JP2007224156A - Plasma discharge-treated liquid production apparatus and emulsion feedstock oil, and method for producing emulsion, and emulsion fuel/food/cosmetic - Google Patents

Plasma discharge-treated liquid production apparatus and emulsion feedstock oil, and method for producing emulsion, and emulsion fuel/food/cosmetic Download PDF

Info

Publication number
JP2007224156A
JP2007224156A JP2006047331A JP2006047331A JP2007224156A JP 2007224156 A JP2007224156 A JP 2007224156A JP 2006047331 A JP2006047331 A JP 2006047331A JP 2006047331 A JP2006047331 A JP 2006047331A JP 2007224156 A JP2007224156 A JP 2007224156A
Authority
JP
Japan
Prior art keywords
liquid
emulsion
plasma discharge
oil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006047331A
Other languages
Japanese (ja)
Inventor
Shigeru Tamaru
滋 田丸
Yumi Kusanagi
由美 草薙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUTAI RABO KK
Original Assignee
SUTAI RABO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUTAI RABO KK filed Critical SUTAI RABO KK
Priority to JP2006047331A priority Critical patent/JP2007224156A/en
Publication of JP2007224156A publication Critical patent/JP2007224156A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an emulsion by thoroughly mixing oil and water together to effect emulsification. <P>SOLUTION: A plasma discharge-treated oil production apparatus is provided, comprising a liquid tank V reserved with an oil, a discharging anode P set up in the space above the oil surface of the liquid tank, a cathode M at least part of which is faced into the oil, and a high-voltage discharging unit E for making a high-voltage discharge between the anode P and the cathode M so as to generate plasma discharge between the anode P and the oil surface by excessively discharging electrons from the cathode M into the oil. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマ放電処理液生成装置及びエマルジョン原料油、並びにエマルジョン製造方法、該方法により製造されたエマルジョン燃料・食品・化粧品に関する。   The present invention relates to a plasma discharge treatment liquid generator, an emulsion raw material oil, an emulsion production method, and an emulsion fuel, food and cosmetics produced by the method.

油と水とを界面活性剤を用いて乳化・分散させて十分に混合させたエマルジョンは、例えば燃料、食品、化粧品等に利用することが従来より知られている。   It has been conventionally known that an emulsion in which oil and water are emulsified and dispersed using a surfactant and sufficiently mixed is used in, for example, fuel, food, cosmetics and the like.

例えば、灯油、廃棄用油等の燃料油と水とを混合させたエマルジョン燃料は、これに含まれる水の水蒸気潜熱に起因して排気中のNOx濃度の低減に有効であり、またエマルジョン燃料中の水は、エンジンの高速運転時にピストン内の高熱の影響を受けて、水自体が燃焼を始めることにより、未燃焼の炭化水素との燃焼反応を起こし、PM等の粒子状物質の低減にも有効である。   For example, an emulsion fuel obtained by mixing fuel oil such as kerosene and waste oil and water is effective in reducing the NOx concentration in exhaust gas due to the latent heat of water vapor contained in the water. The water is affected by the high heat in the piston during high-speed operation of the engine, and the water itself starts to burn, causing a combustion reaction with unburned hydrocarbons and reducing particulate matter such as PM. It is valid.

しかしながら上記エマルジョン燃料では、燃料油と水を乳化・分散させるために使用される界面活性剤が、燃焼後に発癌性のある有害物質に変換する虞れがある。   However, in the above-mentioned emulsion fuel, the surfactant used to emulsify and disperse the fuel oil and water may be converted into a carcinogenic harmful substance after combustion.

また食用油と水を混合したマヨネーズ、ドレッシング等のエマルジョン食品においては、食用油と水を乳化・分散させるために使用される界面活性剤が、体内に入ったり皮膚に付着することで健康に悪影響を及ぼす虞れがある。   In emulsion foods such as mayonnaise and dressing mixed with edible oil and water, surfactants used to emulsify and disperse edible oil and water enter the body and adhere to the skin, adversely affecting health. There is a risk of affecting.

同じく化粧用油と水を混合した化粧乳液等のエマルジョン化粧品においては、化粧用油と水を乳化・分散させるために使用される界面活性剤が、皮膚に付着することで健康に悪影響を及ぼす虞れがある。   Similarly, in emulsion cosmetics such as cosmetic emulsions in which cosmetic oil and water are mixed, the surfactant used to emulsify and disperse cosmetic oil and water may adversely affect health by adhering to the skin. There is.

本発明は上記に鑑みてなされたもので、油と水とを界面活性剤を特別に用いることなく乳化・分散させて十分に混合したエマルジョンが得られるようにすることを主たる目的としている。   The present invention has been made in view of the above, and has as its main object to obtain an emulsion in which oil and water are emulsified and dispersed without specially using a surfactant to obtain a sufficiently mixed emulsion.

上記目的を達成するために請求項1の発明は、プラズマ放電処理油生成装置であって、油を貯留した液槽と、この液槽の油面上の空間に配設される放電用の陽電極と、この液槽の油中に少なくとも一部を臨ませた陰電極と、その陰電極より油中に電子を過度に放出させて陽電極と油面との間でプラズマ放電を生じさせ得るように該陽電極と陰電極との間で高電圧放電を行うための高電圧放電手段とを少なくとも備えたことを特徴とする。   In order to achieve the above object, the invention of claim 1 is a plasma discharge processing oil generating apparatus, comprising a liquid tank storing oil and a positive discharge electrode disposed in a space above the oil surface of the liquid tank. An electrode, a negative electrode that is at least partially exposed to the oil in the liquid tank, and excessive discharge of electrons into the oil from the negative electrode can cause plasma discharge between the positive electrode and the oil surface. Thus, at least high-voltage discharge means for performing high-voltage discharge between the positive electrode and the negative electrode is provided.

また請求項2の発明は、水と混合、乳化されてエマルジョンを形成するためのエマルジョン原料油であって、前記請求項1に記載されたプラズマ放電処理油生成装置によりプラズマ放電処理されたことを特徴とする。   Further, the invention of claim 2 is an emulsion raw material oil that is mixed and emulsified with water to form an emulsion, and is subjected to plasma discharge treatment by the plasma discharge treatment oil generating device according to claim 1. Features.

また請求項3の発明は、エマルジョン製造方法であって、液体を貯留した液槽と、この液槽の液面上の空間に配設される放電用の陽電極と、この液槽の液中に少なくとも一部を臨ませた陰電極と、その陰電極より液中に電子を過度に放出させて陽電極と液面との間でプラズマ放電を生じさせ得るように該陽電極と陰電極との間で高電圧放電を行うための高電圧放電手段とを少なくとも備えてなるプラズマ放電処理液生成装置を用いて、油と水を別々にプラズマ放電処理し、次いで、そのプラズマ放電処理された油と水とを混合してエマルジョンを得ることを特徴とする。   The invention of claim 3 is an emulsion manufacturing method, wherein a liquid tank storing liquid, a discharge positive electrode disposed in a space above the liquid surface of the liquid tank, and the liquid in the liquid tank A negative electrode facing at least a portion of the positive electrode, and the positive electrode and the negative electrode so that a plasma discharge can be generated between the positive electrode and the liquid surface by excessively discharging electrons into the liquid from the negative electrode. A plasma discharge treatment liquid generator comprising at least a high voltage discharge means for performing a high voltage discharge between the oil and water separately, and then the plasma discharge treated oil And water are mixed to obtain an emulsion.

また請求項4の発明は、エマルジョン製造方法であって、請求項2に記載のエマルジョン原料油を、酸化還元電位が300mV以下に調整された水と混合、乳化してエマルジョンを得ることを特徴とする、エマルジョン製造方法
さらに請求項5の発明は、請求項3又は4に記載のエマルジョン製造方法により得られたエマルジョン燃料であって、プラズマ放電処理された燃料油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されることを特徴とする。
The invention of claim 4 is a method for producing an emulsion, characterized in that the emulsion raw material oil of claim 2 is mixed and emulsified with water whose oxidation-reduction potential is adjusted to 300 mV or less to obtain an emulsion. Further, the invention according to claim 5 is an emulsion fuel obtained by the emulsion production method according to claim 3 or 4, wherein the fuel oil subjected to plasma discharge treatment is treated with water subjected to plasma discharge treatment, Alternatively, it is characterized by being mixed and emulsified with water whose oxidation-reduction potential is adjusted to 300 mV or less.

さらに請求項6の発明は、請求項3又は4に記載のエマルジョン製造方法により得られたエマルジョン食品であって、プラズマ放電処理された食用油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されることを特徴とする。   Furthermore, the invention of claim 6 is an emulsion food obtained by the emulsion manufacturing method of claim 3 or 4, wherein the edible oil subjected to plasma discharge treatment is treated with water subjected to plasma discharge treatment or having a redox potential. It is characterized by being mixed and emulsified with water adjusted to 300 mV or less.

さらに請求項7の発明は、請求項3又は4に記載のエマルジョン製造方法により得られたエマルジョン化粧品であって、プラズマ放電処理された化粧用油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されることを特徴とする。   Furthermore, the invention of claim 7 is an emulsion cosmetic obtained by the emulsion production method according to claim 3 or 4, wherein the cosmetic oil subjected to plasma discharge treatment is treated with water subjected to plasma discharge treatment or a redox potential. Is mixed and emulsified with water adjusted to 300 mV or less.

さらに請求項8の発明は、内部に液体を貯留した液槽と、この液槽の液面上の空間に配設される放電用の陽電極と、この液槽の液中に少なくとも一部を臨ませた陰電極と、その陰電極より液中に電子を過度に放出させて陽電極と液面との間でプラズマ放電を生じさせ得るように該陽電極と陰電極との間で高電圧放電を行うための高電圧放電手段とを少なくとも備えてなるプラズマ放電処理液生成装置であって、前記液槽は、その内部を少なくとも2室に分割する堰を備え、その2室間には、その第1室から第2室に向けて収容液を強制的に還流させる還流手段が設けられていて、その第2室に還流された収容液が前記堰の上端部を超えて第1室側にオーバフロー可能であり、前記堰の上端部には、そこをオーバフローしようとする収容液中に浸漬されるように前記陰電極が該上端部の長手方向に沿って配設されることを特徴とする。   Furthermore, the invention of claim 8 is directed to a liquid tank storing liquid therein, a discharge positive electrode disposed in a space above the liquid level of the liquid tank, and at least a part of the liquid in the liquid tank. A high voltage between the positive electrode and the negative electrode so that a plasma discharge can be generated between the positive electrode and the liquid surface by excessively releasing electrons into the liquid from the negative electrode. A plasma discharge treatment liquid generating apparatus comprising at least a high voltage discharge means for performing discharge, wherein the liquid tank includes a weir that divides the interior into at least two chambers, and between the two chambers, A reflux means for forcibly refluxing the stored liquid from the first chamber toward the second chamber is provided, and the stored liquid returned to the second chamber passes over the upper end portion of the weir and the first chamber side. The upper end of the weir is in the containing liquid that is going to overflow there. The negative electrode as immersed is characterized in that it is disposed along the longitudinal direction of the upper end portion.

さらに請求項9の発明は、請求項8に記載のプラズマ放電処理液生成装置の構成に加えて、前記陰電極は、金網で前記堰の上端部にこれを跨ぐように形成され、前記陽電極は、前記陰電極の上方空間に前記堰の上端部の長手方向に互いに間隔をおいて並設されて各々の先端が該陰電極に向かって延びる導電性材料よりなる多数の放電用針を備えることを特徴とする。   In addition to the configuration of the plasma discharge treatment liquid generator according to claim 8, the negative electrode is formed so as to straddle the upper end of the weir with a wire mesh, and the positive electrode Is provided with a plurality of discharge needles made of a conductive material that are arranged in parallel with each other in the longitudinal direction of the upper end portion of the weir in the space above the negative electrode and each tip extends toward the negative electrode. It is characterized by that.

尚、本発明において、「液中に電子を過度に放出させ」とは、液槽内の液体が電子を保持できるマイナス電荷数を超えて液中に多数の電子を放出させること、即ち液中に電子を過飽和状態となってもなお放出させることを意味している。この電子の過度の放出により、余剰の電子は液面から空中の放電用陽電極に向かって飛び出し可能となる。   In the present invention, “excessive emission of electrons into the liquid” means that the liquid in the liquid tank discharges a large number of electrons into the liquid exceeding the number of negative charges that can hold the electrons. This means that electrons are still emitted even when they become supersaturated. Due to the excessive emission of electrons, surplus electrons can be ejected from the liquid surface toward the discharge positive electrode in the air.

以上のように本発明によれば、油をプラズマ放電処理することにより、水との親和性が良好なプラズマ放電処理油が得られるので、この油と水とが混合、乳化したエマルジョンを、有害な界面活性剤を特別に用いることなく効率よく得ることができ、エマルジョンの汎用性を広げることができる。   As described above, according to the present invention, plasma discharge treatment oil having a good affinity with water can be obtained by plasma discharge treatment of the oil. Therefore, an emulsion in which this oil and water are mixed and emulsified is harmful. Can be obtained efficiently without using any special surfactant, and the versatility of the emulsion can be expanded.

また特に請求項3の発明によれば、油だけでなく、水もプラズマ放電処理されるため、油と水との親和性が頗る良好となり、その油と水が均一に分散した高品質のエマルジョンが容易に且つ更に効率よく得られ、その上、エマルジョン化後においても長時間に亘りエマルジョン状態を維持できるから、保存性に優れ、利便性が一層良好である。   In particular, according to the invention of claim 3, since not only oil but also water is subjected to plasma discharge treatment, the affinity between oil and water is improved, and the high-quality emulsion in which the oil and water are uniformly dispersed. Can be easily and more efficiently obtained, and furthermore, the emulsion state can be maintained for a long time even after emulsification, so that it is excellent in storage stability and convenience.

また特に請求項4の発明によれば、プラズマ放電処理された油を、酸化還元電位が300mV以下に調整された水と混合、乳化してエマルジョンを形成するので、油と水との親和性が良好となり、エマルジョンが効率よく得られる。   In particular, according to the invention of claim 4, since the oil subjected to plasma discharge treatment is mixed and emulsified with water whose oxidation-reduction potential is adjusted to 300 mV or less to form an emulsion, the affinity between oil and water is high. It becomes good and an emulsion is obtained efficiently.

また特に請求項5の発明では、プラズマ放電処理された燃料油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されるエマルジョン燃料が得られるので、水の混入によっても良好に燃焼させることができ、しかもその燃焼の際にエマルジョンに含まれる水の水蒸気潜熱に起因して排気中のNOx濃度の低減に有効であり、またエマルジョン中の水自体が燃焼を始めることにより、未燃焼の炭化水素との燃焼反応を起こして、PM等の粒子状物質の低減にも有効である。その上、エマルジョン化のために有害な界面活性剤を使用しないため、界面活性剤の燃焼による有害物質が発生する心配もない。   In particular, according to the invention of claim 5, an emulsion fuel is obtained by mixing and emulsifying plasma discharge-treated fuel oil with water subjected to plasma discharge treatment or water whose oxidation-reduction potential is adjusted to 300 mV or less. Therefore, it can be burned well even when mixed with water, and is effective in reducing the NOx concentration in the exhaust due to the water vapor latent heat of water contained in the emulsion during the combustion. When water itself starts to burn, it causes a combustion reaction with unburned hydrocarbons, which is also effective for reducing particulate matter such as PM. In addition, since no harmful surfactant is used for emulsification, there is no fear of generation of harmful substances due to combustion of the surfactant.

また特に請求項6の発明では、プラズマ放電処理された食用油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されるエマルジョン食品が得られるので、エマルジョン化のために有害な界面活性剤を使用しない安全なエマルジョン食品を提供することができる。   In particular, in the invention of claim 6, an edible oil that is formed by mixing and emulsifying edible oil subjected to plasma discharge treatment with water subjected to plasma discharge treatment or water whose oxidation-reduction potential is adjusted to 300 mV or less is obtained. Therefore, it is possible to provide a safe emulsion food that does not use a harmful surfactant for emulsification.

また特に請求項7の発明では、プラズマ放電処理された化粧用油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されるエマルジョン化粧品が得られるので、エマルジョン化のために有害な界面活性剤を使用しない安全なエマルジョン化粧品を提供することができる。   Further, in the invention of claim 7, there is provided an emulsion cosmetic constituted by mixing and emulsifying plasma discharge treated cosmetic oil with water subjected to plasma discharge treatment or water whose oxidation-reduction potential is adjusted to 300 mV or less. As a result, it is possible to provide a safe emulsion cosmetic that does not use a harmful surfactant for emulsification.

また特に請求項8の発明によれば、液槽の第1室と第2室間で収容液を循環させながらその収容液に対しプラズマ放電処理を継続的且つ十分に行うことができ、従って、プラズマ放電処理液の量産化やコスト節減を図る上で有利である。   In particular, according to the invention of claim 8, the plasma discharge treatment can be continuously and sufficiently performed on the stored liquid while circulating the stored liquid between the first chamber and the second chamber of the liquid tank. This is advantageous for mass production of plasma discharge treatment liquid and cost reduction.

また特に請求項9の発明によれば、多数の放電用針から液面に向かって多数の(従って広範囲に亘り)プラズマ放電流を発生させることができ、そのプラズマ放電効果によりプラズマ放電処理を効率よく行うことができる。   In particular, according to the ninth aspect of the invention, it is possible to generate a large number (and thus a wide range) of plasma discharge currents from a large number of discharge needles toward the liquid surface. Can be done well.

本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。   Embodiments of the present invention will be specifically described below based on the embodiments of the present invention illustrated in the accompanying drawings.

添付図面において、図1〜図6は、本発明の第1実施例を示すものであって、図1は、プラズマ放電処理液生成装置を示す全体縦断面図、図2は、前記プラズマ放電処理液生成装置の平断面図(図1の2−2線断面図)、図3は、図1の3矢視部の拡大縦断面図、図4は、プラズマ放電の原理を説明するための実験モデル図、図5は、陽電極と陰電極間でのプラズマ放電流の発生状態を簡略的に示す説明図、図6は、プラズマ放電処理済みの油及び水を混合、乳化させる攪拌器の一例を示す縦断面図である。また図7は、本発明の第2実施例に係るプラズマ放電処理液生成装置を示す、図1対応図であり、さらに図8は、本発明の第3実施例に係るプラズマ放電処理液生成装置を示す、図1対応図である。さらに図9〜図12は、本発明の第4実施例を示すものであって、図9は、プラズマ放電処理液生成装置を示す全体縦断面図、図10は、図9の10矢視平面図、図11は、プラズマ放電処理液生成装置の要部を示す斜視図(図9の11矢視より見た斜視図)、図12は、陽電極と陰電極間でのプラズマ放電流の発生状態を簡略的に示す説明図(図11の12−12線拡大断面図である。   In the accompanying drawings, FIGS. 1 to 6 show a first embodiment of the present invention, FIG. 1 is an overall longitudinal sectional view showing a plasma discharge treatment liquid generating apparatus, and FIG. 2 is the plasma discharge treatment. FIG. 3 is an enlarged vertical cross-sectional view of the portion indicated by arrow 3 in FIG. 1, and FIG. 4 is an experiment for explaining the principle of plasma discharge. Model diagram, FIG. 5 is an explanatory diagram simply showing the generation state of plasma discharge current between the positive electrode and the negative electrode, and FIG. 6 is an example of a stirrer for mixing and emulsifying oil and water after plasma discharge treatment. FIG. FIG. 7 is a view corresponding to FIG. 1 showing a plasma discharge processing liquid generating apparatus according to the second embodiment of the present invention, and FIG. 8 is a plasma discharge processing liquid generating apparatus according to the third embodiment of the present invention. FIG. 2 is a view corresponding to FIG. 1. 9 to 12 show a fourth embodiment of the present invention, in which FIG. 9 is an overall longitudinal sectional view showing a plasma discharge treatment liquid generating apparatus, and FIG. 10 is a plan view taken along arrow 10 in FIG. 11 is a perspective view showing a main part of the plasma discharge treatment liquid generating apparatus (a perspective view seen from the direction of arrow 11 in FIG. 9), and FIG. 12 is a diagram showing generation of plasma discharge current between the positive electrode and the negative electrode It is explanatory drawing which shows a state simply (12-12 line expanded sectional view of FIG. 11).

先ず、図1〜図5に示す第1実施例に係るプラズマ放電処理液生成装置Aにおいて、固定ベース1上には、液槽支持台2と、その一側に起立する支柱3とが固定的に設けられており、これら固定ベース1、支持台2および支柱3はいずれも絶縁体より構成される。液槽支持台2上には、銅線を渦巻き状に且つ多層に巻き回してなる扁平円板状の渦巻きコイル4が載置、固定され、更にその渦巻きコイル4の上面に、絶縁体又は誘電体製(例えばガラス、PET樹脂等)の液槽Vが載置、固定されている。   First, in the plasma discharge treatment liquid generating apparatus A according to the first embodiment shown in FIGS. 1 to 5, a liquid tank support 2 and a column 3 standing on one side are fixed on a fixed base 1. These fixed base 1, support base 2 and support column 3 are all made of an insulator. On the liquid tank support 2, a flat disk-shaped spiral coil 4 formed by winding copper wires in a spiral shape and in multiple layers is placed and fixed, and an insulator or a dielectric is formed on the upper surface of the spiral coil 4. A liquid tank V made of body (for example, glass, PET resin, etc.) is placed and fixed.

その液槽V内には、プラズマ放電処理すべき液体Wが入れられており、その液中に浸漬されてマイナス電荷、即ち電子を帯電可能な帯電部材5が、液槽Vの底壁Va上に載置、固定される。この帯電部材5は、図示例では活性炭素繊維を平板状の所定形状に成形して構成され、その活性炭素繊維の正孔(OH基)に電子を帯電し得るようになっている。而してこの実施例では、絶縁体又は誘電体よりなる液槽底壁Vaと、帯電部材5と、渦巻きコイル4とが互いに協働して本発明の陰電極Mを構成している。   A liquid W to be subjected to plasma discharge treatment is placed in the liquid tank V, and a charging member 5 that is immersed in the liquid and can charge a negative charge, that is, an electron, is placed on the bottom wall Va of the liquid tank V. Placed and fixed on. In the illustrated example, the charging member 5 is formed by molding activated carbon fibers into a predetermined flat plate shape, and can charge the holes (OH groups) of the activated carbon fibers with electrons. Thus, in this embodiment, the liquid tank bottom wall Va made of an insulator or a dielectric, the charging member 5 and the spiral coil 4 cooperate with each other to constitute the negative electrode M of the present invention.

また支柱3の上部には、液槽Vの上部空間に向かって延びる支持腕3aが連設されており、この支持腕3aの先部には、液槽Vの液面Wf上の空中に配置した放電用の陽電極Pが支持される。次にこの放電用の陽電極Pの構造の一例を、図3を併せて参照して具体的に説明する。   Further, a support arm 3a extending toward the upper space of the liquid tank V is connected to the upper portion of the support column 3, and the tip of the support arm 3a is disposed in the air above the liquid level Wf of the liquid tank V. The discharged positive electrode P is supported. Next, an example of the structure of the positive electrode P for discharge will be specifically described with reference to FIG.

その陽電極Pは、液槽Vの液面Wf上の空中に相互に間隔をおいて並設されると共に各先端が液槽V内の液面に向かって下向きに延びる多数の放電用針7と、それら放電用針7の上部が貫通、支持される絶縁性基板8と、その絶縁性基板8の上面と各放電用針7の膨大頭部との間に介装されて各放電用針7を絶縁性基板8上に安定よく支持させるワッシャリング9と、絶縁性基板8の下面に重ねられて各放電用針7相互を電気的に接続する平板状の導電部材10と、絶縁性基板8の上下両面にそれぞれ接着又は接合されて各放電用針7の上半部とワッシャリング9と導電部材10とを覆う上下一対の絶縁性カバー11とより構成される。その絶縁性カバー11の下面からは各放電用針7の先鋭な下半部7aが突出して延びており、また、導電部材10の一部は、絶縁カバー11の側部から外部に引き出されていて、その引き出し部には、後述する高周波高電圧パルス放電用電源Eの印加側端子Eaから延びる印加側の外部配線Laが接続される。   The positive electrodes P are arranged side by side in the air on the liquid level Wf of the liquid tank V at intervals, and a plurality of discharge needles 7 whose tips extend downward toward the liquid level in the liquid tank V. Each of the discharge needles 7 is interposed between the upper surface of the insulating substrate 8 and the enormous head of each discharge needle 7. A washer ring 9 that stably supports 7 on the insulating substrate 8, a flat conductive member 10 that is overlapped with the lower surface of the insulating substrate 8 and electrically connects the discharge needles 7 to each other, and an insulating substrate 8 includes a pair of upper and lower insulating covers 11 that are bonded or bonded to the upper and lower surfaces of 8 and cover the upper half of each discharge needle 7, the washer ring 9, and the conductive member 10. From the lower surface of the insulating cover 11, the sharp lower half 7 a of each discharge needle 7 protrudes and extends, and a part of the conductive member 10 is drawn to the outside from the side of the insulating cover 11. The lead-out portion is connected to an application-side external wiring La extending from an application-side terminal Ea of a high-frequency, high-voltage pulse discharge power source E described later.

前記放電用針7の構成材料としては、導電性を有する金属、望ましくは耐腐食性の金属(例えばステンレス)が選択される。また前記絶縁性基板8の構成材料としては、絶縁性材料、例えばガラスエポキシ基板、ポリアミド基板、石英ガラス基板等が選択される。また前記ワッシャリング9の構成材料としては、放電用針7の頭部に対する固定、支持に適した材料であれば、導電性の有無に関係なく選択される。さらに前記導電部材10の構成材料としては、導電性を有し且つ放電用針7と接続、固定が可能であり且つ外部配線Laとの接続、固定が可能な材料であればよく、種々の導電性金属、活性炭素繊維成形体、導電性金属メッキ材等が選択される。さらに前記絶縁性カバー11としては、絶縁性を有し且つ絶縁性基板8に接着又は接合可能な材料、例えばエポキシ系樹脂やポリアミド樹脂が選択される。   As a constituent material of the discharge needle 7, a metal having conductivity, desirably a metal having corrosion resistance (for example, stainless steel) is selected. As the constituent material of the insulating substrate 8, an insulating material such as a glass epoxy substrate, a polyamide substrate, a quartz glass substrate, or the like is selected. Further, as a constituent material of the washer ring 9, any material suitable for fixing and supporting the discharge needle 7 with respect to the head can be selected regardless of the presence or absence of conductivity. Further, the constituent material of the conductive member 10 may be any material that has conductivity and can be connected to and fixed to the discharge needle 7 and can be connected to and fixed to the external wiring La. A conductive metal, an activated carbon fiber molded body, a conductive metal plating material, and the like are selected. Further, as the insulating cover 11, a material that has an insulating property and can be bonded or bonded to the insulating substrate 8, for example, an epoxy resin or a polyamide resin is selected.

固定ベース1の一側には、高電圧放電手段としての高周波高電圧パルス放電用電源Eが設置されており、この電源Eの印加側端子Eaに接続した印加側の外部配線Laが、導電部材10を介して前記陽電極Pの放電用針7に接続される。また同電源Eのグランド側端子Ebに接続したグランド側の外部配線Lbは接地Gされており、その外部配線Lbの途中には前記渦巻きコイル4が介装される。即ち、電源Eのグランド側端子Ebは、渦巻きコイル4を介して接地Gされる。   On one side of the fixed base 1, a high-frequency high-voltage pulse discharge power source E as high-voltage discharge means is installed, and an application-side external wiring La connected to an application-side terminal Ea of the power source E is a conductive member. 10 is connected to the discharge needle 7 of the positive electrode P through 10. The ground-side external wiring Lb connected to the ground-side terminal Eb of the power source E is grounded G, and the spiral coil 4 is interposed in the middle of the external wiring Lb. That is, the ground side terminal Eb of the power source E is grounded G via the spiral coil 4.

前記高周波高電圧パルス放電用電源Eは、図示例では周波数が高く(例えば10KHz)、電圧が高い(例えば10KV)の高周波高電圧パルスを少なくとも所定時間(例えば10分)以上放電し得るように構成され、その放電出力波形は矩形波に、電極波形はサイン波に調整される。   The high-frequency high-voltage pulse discharge power supply E is configured to discharge a high-frequency high-voltage pulse having a high frequency (for example, 10 KHz) and a high voltage (for example, 10 KV) for at least a predetermined time (for example, 10 minutes) in the illustrated example. The discharge output waveform is adjusted to a rectangular wave, and the electrode waveform is adjusted to a sine wave.

而して液槽V内に水を入れた場合において、その液槽Vの液面Wf上の空中に存する前記陽電極Pと、液槽Vの水中に少なくとも一部(図示例では液槽底壁Vaの上面及び帯電部材5)を浸漬させた陰電極Mとの間で、高周波高電圧パルス放電用電源Eにより高周波高電圧パルスを放電させると、後述するように陽電極Pと液面Wfとの間でプラズマ放電流Xが生じる。そして、このプラズマ放電流Xを液槽V内の液体W、例えば水に作用させることにより、この水が、プラズマ放電前の状態よりもオゾン濃度が高く且つ酸化還元電位が低く且つまた溶存酸素量が少ないプラズマ放電処理水となる。   Thus, when water is put into the liquid tank V, at least a part of the positive electrode P existing in the air above the liquid level Wf of the liquid tank V and the water of the liquid tank V (in the illustrated example, the bottom of the liquid tank). When a high frequency high voltage pulse is discharged by the high frequency high voltage pulse discharge power source E between the upper surface of the wall Va and the negative electrode M in which the charging member 5) is immersed, as will be described later, the positive electrode P and the liquid level Wf. Plasma discharge current X occurs between Then, by causing this plasma discharge current X to act on the liquid W in the liquid tank V, for example, water, the water has a higher ozone concentration and lower oxidation-reduction potential than the state before the plasma discharge, and the dissolved oxygen amount. The amount of plasma discharge treatment water is small.

また、液槽V内に燃料油、例えば灯油を入れた場合において、前記陽電極Pと陰電極Mとの間で、高周波高電圧パルス放電用電源Eにより高周波高電圧パルスを放電させると、後述するように陽電極Pと液面Wfとの間でプラズマ放電流Xが生じる。そして、このプラズマ放電流Xを液槽V内の灯油に作用させることにより、オゾンが灯油中に引きずり込まれ該油の分子レベルでの溶解を起こし、その油が、水に分散、乳化してエマルジョン化が可能なプラズマ放電処理灯油となる。   In addition, when a fuel oil such as kerosene is put in the liquid tank V, a high frequency high voltage pulse is discharged between the positive electrode P and the negative electrode M by the high frequency high voltage pulse discharge power source E. Thus, a plasma discharge current X is generated between the positive electrode P and the liquid level Wf. Then, by causing this plasma discharge current X to act on kerosene in the liquid tank V, ozone is dragged into kerosene, causing the oil to dissolve at the molecular level, and the oil is dispersed and emulsified in water. A plasma discharge kerosene that can be emulsified.

次に第1実施例の作用を説明する。   Next, the operation of the first embodiment will be described.

先ず、前記プラズマ放電の原理を、図4を併せて参照して説明する。   First, the principle of the plasma discharge will be described with reference to FIG.

図4に示す実験モデルでは、前記実施例における陰電極Mの構造(即ち渦巻きコイル4と液槽底壁Vaと蓄電部材5相互のサンドイッチ構造)を模して、渦巻きコイル4と絶縁体又は誘電体製の平板20(図示例ではガラス板)と蓄電部材5相互のサンドイッチ構造体が支持台21の上面に載置、固定されており、その渦巻きコイル4と電池22(例えば8ボルト)と開閉スイッチ23とが閉回路24で直列に接続される。   In the experimental model shown in FIG. 4, the structure of the negative electrode M in the above-described embodiment (that is, the sandwich structure between the spiral coil 4, the liquid tank bottom wall Va, and the power storage member 5) is simulated. A body-made flat plate 20 (a glass plate in the illustrated example) and a sandwich structure between the electricity storage members 5 are placed and fixed on the upper surface of the support base 21, and the spiral coil 4 and the battery 22 (for example, 8 volts) are opened and closed. A switch 23 is connected in series with a closed circuit 24.

このモデルにおいて、開閉スイッチ23を手動で小刻み(毎秒数回程度)に開閉操作したときの電子の放出状況を、陰電極Mの上方空間に配した電子測定器25により確認すると、2〜3KV/mの数値が測定された。このことから、次のような事象の発生が推測される。即ち、上記スイッチ23の開閉に伴い渦巻きコイル4の上方空間に発生する磁場の強弱が、ガラス板20を隔ててコンデンサ作用を起こして、そのガラス板20の下面(コイル接触面)にはプラス電荷が、また同ガラス板20の上面にはマイナス電荷、即ち電子がそれぞれ集まり、そのガラス板20の上面に集まった電子がガラス板20上の蓄電部材5即ち活性炭素繊維の正孔(OH基)に蓄電されるため、スイッチ23の開閉を繰り返すと、蓄電された電子が活性炭素繊維において過飽和になって、その正孔から外部(上方空間)に放出されているものと考えられる。   In this model, when the open / close switch 23 is manually opened and closed in small increments (several times per second), the electron emission state is confirmed by the electron measuring device 25 disposed in the space above the negative electrode M. The numerical value of m was measured. From this, the following events are estimated to occur. That is, the strength of the magnetic field generated in the space above the spiral coil 4 as the switch 23 is opened and closed causes a capacitor action across the glass plate 20, and a positive charge is applied to the lower surface (coil contact surface) of the glass plate 20. However, negative charges, that is, electrons gather on the upper surface of the glass plate 20, and the electrons collected on the upper surface of the glass plate 20 are positive holes (OH groups) of the power storage member 5 on the glass plate 20, that is, activated carbon fibers. Therefore, when the switch 23 is repeatedly opened and closed, it is considered that the stored electrons are supersaturated in the activated carbon fiber and discharged from the holes to the outside (upper space).

而して、本実施例のプラズマ放電処理液生成装置Aにおいて、その高周波高電圧パルス放電用電源Eにより高周波高電圧パルス放電を実施した場合には、その電源Eのグランド側端子Ebに連なる渦巻きコイル4には高周波のマイナスパルスが印加され、即ち、マイナスの直流電圧が断続的に渦巻きコイル4に通電されることとなり、結果的には、前記実験モデルで開閉スイッチ23を断続的に開閉した状態と同じになり、しかもその開閉の回数は10KHzと極めて高速である。   Thus, in the plasma discharge treatment liquid generator A of the present embodiment, when high frequency high voltage pulse discharge is performed by the high frequency high voltage pulse discharge power source E, the spiral connected to the ground side terminal Eb of the power source E A high-frequency negative pulse is applied to the coil 4, that is, a negative DC voltage is intermittently applied to the spiral coil 4. As a result, the open / close switch 23 is intermittently opened and closed in the experimental model. The number of times of opening and closing is as high as 10 KHz.

従って、液槽V内に液体Wとしての水が貯溜される場合において、陰電極Mにおける蓄電部材5を構成する活性炭素繊維の正孔には、上記高周波高電圧パルス放電に伴い短時間のうちに極めて多数の電子が液槽V内の水中に放出されることになるが、その放出電子が、水の保持できるマイナス電荷数を超えると(即ち水中への電子の放出が過度になされて、水中の電子が過飽和となると)、その放出電子は、水面Wfよりその上方の陽電極Pの放電用針7に向かって空中に飛び出す。そして、この飛び出した多数の電子は、空中の酸素分子と衝突して、例えばマイナス電荷を有する酸素ラジカルと、プラス電荷を有するスーパーオキサイト群を生じさせ、それらが同じ空間に同時に多数混在分布することで、図5に模式的に示すような発光状態のプラズマ放電流Xが、各放電用針7とその直下の水面Wfとの間でそれぞれ発生する。このとき、水面Wfには、各プラズマ放電流Xに対応してすり鉢状の凹部sが形成されており、この凹部sの存在からも、プラズマ放電流Xのエネルギが放電用針7から水面Wf側に向かい、その水面下に入り込む様子が容易に窺い知れる。   Therefore, when water as the liquid W is stored in the liquid tank V, the holes of the activated carbon fibers constituting the power storage member 5 in the negative electrode M are not exposed for a short time due to the high frequency high voltage pulse discharge. In this case, a very large number of electrons are emitted into the water in the liquid tank V. However, when the emitted electrons exceed the number of negative charges that can be retained by water (that is, the electrons are excessively emitted into the water, When the electrons in the water are supersaturated), the emitted electrons jump out into the air toward the discharge needle 7 of the positive electrode P above the water surface Wf. The large number of electrons that have collided collide with oxygen molecules in the air to generate, for example, oxygen radicals having a negative charge and superoxide groups having a positive charge, and a large number of them simultaneously coexist in the same space. As a result, a plasma discharge current X in a light emission state as schematically shown in FIG. 5 is generated between each discharge needle 7 and the water surface Wf immediately below it. At this time, a mortar-shaped recess s corresponding to each plasma discharge current X is formed on the water surface Wf, and the energy of the plasma discharge current X is also transferred from the discharge needle 7 to the water surface Wf due to the presence of the recess s. It is easy to see how it goes to the side and enters under the surface of the water.

尚、空気の主要成分である窒素分子は、酸素分子に比べ安定度が高く、本条件による電子衝突エネルギではラジカル分子を発生せず、上記プラズマ放電流Xの発生によってもNOx等の有害成分を生じさせないことが確認された。   Nitrogen molecules, which are the main components of air, are more stable than oxygen molecules, and do not generate radical molecules with the electron collision energy under these conditions. Even if the plasma discharge current X is generated, harmful components such as NOx are also generated. It was confirmed that it would not occur.

而して、上記プラズマ放電流Xは、放電用針7から水面Wf側に向かう途中でその周囲空間の酸素分子や上記スーパーオキサイト群を巻き込んでオゾンを生じさせると共に、そのオゾンを水中に強力に引擦り込んでオゾンの水中への分子レベルでの溶解を起こす。また、それと同時に、水中に元々溶解していた一部の酸素分子が空中に放出される。   Thus, the plasma discharge current X generates ozone by entraining oxygen molecules in the surrounding space and the superoxide group on the way from the discharge needle 7 toward the water surface Wf, and also strongly The ozone dissolves into the water at the molecular level. At the same time, some oxygen molecules originally dissolved in water are released into the air.

かくして、液槽V内の水に対し所定時間(例えば10分間)に亘り上記のプラズマ放電処理を行えば、その水は、本発明のプラズマ放電処理水となり、それは、下記の表1に示されるようにプラズマ放電前の状態よりもオゾン濃度が高く且つ酸化還元電位が低く且つまた溶存酸素量が少ない特性を有している。   Thus, if the plasma discharge treatment is performed for a predetermined time (for example, 10 minutes) on the water in the liquid tank V, the water becomes the plasma discharge treatment water of the present invention, which is shown in Table 1 below. Thus, the ozone concentration is higher than the state before plasma discharge, the oxidation-reduction potential is lower, and the amount of dissolved oxygen is smaller.

Figure 2007224156
Figure 2007224156

しかも、このプラズマ放電処理水は、生成後、比較的長期(約1カ月以上)に亘って水中にオゾンを高い濃度のまま溶解させておくことができることが確認された。これは、前述のようにプラズマ放電流Xによりオゾンを水中に強力に引擦り込んで、オゾンの水中への分子レベルでの溶解を促進できるためと考えられる。従って、上記プラズマ放電処理水は、長期の保存に適したオゾン水となるものであり、そして、このオゾン水は、生成後、直ぐに使用する必要がないことから、プラズマ放電処理液生成装置Aをオゾン水の使用現場近くに設置する必要がなく、利便性や量産性に優れている。   Moreover, it has been confirmed that the plasma discharge treated water can dissolve ozone in water at a high concentration for a relatively long period (about 1 month or more) after generation. This is presumably because ozone can be strongly rubbed into the water by the plasma discharge current X as described above to promote the dissolution of ozone in the water at the molecular level. Accordingly, the plasma discharge treated water becomes ozone water suitable for long-term storage, and since this ozone water does not need to be used immediately after generation, the plasma discharge treatment liquid generator A is used. It is not necessary to install near the site where ozone water is used, and it is excellent in convenience and mass productivity.

一方、前記プラズマ処理水を生成したプラズマ処理液生成装置Aと同一構造のプラズマ処理液生成装置Aの液槽V内に燃料油としての灯油を入れて、前記と同様のプラズマ処理を行った場合には、水の場合と同様に、各放電用針7とその直下の油面Wfとの間で発光状態のプラズマ放電流Xが発生する。このとき、プラズマ放電流Xは、放電用針7から油面Wf側に向かう途中でその周囲空間の酸素分子や上記スーパーオキサイト群を巻き込んでオゾンを生じさせると共に、そのオゾンを液槽V内の灯油中に強力に引擦り込んでオゾンの水中への分子レベルでの溶解を起こし、またそれと同時に、燃料油中に元々溶解していた一部の酸素分子が空中に放出される。   On the other hand, when kerosene as fuel oil is put in the liquid tank V of the plasma processing liquid generating apparatus A having the same structure as the plasma processing liquid generating apparatus A that generates the plasma processing water, and plasma processing similar to the above is performed In the same manner as in the case of water, a plasma discharge current X in a light emission state is generated between each discharge needle 7 and the oil surface Wf immediately below it. At this time, the plasma discharge current X generates ozone by entraining oxygen molecules in the surrounding space and the superoxide group on the way from the discharge needle 7 toward the oil surface Wf, and the ozone in the liquid tank V. It is strongly rubbed into kerosene, causing ozone to dissolve in water at the molecular level, and at the same time, some oxygen molecules originally dissolved in the fuel oil are released into the air.

この場合において、灯油に溶解したスーパーオキサイト(オゾン等)は、灯油(C1226)を酸化して、灯油中のごく一部がC1123COO- のイオン構造をとると推測される。そして、このようなイオン構造は、従来普通に使用される界面活性剤中のカルボン酸塩であるラウリン酸(C1123COOH)(石鹸に分類)の水中でのイオン構造と同等のものである。 In this case, it is speculated that superoxide (ozone, etc.) dissolved in kerosene oxidizes kerosene (C 12 H 26 ), and only a small part of kerosene has an ionic structure of C 11 H 23 COO −. The Such an ionic structure is equivalent to the ionic structure in water of lauric acid (C 11 H 23 COOH) (classified as soap) which is a carboxylate salt in a surfactant that is conventionally used. is there.

従って、このような状態のプラズマ放電処理灯油に水、特に前記したプラズマ放電処理水{ごく一部分がOH・(水酸基ラジカル)H・(水素ラジカル)として水中に分離している}を混合攪拌すると、本来混じらないはずの灯油と水が、界面活性剤を特別に使用することなくエマルジョン(水と灯油が微細に混合拡散して乳化した状態)となる。   Therefore, when the plasma discharge treated kerosene in such a state is mixed and agitated with water, particularly the plasma discharge treated water {only a part is separated into water as OH · (hydroxyl radical) H · (hydrogen radical)}, Kerosene and water, which should not be originally mixed, become an emulsion (a state in which water and kerosene are finely mixed and diffused and emulsified) without specially using a surfactant.

Figure 2007224156
Figure 2007224156

かくして、液槽V内の燃料油としての灯油に対し所定時間(例えば10分間)に亘り上記のプラズマ放電処理を行えば、その灯油は、本発明のプラズマ放電処理油となり、水、特に前記したプラズマ放電処理水と混合、乳化することでエマルジョン燃料となる。   Thus, if the above-described plasma discharge treatment is performed for a predetermined time (for example, 10 minutes) on kerosene as the fuel oil in the liquid tank V, the kerosene becomes the plasma discharge treatment oil of the present invention, and water, particularly the above-mentioned It becomes emulsion fuel by mixing and emulsifying with plasma discharge treated water.

図6には、そのプラズマ放電処理油とプラズマ放電処理水とを攪拌、混合するための攪拌器MIの一例が示される。この攪拌器MIは、上端にモータ38を支持した機枠30と、その機枠30に回転自在に軸支されて該機枠30を縦通し且つモータ38により回転駆動される回転軸31と、その回転軸31の下端に固定された攪拌羽根32と、その攪拌羽根32を覆うように機枠30の下部に連設された攪拌ハウジング33とを備えている。その攪拌ハウジング33の開放下面は目の細かいネット34で覆われ、またその攪拌ハウジング33の上部には、その内外を連通させる複数の連通孔33aが穿設される。前記回転軸31の中間部は中空に形成されていて、機枠30の上部に形成された供給室35と、攪拌ハウジング33内とを連通させる連通路として機能する。前記供給室35には、本発明に係るプラズマ放電処理液生成装置Aにより予め別々にプラズマ放電処理された灯油及び水の各供給源36,37が並列に接続される。   FIG. 6 shows an example of an agitator MI for agitating and mixing the plasma discharge treatment oil and the plasma discharge treatment water. This stirrer MI has a machine frame 30 that supports a motor 38 at its upper end, a rotary shaft 31 that is rotatably supported by the machine frame 30 and is vertically driven through the machine frame 30 and rotated by the motor 38, A stirring blade 32 fixed to the lower end of the rotating shaft 31 and a stirring housing 33 connected to the lower portion of the machine frame 30 so as to cover the stirring blade 32 are provided. The open lower surface of the stirring housing 33 is covered with a fine net 34, and a plurality of communication holes 33a are formed in the upper portion of the stirring housing 33 to communicate the inside and the outside. An intermediate portion of the rotating shaft 31 is formed in a hollow shape, and functions as a communication path that allows the supply chamber 35 formed in the upper portion of the machine frame 30 to communicate with the inside of the stirring housing 33. The supply chamber 35 is connected in parallel with supply sources 36 and 37 of kerosene and water that have been separately subjected to plasma discharge treatment in advance by the plasma discharge treatment liquid generator A according to the present invention.

従って、攪拌器MIの攪拌ハウジング33を攪拌処理容器39内に臨ませた状態で、モータ38を作動させて攪拌羽根32を回転させつつ、機枠30内の供給室35に灯油供給源36及び水供給源37から各々プラズマ放電処理された灯油及び水を所定の流量割合でそれぞれ供給すれば、その灯油及び水が攪拌ハウジング33内で攪拌羽根32により攪拌されて攪拌処理容器39内に所定の混合割合で溜まる。そして、その攪拌処理容器39内で攪拌ハウジング33を貯溜液面下に浸漬させれば、貯溜液面下の灯油及び水が更に十分に攪拌、混合されて、エマルジョン状態となる。   Accordingly, the kerosene supply source 36 and the supply chamber 35 in the machine frame 30 are rotated while the motor 38 is operated and the stirring blade 32 is rotated while the stirring housing 33 of the stirrer MI faces the stirring processing container 39. If kerosene and water that have been subjected to plasma discharge treatment are respectively supplied from the water supply source 37 at a predetermined flow rate, the kerosene and water are agitated by the agitating blades 32 in the agitating housing 33, and the agitating treatment container 39 has a prescribed amount. Accumulate at mixing ratio. Then, if the agitation housing 33 is immersed in the agitation processing container 39 below the surface of the stored liquid, kerosene and water below the surface of the stored liquid are further sufficiently agitated and mixed to become an emulsion state.

尚、前記灯油供給源36及び水供給源37を機枠30内の供給室35に接続しないで、本発明に係るプラズマ放電処理液生成装置Aにより予め別々にプラズマ放電処理された灯油及び水を攪拌処理容器39内に所定の混合割合で入れておき、その容器39内に上下に二層をなして貯溜された灯油及び水を攪拌器MIの攪拌羽根32により攪拌してエマルジョンを得るようにしてもよい。前記混合割合は、例えば水/灯油の比率が適宜(最大で3程度)に設定され、水の比率を減らせば、それだけエマルジョン燃料の引火点を下げることが可能となる。   In addition, the kerosene and water which were separately plasma-discharged beforehand by the plasma-discharge-treatment-liquid generator A according to the present invention without connecting the kerosene supply source 36 and the water supply source 37 to the supply chamber 35 in the machine frame 30 are used. The mixture is placed in a stirring treatment container 39 at a predetermined mixing ratio, and kerosene and water stored in two layers in the container 39 are stirred by the stirring blade 32 of the stirrer MI to obtain an emulsion. May be. As for the mixing ratio, for example, the ratio of water / kerosene is appropriately set (about 3 at the maximum), and if the ratio of water is reduced, the flash point of the emulsion fuel can be lowered accordingly.

而して各々プラズマ放電処理された灯油と水とを攪拌、混合して乳化させてエマルジョン状態にしたので、このような灯油と水とからなるエマルジョン燃料を、有害な界面活性剤を特別に用いることなく効率よく得ることができる。この場合、プラズマ放電処理された灯油には、前述のようにその一部が、界面活性剤中のカルボン酸塩であるラウリン酸(C1123COO- )と類似のイオン構造をとると推測されるため、その灯油と、同じくプラズマ放電処理された水とを混合させるようにすれば、油と水との親和性が頗る良好となって、その油と水が均一に分散した高品質のエマルジョンが容易に且つ効率よく得られ、その上、エマルジョン化後においても長時間に亘りエマルジョン状態を維持できるから、保存性に優れ、利便性が一層良好である。尚、上記のようにして得られたエマルジョン燃料は、時間の経過と共に、油と水とが徐々に分離してしまうが、それらを再度、攪拌、混合すれば、再びエマルジョン燃料が容易に得られる。 Thus, kerosene and water that were each plasma-discharge treated were agitated, mixed, and emulsified to form an emulsion. Therefore, an emulsion fuel composed of such kerosene and water was specially used as a harmful surfactant. And can be obtained efficiently. In this case, it is estimated that a part of the plasma-discharged kerosene has an ionic structure similar to that of lauric acid (C 11 H 23 COO ) which is a carboxylate in the surfactant as described above. Therefore, if the kerosene is mixed with water that has also been subjected to plasma discharge treatment, the affinity between the oil and water will be improved, and the oil and water will be evenly dispersed. Emulsions can be easily and efficiently obtained, and furthermore, the emulsion state can be maintained for a long time even after emulsification, so that it is excellent in storage stability and convenience. The emulsion fuel obtained as described above gradually separates oil and water over time, but if they are stirred and mixed again, the emulsion fuel can be easily obtained again. .

ところでプラズマ放電処理していない通常の水であっても、その酸化還元電位を300mV以下に調整すれば、プラズマ放電処理された油と十分に混合、乳化してエマルジョン化することが可能であることが実験により確認された。この場合、水の酸化還元電位を300mV以下に調整する手法としては、例えば水に紫外線を照射したり、又は水に超音波をかけたり、又は水にオゾンガスを吹き込んだり、又は水に空気のマイクロバブルもしくはナノバブルを混合させたり、又は水を高所から落下させたり、又は水中でイオン化傾向の異なる金属を使用して放電したり、又は所定の磁極配列の磁石で生じた磁界中に水を流したり、又は水に遠赤外線を照射したりすること等々が考えられる。尚、何れの手法の水を用いても、プラズマ放電処理された水を用いてエマルジョン化するよりも、エマルジョン状態が維持される時間は短かった。   By the way, even if it is normal water which is not plasma discharge treated, if its redox potential is adjusted to 300 mV or less, it can be sufficiently mixed, emulsified and emulsified with the plasma discharge treated oil. Was confirmed by experiments. In this case, as a method of adjusting the oxidation-reduction potential of water to 300 mV or less, for example, ultraviolet rays are irradiated on water, ultrasonic waves are applied to water, ozone gas is blown into water, or microscopic air is introduced into water. Mixing bubbles or nanobubbles, dropping water from a high place, discharging using water with different ionization tendency in water, or flowing water in a magnetic field generated by a magnet with a predetermined magnetic pole arrangement Or irradiating far-infrared rays on water. It should be noted that, regardless of which method of water was used, the time during which the emulsion state was maintained was shorter than that of emulsification using water subjected to plasma discharge treatment.

而して、本実施例のようにプラズマ放電処理された灯油を、同じくプラズマ放電処理された水、又は酸化還元電位を300mV以下に調整された水と混合、乳化してエマルジョン燃料とすれば、水の混入によっても灯油を良好に燃焼させることができ、しかもその燃焼の際にエマルジョンに含まれる水の水蒸気潜熱に起因して排気中のNOx濃度の低減に有効であり、またエマルジョン中の水自体が燃焼を始めることにより、未燃焼の炭化水素との燃焼反応を起こして、PM等の粒子状物質の低減にも有効である。その上、エマルジョン化のために有害な界面活性剤を使用しないため、界面活性剤の燃焼による有害物質が発生する心配もない。   Thus, if kerosene that has been subjected to plasma discharge treatment as in the present embodiment is mixed and emulsified with water that has also been subjected to plasma discharge treatment, or water whose oxidation-reduction potential is adjusted to 300 mV or less, Kerosene can be burned well by mixing water, and is effective in reducing NOx concentration in exhaust gas due to the latent heat of water vapor contained in the emulsion during the combustion. By starting combustion itself, it causes a combustion reaction with unburned hydrocarbons, which is also effective in reducing particulate matter such as PM. In addition, since no harmful surfactant is used for emulsification, there is no fear of generation of harmful substances due to combustion of the surfactant.

次に図7を参照して本発明の第2実施例を説明する。この実施例は、先の実施例における活性炭素繊維からなる蓄電部材5を省略したものであり、その他の構成は、第1実施例と同じであるので、各構成部材には、第1実施例と同じ参照符号を付した。   Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the power storage member 5 made of activated carbon fiber in the previous embodiment is omitted, and the other configuration is the same as that of the first embodiment. Therefore, each component member includes the first embodiment. The same reference numerals are assigned.

而して第1実施例では、液槽底壁Vaのコンデンサー的な作用を強化して陰電極Mから液槽V内の液中への電子放出を効率よく行わせるために、活性炭素繊維からなる蓄電部材5を液槽底壁Vaを挟んで渦巻きコイル4上に近接配置しているが、この蓄電部材5を第2実施例のように省略しても、液槽底壁Va自体のコンデンサー的な作用は得られ、電子の放出効率が多少低下するだけであることから、プラズマ放電流X自体の発生は可能である。この第2実施例では、蓄電部材5の省略によりそれだけ構造簡素化が図られる。   Thus, in the first embodiment, in order to enhance the condenser-like action of the liquid tank bottom wall Va and efficiently discharge electrons from the negative electrode M into the liquid in the liquid tank V, the activated carbon fiber is used. The power storage member 5 is disposed in proximity to the spiral coil 4 with the liquid tank bottom wall Va interposed therebetween. However, even if the power storage member 5 is omitted as in the second embodiment, the capacitor of the liquid tank bottom wall Va itself is provided. Thus, the plasma discharge current X itself can be generated because the electron emission efficiency is only slightly reduced. In the second embodiment, the structure is simplified by omitting the power storage member 5.

次に図8を参照して本発明の第3実施例を説明する。この実施例は、高電圧放電手段としての高周波高電圧パルス放電用電源Eのグランド側端子Ebに接続したグランド側の外部配線Lbを液槽V内に直接引き込むように配線すると共に、その端末部を、液槽V内底部に設置した導電材製の陰電極Mに接続したものであって、先の実施例の陰電極Mにおける渦巻きコイル4や蓄電部材5は省略されている。その他の構成は、第1実施例と同じであるので、各構成部材には、第1実施例と同じ参照符号を付した。   Next, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, the ground-side external wiring Lb connected to the ground-side terminal Eb of the high-frequency high-voltage pulse discharge power source E as the high-voltage discharge means is wired so as to be directly drawn into the liquid tank V, and its terminal portion Is connected to the negative electrode M made of a conductive material installed at the bottom of the liquid tank V, and the spiral coil 4 and the power storage member 5 in the negative electrode M of the previous embodiment are omitted. Since other configurations are the same as those of the first embodiment, the same reference numerals as those of the first embodiment are assigned to the respective constituent members.

而して第1、第2実施例の陰電極M構造では、液槽V内の液中へ引き込む配線部分を無くして感電のリスクを軽減し得る効果があるが、そのリスクに対し万全の措置をとれれば、本第3実施例のような陰電極構造としても、プラズマ放電流X自体の発生は可能であり、実用上問題はない。この第3実施例では、陰電極構造が簡素化されてコスト節減が図られる。   Thus, in the negative electrode M structure of the first and second embodiments, there is an effect that the risk of electric shock can be reduced by eliminating the wiring portion drawn into the liquid in the liquid tank V. If this is taken, the negative electrode structure as in the third embodiment can generate the plasma discharge current X itself, and there is no practical problem. In the third embodiment, the negative electrode structure is simplified and the cost is reduced.

次に図9を参照して本発明の第4実施例を説明する。この実施例は、量産性を高めるためにプラズマ放電処理を連続的且つ効率よく行えるようにしたものである。プラズマ放電処理液生成装置Aは、液体を貯留する液槽Vの内部に堰としての鉛直平板状の堰板40が一体に設けられ、この堰板40により液槽V内が少なくとも2室(図示例では第1室C1と第2室C2)に画成される。その第1,第2室C1,C2間には、その各々の底部に両端が開口する連通路42が接続され、その連通路42には、第1室C1から第2室C2に向けて収容液を強制的に還流させる還流手段としてのポンプ41が介装されていて、そのポンプ41の運転により第2室C2に還流された収容液が堰板40の上端部を超えて第1室C1側にオーバフロー可能となっている。堰板40の上端部には、そこをオーバフローしようとする収容液中に浸漬されるように陰電極Mが該上端部の長手方向に沿って配設される。   Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, plasma discharge treatment can be performed continuously and efficiently in order to increase mass productivity. In the plasma discharge treatment liquid generator A, a vertical flat plate-like weir plate 40 as a weir is integrally provided in a liquid tank V for storing a liquid, and at least two chambers (see FIG. In the example shown, the first chamber C1 and the second chamber C2) are defined. Between the first and second chambers C1 and C2, a communication passage 42 having both ends opened is connected to each bottom portion, and the communication passage 42 accommodates the first chamber C1 toward the second chamber C2. A pump 41 is provided as a reflux means for forcibly refluxing the liquid, and the stored liquid returned to the second chamber C2 by the operation of the pump 41 exceeds the upper end of the barrier plate 40 and is in the first chamber C1. Overflow is possible. A negative electrode M is disposed at the upper end portion of the dam plate 40 along the longitudinal direction of the upper end portion so as to be immersed in the liquid to be overflowed.

前記陰電極Mは、図示例では導電性の金網で堰板40の上端部にこれを跨ぐように逆U字状に形成され、一方、陽電極Pは、陰電極Mの斜め上方空間に堰板40の上端部の長手方向に沿って互いに間隔をおいて並設されて各々の先端が該陰電極Mに向かって延びる導電性材料よりなる多数の放電用針7…を備える。尚、それら放電用針7…の取付構造は、先の実施例と基本的に同様であるので、説明を省略する。   In the illustrated example, the negative electrode M is formed in a reverse U shape so as to straddle the upper end portion of the barrier plate 40 with a conductive wire net, while the positive electrode P is a barrier in the obliquely upper space of the negative electrode M. A plurality of discharge needles 7 made of a conductive material are provided which are arranged in parallel with each other along the longitudinal direction of the upper end portion of the plate 40 and each tip extends toward the negative electrode M. Note that the mounting structure of the discharge needles 7 is basically the same as that of the previous embodiment, and a description thereof will be omitted.

液槽Vの外には、先の実施例と同様、高電圧放電手段としての高周波高電圧パルス放電用電源Eが設置されており、この電源Eの印加側端子Eaに接続した印加側の外部配線Laが前記陽電極Pの放電用針7に接続される。また同電源Eのグランド側端子Ebに接続したグランド側の外部配線Lbは接地Gされており、その外部配線Lbの途中に前記陰電極Mが介装される。尚、図9に鎖線で示すように、前記外部配線La,Lbの途中(特に高周波高電圧パルス放電用電源Eと陽電極P,陰電極Mとの間)には必要に応じて電圧調整用のトランスTを介装可能である。   Outside the liquid tank V, as in the previous embodiment, a high frequency high voltage pulse discharge power source E is installed as a high voltage discharge means, and the external side of the application side connected to the application side terminal Ea of the power source E The wiring La is connected to the discharge needle 7 of the positive electrode P. The ground-side external wiring Lb connected to the ground-side terminal Eb of the power source E is grounded G, and the negative electrode M is interposed in the middle of the external wiring Lb. As indicated by a chain line in FIG. 9, voltage adjustment is performed as needed in the middle of the external wirings La and Lb (particularly between the high-frequency and high-voltage pulse discharge power source E and the positive electrode P and the negative electrode M). The transformer T can be installed.

而して、この第4実施例においては、液槽V内にプラズマ放電処理すべき液体W(即ち油又は水の何れか一方)を予め入れておき、還流手段としてのポンプ41を連続運転すると、第1室C1内の液体Wがポンプ41で第2室C2内に強制的に圧送され、これにより、第2室C2内の液面が上昇して堰板40を超えるようになると、その液体Wが堰板40の上部からオーバフローして第1室C1に流下し、このようにして第1室C1と第2室C2間で液槽V内の液体Vが強制循環される。この液体循環状態において、堰板40の斜め上方で液槽V内の上部空間に存する前記陽電極Pと、液槽Vの液中(図示例では堰板40の上端部近傍)に浸漬させた陰電極Mとの間で、高周波高電圧パルス放電用電源Eにより高周波高電圧パルスを放電させると、先の実施例と同様にして、陽電極P(放電用針7)と、堰板40をオーバフローしようとする液体Wの液面との間でプラズマ放電流Xが生じる。そして、このプラズマ放電流Xを、堰板40をオーバフローしようとする前記液体Wに直接作用させることにより、この液体Wが、先の実施例で得られるプラズマ放電処理液と同様のプラズマ放電処理液となる。   Thus, in this fourth embodiment, when the liquid W (that is, either oil or water) to be subjected to plasma discharge treatment is placed in the liquid tank V in advance, and the pump 41 as the reflux means is continuously operated. When the liquid W in the first chamber C1 is forcibly pumped into the second chamber C2 by the pump 41, and the liquid level in the second chamber C2 rises and exceeds the weir plate 40, The liquid W overflows from the upper part of the dam plate 40 and flows down to the first chamber C1, and thus the liquid V in the liquid tank V is forcibly circulated between the first chamber C1 and the second chamber C2. In this liquid circulation state, the positive electrode P existing in the upper space in the liquid tank V obliquely above the barrier plate 40 and the liquid in the liquid tank V (near the upper end of the barrier plate 40 in the illustrated example) were immersed. When a high frequency high voltage pulse is discharged between the negative electrode M by the high frequency high voltage pulse discharge power source E, the positive electrode P (discharge needle 7) and the weir plate 40 are connected in the same manner as in the previous embodiment. A plasma discharge current X is generated between the liquid W and the liquid surface to be overflowed. The plasma discharge current X is directly applied to the liquid W that is about to overflow the weir plate 40, so that the liquid W is the same as the plasma discharge treatment liquid obtained in the previous embodiment. It becomes.

この第4実施例によれば、液槽Vの第1室C1と第2室C2間で収容液としての油又は水を循環させながらその収容液に対しプラズマ放電処理を継続的且つ十分に行うことができるため、プラズマ放電処理液の量産化やコスト節減を図る上で有利である。しかも図示例では、堰板40の上端部長手方向に沿って配列された多数の放電用針7…から堰板40のオーバフロー流に向かって多数の(従って広範囲に亘り)プラズマ放電流Xを生じさせることができるから、プラズマ放電処理を連続的に効率よく行うことができる。   According to the fourth embodiment, plasma discharge treatment is continuously and sufficiently performed on the contained liquid while circulating oil or water as the contained liquid between the first chamber C1 and the second chamber C2 of the liquid tank V. Therefore, it is advantageous for mass production of plasma discharge treatment liquid and cost reduction. In addition, in the illustrated example, a large number (and thus a wide range) of plasma discharge currents X are generated from a large number of discharge needles 7 arranged along the longitudinal direction of the upper end of the weir 40 toward the overflow flow of the weir 40. Therefore, plasma discharge treatment can be performed continuously and efficiently.

ところで前記各実施例では、本発明に係るプラズマ放電処理液生成装置Aによりプラズマ放電処理された燃料油としての灯油を、同じくプラズマ放電処理液生成装置Aによりプラズマ放電処理された水、又は酸化還元電位を300mV以下に調整された水と混合、乳化することでエマルジョン燃料が得られるようにしたが、本発明では、プラズマ放電処理すべき燃料油として、灯油以外の種々の燃料油、例えば軽油や重油、廃棄食用油等を用いるようにしても、同様の効果が期待できる。   By the way, in each said Example, the kerosene as a fuel oil plasma-discharge-processed by the plasma-discharge-treatment liquid production | generation apparatus A which concerns on this invention, the water plasma-processed by the plasma-discharge-treatment-liquid production apparatus A, or oxidation reduction Emulsion fuel can be obtained by mixing and emulsifying with water whose potential is adjusted to 300 mV or less. However, in the present invention, various fuel oils other than kerosene such as light oil and Even if heavy oil, waste cooking oil, or the like is used, the same effect can be expected.

また本発明に係るプラズマ放電処理液生成装置Aによりプラズマ放電処理された食用油(例えばサラダ油)を、同じくプラズマ放電処理液生成装置Aによりプラズマ放電処理された水、又は酸化還元電位を300mV以下に調整された水と混合、乳化することで、マヨネーズ、サラダドレッシング等のエマルジョン食品が容易に効率よく製造できるようになる。しかもこのエマルジョン食品は、エマルジョン化のために有害な界面活性剤を使用しないので、安全性の高い高品質なものとなる。   Moreover, the edible oil (for example, salad oil) plasma-discharge-processed by the plasma-discharge-treatment-liquid production | generation apparatus A which concerns on this invention, the water plasma-processed similarly by the plasma-discharge-treatment-liquid production | generation apparatus A, or oxidation-reduction potential shall be 300 mV or less. By mixing and emulsifying with adjusted water, emulsion foods such as mayonnaise and salad dressing can be easily and efficiently produced. In addition, since this emulsion food does not use a harmful surfactant for emulsification, it is of high quality with high safety.

また本発明に係るプラズマ放電処理液生成装置Aによりプラズマ放電処理された化粧用油を、同じくプラズマ放電処理液生成装置Aによりプラズマ放電処理された水、又は酸化還元電位を300mV以下に調整された水と混合、乳化することで、化粧乳液等のエマルジョン化粧品が容易に効率よく製造できるようになる。しかもこのエマルジョン化粧品は、エマルジョン化のために有害な界面活性剤を使用しないので、安全性の高い高品質なものとなる。   Further, cosmetic oil plasma-treated by the plasma discharge treatment liquid generator A according to the present invention was adjusted to water or redox potential of 300 mV or less, which was also plasma discharge treated by the plasma discharge treatment liquid generator A. By mixing and emulsifying with water, emulsion cosmetics such as cosmetic milk can be easily and efficiently produced. In addition, since this emulsion cosmetic does not use a harmful surfactant for emulsification, it is of high quality with high safety.

以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。例えば、第1実施例では蓄電部材5として活性炭素繊維からなる繊維成形体を用いたが、この活性炭素繊維に代えて、液槽底壁Vaの上面側に集まるマイナス電荷(電子)を蓄電可能であり且つ水中へ放出可能な種々の素材を使用することができる。   As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary. For example, in the first embodiment, a fiber molded body made of activated carbon fibers is used as the electricity storage member 5, but negative charges (electrons) collected on the upper surface side of the liquid tank bottom wall Va can be stored instead of the activated carbon fibers. Various materials that can be released into water can be used.

本発明の第1実施例に係るプラズマ放電処理液生成装置を示す全体縦断面図1 is an overall longitudinal sectional view showing a plasma discharge processing liquid generating apparatus according to a first embodiment of the present invention. 前記プラズマ放電処理液生成装置の平断面図(図1の2−2線断面図)Plan sectional view of the plasma discharge treatment liquid generating apparatus (sectional view taken along line 2-2 in FIG. 1) 図1の3矢視部の拡大縦断面図1 is an enlarged vertical cross-sectional view of the portion indicated by the arrow 3 in FIG. プラズマ放電の原理を説明するための実験モデル図Experimental model for explaining the principle of plasma discharge 陽電極と陰電極間でのプラズマ放電流の発生状態を簡略的に示す説明図Explanatory drawing which shows simply the generation state of plasma discharge current between the positive electrode and the negative electrode プラズマ放電処理済みの油及び水を混合、乳化させる攪拌器の一例を示す縦断面図Longitudinal sectional view showing an example of a stirrer that mixes and emulsifies plasma-discharge treated oil and water 本発明の第2実施例に係るプラズマ放電処理液生成装置を示す、図1対応図FIG. 1 is a view corresponding to FIG. 1, showing a plasma discharge processing liquid generating apparatus according to a second embodiment of the present invention. 本発明の第3実施例に係るプラズマ放電処理液生成装置を示す、図1対応図FIG. 1 is a view corresponding to FIG. 1, showing a plasma discharge processing liquid generating apparatus according to a third embodiment of the present invention. 本発明の第4実施例に係るプラズマ放電処理液生成装置を示す全体縦断面図Whole longitudinal cross-sectional view which shows the plasma discharge processing liquid production | generation apparatus which concerns on 4th Example of this invention. 図9の10矢視平面図FIG. 9 plan view in the direction of arrow 10 第4実施例に係るプラズマ放電処理液生成装置の要部を示す斜視図(図9の11矢視より見た斜視図)The perspective view which shows the principal part of the plasma discharge processing liquid production | generation apparatus which concerns on 4th Example (The perspective view seen from the 11 arrow of FIG. 9) 陽電極と陰電極間でのプラズマ放電流の発生状態を簡略的に示す説明図(図11の12−12線拡大断面図)Explanatory drawing which shows simply the generation | occurrence | production state of the plasma discharge current between a positive electrode and a negative electrode (12-12 line expanded sectional view of FIG. 11)

符号の説明Explanation of symbols

A・・・プラズマ放電処理油生成装置
C1・・第1室
C2・・第2室
E・・・高周波高電圧パルス放電用電源(高電圧放電手段)
Ea・・印加側端子
Eb・・グランド側端子
G・・・接地
M・・・陰電極
P・・・陽電極
V・・・液槽
W・・・液体(油又は水)
Wf・・液面
X・・・プラズマ放電流
7・・・放電用針
40・・堰板(堰)
41・・ポンプ(還流手段)
A ... Plasma discharge treatment oil generator C1..First chamber C2..Second chamber E ... Power source for high frequency high voltage pulse discharge (high voltage discharge means)
Ea ... Application side terminal Eb ... Ground side terminal G ... Ground M ... Negative electrode P ... Positive electrode V ... Liquid tank W ... Liquid (oil or water)
Wf ... Liquid level X ... Plasma discharge current 7 ... Discharge needle 40 ... Dam plate (weir)
41 .. Pump (refluxing means)

Claims (9)

油(W)を貯留した液槽(V)と、この液槽(V)の油面(Wf)上の空間に配設される放電用の陽電極(P)と、この液槽(V)の油中に少なくとも一部を臨ませた陰電極(M)と、その陰電極(M)より油中に電子を過度に放出させて陽電極(P)と油面(Wf)との間でプラズマ放電を生じさせ得るように該陽電極(P)と陰電極(M)との間で高電圧放電を行うための高電圧放電手段(E)とを少なくとも備えたことを特徴とする、プラズマ放電処理油生成装置。   A liquid tank (V) storing oil (W), a discharge positive electrode (P) disposed in a space above the oil level (Wf) of the liquid tank (V), and the liquid tank (V) Between the positive electrode (P) and the oil surface (Wf) by excessively discharging electrons into the oil from the negative electrode (M) having at least a portion thereof exposed to the oil. A plasma comprising at least high-voltage discharge means (E) for performing high-voltage discharge between the positive electrode (P) and the negative electrode (M) so as to cause plasma discharge. Discharge treatment oil generator. 水と混合、乳化されてエマルジョンを形成するための、エマルジョン原料油であって、 前記請求項1に記載されたプラズマ放電処理油生成装置(A)によりプラズマ放電処理されたことを特徴とする、エマルジョン原料油。   An emulsion raw material oil for mixing and emulsifying with water to form an emulsion, wherein the plasma discharge treatment is performed by the plasma discharge treatment oil generation device (A) according to claim 1, Emulsion raw material oil. 液体を貯留した液槽(V)と、この液槽(V)の液面(Wf)上の空間に配設される放電用の陽電極(P)と、この液槽(V)の液中に少なくとも一部を臨ませた陰電極(M)と、その陰電極(M)より液中に電子を過度に放出させて陽電極(P)と液面(Wf)との間でプラズマ放電を生じさせ得るように該陽電極(P)と陰電極(M)との間で高電圧放電を行うための高電圧放電手段(E)とを少なくとも備えてなるプラズマ放電処理液生成装置(A)を用いて、油と水を別々にプラズマ放電処理し、
次いで、そのプラズマ放電処理された油と水とを混合、乳化してエマルジョンを得ることを特徴とする、エマルジョン製造方法。
A liquid tank (V) storing liquid, a positive electrode (P) for discharge disposed in a space above the liquid level (Wf) of the liquid tank (V), and a liquid in the liquid tank (V) A negative electrode (M) having at least a portion thereof exposed to the surface, and excessive discharge of electrons into the liquid from the negative electrode (M) to cause plasma discharge between the positive electrode (P) and the liquid surface (Wf). A plasma discharge treatment liquid generator (A) comprising at least high voltage discharge means (E) for performing high voltage discharge between the positive electrode (P) and the negative electrode (M) so as to be generated. , And plasma discharge treatment of oil and water separately,
Then, the plasma discharge-treated oil and water are mixed and emulsified to obtain an emulsion.
請求項2に記載のエマルジョン原料油を、酸化還元電位が300mV以下に調整された水と混合、乳化してエマルジョンを得ることを特徴とする、エマルジョン製造方法。   A method for producing an emulsion, wherein the emulsion raw material oil according to claim 2 is mixed and emulsified with water whose oxidation-reduction potential is adjusted to 300 mV or less to obtain an emulsion. 請求項3又は4に記載のエマルジョン製造方法により得られたエマルジョン燃料であって、
プラズマ放電処理された燃料油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されることを特徴とする、エマルジョン燃料。
An emulsion fuel obtained by the emulsion production method according to claim 3 or 4,
An emulsion fuel characterized in that it is constituted by mixing and emulsifying plasma discharge-treated fuel oil with water subjected to plasma discharge treatment or water whose oxidation-reduction potential is adjusted to 300 mV or less.
請求項3又は4に記載のエマルジョン製造方法により得られたエマルジョン食品であって、
プラズマ放電処理された食用油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されることを特徴とする、エマルジョン食品。
An emulsion food product obtained by the emulsion production method according to claim 3 or 4,
An emulsion food characterized by mixing and emulsifying plasma discharge-treated edible oil with water subjected to plasma discharge or water whose oxidation-reduction potential is adjusted to 300 mV or less.
請求項3又は4に記載のエマルジョン製造方法により得られたエマルジョン化粧品であって、
プラズマ放電処理された化粧用油を、プラズマ放電処理された水、又は酸化還元電位が300mV以下に調整された水と混合、乳化して構成されることを特徴とする、エマルジョン化粧品。
An emulsion cosmetic obtained by the emulsion production method according to claim 3 or 4,
An emulsion cosmetic comprising a cosmetic oil subjected to plasma discharge treatment and mixed and emulsified with water subjected to plasma discharge treatment or water whose oxidation-reduction potential is adjusted to 300 mV or less.
内部に液体(W)を貯留した液槽(V)と、この液槽(V)の液面(Wf)上の空間に配設される放電用の陽電極(P)と、この液槽(V)の液中に少なくとも一部を臨ませた陰電極(M)と、その陰電極(M)より液中に電子を過度に放出させて陽電極(P)と液面(Wf)との間でプラズマ放電を生じさせ得るように該陽電極(P)と陰電極(M)との間で高電圧放電を行うための高電圧放電手段(E)とを少なくとも備えてなるプラズマ放電処理液生成装置であって、
前記液槽(V)は、その内部を少なくとも2室(C1,C2)に分割する堰(40)を備え、その2室(C1,C2)間には、その第1室(C1)から第2室(C2)に向けて収容液を強制的に還流させる還流手段(41)が設けられていて、その第2室(C2)に還流された収容液が前記堰(40)の上端部を超えて第1室(C1)側にオーバフロー可能であり、
前記堰(40)の上端部には、そこをオーバフローしようとする収容液中に浸漬されるように前記陰電極(M)が該上端部の長手方向に沿って配設されることを特徴とする、プラズマ放電処理液生成装置。
A liquid tank (V) storing liquid (W) therein, a discharge positive electrode (P) disposed in a space above the liquid level (Wf) of the liquid tank (V), and the liquid tank ( The negative electrode (M) having at least a part thereof in the liquid V), and the negative electrode (M) excessively emits electrons into the liquid to cause the positive electrode (P) and the liquid surface (Wf) to Plasma discharge treatment liquid comprising at least high voltage discharge means (E) for performing high voltage discharge between the positive electrode (P) and the negative electrode (M) so that plasma discharge can be generated between the positive electrode and the negative electrode (M) A generating device,
The liquid tank (V) includes a weir (40) that divides the interior thereof into at least two chambers (C1, C2), and the first chamber (C1) to the second chamber (C1, C2) are provided between the two chambers (C1, C2). A reflux means (41) for forcibly refluxing the stored liquid toward the second chamber (C2) is provided, and the stored liquid refluxed to the second chamber (C2) passes the upper end of the weir (40). Overflow to the first chamber (C1) side is possible,
The negative electrode (M) is arranged at the upper end of the weir (40) along the longitudinal direction of the upper end so as to be immersed in a liquid to overflow thereover. A plasma discharge treatment liquid generator.
前記陰電極(M)は、金網で前記堰(40)の上端部にこれを跨ぐように形成され、前記陽電極(P)は、前記陰電極(M)の上方空間に前記堰(40)の上端部の長手方向に互いに間隔をおいて並設されて各々の先端が該陰電極(M)に向かって延びる導電性材料よりなる多数の放電用針(7)を備えることを特徴とする、請求項8に記載のプラズマ放電処理液生成装置。
The negative electrode (M) is formed with a wire mesh so as to straddle the upper end of the weir (40), and the positive electrode (P) is disposed above the negative electrode (M) in the space above the weir (40). A plurality of discharge needles (7) made of a conductive material that are arranged in parallel with each other in the longitudinal direction of the upper end of each of the electrodes and each tip extends toward the negative electrode (M). The plasma discharge treatment liquid generator according to claim 8.
JP2006047331A 2006-02-23 2006-02-23 Plasma discharge-treated liquid production apparatus and emulsion feedstock oil, and method for producing emulsion, and emulsion fuel/food/cosmetic Pending JP2007224156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047331A JP2007224156A (en) 2006-02-23 2006-02-23 Plasma discharge-treated liquid production apparatus and emulsion feedstock oil, and method for producing emulsion, and emulsion fuel/food/cosmetic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047331A JP2007224156A (en) 2006-02-23 2006-02-23 Plasma discharge-treated liquid production apparatus and emulsion feedstock oil, and method for producing emulsion, and emulsion fuel/food/cosmetic

Publications (1)

Publication Number Publication Date
JP2007224156A true JP2007224156A (en) 2007-09-06

Family

ID=38546255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047331A Pending JP2007224156A (en) 2006-02-23 2006-02-23 Plasma discharge-treated liquid production apparatus and emulsion feedstock oil, and method for producing emulsion, and emulsion fuel/food/cosmetic

Country Status (1)

Country Link
JP (1) JP2007224156A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306947A (en) * 2006-02-23 2007-11-29 Sutai Rabo:Kk Asbestos detoxification method and plasma- discharged water generator
JP2008019359A (en) * 2006-07-13 2008-01-31 Shinkawa Yoshiro Manufacturing method of emulsion composition and apparatus for emulsification
JP2009297659A (en) * 2008-06-13 2009-12-24 Sutai Rabo:Kk Method for utilizing asbestos
JP4476348B1 (en) * 2009-05-27 2010-06-09 亮一 大坪 Emulsion fuel
CN102294193A (en) * 2011-06-13 2011-12-28 苏州市奥普斯等离子体科技有限公司 Low temperature plasma fuel oil microemulsion method and apparatus thereof
JP2014181302A (en) * 2013-03-19 2014-09-29 Matsuo Junichi Microemulsion preparation apparatus
CN115413749A (en) * 2022-08-09 2022-12-02 大连民族大学 Atmospheric pressure cold plasma preparation method and application of efficient bacteriostatic active oil-water emulsion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070946A (en) * 1999-09-01 2001-03-21 Himeka Engineering Kk Method and apparatus for detoxification using corona discharge
JP2004076701A (en) * 2002-08-22 2004-03-11 Denso Corp Method and device for generating lower hydrocarbon
JP2006255674A (en) * 2005-03-18 2006-09-28 Asahi Breweries Ltd Sterilizing device, liquid circulation device and nutritious liquid cultivation system
JP2006289236A (en) * 2005-04-08 2006-10-26 Sutai Rabo:Kk Apparatus for producing plasma discharge treated water, plasma discharge water, plant growth accelerating liquid, cosmetic water, ozone wash water for industrial use, ozone sterilization water for medical use, and ozone therapeutic water for medical use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070946A (en) * 1999-09-01 2001-03-21 Himeka Engineering Kk Method and apparatus for detoxification using corona discharge
JP2004076701A (en) * 2002-08-22 2004-03-11 Denso Corp Method and device for generating lower hydrocarbon
JP2006255674A (en) * 2005-03-18 2006-09-28 Asahi Breweries Ltd Sterilizing device, liquid circulation device and nutritious liquid cultivation system
JP2006289236A (en) * 2005-04-08 2006-10-26 Sutai Rabo:Kk Apparatus for producing plasma discharge treated water, plasma discharge water, plant growth accelerating liquid, cosmetic water, ozone wash water for industrial use, ozone sterilization water for medical use, and ozone therapeutic water for medical use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306947A (en) * 2006-02-23 2007-11-29 Sutai Rabo:Kk Asbestos detoxification method and plasma- discharged water generator
JP2008019359A (en) * 2006-07-13 2008-01-31 Shinkawa Yoshiro Manufacturing method of emulsion composition and apparatus for emulsification
JP2009297659A (en) * 2008-06-13 2009-12-24 Sutai Rabo:Kk Method for utilizing asbestos
JP4476348B1 (en) * 2009-05-27 2010-06-09 亮一 大坪 Emulsion fuel
JP2011006497A (en) * 2009-05-27 2011-01-13 Ryoichi Otsubo Emulsion fuel
CN102294193A (en) * 2011-06-13 2011-12-28 苏州市奥普斯等离子体科技有限公司 Low temperature plasma fuel oil microemulsion method and apparatus thereof
JP2014181302A (en) * 2013-03-19 2014-09-29 Matsuo Junichi Microemulsion preparation apparatus
CN115413749A (en) * 2022-08-09 2022-12-02 大连民族大学 Atmospheric pressure cold plasma preparation method and application of efficient bacteriostatic active oil-water emulsion
CN115413749B (en) * 2022-08-09 2024-01-05 大连民族大学 Preparation method and application of atmospheric pressure cold plasma of efficient antibacterial active oil-water emulsion

Similar Documents

Publication Publication Date Title
JP2007224156A (en) Plasma discharge-treated liquid production apparatus and emulsion feedstock oil, and method for producing emulsion, and emulsion fuel/food/cosmetic
JP5000855B2 (en) Plasma discharge treated water generator, plasma discharge water, plant growth promoting liquid, cosmetic water, industrial ozone cleaning water, medical ozone sterilizing water, and medical ozone treatment water
JP4111858B2 (en) Underwater discharge plasma method and liquid treatment apparatus
US5154895A (en) Ozone generator in liquids
CN104556318B (en) Liquid treatment apparatus and liquid treatment method
JP6746081B2 (en) Liquid processing device
JP6771496B2 (en) Systems and methods for treating fluids by sonoelectrochemistry
JP2000263062A (en) Apparatus and method for producing modified water and apparatus and method for producing emulsion fuel
JP6995373B2 (en) A method of producing a hydrocarbon-based synthetic fuel by adding water to a hydrocarbon-based fuel oil.
JP2001293478A (en) Waste water treating device
KR100537223B1 (en) Waste Treatment Device And Method Thereof Using By Electromagnetic Wave And Active Electron
KR101828781B1 (en) Sludge treatment system using electron generation apparatus
CN208500443U (en) Discharging structure under a kind of electrode sleeve pipe type water can be used for water process
JP6854427B2 (en) Liquid processing equipment
RU2130898C1 (en) Water cleaning method
US1326968A (en) Process of extracting oils from fatty substances
JP5619204B2 (en) Microemulsion generator
JP7240057B1 (en) smoking equipment
RU2393028C1 (en) Device for ultrasound-plasma stimulation of physico-chemical and technological processes in fluids
Maeda et al. Voltage zero-crossing as a factor inducing water trees
RU158367U1 (en) WATER TREATMENT DEVICE
RU2163893C1 (en) Device for water treatment by electric charges
CN108439545A (en) Discharging structure under a kind of electrode sleeve pipe type water can be used for water process
JP2012075964A (en) Washer and humidifier equipped with the washer
US4988419A (en) Method and apparatus for producing conductivity in materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120711