used.

近年、コンピュータ等の情報処理機器にみられる高速演算化、及び、移動体通信や衛星通信等にみられる高周波化に対応するため、低誘電率の積層板が求められるようになっており、積層板を低誘電率とするためにベース樹脂と繊維基材に低誘電率の材料を用いられている。
低誘電率のベース樹脂としては、エポキシ樹脂にフェノール類付加ジエン系重合体を配合した樹脂組成物、低誘電率ポリイミド樹脂等が知られている。また、低誘電率の繊維基材としては、Sガラス、Dガラスのような低誘電率のガラス繊維基材を使用することが知られている。
In recent years, in order to cope with the high-speed computation found in information processing equipment such as computers and the high frequency found in mobile communications and satellite communications, low dielectric constant laminates have been required. In order to make the plate have a low dielectric constant, a low dielectric constant material is used for the base resin and the fiber base material.
As a low dielectric constant base resin, a resin composition in which a phenol addition diene polymer is blended with an epoxy resin, a low dielectric constant polyimide resin, and the like are known. As a low dielectric constant fiber base material, it is known to use a low dielectric constant glass fiber base material such as S glass or D glass.

しかしながら,ベース樹脂にエポキシ樹脂にフェノール類付加ジエン系重合体を配合した樹脂組成物、低誘電率ポリイミド樹脂を用いた場合では、繊維基材にDガラス又はSガラスを用いても積層板は誘電率3.6〜4.0(1GHz)までしか下がらないのみでなく、SガラスやDガラスを使用するため、ドリル切削時の穴壁粗さが大きくなり、また、ドリル摩耗量も大きくなる。また、繊維基材にアラミド不織布を使用すると、吸水による誘電率変化や吸湿はんだ耐熱が極端に低下するという欠点がある。
特開昭49−109476号公報
However, when a resin composition in which a phenol-added diene polymer is blended with an epoxy resin and a low dielectric constant polyimide resin is used as the base resin, the laminate is dielectric even if D glass or S glass is used as the fiber substrate. Not only the rate is reduced to 3.6 to 4.0 (1 GHz), but since S glass or D glass is used, the hole wall roughness at the time of drill cutting increases, and the drill wear amount also increases. Moreover, when an aramid nonwoven fabric is used for the fiber base material, there is a drawback that the dielectric constant change due to water absorption and moisture absorption solder heat resistance are extremely reduced.
JP 49-109476 A

本発明の目的は、こうした現状に鑑み、低誘電率、低吸水で、ガラス転移温度(Tg)が高く、絶縁信頼性、耐燃性に優れ、しかも、ドリル切削時の穴壁粗さが小さくかつドリル刃の磨耗が少ないプリント配線板用金属箔張積層板及びそれを得るための樹脂組成物及びプリプレグを提供することである。   In view of the current situation, the object of the present invention is low dielectric constant, low water absorption, high glass transition temperature (Tg), excellent insulation reliability, flame resistance, and small hole wall roughness during drill cutting. It is to provide a metal foil-clad laminate for a printed wiring board with less wear on a drill blade, and a resin composition and prepreg for obtaining the same.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定のフェノール化合物とシアネート化合物を反応させて得られたフェノール変性シアネートエステルオリゴマーにエポキシ樹脂が配合された樹脂組成物が上記目的に沿うものであり、プリント配線板用金属箔張積層板が有利に製造されることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have obtained a resin composition in which an epoxy resin is blended with a phenol-modified cyanate ester oligomer obtained by reacting a specific phenol compound with a cyanate compound. It has been found that the metal foil-clad laminate for printed wiring boards is produced advantageously in accordance with the above object. The present invention has been completed based on such findings.

すなわち本発明は、以下の樹脂組成物、プリプレグおよびプリント配線板用金属箔張積層板を提供するものである。
1.分子中に2個以上のシアナト基を含有するシアネート化合物(a1)と下記一般式(1)で表されるフェノール化合物(a2)を反応させて得られたフェノール変性シアネートエステルオリゴマー(A)に、分子中に2個以上のエポキシ基を含有するエポキシ樹脂(B)が配合された樹脂組成物であって、シアネート化合物(a1)のシアナト基に対するフェノール化合物(a2)のフェノール性水酸基の当量比(水酸基/シアナト基比)が0.01〜0.03の範囲であることを特徴とする樹脂組成物。
That is, the present invention provides the following resin composition, prepreg, and metal foil-clad laminate for printed wiring boards.
1. Phenol-modified cyanate ester oligomer (A) obtained by reacting a cyanate compound (a 1 ) containing two or more cyanato groups in the molecule with a phenol compound (a 2 ) represented by the following general formula (1) And a phenolic hydroxyl group of the phenol compound (a 2 ) with respect to the cyanate group of the cyanate compound (a 1 ), wherein the epoxy resin (B) contains two or more epoxy groups in the molecule. An equivalent ratio (hydroxyl group / cyanato group ratio) in the range of 0.01 to 0.03.

Figure 2007224283
Figure 2007224283

(式(1)中、R1およびR2は水素原子又はメチル基を表し、それぞれ同じでも異なっていても良い。また、nは1〜3の整数を表す。)
2.更に、一般式(1)で表されるフェノール化合物(C)を配合し、シアネート化合物(a1)のシアナト基に対するフェノール化合物(a2)のフェノール性水酸基とフェノール化合物(C)のフェノール性水酸基との合計量の配合当量比(水酸基/シアナト基比)が0.04〜0.29の範囲である上記1の樹脂組成物。
3.フェノール変性シアネートエステルオリゴマー(A)が、シアネート化合物(a1)の転化率が10〜70%となるように反応させて得られたものである上記1又は2の樹脂組成物。
4.フェノール変性シアネートエステルオリゴマー(A)の数平均分子量が380〜2500である上記1ないし3のいずれかの樹脂組成物。
5.シアネート化合物(a1)が、下記一般式(2)で表される化合物である上記1〜4のいずれかの樹脂組成物。
(In Formula (1), R 1 and R 2 represent a hydrogen atom or a methyl group, and may be the same or different. N represents an integer of 1 to 3)
2. Further, by blending the phenol compound represented by the general formula (1) (C), the phenolic hydroxyl group of cyanate compound (a 1) phenolic compound to the cyanato group of the phenolic hydroxyl groups and phenolic compound (a 2) (C) The resin composition as described in 1 above, wherein the total equivalent weight ratio (hydroxyl group / cyanato group ratio) is in the range of 0.04 to 0.29.
3. 3. The resin composition according to 1 or 2 above, wherein the phenol-modified cyanate ester oligomer (A) is obtained by reacting the cyanate compound (a 1 ) so that the conversion of the cyanate compound (a 1 ) is 10 to 70%.
4). 4. The resin composition according to any one of 1 to 3 above, wherein the number average molecular weight of the phenol-modified cyanate ester oligomer (A) is 380 to 2500.
5). The resin composition according to any one of 1 to 4 above, wherein the cyanate compound (a 1 ) is a compound represented by the following general formula (2).

Figure 2007224283
Figure 2007224283

(式中、R5はハロゲンで置換されていてもよい炭素数1〜3のアルキレン基、アルキリデン基、下記一般式(2a)、又は一般式(2b)で表される基を表し、R6〜R9は、水素原子又は炭素数1〜3のアルキル基を表し、それぞれ同じでも異なっていても良い。) (Wherein, R 5 represents a group represented by C 1-3 alkylene group which may be substituted with a halogen, an alkylidene group, following general formula (2a), or the general formula (2b), R 6 to R 9 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, it may be the same or different.)

Figure 2007224283
Figure 2007224283

(式中、R10およびR11は炭素数1〜11のアルキル基を表し、それぞれ同じでも異なっていても良い。)
6.エポキシ樹脂(B)として、下記一般式(3)で表されるジシクロペンタジエン骨格を有するジシクロペンタジエン−フェノール重付加物から誘導されるエポキシ樹脂を含む上記1〜5のいずれかの樹脂組成物。
(In the formula, R 10 and R 11 represent an alkyl group having 1 to 11 carbon atoms, and may be the same or different.)
6). The resin composition according to any one of 1 to 5 above, which contains an epoxy resin derived from a dicyclopentadiene-phenol polyaddition product having a dicyclopentadiene skeleton represented by the following general formula (3) as the epoxy resin (B): .

Figure 2007224283
Figure 2007224283

(式中nは0又は正の整数を表す。)
7.エポキシ樹脂(B)として、臭素化ビスフェノールA型エポキシ樹脂を含む上記1〜5のいずれかの樹脂組成物。
8. シアネート化合物(a1)100質量部に対するエポキシ樹脂(B)の配合量が50〜300質量部である上記1〜7の樹脂組成物。
9.更に硬化促進剤(D)として、鉄、銅、亜鉛、コバルト、ニッケル、マンガンおよびスズから選ばれる少なくとも一種の金属の有機金属塩又は該金属の有機金属錯体と、イミダゾール類化合物を配合する上記1〜8の樹脂組成物。
10.イミダゾール類化合物が下記一般式(4)で表される化合物である上記9の樹脂組成物。
(In the formula, n represents 0 or a positive integer.)
7). The resin composition according to any one of the above 1 to 5, comprising a brominated bisphenol A type epoxy resin as the epoxy resin (B).
8). The resin composition according to the above 1 to 7, wherein the compounding amount of the epoxy resin (B) with respect to 100 parts by mass of the cyanate compound (a 1 ) is 50 to 300 parts by mass.
9. Furthermore, as the curing accelerator (D), at least one kind of metal organic metal salt selected from iron, copper, zinc, cobalt, nickel, manganese and tin or an organic metal complex of the metal and an imidazole compound are blended. ~ 8 resin composition.
10. 9. The resin composition according to 9 above, wherein the imidazole compound is a compound represented by the following general formula (4).

Figure 2007224283
Figure 2007224283

(式中、R12は炭素数1〜11のアルキル基又はフェニル基を表す。)
11.シアネート化合物(a1)100質量部に対する硬化促進剤(D)の配合量が0.1〜5質量部である上記9又は10の樹脂組成物。
12.更に酸化防止剤(E)として、フェノール系酸化防止剤または硫黄有機化合物系酸化防止剤の中から選ばれる1種以上の酸化防止剤を含む上記1〜11のいずれかの樹脂組成物。
13.シアネート化合物(a1)100質量部に対する酸化防止剤(E)の配合量が0.1〜20質量部である上記12の樹脂組成物。
14.上記1〜13のいずれかの樹脂組成物を繊維基材に含浸又は塗工した後、Bステージ化して得られるプリプレグ。
15.上記14のプリプレグの少なくとも一方に金属箔を重ねた後、加熱加圧して得られたプリント配線板用金属箔張積層板。
16.繊維基材が、液晶ポリアリレート繊維基材である上記15のプリント配線板用金属箔張積層板。
(In the formula, R 12 represents an alkyl group having 1 to 11 carbon atoms or a phenyl group.)
11. The resin composition according to 9 or 10 above, wherein the amount of the curing accelerator (D) is 0.1 to 5 parts by mass with respect to 100 parts by mass of the cyanate compound (a 1 ).
12 Furthermore, as antioxidant (E), the resin composition in any one of said 1-11 containing 1 or more types of antioxidant chosen from phenol type antioxidant or sulfur organic compound type antioxidant.
13. 12. The resin composition as described in 12 above, wherein the amount of the antioxidant (E) to be added is from 0.1 to 20 parts by mass per 100 parts by mass of the cyanate compound (a 1 ).
14 A prepreg obtained by impregnating or coating a fiber base material with any of the resin compositions described in 1 to 13 above and then forming a B-stage.
15. A metal foil-clad laminate for a printed wiring board, obtained by heating and pressing a metal foil on at least one of the prepregs of 14.
16. 15. The metal foil-clad laminate for printed wiring board as described in 15 above, wherein the fiber substrate is a liquid crystal polyarylate fiber substrate.

本発明の樹脂組成物は、低誘電率、低吸水で、ガラス転移温度(Tg)が高く、絶縁信頼性、耐燃性に優れたプリント配線板用金属箔張積層板を提供することができる。
また、繊維基材として液晶ポリアリレート繊維基材を用いることにより、ドリル切削時の穴壁粗さが小さくかつドリル刃の磨耗が少ないプリント配線板用金属箔張積層板を提供することができる。
The resin composition of the present invention can provide a metal foil-clad laminate for printed wiring boards that has a low dielectric constant, low water absorption, high glass transition temperature (Tg), and excellent insulation reliability and flame resistance.
Further, by using a liquid crystal polyarylate fiber base material as the fiber base material, it is possible to provide a metal foil-clad laminate for printed wiring boards that has a small hole wall roughness during drill cutting and little wear on the drill blade.

先ず、本発明の樹脂組成物は、分子中に2個以上のシアナト基を含有するシアネート化合物(a1)と下記一般式(1)で表されるフェノール化合物(a2)を反応させて得られたフェノール変性シアネートエステルオリゴマー(A)に、分子中に2個以上のエポキシ基を含有するエポキシ樹脂(B)が配合されたものである。 First, the resin composition of the present invention is obtained by reacting a cyanate compound (a 1 ) containing two or more cyanate groups in the molecule with a phenol compound (a 2 ) represented by the following general formula (1). The obtained phenol-modified cyanate ester oligomer (A) is blended with an epoxy resin (B) containing two or more epoxy groups in the molecule.

Figure 2007224283
Figure 2007224283

(式(1)中、R1およびR2は水素原子又はメチル基を表し、それぞれ同じでも異なっていても良い。また、nは1〜3の整数を表す。)
本発明の樹脂組成物に用いる分子中に2個以上のシアナト基を含有するシアネート化合物(a1)は、特に限定されるものではないが、下記の一般式(2)で表されるシアネート化合物が好ましい。
(In Formula (1), R 1 and R 2 represent a hydrogen atom or a methyl group, and may be the same or different. N represents an integer of 1 to 3)
The cyanate compound (a 1 ) containing two or more cyanato groups in the molecule used in the resin composition of the present invention is not particularly limited, but is a cyanate compound represented by the following general formula (2). Is preferred.

Figure 2007224283
Figure 2007224283

(式中、R5はハロゲンで置換されていてもよい炭素数1〜3のアルキレン基、下記一般式(2a)、又は一般式(2b)で表される基を表し、R6〜R9は、水素原子又は炭素数1〜3のアルキル基を表し、それぞれ同じでも異なっていても良い。) (In the formula, R 5 represents an alkylene group having 1 to 3 carbon atoms which may be substituted with halogen, a group represented by the following general formula (2a) or general formula (2b), and R 6 to R 9. Represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, which may be the same or different.

Figure 2007224283
(式中、R10およびR11は炭素数1〜11のアルキル基を表し、それぞれ同じでも異なっていても良い。)
Figure 2007224283
(In the formula, R 10 and R 11 represent an alkyl group having 1 to 11 carbon atoms, and may be the same or different.)

このような分子中に2個以上のシアナト基を含有するシアネート化合物(a1)の具体例としては2,2−ビス(4−シアナトフェニル)プロパン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α'−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化物などが挙げられ、これらは1種類又は2種類以上を混合して用いても良い。 Specific examples of the cyanate compound (a 1 ) containing two or more cyanate groups in the molecule include 2,2-bis (4-cyanatophenyl) propane and bis (3,5-dimethyl-4- Cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α′-bis (4-cyanatophenyl) -m -Diisopropylbenzene, a cyanate esterified product of a phenol-added dicyclopentadiene polymer, and the like, and these may be used alone or in combination of two or more.

本発明における一般式(1)で表されるフェノール化合物(a2)としては、p−(α−クミル)フェノール、p−tert−オクチルフェノール、モノ(又はトリ)(α−メチルベンジル)フェノールなどが挙げられる。これら(B)フェノール化合物は、1種類単独及び2種類以上を混合しても良い。 Examples of the phenol compound (a 2 ) represented by the general formula (1) in the present invention include p- (α-cumyl) phenol, p-tert-octylphenol, mono (or tri) (α-methylbenzyl) phenol, and the like. Can be mentioned. These (B) phenol compounds may be used alone or in combination of two or more.

分子中に2個以上のシアナト基を含有するシアネート化合物(a1)と一般式(1)で表されるフェノール化合物(a2)を反応させてフェノール変性シアネートエステルオリゴマー(A)を得る際のフェノール化合物(a2)の配合量は、シアネート化合物(a1)のシアナト基1当量に対する式(1)で表されるフェノール化合物(a2)のフェノール性水酸基の当量比(水酸基/シアナト基比)で、0.01〜0.03の範囲とする必要がある。
水酸基/シアナト基比を0.01以上とすることにより十分な誘電率が得られ、また水酸基/シアナト基比を0.03以下とすることにより、誘電率の悪化や吸水率の上昇、ワニス作製時にワニスの粘度が増化を回避することができる。
When a phenol-modified cyanate ester oligomer (A) is obtained by reacting a cyanate compound (a 1 ) containing two or more cyanate groups in the molecule with a phenol compound (a 2 ) represented by the general formula (1) phenolic compounds amount of (a 2) is cyanate compound (a 1) the equivalent ratio of phenolic hydroxyl groups (hydroxyl / cyanato group ratio of the phenol compound represented by the formula (1) to the cyanato group 1 equivalent of (a 2) of ) In the range of 0.01 to 0.03.
Sufficient dielectric constant can be obtained by setting the hydroxyl group / cyanato group ratio to 0.01 or more, and by setting the hydroxyl group / cyanato group ratio to 0.03 or less, the dielectric constant deteriorates, the water absorption increases, and the varnish is produced. Sometimes an increase in the viscosity of the varnish can be avoided.

本発明で用いられるシアネート化合物(a1)とフェノール化合物(a2)を反応させて得られるフェノール変性シアネートエステルオリゴマー(A)は、シアネート化合物(a1)が単独で環化反応によりトリアジン環を形成するシアネートエステルオリゴマー(主にシアネート化合物の3、5、7、9及び11量体を含む)とシアネート化合物(a1)のシアナト基にフェノール化合物(a2)のフェノール性水酸基が付加したイミドカーボネート化変性オリゴマーとの混合物であることが好ましい。例えばトリアジン環から伸びる3つの鎖のうち1つまたは2つが1価フェノール化合物に由来する分子に置き換わることにより、シアネート化合物の単独オリゴマーよりも架橋点が少ない変性オリゴマーとの混合オリゴマーとなる。 In the phenol-modified cyanate ester oligomer (A) obtained by reacting the cyanate compound (a 1 ) and the phenol compound (a 2 ) used in the present invention, the cyanate compound (a 1 ) alone has a triazine ring formed by a cyclization reaction. formed to cyanate ester oligomer (mainly 3, 5, 7, 9 and 11 containing an amount of cyanate compound) imide phenolic hydroxyl group is added to the cyanate compound (a 1) a phenolic compound cyanato group (a 2) A mixture with a carbonated modified oligomer is preferred. For example, by replacing one or two of the three chains extending from the triazine ring with a molecule derived from a monohydric phenol compound, a mixed oligomer with a modified oligomer having fewer crosslinking points than a single oligomer of a cyanate compound is obtained.

シアネート化合物(a1)とフェノール化合物(a2)を反応させて得られるフェノール変性シアネートエステルオリゴマー(A)を製造する際には、反応を促進させる触媒機能を有する化合物を用いることが好ましい。シアネート化合物(a1)とフェノール化合物(a2)との反応を促進させる触媒機能を有する化合物としては、鉄、銅、亜鉛、コバルト、ニッケル、マンガン、スズから選ばれる少なくとも一種の金属の有機金属塩及び該金属の有機金属錯体等が挙げられる。 When producing the phenol-modified cyanate ester oligomer (A) obtained by reacting the cyanate compound (a 1 ) and the phenol compound (a 2 ), it is preferable to use a compound having a catalytic function for promoting the reaction. The compound having a catalytic function for promoting the reaction between the cyanate compound (a 1 ) and the phenol compound (a 2 ) is an organic metal of at least one metal selected from iron, copper, zinc, cobalt, nickel, manganese, and tin. Examples thereof include salts and organometallic complexes of the metal.

本発明におけるフェノール変性シアネートエステルオリゴマー(A)は、シアネート化合物(a1)の転化率を10〜70%となるように反応させて得られることが好ましい。さらにシアネート化合物(a1)の転化率として20〜70%がより好ましい。シアネート化合物(a1)の転化率を10%以上とすることにより、シアネート化合物(a1)は結晶性が高いためにフェノール変性シアネートエステルオリゴマー(A)を溶剤に溶解しワニス化した際に溶剤中にシアネート化合物モノマーが再結晶するのを回避することができる。また、シアネート化合物(a1)の転化率を70%以下とすることにより、ワニスとした時の粘度が高くなって繊維基材等への含浸性が低下しプリプレグ表面の平滑性が失われることや、ゲル化時間が塗工作業上問題となるまで短くなったり、ワニスの保存安定性(ポットライフ)が失われることを回避することができる。 The phenol-modified cyanate ester oligomer (A) in the present invention is preferably obtained by reacting the cyanate compound (a 1 ) so that the conversion rate is 10 to 70%. Further, the conversion rate of the cyanate compound (a 1 ) is more preferably 20 to 70%. By setting the conversion rate of the cyanate compound (a 1 ) to 10% or more, the cyanate compound (a 1 ) has high crystallinity, so the phenol-modified cyanate ester oligomer (A) is dissolved in a solvent to form a varnish. It is possible to avoid recrystallization of the cyanate compound monomer. In addition, by setting the conversion rate of the cyanate compound (a 1 ) to 70% or less, the viscosity of the varnish is increased, the impregnation property to the fiber base material is lowered, and the smoothness of the prepreg surface is lost. In addition, it is possible to avoid the gelation time from being shortened until it becomes a problem in the coating work, and the loss of storage stability (pot life) of the varnish.

さらに、フェノール変性シアネートエステルオリゴマー(A)は、数平均分子量が380〜2500であることが好ましく、より好ましくは、800〜2000である。数平均分子量を380以上とすることにより、シアネート化合物は結晶性が高いためにフェノール変性シアネートエステルオリゴマー(A)を溶剤に溶解しワニス化した溶剤中にシアネート化合物モノマーが再結晶するのを回避することができる。また、数平均分子量を2500以下とすることにより、ワニスとした時の粘度が高くなり繊維基材等への含浸性が低下しプリプレグ表面の平滑性が失われることや、ゲル化時間が塗工作業上問題となるまで短くなったり、ワニスの保存安定性(ポットライフ)が失われることを回避することができる。   Furthermore, the phenol-modified cyanate ester oligomer (A) preferably has a number average molecular weight of 380 to 2500, more preferably 800 to 2000. By setting the number average molecular weight to 380 or more, the cyanate compound has high crystallinity, so that the phenol-modified cyanate ester oligomer (A) is dissolved in the solvent to avoid recrystallization of the cyanate compound monomer in the varnished solvent. be able to. In addition, by setting the number average molecular weight to 2500 or less, the viscosity when used as a varnish is increased, the impregnation property to the fiber base material is lowered, the smoothness of the prepreg surface is lost, and the gelation time is applied. It is possible to avoid shortening until it becomes a problem in work and losing storage stability (pot life) of the varnish.

本発明の樹脂組成物に用いられる分子中に2個以上のエポキシ基を含有するエポキシ樹脂(B)は、下記一般式(3)で表されるジシクロペンタジエン骨格を含有するジシクロペンタジエン−フェノール重付加物から誘導されるエポキシ樹脂(b1)を含み、これと他の1分子中に2個以上のエポキシ基をもったエポキシ樹脂(b2)を併用することが好ましい。 The epoxy resin (B) containing two or more epoxy groups in the molecule used in the resin composition of the present invention is a dicyclopentadiene-phenol containing a dicyclopentadiene skeleton represented by the following general formula (3). They include epoxy resins derived from polyaddition product (b 1), it is preferable to use epoxy resin (b 2) having two or more epoxy groups in this and in other one molecule.

Figure 2007224283
Figure 2007224283

(式中nは0又は正の整数を表す。)
エポキシ樹脂(b2)としては、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールサリチルアルデヒドノボラック型エポキシ樹脂等が挙げられる。
エポキシ樹脂(b1)とエポキシ樹脂(b2)を併用する場合の配合量は特に限定されるものではないが、分子中に2個以上のエポキシ基を含有するエポキシ樹脂(B)の全配合量の少なくとも15質量%以上がエポキシ樹脂(b1)であることが好ましい。15質量%以上とすることにより、著しいガラス転移温度(Tg)の低下や、吸水率が上昇するのを回避することができる。
(In the formula, n represents 0 or a positive integer.)
Examples of the epoxy resin (b 2 ) include bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol type epoxy resin, biphenyl type epoxy resin, phenol salicylaldehyde novolak type epoxy resin and the like.
The compounding amount in the case of using the epoxy resin (b 1 ) and the epoxy resin (b 2 ) is not particularly limited, but the total compounding of the epoxy resin (B) containing two or more epoxy groups in the molecule It is preferable that at least 15% by mass or more of the amount is the epoxy resin (b 1 ). By setting it as 15 mass% or more, it can avoid that a remarkable glass transition temperature (Tg) fall and a water absorption rate rise.

また、樹脂の耐燃性を確保するためは、エポキシ樹脂(b2)として、臭素化エポキシ樹脂を配合することが好ましい。臭素化エポキシ樹脂としては、例えば臭素化ビスフェノールA型エポキシ樹脂や臭素化フェノールノボラック型エポキシ樹脂が挙げられ、特に誘電率の点から臭素化ビスフェノールA型エポキシ樹脂を配合することが好ましい。臭素化エポキシ樹脂の配合量は、全樹脂に対する臭素含有量が10質量%以上となるようにすることが好ましい。 In order to ensure the flame resistance of the resin, the epoxy resin (b 2), it is preferable to blend a brominated epoxy resin. Examples of brominated epoxy resins include brominated bisphenol A type epoxy resins and brominated phenol novolac type epoxy resins, and it is particularly preferable to blend brominated bisphenol A type epoxy resins from the viewpoint of dielectric constant. The blending amount of the brominated epoxy resin is preferably such that the bromine content with respect to the total resin is 10% by mass or more.

本発明の樹脂組成物におけるエポキシ樹脂(B)の配合量は、分子中に2個以上のシアナト基を含有するシアネート類化合物(a1)100質量部に対してエポキシ樹脂(B)を50〜300質量部とすることが好ましい。50質量部以上とすることにより吸湿時の耐熱性が悪化するのを回避することができ、300質量部以下とすることにより誘電率の悪化やガラス転移温度(Tg)が低下するのを回避することができる。 The compounding amount of the epoxy resin (B) in the resin composition of the present invention is such that the epoxy resin (B) is 50 to 100 parts by mass of the cyanate compound (a 1 ) containing two or more cyanato groups in the molecule. It is preferable to set it as 300 mass parts. By setting it as 50 mass parts or more, it can avoid that the heat resistance at the time of moisture absorption deteriorates, and by setting it as 300 mass parts or less, it avoids that a dielectric constant deterioration and a glass transition temperature (Tg) fall. be able to.

本発明の樹脂組成物において、誘電率や吸水性を向上させるために、適正な当量比(水酸基/シアナト基比)を保ちながら、フェノール化合物(a1)とシアネート化合物(a1)を反応させてフェノール変性シアネートエステルオリゴマー(A)とした後、更に、フェノール化合物(C)を配合し、シアネート化合物(a1)のシアナト基に対するフェノール化合物(a2)のフェノール性水酸基とフェノール化合物(C)のフェノール性水酸基との合計量の配合当量比(水酸基/シアナト基比)が0.04〜0.29の範囲とすることが好ましい。水酸基/シアナト基比を0.29以下とすることにより誘電率の悪化及び吸湿時の耐熱性が悪化するのを回避することができる。
なお、樹脂組成物作製時に配合するフェノール化合物(C)は一般式(1)で表されるものであるが、フェノール変性シアネートエステルオリゴマー(A)作製時に反応させるフェノール化合物(a2)と同じであっても異なってもよい。
In the resin composition of the present invention, the phenol compound (a 1 ) and the cyanate compound (a 1 ) are reacted while maintaining an appropriate equivalent ratio (hydroxyl group / cyanate group ratio) in order to improve dielectric constant and water absorption. The phenol-modified cyanate ester oligomer (A) is further blended with the phenol compound (C), and the phenolic hydroxyl group and phenol compound (C) of the phenol compound (a 2 ) with respect to the cyanate group of the cyanate compound (a 1 ). It is preferable that the blending equivalent ratio (hydroxyl group / cyanato group ratio) of the total amount with the phenolic hydroxyl group is in the range of 0.04 to 0.29. By setting the hydroxyl group / cyanato group ratio to 0.29 or less, deterioration of the dielectric constant and deterioration of heat resistance during moisture absorption can be avoided.
Incidentally, the phenol compound to be blended during resin composition produced (C) are those represented by the general formula (1), the same as the phenol-modified cyanate ester oligomer (A) a phenol compound to be reacted during the production (a 2) It may or may not be.

本発明の樹脂組成物で用いられる硬化促進剤(D)としてシアネート化合物とフェノール化合物との反応を促進させる触媒機能を有する化合物を用いることが好ましい。このような反応を促進させる触媒機能を有する化合物として、例えば、鉄、銅、亜鉛、コバルト、ニッケル、マンガン、スズから選ばれる少なくとも一種の金属の有機金属塩及び該金属の有機金属錯体等が挙げられる。この硬化促進剤(D)の配合量はシアネート化合物(a1)100質量部に対して0.1〜5質量部とすることが好ましく、0.1〜3質量部とすることが更に好ましい。0.1質量部以上とすることにより触媒機能が得られ、硬化時間が短縮される。また、5質量部以下とすることによりワニスやプリプレグの保存安定性の低下が避けられるようになる。この硬化促進剤は、その一部又は全部をシアネート化合物(a1)とフェノール化合物(a2)とを反応させて得られるフェノール変性シアネートエステルオリゴマー(A)を合成する際に配合しても、合成後に配合してもよい。 As the curing accelerator (D) used in the resin composition of the present invention, it is preferable to use a compound having a catalytic function for promoting the reaction between a cyanate compound and a phenol compound. Examples of the compound having a catalytic function for promoting such a reaction include an organic metal salt of at least one metal selected from iron, copper, zinc, cobalt, nickel, manganese, and tin, and an organic metal complex of the metal. It is done. The amount of the curing accelerator (D) is preferably 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cyanate compound (a 1 ). A catalyst function is obtained by setting it as 0.1 mass part or more, and hardening time is shortened. Moreover, the fall of the storage stability of a varnish or a prepreg can be avoided by setting it as 5 mass parts or less. The curing accelerator may be blended in the synthesis thereof a part or all of the cyanate compound (a 1) and the phenol compound (a 2) the phenol-modified cyanate ester oligomer obtained is reacted with (A), You may mix | blend after a synthesis | combination.

また、本発明の樹脂組成物で用いられる硬化促進剤(D)として、シアネート化合物(a1)とフェノール化合物(a2)及びからフェノール化合物(C)選ばれるフェノール化合物との反応を促進させる触媒機能を有する化合物と、エポキシ樹脂(B)のグリシジル基の硬化反応を促進させる触媒機能を有する化合物を併用することが好ましい。
このエポキシ基を含有するエポキシ樹脂(B)のグリシジル基の硬化反応を促進させる触媒機能を有する化合物としてはアルカリ金属化合物、アルカリ土類金属化合物、イミダゾール類化合物、有機リン化合物、第二級アミン、第三級アミン、第四級アンモニウム塩等が挙げられるが、イミダゾール化合物がグリシジル基の硬化反応を促進する触媒機能が良好であるので好ましく、下記一般式(4)で表されるイミダゾール類化合物が特に好ましい。
Further, as the curing accelerator (D) used in the resin composition of the present invention, a catalyst that promotes the reaction of the cyanate compound (a 1 ) with the phenol compound (a 2 ) and the phenol compound selected from the phenol compound (C). It is preferable to use together the compound which has a function, and the compound which has a catalyst function which accelerates | stimulates hardening reaction of the glycidyl group of an epoxy resin (B).
As a compound having a catalytic function for promoting the curing reaction of the glycidyl group of the epoxy resin (B) containing this epoxy group, an alkali metal compound, an alkaline earth metal compound, an imidazole compound, an organic phosphorus compound, a secondary amine, Tertiary amines, quaternary ammonium salts and the like can be mentioned, but imidazole compounds are preferable because of their good catalytic function of promoting the curing reaction of glycidyl groups, and imidazole compounds represented by the following general formula (4) are preferred. Particularly preferred.

Figure 2007224283
Figure 2007224283

(式中、R12は炭素数1〜11のアルキル基又はフェニル基を表す。)
このように両者の硬化促進剤を併用する場合、両者の硬化促進剤の合計量を、(A)シアネート化合物(a1)100質量部に対して0.1〜5質量部とすることが好ましい。0.1質量部以上とすることにより触媒機能が得られ硬化時間が短縮される。また、5質量部以下とすることにより、ワニスやプリプレグの保存安定性の低下が回避されるようになる。
(In the formula, R 12 represents an alkyl group having 1 to 11 carbon atoms or a phenyl group.)
When such a combination of both curing accelerator, the total amount of both the curing accelerator, it is preferable that 0.1 to 5 parts by mass with respect to (A) the cyanate compound (a 1) 100 parts by weight . By setting it as 0.1 mass part or more, a catalyst function is acquired and hardening time is shortened. Moreover, the fall of the storage stability of a varnish or a prepreg is avoided by setting it as 5 mass parts or less.

本発明の樹脂組成物において酸化防止剤(E)を配合することが好ましい。この酸化防止剤(E)としては、フェノール系酸化防止剤または硫黄有機化合物系酸化防止剤が挙げられる。
フェノール系酸化防止剤の具体例としては、ピロガロール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−メチルフェノールなどのモノフェノール系や2,2'−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、4,4'−チオビス−(3−メチル−6−t−ブチルフェノール)などのビスフェノール系及び1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−〔メチレン−3−(3'−5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート〕メタンなどの高分子型フェノール系が挙げられる。これらのフェノール系酸化防止剤の中でも、特にビスフェノール系酸化防止剤が効果の点から好ましい。硫黄有機化合物系酸化防止剤の具体例としては、ジウラリルチオジプロピオネート、ジステアリルチオジプロピオネート等がある。これらの酸化防止剤は何種類かを併用してもよい。
酸化防止剤(E)はシアネート化合物(a1)100質量部に対して0.1〜20質量部配合することが好ましい。0.1質量部以上とすることにより絶縁特性が向上し、20質量部以下とすることにより逆に絶縁特性が低下することが回避される。
It is preferable to mix | blend antioxidant (E) in the resin composition of this invention. Examples of the antioxidant (E) include phenolic antioxidants and sulfur organic compound antioxidants.
Specific examples of the phenol-based antioxidant include monophenols such as pyrogallol, butylated hydroxyanisole, 2,6-di-t-butyl-4-methylphenol, and 2,2′-methylene-bis- (4- Bisphenols such as methyl-6-tert-butylphenol), 4,4′-thiobis- (3-methyl-6-tert-butylphenol) and 1,3,5-trimethyl-2,4,6-tris (3 Polymeric phenols such as 5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3′-5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane System. Among these phenolic antioxidants, bisphenolic antioxidants are particularly preferable from the viewpoint of effects. Specific examples of the sulfur organic compound-based antioxidant include diuraryl thiodipropionate and distearyl thiodipropionate. Several types of these antioxidants may be used in combination.
The antioxidant (E) is preferably blended in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the cyanate compound (a 1 ). When the content is 0.1 parts by mass or more, the insulation characteristics are improved, and when the content is 20 parts by mass or less, the deterioration of the insulation characteristics is avoided.

本発明の樹脂組成物においては、必要に応じて充填剤及びその他の添加剤を配合することができる。配合される充填剤としては、通常、無機充填剤が好適に用いられ、具体的には溶融シリカ、ガラス、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、窒化珪素、窒化ホウ素、ベリリア、ジルコニア、チタン酸カリウム、珪酸アルミニウム、珪酸マグネシウムなどが粉末又は球形化したビーズとして用いられる。また、ウィスカー、単結晶繊維、ガラス繊維、無機系及び有機系の中空フィラーなども配合することができる。   In the resin composition of this invention, a filler and another additive can be mix | blended as needed. As fillers to be blended, inorganic fillers are usually preferably used. Specifically, fused silica, glass, alumina, zircon, calcium silicate, calcium carbonate, silicon nitride, boron nitride, beryllia, zirconia, titanic acid. Potassium, aluminum silicate, magnesium silicate, etc. are used as powdered or spherical beads. In addition, whiskers, single crystal fibers, glass fibers, inorganic and organic hollow fillers, and the like can also be blended.

一般的なエポキシ樹脂の硬化反応は、エポキシ基の開環に伴い極性の高い水酸基が生成するため、低誘電率化には限界がある。また、フェノール類付加ポリブタジエンなどの炭化水素系重合体に代表される特殊な硬化剤を用いた場合、エポキシ樹脂本来の耐熱性を損ねたり、多官能フェノール樹脂等で硬化させた場合と比べガラス転移温度が低い、コスト高になるなどの問題がある。一方、低極性、剛直かつ対称性構造のトリアジン骨格を有するシアネートエステル樹脂の硬化物は低誘電率でかつ高いガラス転移温度を有するという特徴がある。
しかしながら、シアネートエステル樹脂単独の硬化反応においては、シアネートエステル樹脂中のすべてのシアナト基が反応してトリアジン構造を生成するというようなことは不可能であり、硬化反応の進行に伴って反応系が流動性を失い未反応のシアナト基として系内に残存することになる。その結果、これまでは本来の硬化物より誘電率の高い硬化物しか得られなかった。また、シアネートエステル樹脂単独の硬化反応で得られる樹脂硬化物は硬く脆いため加工性が劣ったり、極性の高いシアナト基が残存し吸水率が大きくなるため吸湿時の耐熱性に問題があった。
この問題を改善するためシアネートエステル樹脂に従来のビスフェノールA、臭素化ビスフェノールA等をベースとしたエポキシ樹脂を併用する方法が図られているが、ガラス転移温度(Tg)の低下や誘電率の悪化等の問題がある。
A general epoxy resin curing reaction generates a highly polar hydroxyl group as the epoxy group is opened, so there is a limit to lowering the dielectric constant. In addition, when a special curing agent typified by a hydrocarbon polymer such as phenol-added polybutadiene is used, the glass has a glass transition as compared with the case where the inherent heat resistance of the epoxy resin is impaired or the resin is cured with a polyfunctional phenol resin. There are problems such as low temperature and high cost. On the other hand, a cured product of a cyanate ester resin having a triazine skeleton having a low polarity, a rigid and symmetrical structure is characterized by a low dielectric constant and a high glass transition temperature.
However, in the curing reaction of the cyanate ester resin alone, it is impossible for all cyanate groups in the cyanate ester resin to react to form a triazine structure. The fluidity is lost and it remains in the system as an unreacted cyanato group. As a result, only a cured product having a dielectric constant higher than that of the original cured product has been obtained so far. Further, the cured resin obtained by the curing reaction of the cyanate ester resin alone is hard and brittle, so that the processability is inferior, or the highly polar cyanate group remains and the water absorption rate is increased, so that there is a problem in heat resistance during moisture absorption.
In order to solve this problem, a method of using a conventional epoxy resin based on bisphenol A, brominated bisphenol A or the like in combination with a cyanate ester resin has been attempted. However, the glass transition temperature (Tg) is lowered and the dielectric constant is lowered. There are problems such as.

これに対して、本発明は、特定のフェノール変性シアネートオリゴマー(A)とエポキシ樹脂(B)からなる樹脂組成物であり、ガラス転移温度(Tg)が高く、誘電率、吸水性、絶縁信頼性、耐燃性に優れる樹脂組成物を得ることができる。特にエポキシ樹脂(B)としてジシクロペンタジエン−フェノール重付加物から誘導されるものを用い、硬化促進剤(D)として、鉄、銅、亜鉛、コバルト、ニッケル、マンガンおよびスズから選ばれる少なくとも一種の金属の有機金属塩または該金属の有機金属錯体と、イミダゾール類化合物を含むものを併用することが好ましい。   In contrast, the present invention is a resin composition comprising a specific phenol-modified cyanate oligomer (A) and an epoxy resin (B), having a high glass transition temperature (Tg), dielectric constant, water absorption, and insulation reliability. A resin composition having excellent flame resistance can be obtained. In particular, the epoxy resin (B) is derived from a dicyclopentadiene-phenol polyadduct, and the curing accelerator (D) is at least one selected from iron, copper, zinc, cobalt, nickel, manganese and tin. It is preferable to use a metal organometallic salt or an organometallic complex of the metal in combination with a compound containing an imidazole compound.

本発明のプリント配線板用金属箔張積層板は、前記の樹脂組成物をワニス化して繊維基材に含浸又は塗工した後、Bステージ化して得られるプリプレグを1枚又は複数枚重ね、さらにその上下面又は片面に金属箔を積層し、加熱加圧して得られる。
本発明の樹脂組成物をワニス化する場合は必要に応じて溶剤を用いる。用いられる溶剤は特に制限されないが、ケトン系、芳香族炭化水素系、エステル系、アミド系、アルコール系等が挙げられる。具体的には、ケトン系溶剤として、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が、芳香族炭化水素系としては、トルエン、キシレン等が、エステル系溶剤としてはメトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等が、アミド系溶剤としてはN−メチルピロリドン、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルアセトアミド等が、アルコール系溶剤としてはメタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等が挙げられる。これらの溶剤は1種または2種以上を混合して用いてもよい。
The metal foil-clad laminate for a printed wiring board of the present invention is obtained by varnishing the resin composition and impregnating or coating the fiber base material, and then stacking one or a plurality of prepregs obtained by B-stage, It is obtained by laminating metal foil on the upper and lower surfaces or one surface and heating and pressing.
When varnishing the resin composition of this invention, a solvent is used as needed. The solvent to be used is not particularly limited, and examples thereof include ketones, aromatic hydrocarbons, esters, amides, and alcohols. Specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc. are used as ketone solvents, toluene, xylene, etc. are used as aromatic hydrocarbons, and methoxyethyl acetate, ethoxyethyl acetate, butoxy are used as ester solvents. Ethyl acetate, ethyl acetate, etc. are N-methylpyrrolidone, formamide, N-methylformamide, N, N-dimethylacetamide, etc. as amide solvents, and methanol, ethanol, ethylene glycol, ethylene glycol monomethyl ether as alcohol solvents , Ethylene glycol monoethyl ether, diethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol, pro Glycol monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, and the like. These solvents may be used alone or in combination of two or more.

本発明のプリント配線板用金属箔張積層板に用いられる繊維基材としては、液晶ポリアリレート繊維基材が好ましい。この液晶ポリアリレート繊維基材は、溶融液晶ポリマーであり、紡糸時に高配向するため、超高強度で高耐熱性を示す。液晶ポリアリレートの繊維は、同じ有機繊維基材であるアラミドの繊維に比べて、吸水率が極めて低く、低吸水性の樹脂組成物と組み合わせることで従来のガラスエポキシ積層板よりも低吸水性を有する積層板を作製できる。また、DガラスおよびSガラスよりも誘電率が低いため積層板の低誘電率化も同時に達成できる。   As a fiber base material used for the metal foil clad laminated board for printed wiring boards of this invention, a liquid crystal polyarylate fiber base material is preferable. This liquid crystal polyarylate fiber base material is a molten liquid crystal polymer, and is highly oriented during spinning, and therefore exhibits ultrahigh strength and high heat resistance. The liquid crystal polyarylate fiber has an extremely low water absorption rate compared to the aramid fiber, which is the same organic fiber base material, and when combined with a low water absorption resin composition, it has a lower water absorption than conventional glass epoxy laminates. The laminated board which has can be produced. In addition, since the dielectric constant is lower than that of D glass and S glass, the dielectric constant of the laminated plate can be simultaneously reduced.

本発明において用いられる液晶ポリアリレートとしては、ヒドロキシナフトエ酸とヒドロキシ安息香酸の共重合体である全芳香族ポリエステルを用いることが望ましい。このポリアリレートは、下記一般式(5)に示すような構造をもつポリアリレートである。一般式(5)において、m=20〜50、n=80〜50の範囲で組み合わせることができるが、液晶ポリマーの溶融重合させる際に粘度を小さくする必要があるため、本発明で使用する液晶ポリアリレート繊維では、m=35〜45、n=55〜65のものが好ましい。一般式(5)に示すような構造をもつポリアリレートの外に、ヒドロキシ安息香酸、芳香族ジオール及びフタル酸を共重合させた一般式(6a)で示されるような全芳香族ポリエステル及び、ポリエチレンテレフタレートとヒドロキシ安息香酸とを共重合させた一般式(6b)で示されるような全芳香族ポリエステルも使用できる。   As the liquid crystal polyarylate used in the present invention, it is desirable to use a wholly aromatic polyester which is a copolymer of hydroxynaphthoic acid and hydroxybenzoic acid. This polyarylate is a polyarylate having a structure as shown in the following general formula (5). In the general formula (5), m = 20 to 50 and n = 80 to 50 can be combined. However, since it is necessary to reduce the viscosity when the liquid crystal polymer is melt polymerized, the liquid crystal used in the present invention is used. Of the polyarylate fibers, those with m = 35 to 45 and n = 55 to 65 are preferred. In addition to polyarylate having a structure represented by the general formula (5), a wholly aromatic polyester represented by the general formula (6a) obtained by copolymerizing hydroxybenzoic acid, aromatic diol and phthalic acid, and polyethylene A wholly aromatic polyester represented by the general formula (6b) obtained by copolymerizing terephthalate and hydroxybenzoic acid can also be used.

Figure 2007224283
Figure 2007224283

Figure 2007224283
Figure 2007224283

Figure 2007224283
Figure 2007224283

繊維基材の形態としてはドリル切削時の穴壁粗さを小さくし、かつドリル刃の磨耗性を少なくできることから不織布が好ましく用いられる。不織布の形態としては乾式不織布よりも、湿式不織布の方が好ましい。乾式不織布では、引っ張り強度を確保するために熱キャレンダと呼ばれる180〜280℃に加熱したロールを通過させ、液晶ポリアリレート繊維を溶融圧着させる工程が必要となる。しかし、熱キャレンダにより液晶ポリアリレート繊維は、溶融するばかりでなく熱変形により偏平するため、液晶ポリアリレート繊維基材の見掛け密度が大きくなり樹脂組成物が繊維基材間に含浸し難くなる。従って湿式不織布が好適に用いられる。   As the form of the fiber base material, a non-woven fabric is preferably used since the hole wall roughness at the time of drill cutting can be reduced and the wearability of the drill blade can be reduced. As the form of the nonwoven fabric, the wet nonwoven fabric is preferable to the dry nonwoven fabric. In a dry nonwoven fabric, in order to ensure tensile strength, a process called a heat calender, which is heated to 180 to 280 ° C., is passed, and a process of melt-compressing liquid crystal polyarylate fibers is required. However, since the liquid crystal polyarylate fibers are not only melted but flattened by thermal deformation due to the heat calender, the apparent density of the liquid crystal polyarylate fiber base material is increased and the resin composition is hardly impregnated between the fiber base materials. Accordingly, a wet nonwoven fabric is preferably used.

以下、具体例を挙げて本発明を具体的に説明するが、本発明はこれらに限られるものではない。なお、以下において、%は質量%を表し、また下記表1中の樹脂組成物(ワニス)の配合の単位は質量部である。
実施例及び比較例で作製したワニスの粘度を測定し、銅張積層板は、厚さ、ガラス転移温度(Tg)、誘電率、吸水率、吸湿はんだ耐熱性、絶縁信頼性、耐燃性を評価した。また、積層板にドリルで穴あけ加工を施したときの穴壁粗さ及びドリル磨耗量を測定した。
Hereinafter, the present invention will be specifically described with specific examples, but the present invention is not limited thereto. In the following, “%” represents “% by mass”, and the unit of compounding of the resin composition (varnish) in Table 1 below is “parts by mass”.
Viscosity of varnishes prepared in Examples and Comparative Examples was measured, and copper clad laminates were evaluated for thickness, glass transition temperature (Tg), dielectric constant, water absorption, moisture absorption solder heat resistance, insulation reliability, and flame resistance did. Moreover, the hole wall roughness and drill wear amount when drilling the laminated plate with a drill were measured.

実施例における評価方法は、次のように行った。
(1)粘度:
配合1日後のワニス約1.4mlをE型粘度計により25℃にて測定した。
(2)厚さ:
マイクロメーターを用いて、各3個の試験片について、各々3か所づつ測定してその平均値を示した。
(3)ガラス転移温度(Tg):
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置〔デュポン(株)製TMA2940〕を用い、評価基板の熱膨張特性を観察することにより評価した。
(4)誘電率:
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、マイクロストリップライン共振器法により、比誘電率測定装置(Hewllet・Packerd社製HP4291B)を用いて、周波数1GHzでの比誘電率を測定した。
(5)吸水率:
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、温度121℃、圧力0.22MPa、飽和水蒸気圧のプレッシャー・クッカー試験装置〔平山製作所(株)製〕内に4時間保持し、保持前後の質量変化を測定して増加した質量を保持前の質量で除し、%で表示した。
Evaluation methods in the examples were performed as follows.
(1) Viscosity:
About 1.4 ml of varnish one day after compounding was measured at 25 ° C. with an E-type viscometer.
(2) Thickness:
Using a micrometer, each of the three test pieces was measured at three locations, and the average value was shown.
(3) Glass transition temperature (Tg):
A 5 mm square evaluation board is prepared by removing the copper foil by immersing the copper-clad laminate in a copper etching solution, and the thermal expansion characteristics of the evaluation board are observed using a TMA test apparatus (TMA2940 manufactured by DuPont). It was evaluated by.
(4) Dielectric constant:
An evaluation board from which copper foil was removed by immersing a copper clad laminate in a copper etching solution was prepared, and the frequency was measured by a microstrip line resonator method using a relative dielectric constant measuring apparatus (HP4291B manufactured by Hewlett-Packard Company). The relative dielectric constant at 1 GHz was measured.
(5) Water absorption rate:
A copper-clad laminate was immersed in a copper etching solution to prepare an evaluation substrate from which the copper foil was removed, and a pressure cooker test apparatus (produced by Hirayama Seisakusho Co., Ltd.) having a temperature of 121 ° C., a pressure of 0.22 MPa, and a saturated water vapor pressure. It was held for 4 hours, the mass change before and after holding was measured, and the increased mass was divided by the mass before holding and expressed in%.

(6)はんだ耐熱性:
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、プレッシャー・クッカー試験装置〔平山製作所(株)製〕で4時間処理後の試験片を、260℃のはんだ槽に20秒浸漬後の外観を観察し、以下の評価基準により評価した。
○;フクレ、ミーズリングのないもの
△;ミーズリングの発生したもの
×;フクレの発生したもの
(7)絶縁信頼性:
スルーホール穴壁間隔を350μmとしたテストパターンを用いて、各試料について400穴の絶縁抵抗を経時的に測定した。試験条件は、85℃、90%RH雰囲気中100V印加して行い、導通破壊が発生するまでの時間を測定した。
(8)耐燃性:
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板から、長さ127mm、幅12.7mmに切り出した評価基板を作製し、UL94試験法(V法)に準拠して評価した。
(9)穴壁粗さ:
直径0.7mmのドリルを用いて、回転数65,000rpm、送り速度3,500mm/分の条件にて積層板を3枚重ねで穴あけを行い、上から3枚目に銅めっきを行い、穴あけヒット数が6,000穴の位置の断面を実体顕微鏡で観察して、穴壁からの銅めっきのしみこみ距離を測定した。
(10)ドリル摩耗量:
穴壁粗さを測定する時に用いたドリル刃について、穴あけに使用する前と穴あけヒット数が6,000穴となったときの刃幅長を実体顕微鏡で観察して、摩耗量を測定した。
(6) Solder heat resistance:
An evaluation board from which the copper foil was removed by immersing the copper-clad laminate in a copper etching solution was prepared, and a test piece treated for 4 hours with a pressure cooker test apparatus (manufactured by Hirayama Seisakusho Co., Ltd.) The appearance after immersion for 20 seconds in a solder bath was observed and evaluated according to the following evaluation criteria.
○: No blistering or mising ring △: Missing ring ×: Fluffing (7) Insulation reliability:
The insulation resistance of 400 holes was measured over time for each sample using a test pattern in which the through hole hole wall interval was 350 μm. The test conditions were performed by applying 100 V in an atmosphere of 85 ° C. and 90% RH, and measuring the time until conduction breakdown occurred.
(8) Flame resistance:
An evaluation board cut out to a length of 127 mm and a width of 12.7 mm was prepared from an evaluation board in which the copper foil was removed by immersing the copper-clad laminate in a copper etching solution, and in accordance with UL94 test method (Method V) evaluated.
(9) Hole wall roughness:
Using a drill with a diameter of 0.7 mm, drill three layers of laminated plates at a rotational speed of 65,000 rpm and a feed rate of 3,500 mm / min. The cross section at the position where the number of hits was 6,000 holes was observed with a stereoscopic microscope, and the penetration distance of the copper plating from the hole wall was measured.
(10) Drill wear amount:
About the drill blade used when measuring the hole wall roughness, the amount of wear was measured by observing the blade width length with a stereomicroscope before use for drilling and when the number of drilling hits was 6,000 holes.

実施例1
温度計、冷却管、攪拌装置を備えた2リットルの4つ口セパラブルフラスコに、トルエン、シアネート化合物(a1)として2,2−ビス(4−シアナトフェニル)プロパン(旭チバ株式会社製、商品名:Arocy B−10)、フェノール化合物(a2)としてp−(α−クミル)フェノール(東京化成工業株式会社製)を第1表に記載のように配合し、液温を120℃に保った後、硬化促進剤としてナフテン酸亜鉛(和光純薬工業株式会社製)を第1表に記載にように添加して4時間加熱反応させてシアネート化合物モノマーの転化率が約55%のフェノール変性シアネートエステルオリゴマー(A)を合成した。なお、反応液の濃度は70質量%であった。フェノール変性シアネートエステルオリゴマー(A)のシアネート化合物(a1)のシアナト基に対するフェノール化合物の(a2)フェノール性水酸基の当量比(水酸基/シアナト基比)は0.03である。シアネート化合物(a1)モノマーの転化率は、液体クロマトグラフィー〔機種、ポンプ;日立製作所(株)製L−6200、RI検出機;L−3300、カラム:東ソー(株)製TSKgel−G4000H、G2000H、溶媒:THF、濃度:1%〕で確認した。また、この時のフェノール変性シアネートエステルオリゴマー(A)の数平均分子量(Mn)は1430であった。また同時に、p−(α−クミル)フェノールの溶出ピークが消失していることを確認した。
このフェノール変性シアネートエステルオリゴマー(A)を室温(25℃)に冷却した後、樹脂組成物におけるエポキシ樹脂(B)としてジシクロペンタジエン型エポキシ樹脂(大日本インキ化学工業株式会社製、商品名:HP−7200H)と臭素化ビスフェノールA型エポキシ樹脂(住友化学工業株式会社製、商品名:ESB400T)を、フェノール化合物(C)としてp−(α−クミル)フェノールを各々第1表に示す配合量で配合した後、硬化促進剤(D)としてナフテン酸亜鉛と1−シアノエチル−2−メチルイミダゾールトリメリテート(四国化成工業株式会社製、商品名:2MZ−CNS)を、酸化防止剤(E)としてピロガロールを表1に記載のように配合し、不揮発分70%のワニスを作製した。なお、溶媒にはメチルエチルケトンを使用した。該樹脂組成物のシアネート化合物(a1)のシアナト基に対するフェノール化合物(a2)のフェノール性水酸基とフェノール化合物(C)のフェノール性水酸基との合計量の配合当量比(水酸基/シアナト基比)は0.29である。
作製したワニスを液晶ポリアリレート繊維(株式会社クラレ製、商品名:ベクルス、坪量50g/m2)に含浸乾燥して、乾燥後の厚さが0.15mmのプリプレグを作製した。次に、このプリプレグを5枚と上下に厚み18μmの銅箔を積層し、温度175℃、圧力3MPaで90分間加熱して銅張積層板を作製した。評価結果を第1表に示す。
Example 1
To a 2-liter four-necked separable flask equipped with a thermometer, a condenser, and a stirrer, 2,2-bis (4-cyanatophenyl) propane (manufactured by Asahi Ciba Co., Ltd.) as toluene and cyanate compound (a 1 ) , Trade name: Arocy B-10), p- (α-cumyl) phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) as a phenol compound (a 2 ) is blended as shown in Table 1, and the liquid temperature is 120 ° C. Then, zinc naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a curing accelerator as shown in Table 1 and heated for 4 hours to give a cyanate compound monomer conversion of about 55%. A phenol-modified cyanate ester oligomer (A) was synthesized. In addition, the density | concentration of the reaction liquid was 70 mass%. The equivalent ratio (hydroxyl group / cyanato group ratio) of the (a 2 ) phenolic hydroxyl group of the phenol compound to the cyanate group of the cyanate compound (a 1 ) of the phenol-modified cyanate ester oligomer (A) is 0.03. The conversion rate of the cyanate compound (a 1 ) monomer was determined by liquid chromatography [model, pump; L-6200 manufactured by Hitachi, Ltd., RI detector; L-3300, column: TSKgel-G4000H, G2000H manufactured by Tosoh Corporation. , Solvent: THF, concentration: 1%]. Moreover, the number average molecular weight (Mn) of the phenol modified cyanate ester oligomer (A) at this time was 1430. At the same time, it was confirmed that the elution peak of p- (α-cumyl) phenol disappeared.
After this phenol-modified cyanate ester oligomer (A) is cooled to room temperature (25 ° C.), a dicyclopentadiene type epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name: HP) is used as the epoxy resin (B) in the resin composition. -7200H) and brominated bisphenol A type epoxy resin (manufactured by Sumitomo Chemical Co., Ltd., trade name: ESB400T), and p- (α-cumyl) phenol as a phenol compound (C) in the blending amounts shown in Table 1 respectively. After blending, zinc naphthenate and 1-cyanoethyl-2-methylimidazole trimellitate (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2MZ-CNS) are used as the antioxidant (E) as the curing accelerator (D). Pyrogallol was blended as shown in Table 1 to prepare a varnish having a nonvolatile content of 70%. Note that methyl ethyl ketone was used as a solvent. Compounding equivalent ratio of total amount of phenolic hydroxyl group of phenol compound (a 2 ) and phenolic hydroxyl group of phenol compound (C) to cyanate group of cyanate compound (a 1 ) of the resin composition (ratio of hydroxyl group / cyanato group) Is 0.29.
The produced varnish was impregnated and dried in liquid crystal polyarylate fibers (manufactured by Kuraray Co., Ltd., trade name: VECRUZ, basis weight 50 g / m 2 ) to prepare a prepreg having a thickness of 0.15 mm after drying. Next, five prepregs and a copper foil having a thickness of 18 μm were laminated vertically and heated at a temperature of 175 ° C. and a pressure of 3 MPa for 90 minutes to produce a copper-clad laminate. The evaluation results are shown in Table 1.

実施例2
実施例1において、フェノール変性シアネートエステルオリゴマー(A)を製造する際のシアネート化合物(a1)を2,2−ビス(3,5−ジメチル−4−シアネートフェニル)メタン(旭チバ株式会社製、商品名:Arocy M−10)に、フェノール化合物(a2)をp−tert−オクチルフェノールに代えて第1表に記載のように配合し、フェノール変性シアネートエステルオリゴマー(A)を合成した。該フェノール変性シアネートエステルオリゴマー(A)の水酸基/シアナト基比は0.01である。
このフェノール変性シアネートエステルオリゴマー(A)を冷却後、実施例1の樹脂組成物において配合したフェノール化合物(C)をp−tert−オクチルフェノールに、硬化促進剤(D)を1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社製、商品名:2PZ−CNS)に、酸化防止剤(E)を4,4−チオビス−(3−メチル−6−t−ブチルフェノール)として第1表に従って配合した他は実施例1と同様にしてワニスを作製した。該樹脂組成物全体の水酸基/シアナト基比は0.04である。
作製したワニスを液晶ポリアリレート繊維(坪量50g/m2、株式会社クラレ製、商品名:ベクルス)に含浸乾燥して、乾燥後の厚さが0.15mmのプリプレグを作製した。次に、このプリプレグを5枚と上下に厚み18μmの銅箔を積層し、温度175℃、圧力3MPaで90分間加熱して銅張積層板を作製した。評価結果を第1表に示す。
Example 2
In Example 1, the cyanate compound (a 1 ) in producing the phenol-modified cyanate ester oligomer (A) was converted to 2,2-bis (3,5-dimethyl-4-cyanatephenyl) methane (Asahi Ciba Co., Ltd., A phenol-modified cyanate ester oligomer (A) was synthesized in the product name: Arocy M-10) by replacing the phenol compound (a 2 ) with p-tert-octylphenol as shown in Table 1. The phenol-modified cyanate ester oligomer (A) has a hydroxyl group / cyanato group ratio of 0.01.
After cooling this phenol-modified cyanate ester oligomer (A), the phenol compound (C) blended in the resin composition of Example 1 is p-tert-octylphenol, and the curing accelerator (D) is 1-cyanoethyl-2-phenyl. In addition to imidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: 2PZ-CNS), 4,4-thiobis- (3-methyl-6-t-butylphenol) as an antioxidant (E) was blended according to Table 1. Produced a varnish in the same manner as in Example 1. The hydroxyl group / cyanato group ratio of the entire resin composition is 0.04.
The prepared varnish was impregnated and dried in liquid crystal polyarylate fibers (basis weight 50 g / m 2 , manufactured by Kuraray Co., Ltd., trade name: Vecrus) to prepare a prepreg having a thickness after drying of 0.15 mm. Next, five prepregs and a copper foil having a thickness of 18 μm were laminated vertically and heated at a temperature of 175 ° C. and a pressure of 3 MPa for 90 minutes to produce a copper-clad laminate. The evaluation results are shown in Table 1.

実施例3
実施例1において、硬化促進剤(D)をナフテン酸マンガンに代え、各成分を第1表に従って配合した他は実施例1と同様にしてワニスを作製した。フェノール変性シアネートエステルオリゴマー(A)の水酸基/シアナト基比は0.03であり、樹脂組成物全体の水酸基/シアナト基比は0.04である。
作製したワニスを液晶ポリアリレート繊維(坪量50g/m2、株式会社クラレ製、商品名ベクルス)を含浸乾燥して、乾燥後の厚さが0.15mmのプリプレグを作製した。次に、このプリプレグを5枚と上下に厚み18μmの銅箔を積層し、温度175℃、圧力3MPaで90分間加熱して銅張積層板を作製した。評価結果を第1表に示す。
Example 3
In Example 1, a varnish was prepared in the same manner as in Example 1 except that the curing accelerator (D) was replaced with manganese naphthenate and each component was blended according to Table 1. The hydroxyl group / cyanate group ratio of the phenol-modified cyanate ester oligomer (A) is 0.03, and the hydroxyl group / cyanate group ratio of the entire resin composition is 0.04.
The prepared varnish was impregnated and dried with liquid crystal polyarylate fibers (basis weight 50 g / m 2 , manufactured by Kuraray Co., Ltd., trade name Veculus) to prepare a prepreg having a thickness of 0.15 mm after drying. Next, five prepregs and a copper foil having a thickness of 18 μm were laminated vertically and heated at a temperature of 175 ° C. and a pressure of 3 MPa for 90 minutes to produce a copper-clad laminate. The evaluation results are shown in Table 1.

実施例4
実施例1において、液晶ポリアリレート繊維に代えて、Sガラスクロス(坪量105g/m2、厚さ0.1mm、日東紡績製、商品名:WTX116E)使用し、乾燥後の厚さが0.15mmのプリプレグを作製した。次に、このプリプレグを5枚と上下に厚み18μmの銅箔を積層し、温度175℃、圧力3MPaで90分間加熱して銅張積層板を作製した。評価結果を第1表に示す。
Example 4
In Example 1, S glass cloth (basis weight 105 g / m 2 , thickness 0.1 mm, manufactured by Nitto Boseki Co., Ltd., trade name: WTX116E) was used instead of the liquid crystal polyarylate fiber, and the thickness after drying was 0.00. A 15 mm prepreg was prepared. Next, five prepregs and a copper foil having a thickness of 18 μm were laminated vertically and heated at a temperature of 175 ° C. and a pressure of 3 MPa for 90 minutes to produce a copper-clad laminate. The evaluation results are shown in Table 1.

比較例1
実施例1においてフェノール変性シアネートエステルオリゴマー(A)を2,2−ビス(4−シアナトフェニル)プロパンのプレポリマ化物(旭チバ株式会社製、商品名:Arocy B−30)に代えて、p−(α−クミル)フェノールを配合しないでワニス化した他は実施例1と同様にしてワニスを作製した。作製したワニスを液晶ポリアリレート繊維(坪量50g/m2、株式会社クラレ製、商品名:ベクルス)に含浸乾燥して、乾燥後の厚さが0.15mmのプリプレグを作製した。次に、このプリプレグを5枚と上下に厚み18μmの銅箔を積層し、温度175℃、圧力3MPaで90分間加熱して銅張積層板を作製した。評価結果を第1表に示す。
Comparative Example 1
In Example 1, the phenol-modified cyanate ester oligomer (A) was replaced with 2,2-bis (4-cyanatophenyl) propane prepolymerized product (trade name: Arocy B-30, manufactured by Asahi Ciba Co., Ltd.), p- A varnish was prepared in the same manner as in Example 1 except that (α-cumyl) phenol was not added and varnished. The prepared varnish was impregnated and dried in liquid crystal polyarylate fibers (basis weight 50 g / m 2 , manufactured by Kuraray Co., Ltd., trade name: Vecrus) to prepare a prepreg having a thickness after drying of 0.15 mm. Next, five prepregs and a copper foil having a thickness of 18 μm were laminated vertically and heated at a temperature of 175 ° C. and a pressure of 3 MPa for 90 minutes to produce a copper-clad laminate. The evaluation results are shown in Table 1.

比較例2
実施例1においてフェノール変性シアネートエステルオリゴマー(A)を2,2−ビス(3,5−ジメチル−4−シアネートフェニル)メタン(旭チバ株式会社製、商品名:Arocy M−30)のプレポリマ化物に代えた他は実施例1と同様にしてワニスを作製した。作製したワニスを液晶ポリアリレート繊維(坪量50g/m2、株式会社クラレ製、商品名:ベクルス)に含浸乾燥して、乾燥後の厚さが0.15mmのプリプレグを作製した。次に、このプリプレグを5枚と上下に厚み18μmの銅箔を積層し、温度175℃、圧力3MPaで90分間加熱して銅張積層板を作製した。評価結果を第1表に示す。
Comparative Example 2
In Example 1, the phenol-modified cyanate ester oligomer (A) was converted into a prepolymerized product of 2,2-bis (3,5-dimethyl-4-cyanatephenyl) methane (manufactured by Asahi Ciba, trade name: Arocy M-30). A varnish was prepared in the same manner as in Example 1 except that the varnish was used. The prepared varnish was impregnated and dried in liquid crystal polyarylate fibers (basis weight 50 g / m 2 , manufactured by Kuraray Co., Ltd., trade name: Vecrus) to prepare a prepreg having a thickness after drying of 0.15 mm. Next, five prepregs and a copper foil having a thickness of 18 μm were laminated vertically and heated at a temperature of 175 ° C. and a pressure of 3 MPa for 90 minutes to produce a copper-clad laminate. The evaluation results are shown in Table 1.

比較例3
比較例1において樹脂組成物に配合したフェノール化合物(C)としてフェノールノボラック(日立化成工業株式会社製、商品名:HP850N)を第1表に従って配合した他は比較例2と同様にしてワニスを作製した。作製したワニスはゲル化しており、液晶ポリアリレート繊維(坪量50g/m2、株式会社クラレ製、商品名:ベクルス)に含浸乾燥してもプリプレグが得られなかった。
Comparative Example 3
A varnish was prepared in the same manner as in Comparative Example 2 except that phenol novolak (manufactured by Hitachi Chemical Co., Ltd., trade name: HP850N) was blended according to Table 1 as the phenol compound (C) blended in the resin composition in Comparative Example 1. did. The produced varnish was gelled, and a prepreg was not obtained even when impregnating and drying liquid crystal polyarylate fibers (basis weight: 50 g / m 2 , manufactured by Kuraray Co., Ltd., trade name: Veculus).

比較例4
比較例1において2,2−ビス(4−シアナトフェニル)プロパンのプレポリマ化物(旭チバ株式会社製、商品名:Arocy B−30)を配合せず、エポキシ樹脂(B)としてジシクロペンタジエン型エポキシ樹脂(大日本インク化学工業株式会社製、商品名:HP7200H)および臭素化ビスフェノールA型エポキシ樹脂(住友化学工業株式会社製、商品名:ESB400T)を、フェノール化合物(C)としてフェノールノボラック樹脂(日立化成工業株式会社製、商品名:HP850N)をエポキシ樹脂のエポキシ当量とフェノール化合物(C)の水酸基当量の当量比1:1の割合で配合した後、硬化促進剤(D)として2−メチルイミダゾール、酸化防止剤(E)として4,4'−チオビス−(3−メチル−6−t−ブチルフェノール)を第1表に従って配合して不揮発分70%のワニスを作製した。なお、溶媒としてメチルエチルケトンを使用した。ワニスを液晶ポリアリレート繊維(坪量50g/m2、株式会社クラレ製、商品名:ベクルス)に含浸乾燥して、乾燥後の厚さが0.15mmのプリプレグを作製した。次に、このプリプレグを5枚と上下に厚み18μmの銅箔を積層し、温度175℃、圧力3MPaで90分間加熱して銅張積層板を作製した。評価結果を第1表に示す。
Comparative Example 4
In Comparative Example 1, 2,2-bis (4-cyanatophenyl) propane prepolymerized product (trade name: Arocy B-30, manufactured by Asahi Ciba Co., Ltd.) was not blended, and the dicyclopentadiene type was used as the epoxy resin (B). Epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name: HP7200H) and brominated bisphenol A type epoxy resin (Sumitomo Chemical Co., Ltd., trade name: ESB400T) are used as phenolic compounds (C) and phenol novolac resins ( Hitachi Chemical Co., Ltd., trade name: HP850N) was blended at an equivalent ratio of 1: 1 between the epoxy equivalent of the epoxy resin and the hydroxyl equivalent of the phenol compound (C), and then 2-methyl as a curing accelerator (D). Imidazole, 4,4′-thiobis- (3-methyl-6-tert-butylphenol as antioxidant (E) In accordance with Table 1, a varnish having a nonvolatile content of 70% was prepared. In addition, methyl ethyl ketone was used as a solvent. The varnish was impregnated and dried in liquid crystal polyarylate fibers (basis weight 50 g / m 2 , manufactured by Kuraray Co., Ltd., trade name: Vecruz) to prepare a prepreg having a thickness after drying of 0.15 mm. Next, five prepregs and a copper foil having a thickness of 18 μm were laminated vertically and heated at a temperature of 175 ° C. and a pressure of 3 MPa for 90 minutes to produce a copper-clad laminate. The evaluation results are shown in Table 1.

Figure 2007224283
Figure 2007224283

Claims (16)

分子中に2個以上のシアナト基を含有するシアネート化合物(a1)と下記一般式(1)で表されるフェノール化合物(a2)を反応させて得られたフェノール変性シアネートエステルオリゴマー(A)に、分子中に2個以上のエポキシ基を含有するエポキシ樹脂(B)が配合された樹脂組成物であって、シアネート化合物(a1)のシアナト基に対するフェノール化合物(a2)のフェノール性水酸基の当量比(水酸基/シアナト基比)が0.01〜0.03の範囲であることを特徴とする樹脂組成物。
Figure 2007224283
(式(1)中、R1およびR2は水素原子又はメチル基を表し、それぞれ同じでも異なっていても良い。また、nは1〜3の整数を表す。)
Phenol-modified cyanate ester oligomer (A) obtained by reacting a cyanate compound (a 1 ) containing two or more cyanato groups in the molecule with a phenol compound (a 2 ) represented by the following general formula (1) And a phenolic hydroxyl group of the phenol compound (a 2 ) with respect to the cyanate group of the cyanate compound (a 1 ), wherein the epoxy resin (B) contains two or more epoxy groups in the molecule. An equivalent ratio (hydroxyl group / cyanato group ratio) in the range of 0.01 to 0.03.
Figure 2007224283
(In Formula (1), R 1 and R 2 represent a hydrogen atom or a methyl group, and may be the same or different. N represents an integer of 1 to 3)
更に、一般式(1)で表されるフェノール化合物(C)を配合し、シアネート化合物(a1)のシアナト基に対するフェノール化合物(a2)のフェノール性水酸基とフェノール化合物(C)のフェノール性水酸基との合計量の配合当量比(水酸基/シアナト基比)が0.04〜0.29の範囲である請求項1に記載の樹脂組成物。 Further, by blending the phenol compound represented by the general formula (1) (C), the phenolic hydroxyl group of cyanate compound (a 1) phenolic compound to the cyanato group of the phenolic hydroxyl groups and phenolic compound (a 2) (C) 2. The resin composition according to claim 1, wherein the blending equivalent ratio (hydroxyl group / cyanato group ratio) of the total amount of is in the range of 0.04 to 0.29. フェノール変性シアネートエステルオリゴマー(A)が、シアネート化合物(a1)の転化率が10〜70%となるように反応させて得られたものである請求項1または請求項2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the phenol-modified cyanate ester oligomer (A) is obtained by reacting so that the conversion rate of the cyanate compound (a 1 ) is 10 to 70%. . フェノール変性シアネートエステルオリゴマー(A)の数平均分子量が380〜2500である請求項1ないし3のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, wherein the number average molecular weight of the phenol-modified cyanate ester oligomer (A) is 380 to 2500. シアネート化合物(a1)が、下記一般式(2)で表される化合物である請求項1〜4のいずれかに記載の樹脂組成物。
Figure 2007224283
(式中、R5はハロゲンで置換されていてもよい炭素数1〜3のアルキレン基、アルキリデン基、下記一般式(2a)、又は一般式(2b)で表される基を表し、R6〜R9は、水素原子又は炭素数1〜3のアルキル基を表し、それぞれ同じでも異なっていても良い。)
Figure 2007224283
(式中、R10およびR11は炭素数1〜11のアルキル基を表し、それぞれ同じでも異なっていても良い。)
The resin composition according to claim 1, wherein the cyanate compound (a 1 ) is a compound represented by the following general formula (2).
Figure 2007224283
(Wherein, R 5 represents a group represented by C 1-3 alkylene group which may be substituted with a halogen, an alkylidene group, following general formula (2a), or the general formula (2b), R 6 to R 9 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, it may be the same or different.)
Figure 2007224283
(In the formula, R 10 and R 11 represent an alkyl group having 1 to 11 carbon atoms, and may be the same or different.)
エポキシ樹脂(B)として、下記一般式(3)で表されるジシクロペンタジエン骨格を有するジシクロペンタジエン−フェノール重付加物から誘導されるエポキシ樹脂を含む請求項1〜5のいずれかに記載の樹脂組成物。
Figure 2007224283
(式中nは0又は正の整数を表す。)
The epoxy resin (B) includes an epoxy resin derived from a dicyclopentadiene-phenol polyaddition product having a dicyclopentadiene skeleton represented by the following general formula (3). Resin composition.
Figure 2007224283
(In the formula, n represents 0 or a positive integer.)
エポキシ樹脂(B)として、臭素化ビスフェノールA型エポキシ樹脂を含む請求項1〜5のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 5, comprising a brominated bisphenol A type epoxy resin as the epoxy resin (B). シアネート化合物(a1)100質量部に対するエポキシ樹脂(B)の配合量が50〜300質量部である請求項1〜7に記載の樹脂組成物。 The resin composition according to claim 1, wherein the compounding amount of the epoxy resin (B) with respect to 100 parts by mass of the cyanate compound (a 1 ) is 50 to 300 parts by mass. 更に硬化促進剤(D)として、鉄、銅、亜鉛、コバルト、ニッケル、マンガンおよびスズから選ばれる少なくとも一種の金属の有機金属塩又は該金属の有機金属錯体と、イミダゾール類化合物を配合する請求項1〜8のいずれかに記載の樹脂組成物。   Furthermore, as the curing accelerator (D), an organometallic salt of at least one metal selected from iron, copper, zinc, cobalt, nickel, manganese and tin or an organometallic complex of the metal and an imidazole compound are blended. The resin composition in any one of 1-8. イミダゾール類化合物が下記一般式(4)で表される化合物である請求項9に記載の樹脂組成物。
Figure 2007224283
(式中、R12は炭素数1〜11のアルキル基又はフェニル基を表す。)
The resin composition according to claim 9, wherein the imidazole compound is a compound represented by the following general formula (4).
Figure 2007224283
(In the formula, R 12 represents an alkyl group having 1 to 11 carbon atoms or a phenyl group.)
シアネート化合物(a1)100質量部に対する硬化促進剤(D)の配合量が0.1〜5質量部である請求項9又は10に記載の樹脂組成物。 The resin composition according to claim 9 or 10, wherein the blending amount of the curing accelerator (D) with respect to 100 parts by mass of the cyanate compound (a 1 ) is 0.1 to 5 parts by mass. 更に酸化防止剤(E)として、フェノール系酸化防止剤または硫黄有機化合物系酸化防止剤の中から選ばれる1種以上の酸化防止剤を含む請求項1〜11のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 11, further comprising at least one antioxidant selected from a phenol-based antioxidant and a sulfur organic compound-based antioxidant as the antioxidant (E). . シアネート化合物(a1)100質量部に対する酸化防止剤(E)の配合量が0.1〜20質量部である請求項12に記載の樹脂組成物。 The resin composition according to claim 12, wherein the amount of the antioxidant (E) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the cyanate compound (a 1 ). 請求項1〜13のいずれかに記載の樹脂組成物を繊維基材に含浸又は塗工した後、Bステージ化して得られるプリプレグ。   A prepreg obtained by impregnating or coating a fiber base material with the resin composition according to any one of claims 1 to 13 and then forming a B-stage. 請求項14に記載のプリプレグの少なくとも一方に金属箔を重ねた後、加熱加圧して得られたプリント配線板用金属箔張積層板。   A metal foil-clad laminate for a printed wiring board obtained by heating and pressing a metal foil on at least one of the prepregs according to claim 14. 繊維基材が、液晶ポリアリレート繊維基材である請求項15に記載のプリント配線板用金属箔張積層板。   The metal foil-clad laminate for a printed wiring board according to claim 15, wherein the fiber substrate is a liquid crystal polyarylate fiber substrate.
JP2007005654A 2006-01-26 2007-01-15 Resin composition, prepreg and metal foil-clad laminate for print wiring board Pending JP2007224283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005654A JP2007224283A (en) 2006-01-26 2007-01-15 Resin composition, prepreg and metal foil-clad laminate for print wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006017530 2006-01-26
JP2007005654A JP2007224283A (en) 2006-01-26 2007-01-15 Resin composition, prepreg and metal foil-clad laminate for print wiring board

Publications (1)

Publication Number Publication Date
JP2007224283A true JP2007224283A (en) 2007-09-06

Family

ID=38546373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005654A Pending JP2007224283A (en) 2006-01-26 2007-01-15 Resin composition, prepreg and metal foil-clad laminate for print wiring board

Country Status (1)

Country Link
JP (1) JP2007224283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084861A3 (en) * 2007-12-28 2009-09-24 Lg Chem, Ltd. Curing composition and cured product prepared by using the same
JP2009256587A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Adhesive for sealing semiconductor, film-like adhesive for sealing semiconductor, manufacturing method for semiconductor apparatus, and semiconductor apparatus
US8674502B2 (en) 2010-07-16 2014-03-18 Hitachi Chemical Company, Ltd. Semiconductor-encapsulating adhesive, semiconductor-encapsulating film-form adhesive, method for producing semiconductor device, and semiconductor device
US10662304B2 (en) 2013-12-31 2020-05-26 Saint-Gobain Performance Plastics Corporation Composites for protecting signal transmitters/receivers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240723A (en) * 1999-12-22 2001-09-04 Hitachi Chem Co Ltd Thermosetting resin composition and prepreg, metal-clad laminate, and printed wiring board using the same
JP2002146060A (en) * 2000-11-07 2002-05-22 Hitachi Chem Co Ltd Prepreg and laminate
JP2004307761A (en) * 2003-04-10 2004-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, metal-clad laminate and printed wiring board all using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240723A (en) * 1999-12-22 2001-09-04 Hitachi Chem Co Ltd Thermosetting resin composition and prepreg, metal-clad laminate, and printed wiring board using the same
JP2002146060A (en) * 2000-11-07 2002-05-22 Hitachi Chem Co Ltd Prepreg and laminate
JP2004307761A (en) * 2003-04-10 2004-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, metal-clad laminate and printed wiring board all using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084861A3 (en) * 2007-12-28 2009-09-24 Lg Chem, Ltd. Curing composition and cured product prepared by using the same
JP2009256587A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Adhesive for sealing semiconductor, film-like adhesive for sealing semiconductor, manufacturing method for semiconductor apparatus, and semiconductor apparatus
US8674502B2 (en) 2010-07-16 2014-03-18 Hitachi Chemical Company, Ltd. Semiconductor-encapsulating adhesive, semiconductor-encapsulating film-form adhesive, method for producing semiconductor device, and semiconductor device
US9123734B2 (en) 2010-07-16 2015-09-01 Hitachi Chemical Company, Ltd. Semiconductor-encapsulating adhesive, semiconductor-encapsulating film-form adhesive, method for producing semiconductor device, and semiconductor device
US10662304B2 (en) 2013-12-31 2020-05-26 Saint-Gobain Performance Plastics Corporation Composites for protecting signal transmitters/receivers

Similar Documents

Publication Publication Date Title
JP5605035B2 (en) Resin composition for printed wiring board and varnish, prepreg and metal-clad laminate using the same
KR101799717B1 (en) Thermosetting resin composition and use thereof
US8124674B2 (en) Halogen-free resin composition with high frequency dielectric property, and prepreg and laminate made therefrom
TWI666248B (en) Maleimide resin composition, prepreg, laminate and printed circuit board
JP2006131743A (en) Thermosetting resin composition and prepreg and metal-clad laminate and printed wiring board using the same
JP5499544B2 (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminated board, and multilayer printed wiring board using the same
EP1966268A1 (en) A curable epoxy resin composition and laminates made therefrom
KR102325101B1 (en) Maleimide resin composition, prepreg, laminate and printed circuit board
JP2005248147A (en) Thermosetting resin composition, and prepreg, metal-laminated lamination plate and printed wire board using the same
JP2011006683A (en) Thermosetting resin composition and prepreg, metal-clad laminate, printed wiring board using the same
JP2010043254A (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminate and multilayer printed wiring board using the same
KR20180001381A (en) Curable resin composition, prepreg and substrate using the same
JP2019089929A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2007224283A (en) Resin composition, prepreg and metal foil-clad laminate for print wiring board
TW201136980A (en) Epoxy resin composition, preprey and printed circuit board manufactured thereof
JP5028971B2 (en) (Modified) Guanamine compound solution, thermosetting resin composition, and prepreg and laminate using the same
TWI700328B (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP2012236908A (en) Thermosetting resin composition, prepreg and laminated board
JP2020084109A (en) Epoxy resin composition, and adhesive film, prepreg, multilayer printed wiring board, and semiconductor device manufactured using the resin composition
JP2001240723A (en) Thermosetting resin composition and prepreg, metal-clad laminate, and printed wiring board using the same
JP2004307761A (en) Thermosetting resin composition, and prepreg, metal-clad laminate and printed wiring board all using the same
JP2007131834A (en) Thermosetting guanamine resin, method for producing the same, thermosetting resin composition, and prepreg and laminated board using the composition
JP2008075012A (en) Resin composition, prepreg and metal foil-clad laminate
KR20010101310A (en) Cyanate-epoxy resin composition, and prepreg, metal foil-laminated plate and printed wiring board using the same
JP2016060840A (en) Thermosetting resin composition, prepreg, laminate and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A521 Written amendment

Effective date: 20101224

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20111020

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A02