JP2007224060A - Heat radiation material - Google Patents

Heat radiation material Download PDF

Info

Publication number
JP2007224060A
JP2007224060A JP2006043306A JP2006043306A JP2007224060A JP 2007224060 A JP2007224060 A JP 2007224060A JP 2006043306 A JP2006043306 A JP 2006043306A JP 2006043306 A JP2006043306 A JP 2006043306A JP 2007224060 A JP2007224060 A JP 2007224060A
Authority
JP
Japan
Prior art keywords
group
direct bond
bismaleimide
represented
divalent substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006043306A
Other languages
Japanese (ja)
Other versions
JP5180440B2 (en
Inventor
Jun Kamata
潤 鎌田
Mitsunobu Yoshida
光伸 吉田
Kenichi Goto
謙一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006043306A priority Critical patent/JP5180440B2/en
Publication of JP2007224060A publication Critical patent/JP2007224060A/en
Application granted granted Critical
Publication of JP5180440B2 publication Critical patent/JP5180440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiation material having excellent heat and moisture resistances, heat conductivity, mechanical strength, low stress properties, electrical insulating properties and molding processability. <P>SOLUTION: The heat radiation material comprises at least a cured product of a bismaleimide represented by general formula (I) (wherein, I represents a maleimide group; Ms represent each a mesogen group; and S represents a spacer). The heat radiation material comprises at least the cured product of a bismaleimide represented by general formula (II). The bismaleimide compound is represented by general formula (II). A resin composition comprises the compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性、熱伝導性、耐湿性、機械強度、低応力性、電気絶縁性、および成形加工性に優れた放熱材料、新規ビスマレイミド化合物及び該化合物を含有する樹脂組成物に関する。   The present invention relates to a heat dissipation material excellent in heat resistance, thermal conductivity, moisture resistance, mechanical strength, low stress, electrical insulation, and molding processability, a novel bismaleimide compound, and a resin composition containing the compound.

近年、電子機器の高機能化・小型化・軽量化に伴い、電子部品の高密度化が進んでいる。これにより電子部品内での発熱量が著しく増大しており、部品の信頼性・寿命低下の一因となっている。このように電子機器における熱問題は極めて重要な課題であり、その対策に用いられる放熱材料には更なる熱伝導性向上が求められている。放熱材料のうち、特に電気絶縁性が求められる分野で用いられる樹脂材料の熱伝導性向上策としては、熱伝導性の高い無機セラミックス等のフィラーを添加する手法が一般的である。これらの方法では添加量の制限から十分な熱伝導性を得ることが難しく、樹脂自体の熱伝導性の向上が求められている。   In recent years, with the increase in functionality, size, and weight of electronic devices, the density of electronic components has been increasing. As a result, the amount of heat generated in the electronic component is remarkably increased, which contributes to a decrease in reliability and life of the component. As described above, the heat problem in the electronic device is a very important issue, and the heat dissipation material used for the countermeasure is required to further improve the thermal conductivity. As a measure for improving the thermal conductivity of a resin material used in a field where electrical insulation is particularly required among heat dissipation materials, a method of adding a filler such as inorganic ceramics having high thermal conductivity is generally used. In these methods, it is difficult to obtain sufficient thermal conductivity due to the limitation of the addition amount, and improvement of the thermal conductivity of the resin itself is required.

熱伝導性の高い熱硬化性樹脂としては、例えば、特許文献1および特許文献2に記載のようなエポキシ樹脂が報告されている。該樹脂は、熱伝導性としてはある程度効果はあるものの、高い耐熱性や耐湿性に加え、機械強度・低応力性の求められる分野での要求には必ずしも十分に応えられるものではなかった。   As thermosetting resins having high thermal conductivity, for example, epoxy resins as described in Patent Document 1 and Patent Document 2 have been reported. Although the resin is effective to some extent in terms of thermal conductivity, it has not always been able to sufficiently meet the demands in the fields that require high heat resistance and moisture resistance, as well as mechanical strength and low stress.

一方、ビスマレイミド樹脂は熱硬化性樹脂であり、耐熱性・耐湿性に優れる材料として成形材料、積層材料の分野で実用化されている。しかしながら従来報告されているビスマレイミド樹脂の熱硬化物は、一般的なエポキシ樹脂と同様極めて脆弱でクラックを生じ易く、機械強度の点で実用上大きな課題があった。また、ビスマレイミド化合物のうち液晶性を発現するものもすでに報告されている(例えば、非特許文献1)。しかしながら、これら液晶性ビスマレイミドの熱伝導性・機械強度・低応力性については全く議論されておらず、放熱材料への実用の可能性については全く示されていない。   On the other hand, bismaleimide resin is a thermosetting resin and has been put to practical use in the fields of molding materials and laminated materials as a material having excellent heat resistance and moisture resistance. However, conventionally reported thermosets of bismaleimide resins are extremely fragile and easily cracked, as in general epoxy resins, and have a large practical problem in terms of mechanical strength. Moreover, the thing which expresses liquid crystallinity among bismaleimide compounds has already been reported (for example, nonpatent literature 1). However, the thermal conductivity, mechanical strength, and low stress properties of these liquid crystalline bismaleimides are not discussed at all, and the possibility of practical use as a heat dissipation material is not shown at all.

以上のように、耐熱性、熱伝導性、耐湿性、機械強度、低応力性、電気絶縁性、および成形加工性に優れる放熱材料の開発が、強く望まれていた。
特開平11−323162号公報 再公表02/094905号公報 Macromol.Chem.Phys.,No.17,201(2000)
As described above, there has been a strong demand for the development of a heat dissipation material that is excellent in heat resistance, thermal conductivity, moisture resistance, mechanical strength, low stress properties, electrical insulation, and moldability.
JP-A-11-323162 Republication No. 02/094905 Macromol. Chem. Phys. , No. 17, 201 (2000)

本発明は上記事情を考慮してなされたものであり、耐熱性、熱伝導性、耐湿性、機械強度、低応力性、電気絶縁性、および成形加工性に優れる放熱材料を提供することである。     The present invention has been made in view of the above circumstances, and is to provide a heat dissipating material that is excellent in heat resistance, thermal conductivity, moisture resistance, mechanical strength, low stress, electrical insulation, and moldability. .

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定のビスマレイミドの硬化物が耐熱性、熱伝導性、耐湿性、機械強度、低応力性、電気絶縁性、および成形加工性に優れることから、放熱材料への応用に極めて有用であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a cured product of a specific bismaleimide has heat resistance, thermal conductivity, moisture resistance, mechanical strength, low stress, electrical insulation, and Since it was excellent in molding processability, it was found to be extremely useful for application to a heat dissipation material, and the present invention was completed.

即ち、本発明は、下記(1)乃至(6)である。
(1)一般式(I)で表されるビスマレイミドの硬化物を少なくとも含有する放熱材料。
That is, the present invention includes the following (1) to (6).
(1) A heat dissipation material containing at least a cured product of bismaleimide represented by the general formula (I).

(式中、Iはマレイミド基、Mはメソゲン基、Sはスペーサーを示す。)
(2)一般式(II)で表されるビスマレイミドの硬化物を少なくとも含有する放熱材料。
(In the formula, I represents a maleimide group, M represents a mesogenic group, and S represents a spacer.)
(2) A heat dissipation material containing at least a cured product of bismaleimide represented by the general formula (II).

(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yおよびzは、各々独立して直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。)
(3)更に無機充填剤を含有するものである(1)又は(2)記載の放熱材料。
(4)無機充填剤が、酸化アルミニウム、窒化アルミニウム、弗化アルミニウム、弗化カルシウム、シリカ、窒化ケイ素、炭化ケイ素、窒化ホウ素、酸化マグネシウム、酸化ベリリウム、酸化スズ、グラファイト、炭素繊維、ダイヤモンドから選ばれる少なくとも一種である上記(3)記載の放熱材料。
(5)一般式(II)で表されるビスマレイミドを少なくとも含有する樹脂組成物。
(In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y and z represents a divalent substituent composed are each independently a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O A divalent substituent selected from the group of N).
(3) The heat dissipating material according to (1) or (2), further containing an inorganic filler.
(4) The inorganic filler is selected from aluminum oxide, aluminum nitride, aluminum fluoride, calcium fluoride, silica, silicon nitride, silicon carbide, boron nitride, magnesium oxide, beryllium oxide, tin oxide, graphite, carbon fiber, and diamond. The heat dissipating material according to (3), which is at least one kind.
(5) A resin composition containing at least a bismaleimide represented by the general formula (II).

(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yおよびzは、各々独立して直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。)
(6)一般式(III)で表されるビスマレイミド。
(In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is a group of 2 to 20 atoms represented by a combination of —CH 2 —, —Si (CH 3 ) 2 —, and —O— .y and z represents a divalent substituent composed are each independently a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O A divalent substituent selected from the group of N).
(6) A bismaleimide represented by the general formula (III).

(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。zは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。) (In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y showing a divalent substituent composed of a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 valent selected from the group consisting of N- .z illustrating a substituent, a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - C -NH -, - C (CH 3 ) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 selected from the group consisting of N- A valent substituent.)

本発明によれば、耐熱性、熱伝導性、耐湿性、機械強度、低応力性、電気絶縁性、および成形加工性に優れる放熱材料を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the heat radiating material which is excellent in heat resistance, heat conductivity, moisture resistance, mechanical strength, low stress property, electrical insulation, and moldability.

本発明の放熱材料は、一般式(I)で表されるビスマレイミドの硬化物を少なくとも含有することを特徴とするものである。   The heat dissipation material of the present invention is characterized by containing at least a cured product of bismaleimide represented by the general formula (I).

(式中、Iはマレイミド基、Mはメソゲン基、Sはスペーサーを示す。)
また、本発明の放熱材料は、下記一般式(II)で表されるビスマレイミドの硬化物を少なくとも含有する放熱材料である。
(In the formula, I represents a maleimide group, M represents a mesogenic group, and S represents a spacer.)
The heat dissipation material of the present invention is a heat dissipation material containing at least a cured product of bismaleimide represented by the following general formula (II).

(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yおよびzは、各々独立して直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。) (In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y and z represents a divalent substituent composed are each independently a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O A divalent substituent selected from the group of N).

本発明に関わるビスマレイミドに含まれるメソゲン基とは、剛直で配向性の高い置換基を意味する。具体的には一般式(II)に含まれる、−A―z―A−に相当する部分であり、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。芳香族基、縮合芳香族基、脂環式複素環基としては、具体例として、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、ビシクロオクタン、ビシクロノナン、およびビシクロデカン等が挙げられる。zは、各々独立して直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。 The mesogenic group contained in the bismaleimide according to the present invention means a rigid and highly oriented substituent. Specifically, it is a portion corresponding to -A 1 -z-A 2 -contained in the general formula (II), and A 1 and A 2 are each independently an aromatic group, a condensed aromatic group, an oil A divalent substituent selected from cyclic heterocyclic groups or a direct bond is shown. However, A 1 and A 2 are not directly bonded at the same time. Specific examples of the aromatic group, condensed aromatic group, and alicyclic heterocyclic group include phenylene, biphenylene, naphthylene, anthracenylene, bicyclooctane, bicyclononane, and bicyclodecane. z is each independently a direct bond, —O—, —CH 2 —CH 2 —, —CH═CH—, —C≡C—, —CO—, —CO—O—, —CO—NH—, A divalent substituent selected from the group of —C (CH 3 ) ═CH—, —CH═N—, —CH═N—N═CH—, —N═N— or —N (O) ═N—. Indicates.

メソゲン基の具体例として、ビフェニル、ジフェニルエーテル、スチルベン、ジフェニルアセチレン、ベンゾフェノン、フェニルベンゾエート、フェニルベンズアミド、1,2-ジフェニルプロペン、N-ベンジリデンベンゼンアミン、1,2−ジベンジリデンヒドラジン、アゾベンゼン、2−ナフトエート、フェニル−2−ナフトエート、ビシクロ[2.2.2]オクタン-1-カルボキシレート、およびフェニルビシクロ[2.2.2]オクタン-1-カルボキシレート等が挙げられるがこれらに限るものではない。好ましくは、ビフェニル、スチルベン、ジフェニルアセチレン、フェニルベンゾエート、アゾベンゼン、2−ナフトエート、およびビシクロ[2.2.2]オクタン-1-カルボキシレート等である。   Specific examples of mesogenic groups include biphenyl, diphenyl ether, stilbene, diphenylacetylene, benzophenone, phenylbenzoate, phenylbenzamide, 1,2-diphenylpropene, N-benzylidenebenzeneamine, 1,2-dibenzylidenehydrazine, azobenzene, 2-naphthoate , Phenyl-2-naphthoate, bicyclo [2.2.2] octane-1-carboxylate, phenylbicyclo [2.2.2] octane-1-carboxylate, and the like. Biphenyl, stilbene, diphenylacetylene, phenylbenzoate, azobenzene, 2-naphthoate, bicyclo [2.2.2] octane-1-carboxylate, and the like are preferable.

本発明に関わるビスマレイミドに含まれるスペーサーとは、屈曲性分子鎖を意味する。具体的には一般式(II)に含まれる、−y―x―y−に相当する部分であり、xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示し、yは、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。xを構成する原子団の種類は、−CH−、−Si(CH−、または−O−の群から、何種類選んでも構わない。xを構成する原子団の数が少ない場合、ビスマレイミドの分子構造に十分な屈曲性が発現されず、硬化後の機械強度や熱伝導性に好ましい特性が得られない可能性がある。また原子団の数が多すぎる場合、樹脂の耐熱性が低下する可能性がある。xの具体例として、炭素数2乃至20のアルキレン基、ケイ素数2乃至10のポリシロキサン基、炭素数2乃至10のポリオキシエチレン基、または−(CH−Si(CH−[O−Si(CH]−(CH−で表される変性ポリシロキサン基等が挙げられる。但し、mは1乃至4の整数を示し、nは1乃至5の整数を示す。 The spacer contained in the bismaleimide according to the present invention means a flexible molecular chain. Specifically included in the formula (II), a portion corresponding to -y-x-y-, x is, -CH 2 -, - Si ( CH 3) 2 -, or -O- group of 2 to be represented by combining chosen from a divalent substituent composed of 20 atomic group, y is, -O -, - CH 2 -CH 2 -, - CH = CH -, - C ≡C -, - CO -, - CO-O -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N A divalent substituent selected from the group of-or -N (O) = N- is shown. Any number of atomic groups constituting x may be selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. When the number of atomic groups constituting x is small, sufficient flexibility is not exhibited in the molecular structure of bismaleimide, and there is a possibility that favorable characteristics for mechanical strength and thermal conductivity after curing cannot be obtained. Moreover, when there are too many atomic groups, the heat resistance of resin may fall. Specific examples of x include alkylene groups having 2 to 20 carbon atoms, polysiloxane groups having 2 to 10 silicon atoms, polyoxyethylene groups having 2 to 10 carbon atoms, or — (CH 2 ) n —Si (CH 3 ) 2. And a modified polysiloxane group represented by — [O—Si (CH 3 ) 2 ] m — (CH 2 ) n —. Here, m represents an integer of 1 to 4, and n represents an integer of 1 to 5.

上記−y―x―y−に相当するスペーサーの具体例として、上記xの具体例に示した置換基の他、−O−(CHh−O−、−CO−NH−(CHi−NH−CO−、−CO−O−(CHi−O−CO−、−O−(CH−CH−O)−、−CO−NH−(CH−Si(CH−[O−Si(CH]−(CH−NH−CO−のいずれかで表される置換基を挙げることができる。但し、上記hは1乃至20の整数、iは1乃至5の整数、kは1乃至10の整数、mは1乃至4の整数を示し、nは1乃至5の整数を表す。また、−O−(CH−O−、−O−(CH−O−、−O−(CH10−O−、−CO−NH−(CH−Si(CH−O−Si(CH−(CH−NH−CO−、−O−(CH−O)−は、特に好ましい例として挙げられる。 Specific examples of the spacer corresponding to the -y-x-y-, other substituents shown in the specific examples of the x, -O- (CH 2) h -O -, - CO-NH- (CH 2 ) I —NH—CO—, —CO—O— (CH 2 ) i —O—CO—, —O— (CH 2 —CH 2 —O) k —, —CO—NH— (CH 2 ) n Si (CH 3) 2 - [ O-Si (CH 3) 2] m - (CH 2) can be exemplified n -NH-CO- substituent represented by any one of. Where h is an integer from 1 to 20, i is an integer from 1 to 5, k is an integer from 1 to 10, m is an integer from 1 to 4, and n is an integer from 1 to 5. Further, -O- (CH 2) 6 -O -, - O- (CH 2) 8 -O -, - O- (CH 2) 10 -O -, - CO-NH- (CH 2) 3 -Si (CH 3 ) 2 —O—Si (CH 3 ) 2 — (CH 2 ) 3 —NH—CO— and —O— (CH 2 —O) 3 — are particularly preferred examples.

本発明に関わるビスマレイミド化合物は、公知のいかなる方法で製造されても構わない。例えば、前記公知非特許文献(Macromol.Chem.Phys.,No.17,201(2000))記載のように、予め合成したジオール化合物を、公知の化合物4−マレイミドベンゾイルクロリドと室温下で混合して合成する方法、公知特許文献(特公昭46−23250号公報、特公昭49−40231号公報、特公昭59−52660号公報、特開昭62−155255号公報)記載のように、予め合成したジアミン化合物と無水マレイン酸を室温下で開環付加反応させビスマレアミド酸とし、次に脱水剤として無水酢酸を用いて触媒存在下50〜60℃で脱水環化させて合成する方法等が挙げられる。   The bismaleimide compound according to the present invention may be produced by any known method. For example, as described in the aforementioned known non-patent document (Macromol. Chem. Phys., No. 17, 201 (2000)), a diol compound synthesized in advance is mixed with a known compound 4-maleimidobenzoyl chloride at room temperature. And synthesized in advance as described in known patent documents (Japanese Patent Publication No. 46-23250, Japanese Patent Publication No. 49-40231, Japanese Patent Publication No. 59-52660, Japanese Patent Publication No. Sho 62-155255). Examples thereof include a method in which a diamine compound and maleic anhydride are subjected to a ring-opening addition reaction at room temperature to form bismaleamic acid, followed by dehydration cyclization at 50 to 60 ° C. in the presence of a catalyst using acetic anhydride as a dehydrating agent.

本発明に関わるビスマレイミドの硬化物は、加熱温度は好ましくは100〜300℃、より好ましくは120〜250℃の間で行われるべきであるが、用いるビスマレイミドにより適宜決められる。但し、加熱温度が高すぎるとビスマレイミドの分子配列によって形成される高次構造が緻密にならず、熱伝導性が十分向上しない可能性がある。また加熱温度が低すぎると、硬化が十分起こらず得られる放熱材料の機械強度が十分得られない場合がある。また、硬化時の圧力は好ましくは1〜100kg/cm程度、加熱加圧時間は好ましくは1〜600分程度であり、用いるビスマレイミドにより適宜決めることができる。加熱加圧時間は、短すぎると硬化が十分起こらず、得られる放熱材料の機械強度が十分得られない可能性がある。また加熱加圧時間が長すぎると、生産性が低下する場合がある。 The bismaleimide cured product according to the present invention is preferably heated at a temperature of 100 to 300 ° C., more preferably 120 to 250 ° C., depending on the bismaleimide used. However, if the heating temperature is too high, the higher order structure formed by the molecular arrangement of bismaleimide may not be dense, and the thermal conductivity may not be sufficiently improved. On the other hand, if the heating temperature is too low, the mechanical strength of the heat-dissipating material obtained without sufficient curing may not be obtained. Moreover, the pressure at the time of hardening becomes like this. Preferably it is about 1-100 kg / cm < 2 >, and heat-pressing time becomes like this. Preferably it is about 1-600 minutes, and can be suitably determined with the bismaleimide to be used. If the heating and pressurizing time is too short, curing does not occur sufficiently, and there is a possibility that sufficient mechanical strength of the obtained heat dissipation material cannot be obtained. If the heating and pressurizing time is too long, productivity may be reduced.

本発明に関わるビスマレイミドの硬化物は、上記一般式(I)乃至(II)で表されるビスマレイミドの他に、本発明の効果の発揮を失わない範囲で、ジアミン、ジシアナート、オレフィン系不飽和モノマー、もしくは、その他従来からビスマレイミドとの反応性が知られている公知の化合物と共重合させた硬化物を含んでも構わない。   In addition to the bismaleimides represented by the above general formulas (I) to (II), the cured product of bismaleimide according to the present invention is a diamine, dicyanate, or olefin-based one as long as the effects of the present invention are not lost. A cured product obtained by copolymerization with a saturated monomer or a known compound that has conventionally been known to be reactive with bismaleimide may also be included.

本発明におけるビスマレイミド化合物を製造する際に使用される好ましいジアミンの例としては、
4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、
1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、
Examples of preferred diamines used in producing the bismaleimide compound in the present invention include:
4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) propane,
1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (3-aminobenzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-amino) Benzoyl) benzene, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl Ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane,

1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、1,3−ビス(4−アミノブチル)テトラメチルジシロキサン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノデカン、
1,4−ジアミノシクロヘキサン、1,3−ジ(2−アミノエチル)シクロヘキサン、1,4−ジ(2−アミノエチル)シクロヘキサン、ビス(4−アミノシクロへキシル)メタン、2,6−ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,5−ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、ピペラジン等が挙げられる。
1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, 1,4-diaminobutane, 1,6-diaminohexane, 1,8- Diaminooctane, 1,10-diaminodecane,
1,4-diaminocyclohexane, 1,3-di (2-aminoethyl) cyclohexane, 1,4-di (2-aminoethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 2,6-bis ( Aminomethyl) bicyclo [2,2,1] heptane, 2,5-bis (aminomethyl) bicyclo [2,2,1] heptane, piperazine and the like.

また、本発明におけるビスマレイミド化合物を製造する際に使用される好ましいジシアナートの例としては、1,3−ジシアナートベンゼン、1,4−ジシアナートベンゼン、1,3−ジシアナートナフタレン、1,4−ジシアナートナフタレン、1,6−ジシアナートナフタレン、1,8−ジシアナートナフタレン、2,6−ジシアナートナフタレン、2,7−ジシアナートナフタレン、4,4−ジシアナートビフェニル、ビス(4−ジシアナートフェニル)メタン、2,2−ビス(4−シアナートフェニル)プロパン、ビス(4−シアナトフェニル)エーテル等が挙げられる。   Examples of preferred dicyanates used in producing the bismaleimide compound in the present invention include 1,3-dicyanate benzene, 1,4-dicyanate benzene, 1,3-dicyanate naphthalene, 1,4-dicyanate naphthalene, 1,6-dicyanate naphthalene, 1,8-dicyanate naphthalene, 2,6-dicyanate naphthalene, 2,7-dicyanate naphthalene, 4,4-di Examples include cyanate biphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, and bis (4-cyanatophenyl) ether.

本発明におけるビスマレイミド化合物を製造する際に使用される好ましいオレフィン系不飽和モノマーの例としては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、2,2−ジアリルビスフェノールA、2,2−ジプロペニルビスフェノールA、m−ジビニルベンゼン、p−ジビニルベンゼン、m−ジイソプロペニルベンゼン、p−ジイソプロペニルベンゼン等が挙げられる。共重合させるモノマーの使用量は、一般的にビスマレイミド100モルに対し0乃至100モルの範囲が好ましい。使用量が多すぎると、熱伝導性が十分向上しない可能性がある。   Examples of preferred olefinic unsaturated monomers used in producing the bismaleimide compound in the present invention include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, and 1-octene. 1-decene, 1-dodecene, 2,2-diallylbisphenol A, 2,2-dipropenyl bisphenol A, m-divinylbenzene, p-divinylbenzene, m-diisopropenylbenzene, p-diisopropenylbenzene, etc. Is mentioned. The amount of the monomer to be copolymerized is generally preferably in the range of 0 to 100 mol per 100 mol of bismaleimide. If the amount used is too large, the thermal conductivity may not be sufficiently improved.

本発明の放熱材料において、硬化触媒は必ずしも必須の成分ではないが、必要に応じて1種以上使用することができる。この場合、本発明の効果の発揮を失わない範囲で、その使用量に制約は無い。必要に応じて使用される好ましい硬化触媒としては、例としてジクミルパーオキサイド、t−ブチルパーベンゾエート、メチルエチルケトンパーオキサイド等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物、N−メチルイミダゾール、N−フェニルイミダゾール等のイミダゾール化合物、酢酸亜鉛、酢酸ナトリウム、チタンアセチルアセトネート、ナトリウムメチラート等の金属化合物、無水マレイン酸、メチルテトラヒドロ無水フタル酸、無水ナジック酸、無水ピロメリット酸等の酸無水物、トリエチルアミン、N,N―ジメチルベンジルアミン、ヘキサメチレンテトラミン、N,N−ジメチルアニリン等の3級アミン、テトラメチルアンモニウムブロマイド等の4級アンモニウム塩、トリフェニルボレート、トリクレジルボレート等のボレート化合物、三弗化ホウ素モノエチル錯体、三弗化ホウ素ピペリジン錯体等の三弗化ホウ素アミン錯体等が挙げられる。硬化触媒の好ましい使用量は、通常放熱材料に含まれるビスマレイミド100質量部に対し、0.1〜10質量部の範囲である。   In the heat dissipation material of the present invention, the curing catalyst is not necessarily an essential component, but one or more kinds can be used as necessary. In this case, the amount used is not limited as long as the effects of the present invention are not lost. Preferred curing catalysts used as needed include, for example, peroxides such as dicumyl peroxide, t-butyl perbenzoate, methyl ethyl ketone peroxide, azo compounds such as azobisisobutyronitrile, N-methylimidazole , Imidazole compounds such as N-phenylimidazole, metal compounds such as zinc acetate, sodium acetate, titanium acetylacetonate and sodium methylate, acids such as maleic anhydride, methyltetrahydrophthalic anhydride, nadic anhydride and pyromellitic anhydride Anhydrides, triethylamine, N, N-dimethylbenzylamine, hexamethylenetetramine, tertiary amines such as N, N-dimethylaniline, quaternary ammonium salts such as tetramethylammonium bromide, triphenylborate, tricresylboret Borate compounds such as preparative, boron trifluoride monoethyl complexes, and boron trifluoride-amine complex such as boron trifluoride piperidine complex. The preferable usage-amount of a curing catalyst is the range of 0.1-10 mass parts with respect to 100 mass parts of bismaleimide normally contained in a thermal radiation material.

本発明の放熱材料には、本発明の効果の発揮を失わない範囲で、その目的に応じて、上記一般式(I)乃至(II) で表されるビスマレイミドの他に、エポキシ樹脂、ポリオレフィン樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリエーテル樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、メラミン樹脂、ユリア樹脂、ウレタン樹脂等いかなる公知の樹脂も含有させて構わない。好ましい樹脂の具体例として、1,2−ポリブタジエン、1,4−ポリブタジエン等のポリブタジエンが挙げられる。樹脂の好ましい使用量は、通常放熱材料に含まれるビスマレイミド100質量部に対し、0〜50質量部の範囲である。   In addition to the bismaleimides represented by the above general formulas (I) to (II), the heat dissipation material of the present invention includes an epoxy resin and a polyolefin, depending on the purpose within a range not losing the effect of the present invention. Any known resin such as resin, bismaleimide resin, polyimide resin, polyether resin, phenol resin, silicone resin, polycarbonate resin, polyamide resin, polyester resin, fluororesin, acrylic resin, melamine resin, urea resin, urethane resin may be included. It doesn't matter. Specific examples of preferred resins include polybutadienes such as 1,2-polybutadiene and 1,4-polybutadiene. The preferred amount of resin used is in the range of 0 to 50 parts by mass with respect to 100 parts by mass of bismaleimide usually contained in the heat dissipation material.

本発明の放熱材料には、更に目的に応じて他のいかなる成分、例えば、補強剤、増粘剤、離型剤、カップリング剤、難燃剤、耐炎剤、顔料、着色剤、その他の助剤等を本発明の効果を失わない範囲で、添加することができる。   The heat-dissipating material of the present invention further includes any other component depending on the purpose, for example, a reinforcing agent, a thickening agent, a release agent, a coupling agent, a flame retardant, a flame retardant, a pigment, a colorant, and other auxiliary agents. Etc. can be added as long as the effects of the present invention are not lost.

本発明の放熱材料は、一般式(I)又は(II)で表されるビスマレイミドの硬化物に加え、更に無機充填剤を含有することも好ましい態様である。   In addition to the cured bismaleimide represented by the general formula (I) or (II), the heat dissipating material of the present invention also preferably contains an inorganic filler.

本発明に関わる無機充填剤は特に限定されないが、例えば樹脂組成物の熱伝導性を向上させる好ましい例として、酸化アルミニウム、窒化アルミニウム、弗化アルミニウム、弗化カルシウム、シリカ、窒化ケイ素、炭化ケイ素、窒化ホウ素、酸化マグネシウム、酸化ベリリウム、酸化スズ、グラファイト、炭素繊維、ダイヤモンド等が挙げられる。これら無機充填剤は単独で用いても2種以上を用いても構わない。このうち、酸化アルミニウム、窒化アルミニウム、弗化アルミニウム、弗化カルシウム、シリカ、窒化ケイ素、炭化ケイ素、窒化ホウ素、酸化マグネシウムは、絶縁性が保たれるため、本発明の放熱材料を絶縁性の求められる分野に広く応用することができて好ましい。添加量は特に限定されないが、多すぎると樹脂組成物の成形性が低下し、得られる硬化物の機械強度が低下することから好ましくない。好ましい添加量としては、樹脂100質量部に対し無機充填剤を0乃至80質量部、より好ましくは0乃至70質量部の範囲を挙げることができる。   The inorganic filler according to the present invention is not particularly limited. For example, preferable examples of improving the thermal conductivity of the resin composition include aluminum oxide, aluminum nitride, aluminum fluoride, calcium fluoride, silica, silicon nitride, silicon carbide, Examples thereof include boron nitride, magnesium oxide, beryllium oxide, tin oxide, graphite, carbon fiber, and diamond. These inorganic fillers may be used alone or in combination of two or more. Among these, since aluminum oxide, aluminum nitride, aluminum fluoride, calcium fluoride, silica, silicon nitride, silicon carbide, boron nitride, and magnesium oxide maintain insulation, the heat dissipation material of the present invention is required to have insulation. This is preferable because it can be widely applied to various fields. The addition amount is not particularly limited, but if it is too large, the moldability of the resin composition is lowered, and the mechanical strength of the resulting cured product is lowered, which is not preferable. As a preferable addition amount, the range of 0 to 80 parts by mass, more preferably 0 to 70 parts by mass of the inorganic filler can be given with respect to 100 parts by mass of the resin.

無機充填剤の添加方法は、特に限定されない。添加する方法として具体的には、ビスマレイミドに直接添加し撹拌する方法、ビスマレイミドを溶融させた状態で添加し混練する方法、ビスマレイミドを溶媒中に溶解もしくは分散させた状態で添加し撹拌する方法等が挙げられる。   The method for adding the inorganic filler is not particularly limited. Specifically, as a method of addition, a method of directly adding and stirring to bismaleimide, a method of adding and kneading bismaleimide in a molten state, and adding and stirring in a state where bismaleimide is dissolved or dispersed in a solvent Methods and the like.

本発明の放熱材料の製造方法は限定されず、公知の樹脂成形方法、すなわち、トランスファー成形、インジェクション成形、注型等の方法により所望の形状に製造することができる。     The manufacturing method of the heat radiating material of the present invention is not limited, and can be manufactured in a desired shape by a known resin molding method, that is, a transfer molding, injection molding, casting method or the like.

本発明の放熱材料は、所望の基材に塗布または含浸し、積層した上で硬化させる方法により積層板の形状に製造することもできる。この場合、用いられる基材は特に限定されないが、好ましい例として、ガラス布、ガラス不織布、炭素繊維、合成繊維布、合成繊維不織布、紙等を挙げることができる。本発明に関わるビスマレイミド硬化物は、基材との接着性に優れており、通常接着剤を用いなくても実施可能であるが、目的に応じて本発明の効果を損なわない範囲で、シランカップリング剤等の接着剤や各種表面処理剤を基材表面にあらかじめ塗布しても構わない。本発明の放熱材料を製造するにあたり、所望の基材上に塗布または含浸する方法は特に限定されないが、例えば、スピンコーターを用いた塗布、スプレーコーターを用いた塗布、バーコーターを用いた塗布、噴霧、浸漬、印刷等を挙げることができる。塗布する量は特に限定されないが例えば、硬化後の最終膜厚が0.1μm〜100μm、さらに一般的には1〜50μmとなるよう塗布する。塗布・含浸後、乾燥工程を経てプリプレグを製造する。乾燥条件については、使用する溶剤の沸点により適宜決められる。こうして得られたプリプレグを1枚または複数枚重ねたものを加熱加圧して積層することにより製造される。積層板状の放熱材料を製造するにあたり、最外層の片面もしくは両面に導電層や絶縁層を重ね合わせることができる。好ましい導電層の例として、銅箔、銅板、アルミニウム箔、アルミニウム板、鉄箔、鉄板、ステンレス箔、ステンレス板、金箔、金板、銀箔、銀板等が挙げられる。絶縁層の例としては、セラミック基板、樹脂シート等が挙げられる。また内層コア材を用いて多層プリント配線板用積層板としてもよい。   The heat-dissipating material of the present invention can also be produced in the form of a laminate by applying or impregnating a desired base material, laminating and curing. In this case, although the base material used is not specifically limited, As a preferable example, a glass cloth, a glass nonwoven fabric, carbon fiber, a synthetic fiber cloth, a synthetic fiber nonwoven fabric, paper etc. can be mentioned. The bismaleimide cured product according to the present invention is excellent in adhesiveness with a base material and can be practiced without using an ordinary adhesive, but within the range that does not impair the effects of the present invention depending on the purpose. An adhesive such as a coupling agent or various surface treatment agents may be applied to the substrate surface in advance. In producing the heat dissipation material of the present invention, the method of applying or impregnating on a desired substrate is not particularly limited, for example, application using a spin coater, application using a spray coater, application using a bar coater, Spraying, dipping, printing, etc. can be mentioned. The amount to be applied is not particularly limited, but for example, it is applied such that the final film thickness after curing is 0.1 μm to 100 μm, more generally 1 to 50 μm. After coating and impregnation, a prepreg is produced through a drying process. About drying conditions, it determines suitably by the boiling point of the solvent to be used. The prepreg thus obtained is produced by laminating one or a plurality of laminated prepregs by heating and pressing. In manufacturing a laminated plate-shaped heat dissipation material, a conductive layer or an insulating layer can be overlaid on one or both surfaces of the outermost layer. Examples of preferred conductive layers include copper foil, copper plate, aluminum foil, aluminum plate, iron foil, iron plate, stainless steel foil, stainless steel plate, gold foil, gold plate, silver foil, silver plate and the like. Examples of the insulating layer include a ceramic substrate and a resin sheet. Moreover, it is good also as a laminated board for multilayer printed wiring boards using an inner layer core material.

本発明の放熱材料は、耐熱性、熱伝導性、耐湿性、機械強度、低応力性、電気絶縁性、および成形加工性に優れていることから、回路基板材料、抵抗・インダクタ・コンデンサ等の封止材料または電子部品用ケース、IC・電力用トランジスタ素子用封止材料、照明機器等に使用される電球、LED、半導体レーザなどの発光素子用封止材料およびベース基板材料、ノートパソコン・携帯電話の筐体、ランプリフレクター等の自動車部品、モーター鉄芯用絶縁ケース材料・筐体等のモーター部品、軸受け部材等の摺動部品、放熱フィンやヒートシンク・ヒートパイプ等の冷却部品、熱交換器部品、複写機ローラー部材等のOA・通信機器部品等に極めて有用である。   The heat dissipating material of the present invention is excellent in heat resistance, thermal conductivity, moisture resistance, mechanical strength, low stress, electrical insulation, and molding processability, so that circuit board materials, resistors, inductors, capacitors, etc. Sealing material or electronic component case, IC / power transistor element sealing material, light bulb used in lighting equipment, LED, semiconductor laser and other light emitting element sealing materials and base substrate materials, notebook computers and mobile phones Automobile parts such as telephone casings, lamp reflectors, motor case parts for motor cores, motor parts such as casings, sliding parts such as bearing members, cooling parts such as radiating fins, heat sinks and heat pipes, heat exchangers It is extremely useful for OA / communication equipment parts such as parts and copier roller members.

本発明は、一般式(II)で表されるビスマレイミドを少なくとも含有する樹脂組成物も提供する。   The present invention also provides a resin composition containing at least a bismaleimide represented by the general formula (II).

(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yおよびzは、各々独立して直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。) (In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y and z represents a divalent substituent composed are each independently a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O A divalent substituent selected from the group of N).

本発明の樹脂組成物には、上記ビスマレイミド化合物を含有していれば、本発明の効果の発揮を失わない範囲で、更に目的に応じて他のいかなる成分を含んでも構わない。また、本発明の樹脂組成物は無溶剤の形態でも構わないし、溶剤を含む溶液・懸濁液の形態でも構わない。   As long as the bismaleimide compound is contained in the resin composition of the present invention, any other component may be further contained depending on the purpose as long as the effects of the present invention are not lost. The resin composition of the present invention may be in the form of a solvent-free or in the form of a solution / suspension containing a solvent.

本発明の樹脂組成物には、その目的に応じて公知の充填剤を広く使用できる。充填剤としては、例えば前記の無機充填剤に加え、酸化マグネシウム等の金属酸化物;水酸化アルミニウム等の金属水酸化物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;ケイソウ土粉;塩基性ケイ酸マグネシウム;焼成クレイ;微粉末シリカ、石英粉末、結晶シリカ;カオリン、タルク;カーボンブラック;三酸化アンチモン;微粉末マイカ;グラファイト;二硫化モリブデン;カーボンファイバー;ロックウール;セラミック繊維;アスベスト等の無機質繊維;紙、パルプ、木料;ポリアミド繊維、アラミド繊維、ボロン繊維等の合成繊維;ポリオレフィン粉末等の樹脂粉末、およびガラス繊維、ガラスパウダー、ガラスクロス、及び溶融シリカ等ガラス製充填剤等が挙げられる。これら充填剤を用いることで、例えば熱伝導性、機械強度、または耐磨耗性等樹脂組成物を応用する上で好ましい特性を向上させることが可能となる。   In the resin composition of the present invention, known fillers can be widely used depending on the purpose. Examples of the filler include metal oxides such as magnesium oxide; metal hydroxides such as aluminum hydroxide; metal carbonates such as calcium carbonate and magnesium carbonate; diatomaceous earth powder; Magnesium acid; calcined clay; fine powder silica, quartz powder, crystalline silica; kaolin, talc; carbon black; antimony trioxide; fine powder mica; graphite; molybdenum disulfide; carbon fiber; rock wool; Fiber; Paper, pulp, wood; Synthetic fiber such as polyamide fiber, aramid fiber, and boron fiber; Resin powder such as polyolefin powder, and glass filler such as glass fiber, glass powder, glass cloth, and fused silica . By using these fillers, it is possible to improve favorable characteristics in applying a resin composition such as thermal conductivity, mechanical strength, and abrasion resistance.

本発明の樹脂組成物は、耐熱性、熱伝導性、耐湿性、機械強度、低応力性、電気絶縁性、および成形加工性の求められる、封止材料、基板材料、接着材料、表示材料、記録材料、摺動部品材料および放熱材料の原料等として有用である。   The resin composition of the present invention includes a sealing material, a substrate material, an adhesive material, a display material, which are required to have heat resistance, thermal conductivity, moisture resistance, mechanical strength, low stress, electrical insulation, and moldability. It is useful as a raw material for recording materials, sliding component materials, and heat dissipation materials.

本発明は、下記一般式(III)で表されるビスマレイミド化合物をも提供するものである。   The present invention also provides a bismaleimide compound represented by the following general formula (III).

(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。zは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。) (In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y showing a divalent substituent composed of a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 valent selected from the group consisting of N- .z illustrating a substituent, a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - C -NH -, - C (CH 3 ) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 selected from the group consisting of N- A valent substituent.)

本発明のビスマレイミドは、分子内にスペーサーを有することから、硬化後の靱性が従来のビスマレイミドに比べ向上する特徴があり、硬化物の機械強度が高い。また、対称性が極めて高く、剛直鎖が屈曲鎖で結合された構造のため、分子の配向性が高く、形成される高次構造が緻密となり、優れた熱伝導性を有する。   Since the bismaleimide of the present invention has a spacer in the molecule, the toughness after curing is improved as compared with the conventional bismaleimide, and the mechanical strength of the cured product is high. In addition, since the structure is extremely symmetric and the rigid straight chain is bound by a bent chain, the orientation of the molecules is high, the higher order structure formed is dense, and has excellent thermal conductivity.

本発明のビスマレイミドは、耐熱性、熱伝導性、耐湿性、機械強度、電気絶縁性、および成形加工性に優れることから、封止材料、基板材料、接着材料、表示材料、記録材料および放熱材料の原料として有用であり、その産業上の価値は極めて高い。   Since the bismaleimide of the present invention is excellent in heat resistance, thermal conductivity, moisture resistance, mechanical strength, electrical insulation, and molding processability, it is a sealing material, substrate material, adhesive material, display material, recording material, and heat dissipation. It is useful as a raw material for materials, and its industrial value is extremely high.

本発明の放熱材料により、特に高い耐熱性・熱伝導性が求められる、電気・電子機器用部品・部材を提供することが可能となった。具体的には、回路基板材料、抵抗・インダクタ・コンデンサ等の封止材料または電子部品用ケース、IC・電力用トランジスタ素子用封止材料、照明機器等に使用される電球、LED、半導体レーザなどの発光素子用封止材料およびベース基板材料、ノートパソコン・携帯電話の筐体、ランプリフレクター等の自動車部品、モーター鉄芯用絶縁ケース材料・筐体等のモーター部品、軸受け部材等の摺動部品、放熱フィンやヒートシンク・ヒートパイプ等の冷却部品、熱交換器部品、複写機ローラー部材等のOA・通信機器部品等を提供することが可能となった。   With the heat dissipation material of the present invention, it has become possible to provide parts and members for electrical and electronic equipment that are required to have particularly high heat resistance and thermal conductivity. Specifically, circuit board materials, sealing materials such as resistors / inductors / capacitors or cases for electronic components, sealing materials for IC / power transistor elements, light bulbs used in lighting equipment, LEDs, semiconductor lasers, etc. Sealing materials and base substrate materials for light emitting devices, automobile parts such as notebook PCs and mobile phones, lamp reflectors, motor casings for motor cores, motor parts such as casings, and sliding parts such as bearing members It has become possible to provide cooling parts such as radiating fins, heat sinks and heat pipes, heat exchanger parts, OA / communication equipment parts such as copier roller members, and the like.

以下に実施例および比較例を挙げ、本発明を具体的に説明する。本発明はいかなる意味においても、これらの実施例に限定されるものではない。なお、以下に挙げる各試薬は特に特記しない限り和光純薬工業(株)製の試薬を用いた。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to these examples in any way. The reagents listed below were manufactured by Wako Pure Chemical Industries, Ltd. unless otherwise specified.

[評価方法]
融点測定:示差走査熱量分析((株)パーキンエルマージャパン製;Pyris1 DSC)、昇温速度:5℃/min での測定し、吸熱のピークトップの温度を融点とした。
熱伝導率評価:熱伝導率は、定常法熱伝導率測定装置(アルバック理工(株)製GH−1)を用いて評価した。
吸湿率:85℃、85%RH 72hr後の試験片の重量変化より吸湿率を評価した。
機械強度評価:曲げ強度を、JIS−K6911に準じて評価した。
[Evaluation methods]
Melting point measurement: Differential scanning calorimetry (manufactured by Perkin Elmer Japan Co., Ltd .; Pyris 1 DSC), temperature rising rate: 5 ° C./min. The temperature at the peak top of the endotherm was taken as the melting point.
Thermal conductivity evaluation: The thermal conductivity was evaluated using a steady-state thermal conductivity measuring device (GH-1 manufactured by ULVAC-RIKO).
Moisture absorption rate: The moisture absorption rate was evaluated from the change in weight of the test piece after 85 ° C. and 85% RH for 72 hours.
Mechanical strength evaluation: Bending strength was evaluated according to JIS-K6911.

[合成例1 (4,4’−[1,6―ヘキサンジイルビス(オキシ)]ビスフェノールの製造)]
撹拌器、還流冷却器、滴下漏斗および窒素導入管を備えた容器に、エタノール1kg、ハイドロキノン(東京化成(株)製)616.62g、および次亜硫酸ナトリウム1.49gを装入した。これを撹拌しつつ、ジブロモヘキサン170.78gを添加し、昇温し混合溶液を還流させた。水酸化カリウム117.82gおよびエタノール500gから別途溶液を調製し、滴下漏斗を用いて、上記混合溶液に徐々に滴下した。撹拌しつつ還流を8時間継続した後、室温まで冷却した。30wt%に希釈した硫酸を加え、反応溶液を酸性にした後、エタノール500mLを加え白色沈殿をろ別した。白色沈殿は熱エタノールで1回洗浄した後、蒸留水で3回洗浄し、減圧下80℃で乾燥することで白色固体の4,4’−[1,6―ヘキサンジイルビス(オキシ)]ビスフェノールを得た。収量: 146.81g(69%)
[Synthesis Example 1 (Production of 4,4 ′-[1,6-hexanediylbis (oxy)] bisphenol)]
A container equipped with a stirrer, a reflux condenser, a dropping funnel, and a nitrogen introducing tube was charged with 1 kg of ethanol, 616.62 g of hydroquinone (manufactured by Tokyo Chemical Industry Co., Ltd.), and 1.49 g of sodium hyposulfite. While stirring this, 170.78 g of dibromohexane was added, the temperature was raised, and the mixed solution was refluxed. A solution was separately prepared from 117.82 g of potassium hydroxide and 500 g of ethanol, and was gradually added dropwise to the above mixed solution using a dropping funnel. Refluxing was continued for 8 hours while stirring, and then cooled to room temperature. Sulfuric acid diluted to 30 wt% was added to make the reaction solution acidic, and then 500 mL of ethanol was added to separate the white precipitate. The white precipitate is washed once with hot ethanol, then washed three times with distilled water, and dried at 80 ° C. under reduced pressure to give 4,4 ′-[1,6-hexanediylbis (oxy)] bisphenol as a white solid. Got. Yield: 146.81 g (69%)

[合成例2 (4−マレイミドベンゾイル クロリドの製造)]
上記非特許文献1(Macromol.Chem.Phys.,No.17,201(2000))に記載の、公知の方法により、4−マレイミドベンゾイル クロリドを合成した。
[Synthesis Example 2 (Production of 4-maleimidobenzoyl chloride)]
4-Maleimidobenzoyl chloride was synthesized by a known method described in Non-Patent Document 1 (Macromol. Chem. Phys., No. 17, 201 (2000)).

[合成例3 (ビスマレイミドBMI−1の製造)]
撹拌器、還流冷却器および窒素導入管を備えた容器に、4,4’−[1,6―ヘキサンジイルビス(オキシ)]ビスフェノール(合成品)30.24g、トリエチルアミン12.65gおよびTHF500gを装入し撹拌した。氷水浴で冷却しつつ、4−マレイミドベンゾイル クロリド(合成品) 70.68gを序々に装入した。氷水浴を外し室温まで昇温し、24時間撹拌を継続した。得られた暗褐色懸濁液をろ過し、褐色沈殿をろ別した。この褐色沈殿を蒸留水で3回洗浄し、減圧乾燥機を用いて100℃下で乾燥し、褐色固体のビスマレイミド(以下、BMI−1と略す)を得た。
[Synthesis Example 3 (Production of Bismaleimide BMI-1)]
A vessel equipped with a stirrer, reflux condenser and nitrogen inlet tube was charged with 30.24 g of 4,4 ′-[1,6-hexanediylbis (oxy)] bisphenol (synthetic product), 12.65 g of triethylamine and 500 g of THF. And stirred. While cooling in an ice-water bath, 70.68 g of 4-maleimidobenzoyl chloride (synthetic product) was gradually charged. The ice-water bath was removed, the temperature was raised to room temperature, and stirring was continued for 24 hours. The resulting dark brown suspension was filtered and the brown precipitate was filtered off. This brown precipitate was washed 3 times with distilled water and dried at 100 ° C. using a vacuum dryer to obtain a brown solid bismaleimide (hereinafter abbreviated as BMI-1).

収量:49.5g(70%)
融点:145.8℃
H―NMR (270MHz,CDCl):δ8.29(4H,d,芳香族)、7.58(4H,d,芳香族)、7.12(4H,d,芳香族)、6.93(4H,d,芳香族)、6.90(4H,s,不飽和)、3.99(4H,br,CH)、1.84(4H,br,CH)、1.56(4H,br,CH
Yield: 49.5 g (70%)
Melting point: 145.8 ° C
1 H-NMR (270 MHz, CDCl 3 ): δ 8.29 (4H, d, aromatic), 7.58 (4H, d, aromatic), 7.12 (4H, d, aromatic), 6.93 (4H, d, aromatic), 6.90 (4H, s, unsaturated), 3.99 (4H, br, CH 2), 1.84 (4H, br, CH 2), 1.56 (4H , Br, CH 2 )

実施例1〜5[樹脂組成物および放熱材料の製造]
BMI−1、および表1に示す構造のBMI−2、BMI−3、BMI−4を合成し、ジクミルパーオキサイド(シグマアルドリッチジャパン(株)製;以下、DCPO)、および窒化アルミニウム粉(三井化学(株)製;平均粒子径15μm、気孔率0.1%、真球度0.96)を表1の組成で添加し均一に混合した。放熱材料の作製には、熱プレス機((株)東洋精機製作所製ミニテストプレスMP-S)を用いた。上記樹脂組成物を、これを常温にて金型に装入し180℃、7時間で加熱硬化させることで、厚さ1mmの板状の放熱材料を作製した。結果を表1に示す。
Examples 1 to 5 [Production of resin composition and heat dissipation material]
BMI-1 and BMI-2, BMI-3, and BMI-4 having the structure shown in Table 1 were synthesized, dicumyl peroxide (manufactured by Sigma Aldrich Japan Co., Ltd .; hereinafter referred to as DCPO), and aluminum nitride powder (Mitsui). Chemical Co., Ltd .; average particle size 15 μm, porosity 0.1%, sphericity 0.96) were added in the composition shown in Table 1 and mixed uniformly. A heat press machine (Mini Test Press MP-S manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used for producing the heat dissipation material. The resin composition was charged into a mold at room temperature and cured by heating at 180 ° C. for 7 hours to produce a plate-like heat dissipation material having a thickness of 1 mm. The results are shown in Table 1.

比較例1[ビスマレイミド(BMI−0)樹脂硬化物の製造]
BMI−1の代わりに、公知のビスマレイミドであるビス(4−マレイミドフェニル)メタン(合成品;以下BMI−0と略す)を用いる以外は、実施例1と同様の方法により、厚さ1mmの板状のビスマレイミド樹脂硬化物を作製した。結果を表1に示す。
Comparative Example 1 [Production of cured bismaleimide (BMI-0) resin]
In place of BMI-1, bis (4-maleimidophenyl) methane (synthetic product; hereinafter abbreviated as BMI-0), which is a known bismaleimide, was used in the same manner as in Example 1 to obtain a 1 mm thickness. A plate-like cured bismaleimide resin was produced. The results are shown in Table 1.

比較例2〜3[エポキシ樹脂硬化物の製造]
公知のエポキシ樹脂モノマーである4―(オキシラニルメトキシ)ベンゾイックアシッド―4,4′―[1,6−ヘキサンジイルビス(オキシ)]ビスフェノールエステル(合成品;以下、EP−1と略す)、4,4′−ジアミノジフェニルエーテル(以下、DDEと略す)g、および窒化アルミニウム粉(三井化学(株)製;平均粒子径15μm、気孔率0.1%、真球度0.96)を表1の組成で添加し均一に混合し、これを金型に装入し、160℃、10時間で加熱硬化させることで、厚さ1mmのエポキシ樹脂硬化物を作製した。結果を表1に示す。
Comparative Examples 2-3 [Production of cured epoxy resin]
4- (oxiranylmethoxy) benzoic acid-4,4 '-[1,6-hexanediylbis (oxy)] bisphenol ester (synthetic product; hereinafter referred to as EP-1), which is a known epoxy resin monomer , 4,4'-diaminodiphenyl ether (hereinafter abbreviated as DDE) g, and aluminum nitride powder (Mitsui Chemicals, Inc .; average particle size 15 μm, porosity 0.1%, sphericity 0.96) 1 was added and mixed uniformly, and this was charged into a mold and cured by heating at 160 ° C. for 10 hours to produce a cured epoxy resin having a thickness of 1 mm. The results are shown in Table 1.

本発明の放熱材料により、電気・電子機器の発熱部位もしくは高温部位から放熱を促すに使用される、特に高い耐熱性・熱伝導性が求められる部品・部材、具体的には、回路基板材料、抵抗・インダクタ・コンデンサ等の封止材料または電子部品用ケース、IC・電力用トランジスタ素子用封止材料、照明機器等に使用される電球、LED、半導体レーザなどの発光素子用封止材料およびベース基板材料、ノートパソコン・携帯電話の筐体、ランプリフレクター等の自動車部品、モーター鉄芯用絶縁ケース材料・筐体等のモーター部品、軸受け部材等の摺動部品、放熱フィンやヒートシンク・ヒートパイプ等の冷却部品、熱交換器部品、複写機ローラー部材等のOA・通信機器部品等を提供することが可能となった。
The heat-dissipating material of the present invention is used to promote heat dissipation from a heat-generating part or a high-temperature part of an electric / electronic device. Particularly, parts / members that require high heat resistance and heat conductivity, specifically, circuit board materials, Sealing materials for resistors, inductors, capacitors, etc. or cases for electronic components, sealing materials for IC / power transistor devices, sealing materials for light emitting devices such as light bulbs, LEDs, semiconductor lasers, and bases used in lighting equipment, etc. Substrate materials, notebook PC / mobile phone casings, automotive parts such as lamp reflectors, motor casings for motor cores, motor parts such as casings, sliding parts such as bearing members, radiating fins, heat sinks, heat pipes, etc. OA / communication equipment parts such as cooling parts, heat exchanger parts, and copier roller members can be provided.

Claims (6)

一般式(I)で表されるビスマレイミドの硬化物を少なくとも含有する放熱材料。
(式中、Iはマレイミド基、Mはメソゲン基、Sはスペーサーを示す。)
A heat dissipation material containing at least a cured product of bismaleimide represented by the general formula (I).
(In the formula, I represents a maleimide group, M represents a mesogenic group, and S represents a spacer.)
一般式(II)で表されるビスマレイミドの硬化物を少なくとも含有する放熱材料。
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yおよびzは、各々独立して直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。)
A heat dissipation material containing at least a cured product of bismaleimide represented by the general formula (II).
(In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y and z represents a divalent substituent composed are each independently a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O A divalent substituent selected from the group of N).
更に、無機充填剤を含有するものである請求項1又は2いずれかに記載の放熱材料。 Furthermore, the thermal radiation material in any one of Claim 1 or 2 which contains an inorganic filler. 無機充填剤が、酸化アルミニウム、窒化アルミニウム、弗化アルミニウム、弗化カルシウム、シリカ、窒化ケイ素、炭化ケイ素、窒化ホウ素、酸化マグネシウム、酸化ベリリウム、酸化スズ、グラファイト、炭素繊維、ダイヤモンドから選ばれる少なくとも一種である請求項3記載の放熱材料。 The inorganic filler is at least one selected from aluminum oxide, aluminum nitride, aluminum fluoride, calcium fluoride, silica, silicon nitride, silicon carbide, boron nitride, magnesium oxide, beryllium oxide, tin oxide, graphite, carbon fiber, and diamond. The heat dissipating material according to claim 3. 一般式(II)で表されるビスマレイミドを少なくとも含有する樹脂組成物。
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示し、zは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。)
A resin composition containing at least a bismaleimide represented by the general formula (II).
(In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y showing a divalent substituent composed of a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 valent selected from the group consisting of N- It represents a substituent, z is a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - C -NH -, - C (CH 3 ) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 selected from the group consisting of N- A valent substituent.)
一般式(III)で表されるビスマレイミド。
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環式複素環基から選ばれる2価の置換基、又は直接結合を示す。但し、AおよびAは同時に直接結合となることはない。xは、−CH−、−Si(CH−、または−O−の群から選び組み合わせることにより表される2乃至20個の原子団から構成される2価の置換基を示す。yは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。zは、直接結合、−O−、−CH−CH−、−CH=CH−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−C(CH)=CH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。)
A bismaleimide represented by the general formula (III).
(In the formula, A 1 and A 2 each independently represent a divalent substituent selected from an aromatic group, a condensed aromatic group, and an alicyclic heterocyclic group, or a direct bond, provided that A 1 and A 2 is not a direct bond at the same time, and x is 2 to 20 atomic groups represented by a combination selected from the group of —CH 2 —, —Si (CH 3 ) 2 —, or —O—. .y showing a divalent substituent composed of a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-NH -, - C (CH 3) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 valent selected from the group consisting of N- .z illustrating a substituent, a direct bond, -O -, - CH 2 -CH 2 -, - CH = CH -, - C≡C -, - CO -, - CO-O -, - C -NH -, - C (CH 3 ) = CH -, - CH = N -, - CH = N-N = CH -, - N = N- or -N (O) = 2 selected from the group consisting of N- A valent substituent.)
JP2006043306A 2006-02-21 2006-02-21 Heat dissipation material Active JP5180440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043306A JP5180440B2 (en) 2006-02-21 2006-02-21 Heat dissipation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043306A JP5180440B2 (en) 2006-02-21 2006-02-21 Heat dissipation material

Publications (2)

Publication Number Publication Date
JP2007224060A true JP2007224060A (en) 2007-09-06
JP5180440B2 JP5180440B2 (en) 2013-04-10

Family

ID=38546165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043306A Active JP5180440B2 (en) 2006-02-21 2006-02-21 Heat dissipation material

Country Status (1)

Country Link
JP (1) JP5180440B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006959A (en) * 2008-06-27 2010-01-14 Inoac Corp Thermoplastic resin composition for injection molding, and injection-molded item
WO2010050202A1 (en) 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
WO2011033815A1 (en) 2009-09-16 2011-03-24 株式会社カネカ Thermally-conductive organic additive, resin composition, and cured product
WO2011132389A1 (en) 2010-04-19 2011-10-27 株式会社カネカ Thermoplastic resin with high thermal conductivity
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US9200111B2 (en) 2011-02-08 2015-12-01 Kaneka Corporation Thermoplastic resin, resin composition, and molding of high thermal conductivity
JP2021512207A (en) * 2018-01-22 2021-05-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Dielectric material
WO2021145416A1 (en) * 2020-01-16 2021-07-22 リンテック株式会社 Resin sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782326A (en) * 1993-06-29 1995-03-28 Mitsubishi Chem Corp Sealing resin composition
JPH07215933A (en) * 1994-01-28 1995-08-15 Sumitomo Bakelite Co Ltd Bismaleimide compound and its production
JP2002080617A (en) * 2000-09-06 2002-03-19 Polymatech Co Ltd Thermoconductive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782326A (en) * 1993-06-29 1995-03-28 Mitsubishi Chem Corp Sealing resin composition
JPH07215933A (en) * 1994-01-28 1995-08-15 Sumitomo Bakelite Co Ltd Bismaleimide compound and its production
JP2002080617A (en) * 2000-09-06 2002-03-19 Polymatech Co Ltd Thermoconductive sheet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012008029; SHINJI TAKEDA: 'Synthesis and Properties of Bismaleimide Resins Containing Ether Bonds' Journal of Applied Polymer Science 35 (5), 1988, 1341-50 *
JPN6012008033; Jean Claude Milano: 'Synthesis, reactivity, and thermalbehavior of bismaleimides and polybismaleimides' Macromolecular Chemistry and Physics 197(11), 1996, 3837-3849 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006959A (en) * 2008-06-27 2010-01-14 Inoac Corp Thermoplastic resin composition for injection molding, and injection-molded item
WO2010050202A1 (en) 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
US8946335B2 (en) 2008-10-30 2015-02-03 Kaneka Corporation Highly thermally conductive thermoplastic resin composition and thermoplastic resin
EP2348071B1 (en) * 2008-10-30 2019-02-13 Kaneka Corporation High thermal conductivity thermoplastic resin composition and thermoplastic resin
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product
WO2011033815A1 (en) 2009-09-16 2011-03-24 株式会社カネカ Thermally-conductive organic additive, resin composition, and cured product
KR20120080192A (en) 2009-09-16 2012-07-16 카네카 코포레이션 Thermally-conductive organic additive, resin composition, and cured product
WO2011132389A1 (en) 2010-04-19 2011-10-27 株式会社カネカ Thermoplastic resin with high thermal conductivity
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US8921507B2 (en) 2010-04-19 2014-12-30 Kaneka Corporation Thermoplastic resin with high thermal conductivity
JP2011236376A (en) * 2010-05-13 2011-11-24 Hitachi Chem Co Ltd High thermal conductivity composite particle and heat radiating material using the same
US9200111B2 (en) 2011-02-08 2015-12-01 Kaneka Corporation Thermoplastic resin, resin composition, and molding of high thermal conductivity
JP2021512207A (en) * 2018-01-22 2021-05-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Dielectric material
JP7404272B2 (en) 2018-01-22 2023-12-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング dielectric material
WO2021145416A1 (en) * 2020-01-16 2021-07-22 リンテック株式会社 Resin sheet
CN114981343A (en) * 2020-01-16 2022-08-30 琳得科株式会社 Resin sheet

Also Published As

Publication number Publication date
JP5180440B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5180440B2 (en) Heat dissipation material
CN106973490B (en) Use of siloxane compounds for printed wiring boards
JP6468465B2 (en) Resin composition, prepreg, resin sheet, and metal foil-clad laminate
JP6886133B1 (en) Resin compositions, resin sheets, multilayer printed wiring boards, and semiconductor devices
JP2021021027A (en) Maleimide compound and method for producing the same, amide acid compound and method for producing the same, resin composition, cured product, resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material, adhesive, and semiconductor device
JP2019189761A (en) Resin composition, cured article, monolayer resin sheet, laminate resin sheet, prepreg, metal foil clad laminate, printed wiring board, encapsulation material, fiber reinforced composite material, and adhesive
KR101770546B1 (en) Resin composition for printed wiring board, prepreg, resin composite sheet, and metal foil-clad laminate plate
JP6994174B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2008308551A (en) Novel polyamic acid, polyimide, and its use
JP5270865B2 (en) Adhesive and its use
TWI700328B (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP7052797B2 (en) Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal leaf-clad laminated board, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
JP6994171B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
TW200908820A (en) Printed wiring board and electronic device
WO2020217672A1 (en) Curable resin composition
JP2018123196A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
WO2019198626A1 (en) Cyanic acid ester compound, resin composition, cured object, single-layer resin sheet, layered resin sheet, prepreg, metal-foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material, and adhesive
JP2009120696A (en) Prepreg and metal-clad laminate
KR101843331B1 (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP7191275B1 (en) Thermosetting resin compositions, cured products, resin sheets, prepregs, metal foil-clad laminates, multilayer printed wiring boards, sealing materials, fiber-reinforced composite materials, adhesives, and semiconductor devices
JP7057542B2 (en) Resin composition, prepreg, metal leaf-clad laminate, resin sheet and printed wiring board
CN109825039B (en) Cyanate ester resin composition and use thereof
KR102178991B1 (en) Resin composition for printed wiring boards, prepregs, resin sheets, laminates, metal foil clad laminates, printed wiring boards, and multilayer printed wiring boards
JP6905682B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP7154475B2 (en) Resin composition for printed wiring board, prepreg, metal foil clad laminate, resin sheet and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250