JP2007224001A - Ion liquid and method for producing the same and electrolytic capacitor containing the same ion liquid - Google Patents

Ion liquid and method for producing the same and electrolytic capacitor containing the same ion liquid Download PDF

Info

Publication number
JP2007224001A
JP2007224001A JP2006066509A JP2006066509A JP2007224001A JP 2007224001 A JP2007224001 A JP 2007224001A JP 2006066509 A JP2006066509 A JP 2006066509A JP 2006066509 A JP2006066509 A JP 2006066509A JP 2007224001 A JP2007224001 A JP 2007224001A
Authority
JP
Japan
Prior art keywords
group
ionic liquid
derivatives
liquid according
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006066509A
Other languages
Japanese (ja)
Other versions
JP5088918B2 (en
Inventor
Toshiyuki Ito
敏幸 伊藤
Yasuhiro Tsukada
泰弘 塚田
Hiroyuki Furuya
浩行 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Tottori University NUC
Original Assignee
Kaneka Corp
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Tottori University NUC filed Critical Kaneka Corp
Priority to JP2006066509A priority Critical patent/JP5088918B2/en
Publication of JP2007224001A publication Critical patent/JP2007224001A/en
Application granted granted Critical
Publication of JP5088918B2 publication Critical patent/JP5088918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Pyridine Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ion liquid capable of widely being used as a material for various kinds of electric devices and a solvent for various kinds of reactions and to provide a method for producing the ion liquid and to provide an electrolytic capacitor containing the ion liquid. <P>SOLUTION: The present invention relates to the ion liquid composed of a cationic component and an anionic component and connecting two fluorine atoms to either one carbon atom forming the cationic component. The cationic component comprises, preferably, an atomic group selected from a group consisting of a difluoroalkyl group, a difluorocycloalkyl group and difluorobenzyl group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気デバイス用材料、各種反応用溶媒などに好ましく適用できるイオン液体およびその製造方法、ならびに該イオン液体を含む電解コンデンサに関する。   The present invention relates to an ionic liquid that can be preferably applied to electric device materials, various reaction solvents, and the like, a method for producing the same, and an electrolytic capacitor including the ionic liquid.

イオン液体は、一般にイミダゾリニウムなどのカチオンと、適当なアニオン(たとえば、Br-、Cl-、RSO4 -、BF4 -、PF6 -、(CF3SO22-など(ただし、Rは、任意の1価の有機基))との組み合わせで構成され、高いイオン伝導性や優れた熱安定性を示すため、電池やコンデンサなどの電解液、各種化学反応の溶媒などへの応用が広く研究されている。カチオンにエーテル基を有するイオン液体は、酵素反応の反応用溶媒として、また電気デバイス用材料では広電位窓を有するイオン液体として知られている。 The ionic liquid generally comprises a cation such as imidazolinium and a suitable anion (for example, Br , Cl , RSO 4 , BF 4 , PF 6 , (CF 3 SO 2 ) 2 N etc. R is a combination with any monovalent organic group)) and exhibits high ionic conductivity and excellent thermal stability, so it can be applied to electrolytes for batteries and capacitors, solvents for various chemical reactions, etc. Has been extensively studied. An ionic liquid having an ether group as a cation is known as a reaction solvent for enzyme reaction, and an ionic liquid having a wide potential window in an electric device material.

特許文献1には、窒素またはリンを含む4級塩からなり、融点が50℃以下であるイオン性液体、特に、エーテル基を含有する4級塩からなるイオン液体が提案されている。   Patent Document 1 proposes an ionic liquid composed of a quaternary salt containing nitrogen or phosphorus and having a melting point of 50 ° C. or lower, particularly an ionic liquid composed of a quaternary salt containing an ether group.

しかし、上記のような技術によって得られるイオン液体においては、電解液や反応用溶媒としての特性において十分とはいえない場合も有り、特性において課題が残っている。   However, the ionic liquid obtained by the above-described technique may not be sufficient in the characteristics as an electrolytic solution or a reaction solvent, and there are still problems in the characteristics.

特許文献2には、融点が比較的低い1−エチル−3−メチルイミダゾリウムと、ルイス酸性が強い1−(2,2,2−トリフルオロエチル)−3−メチルイミダゾリウムと、をカチオン成分として含むイオン液体が提案されている。   In Patent Document 2, 1-ethyl-3-methylimidazolium having a relatively low melting point and 1- (2,2,2-trifluoroethyl) -3-methylimidazolium having strong Lewis acidity are used as a cation component. An ionic liquid containing as has been proposed.

しかし、上記の技術では、少なくとも2種類のカチオン成分を組み合わせて用いる必要があるという実用面での問題がある他、ガラス転移温度は十分低いとは言えず、さらに、粘度、電気伝導度等のイオン液体としての基本特性が十分得られない場合がある。
国際出願公開第2002/076924号パンフレット 特開2003−62467号公報
However, in the above technique, there is a practical problem that it is necessary to use a combination of at least two kinds of cation components, and it cannot be said that the glass transition temperature is sufficiently low. Furthermore, the viscosity, electrical conductivity, etc. The basic characteristics as an ionic liquid may not be obtained sufficiently.
International Application Publication No. 2002/076924 Pamphlet JP 2003-62467 A

上記の状況を鑑みて、本発明は、各種電気デバイス用材料、各種反応用溶媒として広く使用が可能な、低粘度、低ガラス転移温度のイオン液体およびその製造方法、特にジフルオロアルキル基、ジフルオロシクロアルキル基およびジフルオロベンジル基からなる群から選ばれる基を有するイオン液体およびその製造方法を提供することを目的とする。本発明はさらに、該イオン液体を含み、特に低温特性に優れる電解コンデンサの提供も目的とする。   In view of the above situation, the present invention provides a low viscosity, low glass transition temperature ionic liquid that can be widely used as various electrical device materials and various reaction solvents, and a method for producing the same, particularly a difluoroalkyl group, difluorocyclohexane. An object of the present invention is to provide an ionic liquid having a group selected from the group consisting of an alkyl group and a difluorobenzyl group, and a method for producing the ionic liquid. Another object of the present invention is to provide an electrolytic capacitor containing the ionic liquid and having particularly excellent low temperature characteristics.

本発明は、1つの炭素原子に2個のフッ素原子が結合してなるイオン液体に関し、特に、ジフルオロアルキル基、ジフルオロシクロアルキル基およびジフルオロベンジル基からなる群から選ばれる基を付加させたイオン液体に関する。ジフルオロメチレン基は安定で、フッ素の強い電気陰性度の為に生体内ではエーテル官能基と同等の機能を示すことが知られている。   The present invention relates to an ionic liquid in which two fluorine atoms are bonded to one carbon atom, and in particular, an ionic liquid to which a group selected from the group consisting of a difluoroalkyl group, a difluorocycloalkyl group and a difluorobenzyl group is added. About. It is known that the difluoromethylene group is stable and exhibits a function equivalent to an ether functional group in vivo due to the strong electronegativity of fluorine.

本発明は、カチオン成分およびアニオン成分からなるイオン液体であって、該カチオン成分を形成するいずれか1つの炭素原子に2個のフッ素原子が結合していることを特徴とするイオン液体に関する。   The present invention relates to an ionic liquid comprising a cation component and an anion component, wherein two fluorine atoms are bonded to any one carbon atom forming the cation component.

本発明においては、カチオン成分が、ジフルオロアルキル基、ジフルオロシクロアルキル基およびジフルオロベンジル基からなる群から選択される原子団を含むことが好ましい。   In the present invention, the cation component preferably contains an atomic group selected from the group consisting of a difluoroalkyl group, a difluorocycloalkyl group, and a difluorobenzyl group.

本発明においては、カチオン成分が、下記の式(1)、   In the present invention, the cation component is represented by the following formula (1),

Figure 2007224001
Figure 2007224001

(式(1)中、m,nはそれぞれ独立して0あるいは正の整数である。X,Yは、それぞれ独立して2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含む)
または、下記の式(2)、
(In the formula (1), m and n are each independently 0 or a positive integer. X and Y are each independently a divalent group comprising an aliphatic hydrocarbon group and an alicyclic carbonization. (Including one or more selected from the group consisting of a hydrogen group, an aromatic hydrocarbon group, a carbonyl group, an ester group, an ether group, an acyl group, an imino group, a carboxyl group, and an amino group)
Or the following formula (2),

Figure 2007224001
Figure 2007224001

(式(2)中、aは正の整数あるいは0であり,bは正の整数である。Xは2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含むことを特徴とする。)
で示される化学構造を含むことが好ましい。
(In the formula (2), a is a positive integer or 0, and b is a positive integer. X is a divalent group, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic group. (Including one or more selected from the group consisting of a hydrocarbon group, a carbonyl group, an ester group, an ether group, an acyl group, an imino group, a carboxyl group, and an amino group.)
It is preferable to contain the chemical structure shown by these.

本発明において、カチオン成分は、アルキル基の末端2位の炭素原子に2個のフッ素原子が結合した構造を有することが好ましい。   In the present invention, the cation component preferably has a structure in which two fluorine atoms are bonded to the carbon atom at the terminal 2-position of the alkyl group.

本発明においては、カチオン成分が、下記の式(3)、   In the present invention, the cationic component is represented by the following formula (3),

Figure 2007224001
Figure 2007224001

(式(3)中、Xは2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含む基である。)
で示される化学構造を含むことが好ましい。
(In formula (3), X is a divalent group, and is an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, carbonyl group, ester group, ether group, acyl group, imino group. , A group containing one or more selected from the group consisting of a carboxyl group and an amino group.)
It is preferable to contain the chemical structure shown by these.

本発明においては、カチオン成分が、アンモニウムおよびその誘導体、イミダゾリニウムおよびその誘導体、ピリジニウムおよびその誘導体、ピロリジニウムおよびその誘導体、ピロリニウムおよびその誘導体、ピラジニウムおよびその誘導体、ピリミジニウムおよびその誘導体、トリアゾニウムおよび誘導体、トリアジニウムおよびその誘導体、トリアジン誘導体カチオン、キノリニウムおよびその誘導体、イソキノリニウムおよびその誘導体、インドリニウムおよびその誘導体、キノキサリニウムおよびその誘導体、ピペラジニウムおよびその誘導体、オキサゾリニウムおよびその誘導体、チアゾリニウムおよびその誘導体、モルフォリニウムおよびその誘導体、ピペラジンおよびその誘導体,スルホニウムおよびその誘導体、ホスホニウムおよびその誘導体、からなる群から選ばれる1種類以上であることが好ましい。   In the present invention, the cation component is ammonium and derivatives thereof, imidazolinium and derivatives thereof, pyridinium and derivatives thereof, pyrrolidinium and derivatives thereof, pyrrolinium and derivatives thereof, pyrazinium and derivatives thereof, pyrimidinium and derivatives thereof, triazonium and derivatives, Triazinium and its derivatives, triazine derivative cations, quinolinium and its derivatives, isoquinolinium and its derivatives, indolinium and its derivatives, quinoxalinium and its derivatives, piperazinium and its derivatives, oxazolinium and its derivatives, thiazolinium and its derivatives, morpholinium and its derivatives Derivatives, piperazine and its derivatives, sulfonium and its derivatives, phosphoni It is preferred beam and its derivatives, it is one or more selected from the group consisting of.

本発明においては、アニオン成分が、フッ素を含む原子団であることが好ましい。
本発明においては、アニオン成分における水素原子の個数nHとフッ素原子の個数nFとの比が、nH:nF=0:100〜60:40であることが好ましい。
In the present invention, the anionic component is preferably an atomic group containing fluorine.
In the present invention, the ratio of the number of hydrogen atoms nH to the number of fluorine atoms nF in the anion component is preferably nH: nF = 0: 100 to 60:40.

本発明においては、アニオン成分が、下記の式(4)、   In the present invention, the anion component is represented by the following formula (4),

Figure 2007224001
Figure 2007224001

(式(4)において、xは1〜20の整数であり、yは0〜5の整数である。)
式(5)、
(In Formula (4), x is an integer of 1-20, and y is an integer of 0-5.)
Formula (5),

Figure 2007224001
Figure 2007224001

(式(5)において、zは1〜20の整数であり、yは0〜5の整数である。)
式(6)、
(In Formula (5), z is an integer of 1-20, and y is an integer of 0-5.)
Formula (6),

Figure 2007224001
Figure 2007224001

(式(6)において、xは1〜20の整数であり、yは0〜5の整数である。)
および式(7)、
(In Formula (6), x is an integer of 1-20, and y is an integer of 0-5.)
And formula (7),

Figure 2007224001
Figure 2007224001

(式(7)において、zは1〜20の整数であり、yは0〜5の整数である。)
で示される化学構造からなる群から選択される1以上の化学構造を好ましく含むことができる。
(In Formula (7), z is an integer of 1-20 and y is an integer of 0-5.)
One or more chemical structures selected from the group consisting of chemical structures represented by

本発明のイオン液体においては、アニオン成分が、ビス(トリフルオロメチルスルホニル)イミドアニオン原子団、CHF2−CF2−CH2OSO3 -原子団、CHF2−(CF23−CH2OSO3 -原子団、CF3−(CF22−CH2OSO3 -原子団、CF3−(CF26−CH2OSO3 -原子団、CHF2−CF2−CH2SO3 -原子団、CHF2−(CF23−CH2SO3 -原子団、CF3−(CF22−CH2SO3 -原子団、CF3−(CF26−CH2SO3 -原子団、および、CF3−(CF23−(CH22SO3 -原子団からなる群から選ばれる1種類以上の原子団を含むことができる。 In the ionic liquid of the present invention, the anion component is bis (trifluoromethylsulfonyl) imide anion atomic group, CHF 2 —CF 2 —CH 2 OSO 3 atomic group, CHF 2 — (CF 2 ) 3 —CH 2 OSO. 3 - atomic, CF 3 - (CF 2) 2 -CH 2 OSO 3 - atomic, CF 3 - (CF 2) 6 -CH 2 OSO 3 - atomic, CHF 2 -CF 2 -CH 2 SO 3 - atomic, CHF 2 - (CF 2) 3 -CH 2 SO 3 - atomic, CF 3 - (CF 2) 2 -CH 2 SO 3 - atomic, CF 3 - (CF 2) 6 -CH 2 SO 3 - atomic, and, CF 3 - (CF 2) 3 - (CH 2) 2 SO 3 - may comprise one or more atomic groups selected from the group consisting of atomic.

本発明のイオン液体においては、アニオン成分が、RB−SOV -原子団(ただし、vは2〜4までの整数、RBは炭素数が1〜50個の芳香族化合物あるいは脂肪族化合物である)を好ましく含むことができる。 In the ionic liquid of the present invention, the anionic component, R B -SO V - atomic (where, v is an integer from 2 to 4, R B is 1-50 aromatic compound carbon atoms or aliphatic compound Are preferably included.

本発明のイオン液体においては、アニオン成分が、カルボキシアニオン(−COO-)を好ましく含むことができる。 In the ionic liquid of the present invention, the anion component can preferably contain a carboxy anion (—COO ).

本発明のイオン液体は、好ましくは、下記の式(8)、   The ionic liquid of the present invention preferably has the following formula (8),

Figure 2007224001
Figure 2007224001

に示される構造からなることができる。
本発明のイオン液体は、好ましくは、下記の式(9)、
The structure shown in FIG.
The ionic liquid of the present invention preferably has the following formula (9),

Figure 2007224001
Figure 2007224001

に示される構造からなることができる。
本発明のイオン液体は、好ましくは、下記の式(10)、
The structure shown in FIG.
The ionic liquid of the present invention preferably has the following formula (10),

Figure 2007224001
Figure 2007224001

に示される構造からなることができる。
本発明のイオン液体は、好ましくは、下記の式(11)、
The structure shown in FIG.
The ionic liquid of the present invention preferably has the following formula (11),

Figure 2007224001
Figure 2007224001

に示される構造からなることができる。
本発明のイオン液体は、好ましくは、下記の式(12)、
The structure shown in FIG.
The ionic liquid of the present invention preferably has the following formula (12),

Figure 2007224001
Figure 2007224001

に示される構造からなることができる。
本発明はまた、前述のようなイオン液体を得るための製造方法であって、カチオン成分の製造において、フッ素化試薬を用いてハロゲン化ケト炭化水素またはその誘導体のケトン基のみをフッ素化するフッ素化工程を含むことを特徴とする、イオン液体の製造方法に関する。
The structure shown in FIG.
The present invention is also a production method for obtaining the ionic liquid as described above, and in the production of a cation component, fluorine that only fluorinates the ketone group of a halogenated keto hydrocarbon or a derivative thereof using a fluorinating reagent. The present invention relates to a method for producing an ionic liquid characterized by comprising a crystallization step.

本発明のイオン液体の製造方法においては、ハロゲン化ケト炭化水素がハロゲン化−2−ケトアルカンであり、フッ素化工程において、フッ素化試薬を用いてハロゲン化−2−ケトアルカンの末端2位のケトン基のみをフッ素化する反応を経由することができる。   In the method for producing an ionic liquid of the present invention, the halogenated keto hydrocarbon is a halogenated-2-ketoalkane, and in the fluorination step, a ketone group at the terminal 2-position of the halogenated-2-ketoalkane using a fluorinating reagent is used. Only the reaction of fluorinating can be conducted.

本発明のイオン液体の製造方法においては、ハロゲン化ケト炭化水素の誘導体がハロゲン化−2−ケト炭化水素誘導体であり、フッ素化工程において、フッ素化試薬を用いてハロゲン化−2−ケト炭化水素誘導体の末端2位のケトン基のみをフッ素化する反応を経由することができる。   In the method for producing an ionic liquid of the present invention, the halogenated keto hydrocarbon derivative is a halogenated-2-keto hydrocarbon derivative. In the fluorination step, the halogenated-2-keto hydrocarbon is used using a fluorinating reagent. It is possible to go through a reaction in which only the ketone group at the terminal 2-position of the derivative is fluorinated.

本発明はまた、前述したイオン液体、または前述したイオン液体の製造方法により得られるイオン液体、を含むことを特徴とする電解コンデンサに関する。   The present invention also relates to an electrolytic capacitor comprising the ionic liquid described above or an ionic liquid obtained by the above-described method for producing an ionic liquid.

本発明では、1つの炭素原子に2個のフッ素原子が結合した構造を有するカチオン成分、特に、ジフルオロアルキル基、ジフルオロシクロアルキル基およびジフルオロベンジル基からなる群から選ばれる基を有するカチオン成分を含むことを特徴とするイオン液体およびその製造方法が提供される。該イオン液体は、粘度およびガラス転移温度が低く、各種電気デバイス用材料、各種潤滑油,各種熱交換媒体,各種反応用溶媒として広く使用されることが可能である。特に、本発明のイオン液体においてはガラス転移温度が低いため、該イオン液体が電解コンデンサに用いられた場合には良好な低温特性が付与される。   The present invention includes a cation component having a structure in which two fluorine atoms are bonded to one carbon atom, particularly a cation component having a group selected from the group consisting of a difluoroalkyl group, a difluorocycloalkyl group and a difluorobenzyl group. An ionic liquid and a method for producing the same are provided. The ionic liquid has a low viscosity and glass transition temperature, and can be widely used as various electric device materials, various lubricating oils, various heat exchange media, and various reaction solvents. Particularly, since the ionic liquid of the present invention has a low glass transition temperature, when the ionic liquid is used in an electrolytic capacitor, good low temperature characteristics are imparted.

本発明では、1つの炭素原子に2個のフッ素原子が結合した構造を有するカチオン成分、特にジフルオロアルキル基を有するカチオン成分を含むイオン液体に着目、合成し本発明を完成するに到った。従来、2個以上のフッ素で置換されたフルオロアルキル基を持つカチオン成分を含むイオン液体は合成されていたが、1つの炭素原子に2個のフッ素原子が結合した構造を持つカチオン成分を含むイオン液体、特に、1箇所にジフルオロメチレン化したアルキル基を持つことを特徴とするカチオン成分を含むイオン液体は知られていなかった。   In the present invention, the present invention has been completed by focusing on and synthesizing an ionic liquid containing a cation component having a structure in which two fluorine atoms are bonded to one carbon atom, particularly a cation component having a difluoroalkyl group. Conventionally, an ionic liquid containing a cation component having a fluoroalkyl group substituted with two or more fluorine atoms has been synthesized, but an ion containing a cation component having a structure in which two fluorine atoms are bonded to one carbon atom. There has been no known liquid, particularly an ionic liquid containing a cation component characterized by having a difluoromethyleneated alkyl group at one site.

<イオン液体>
「イオン液体」とは、「Ionic liquid」の和訳名に相当している。室温で液体状を呈するアンモニウム塩、スルホニウム塩、ホスホニウム塩等を総称した名称であり、従来は「イオン液体」「イオン性液体」「常温溶融塩」等、様々な和名で呼ばれていた。2004年度に発足したイオン液体研究会が提唱し、2005年度に発足した文部科学省科学研究補助金、特定領域研究「イオン液体の科学」に従って「イオン液体」とした。
<Ionic liquid>
“Ionic liquid” corresponds to the Japanese translation of “Ionic liquid”. It is a generic name for ammonium salts, sulfonium salts, phosphonium salts, and the like that are liquid at room temperature, and conventionally called by various Japanese names such as “ionic liquid”, “ionic liquid”, “room temperature molten salt”, and the like. Adopted by the Ionic Liquid Research Society, which was established in 2004, and was named “Ionic Liquid” in accordance with the Ministry of Education, Culture, Sports, Science and Technology's Scientific Research Subsidy and “Science of Ionic Liquid”.

<イオン液体のカチオン成分>
本発明に係るイオン液体のカチオン成分は、主鎖または側鎖の1箇所にフッ素原子2つを含むもの、すなわち1つの炭素原子に2個のフッ素原子が結合したものであれば特に制限はない。カチオン成分が、1つの原子に2個のフッ素原子が結合した構造を持つことにより、低粘度、低ガラス転移温度で電気伝導度が高いイオン液体を得ることができる。1つの炭素原子に2個のフッ素原子が結合した構造はカチオン成分中に2つ以上形成されていても良いが、低粘度、低ガラス転移温度で電気伝導度に優れたイオン液体を容易に得られる点で、カチオン成分中に該構造が1つのみ形成されていることが好ましい。
<Cation component of ionic liquid>
The cation component of the ionic liquid according to the present invention is not particularly limited as long as it contains two fluorine atoms at one position of the main chain or side chain, that is, two fluorine atoms bonded to one carbon atom. . Since the cation component has a structure in which two fluorine atoms are bonded to one atom, an ionic liquid having a low viscosity, a low glass transition temperature, and a high electrical conductivity can be obtained. Two or more structures in which two fluorine atoms are bonded to one carbon atom may be formed in the cation component, but an ionic liquid with low viscosity, low glass transition temperature and excellent electrical conductivity can be easily obtained. Therefore, it is preferable that only one of the structures is formed in the cation component.

本発明におけるカチオン成分は、疎水性の、すなわち水分が混入し難いイオン液体を容易に得られる点で、炭化水素基からなる原子団を含むことが好ましく、特に、ジフルオロアルキル基、ジフルオロシクロアルキル基およびジフルオロベンジル基からなる群から選択される原子団を含むことが好ましい。中でも、粘度およびガラス転移温度が低いという観点から、ジフルオロ脂肪族アルキル基およびジフルオロシクロアルキル基からなる群から選択される原子団を含むカチオン成分は好ましく用いられ、特に、ジフルオロ脂肪族アルキル基を含むカチオン成分は好ましく用いられる。カチオン成分がジフルオロ脂肪族アルキル基を含む場合、たとえば3ポイズ以下の低い粘度とたとえば−80℃以下の低いガラス転移温度との両方を容易に実現することができる。   The cation component in the present invention preferably contains an atomic group composed of a hydrocarbon group in that it can easily obtain a hydrophobic, that is, water-insoluble ionic liquid, and particularly includes a difluoroalkyl group and a difluorocycloalkyl group. And an atomic group selected from the group consisting of a difluorobenzyl group. Among these, from the viewpoint of low viscosity and glass transition temperature, a cation component containing an atomic group selected from the group consisting of a difluoroaliphatic alkyl group and a difluorocycloalkyl group is preferably used, and particularly includes a difluoroaliphatic alkyl group. A cationic component is preferably used. When the cationic component contains a difluoroaliphatic alkyl group, both a low viscosity of, for example, 3 poise or less and a low glass transition temperature of, for example, -80 ° C or less can be easily realized.

また、本発明におけるカチオン成分は、炭化水素基の水素がたとえばカルボキシル基、アミノ基等に置換された構造を含むものであっても良い。   In addition, the cation component in the present invention may include a structure in which hydrogen of a hydrocarbon group is substituted with, for example, a carboxyl group or an amino group.

本発明のイオン液体におけるカチオン成分は、下記の式(1)、   The cation component in the ionic liquid of the present invention has the following formula (1),

Figure 2007224001
Figure 2007224001

(式(1)中、m,nはそれぞれ独立して0あるいは正の整数である。X,Yは、それぞれ独立して2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含む基である)
または、下記の式(2)、
(In the formula (1), m and n are each independently 0 or a positive integer. X and Y are each independently a divalent group comprising an aliphatic hydrocarbon group and an alicyclic carbonization. A group containing one or more selected from the group consisting of a hydrogen group, an aromatic hydrocarbon group, a carbonyl group, an ester group, an ether group, an acyl group, an imino group, a carboxyl group, and an amino group)
Or the following formula (2),

Figure 2007224001
Figure 2007224001

(式(2)中、aは正の整数あるいは0であり,bは正の整数である。Xは2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含むことを特徴とする。)
で示される化学構造を含むことが好ましい。カチオン成分が式(1)または(2)で示される化学構造を有する場合、粘度およびガラス転移温度が低いイオン液体を容易に得られる点で有利である。ここで、式(1)中のX,Yは異なる基でも同一種の基でも良く、特に2価の有機基とされることができる。
(In the formula (2), a is a positive integer or 0, and b is a positive integer. X is a divalent group, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic group. (Including one or more selected from the group consisting of a hydrocarbon group, a carbonyl group, an ester group, an ether group, an acyl group, an imino group, a carboxyl group, and an amino group.)
It is preferable to contain the chemical structure shown by these. When the cationic component has the chemical structure represented by the formula (1) or (2), it is advantageous in that an ionic liquid having a low viscosity and a low glass transition temperature can be easily obtained. Here, X and Y in the formula (1) may be different groups or the same kind of group, and can be particularly a divalent organic group.

カチオン成分が炭化水素基を含む場合、該炭化水素基の構造を制御することによってガラス転移温度や粘度を用途に応じて容易に調整できる点で好都合である。本発明におけるカチオン成分が式(1)または式(2)に示される構造を含む場合、式中のXおよびYの少なくともいずれかが炭化水素基であることが好ましく、さらにXおよびYの少なくともいずれかが脂肪族炭化水素基であることが特に好ましい。   When the cationic component contains a hydrocarbon group, it is advantageous in that the glass transition temperature and viscosity can be easily adjusted according to the application by controlling the structure of the hydrocarbon group. When the cation component in the present invention includes the structure represented by formula (1) or formula (2), it is preferable that at least one of X and Y in the formula is a hydrocarbon group, and at least any of X and Y Is particularly preferably an aliphatic hydrocarbon group.

式(1)中のm,nの値、および式(2)中のa,bの値は、イオン液体の用途に応じ、使用時の温度近傍、特に室温近傍でイオン液体が液体状態で安定に存在できるように設計されることが好ましい。式(1)または式(2)で示される構造において、炭素数は2以上であるが、イオン液体がガス化してしまう温度をより高くできる点で該炭素数は3以上に好ましく設計されることができ、ガラス転移温度をより低くできる点で、15以下、さらに10以下に好ましく設計されることができる。   The values of m and n in formula (1) and the values of a and b in formula (2) depend on the use of the ionic liquid, and the ionic liquid is stable in the liquid state near the temperature during use, particularly near room temperature. Are preferably designed to be present in In the structure represented by Formula (1) or Formula (2), the carbon number is 2 or more, but the carbon number is preferably designed to be 3 or more in that the temperature at which the ionic liquid is gasified can be further increased. In view of the fact that the glass transition temperature can be further lowered, it can be preferably designed to be 15 or less, more preferably 10 or less.

フッ素原子が結合する炭素原子の位置としては、たとえばカチオン成分の末端2位の炭素原子や、末端3位以上の炭素原子が例示できる。   Examples of the position of the carbon atom to which the fluorine atom is bonded include the carbon atom at the terminal position 2 of the cation component and the carbon atom at the terminal position 3 or more.

カチオン成分は、アルキル基またはアルキル基の水素の少なくとも1つが置換された構造を持つ基の末端2位の炭素原子に2個のフッ素原子が結合した構造を好ましく含むことができ、この場合、粘度およびガラス転移温度が低いイオン液体を容易に得ることができる。特に、アルキル基の末端2位の炭素原子に2個のフッ素原子が結合した構造、すなわち末端がメチル基とされたジフルオロメチレン構造は、カチオン成分に好ましく含まれ得る。またこの構造は、アルキル基の末端2位に2つのフッ素置換基を有する構造と考えることができる。   The cation component can preferably include a structure in which two fluorine atoms are bonded to the carbon atom at the terminal 2-position of the alkyl group or a group having a structure in which at least one of hydrogen of the alkyl group is substituted. In addition, an ionic liquid having a low glass transition temperature can be easily obtained. In particular, a structure in which two fluorine atoms are bonded to the carbon atom at the terminal 2-position of the alkyl group, that is, a difluoromethylene structure in which the terminal is a methyl group can be preferably included in the cation component. This structure can be considered as a structure having two fluorine substituents at the terminal 2-position of the alkyl group.

また、本発明においては、カチオン成分が、下記の式(3)、   Moreover, in this invention, a cation component is following formula (3),

Figure 2007224001
Figure 2007224001

(式(3)中、Xは2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含む基である。)
に示される化学構造を含むことが好ましい。この場合、粘度およびガラス転移温度の低いイオン液体をより容易に得られる点で有利である。Xは特に2価の有機基とされることができる。
(In formula (3), X is a divalent group, and is an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, carbonyl group, ester group, ether group, acyl group, imino group. , A group containing one or more selected from the group consisting of a carboxyl group and an amino group.)
It is preferable to contain the chemical structure shown by these. This is advantageous in that an ionic liquid having a low viscosity and glass transition temperature can be obtained more easily. X can in particular be a divalent organic group.

本発明のイオン液体におけるカチオン成分は四級化窒素を含むことが好ましい。この場合、安定でかつ電位窓の広いイオン液体を容易に得ることができる点で有利である。   The cation component in the ionic liquid of the present invention preferably contains quaternized nitrogen. This is advantageous in that a stable ionic liquid having a wide potential window can be easily obtained.

本発明のイオン液体におけるカチオン成分は、アンモニウムおよびその誘導体、イミダゾリニウムおよびその誘導体、ピリジニウムおよびその誘導体、ピロリジニウムおよびその誘導体、ピロリニウムおよびその誘導体、ピラジニウムおよびその誘導体、ピリミジニウムおよびその誘導体、トリアゾニウムおよび誘導体、トリアジニウムおよびその誘導体、トリアジン誘導体カチオン、キノリニウムおよびその誘導体、イソキノリニウムおよびその誘導体、インドリニウムおよびその誘導体、キノキサリニウムおよびその誘導体、ピペラジニウムおよびその誘導体、オキサゾリニウムおよびその誘導体、チアゾリニウムおよびその誘導体、モルフォリニウムおよびその誘導体、ピペラジンおよびその誘導体,スルホニウムおよびその誘導体,ホスホニウムおよびその誘導体、からなる群から選ばれる少なくとも1種類を含むことが好ましい。中でも、イミダゾリニウムおよびその誘導体、アンモニウムおよびその誘導体、またはピリジニウムおよびその誘導体がより好ましい。ここで誘導体とは、その基本形となる化合物において置換可能な水素原子のうち少なくとも1つを、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボキシル基、エステル基、エーテル基、アシル基またはアミノ基などの置換基に置換した化合物をいう。   The cation component in the ionic liquid of the present invention includes ammonium and its derivatives, imidazolinium and its derivatives, pyridinium and its derivatives, pyrrolidinium and its derivatives, pyrrolinium and its derivatives, pyrazinium and its derivatives, pyrimidinium and its derivatives, triazonium and its derivatives , Triazinium and its derivatives, triazine derivative cations, quinolinium and its derivatives, isoquinolinium and its derivatives, indolinium and its derivatives, quinoxalinium and its derivatives, piperazinium and its derivatives, oxazolinium and its derivatives, thiazolinium and its derivatives, morpholinium and its Its derivatives, piperazine and its derivatives, sulfonium and its derivatives, Suhoniumu and derivatives thereof, preferably contains at least one member selected from the group consisting of. Of these, imidazolinium and its derivatives, ammonium and its derivatives, or pyridinium and its derivatives are more preferable. Here, the derivative means that at least one hydrogen atom that can be substituted in the basic compound is an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, a carboxyl group, an ester group, an ether. A compound substituted with a substituent such as a group, acyl group or amino group.

<イオン液体のアニオン成分>
本発明において用いられるアニオン成分は特に限定されないが、電気伝導度が良好で電位窓が広いイオン液体を得られる点で、フッ素を含む原子団であるアニオンを好ましく用いることができる。
<Anionic component of ionic liquid>
The anion component used in the present invention is not particularly limited, but an anion which is an atomic group containing fluorine can be preferably used in that an ionic liquid having good electrical conductivity and a wide potential window can be obtained.

本発明においては、アニオン成分における水素原子の個数nHとフッ素原子の個数nFとの比が、nH:nF=0:100〜60:40であることが好ましい。すなわち、水素原子の個数nHとフッ素原子の個数nFとの合計に占めるフッ素原子の個数nFの個数の割合が40%以上とされることが好ましい。該割合が40%以上とされる場合、疎水性を有し、電気伝導度がより良好でかつ電位窓がより広い点で有利である。   In the present invention, the ratio of the number of hydrogen atoms nH to the number of fluorine atoms nF in the anion component is preferably nH: nF = 0: 100 to 60:40. That is, the ratio of the number of fluorine atoms nF to the total number of hydrogen atoms nH and fluorine atoms nF is preferably 40% or more. When the ratio is 40% or more, it is advantageous in that it has hydrophobicity, better electrical conductivity, and a wider potential window.

本発明においては、アニオン成分が、下記の式(4)、   In the present invention, the anion component is represented by the following formula (4),

Figure 2007224001
Figure 2007224001

(式(4)において、xは1〜20の整数であり、yは0〜5の整数である。)
式(5)、
(In Formula (4), x is an integer of 1-20, and y is an integer of 0-5.)
Formula (5),

Figure 2007224001
Figure 2007224001

(式(5)において、zは1〜20の整数であり、yは0〜5の整数である。)
式(6)、
(In Formula (5), z is an integer of 1-20, and y is an integer of 0-5.)
Formula (6),

Figure 2007224001
Figure 2007224001

(式(6)において、xは1〜20の整数であり、yは0〜5の整数である。)
および式(7)、
(In Formula (6), x is an integer of 1-20, and y is an integer of 0-5.)
And formula (7),

Figure 2007224001
Figure 2007224001

(式(7)において、zは1〜20の整数であり、yは0〜5の整数である。)
で示される化学構造からなる群から選択される1以上の化学構造を含むことが好ましい。アニオン成分が上記の式(4)〜(7)に示される構造のうち少なくともいずれかを含む場合、電気伝導度がより高く電位窓がより広いイオン液体が得られる点で有利である。
(In Formula (7), z is an integer of 1-20 and y is an integer of 0-5.)
It is preferable to include one or more chemical structures selected from the group consisting of chemical structures represented by: When the anion component contains at least one of the structures represented by the above formulas (4) to (7), it is advantageous in that an ionic liquid having a higher electric conductivity and a wider potential window can be obtained.

また、アニオン成分の好ましい例として、RB−SOV -原子団(ただし、vは2〜4までの整数、RBは炭素数が1〜50個の芳香族化合物あるいは脂肪族化合物である)を含むアニオン成分が例示できる。上記の原子団を含むアニオン成分は、電気伝導度および電位窓の点で有利である。ここで、上記の芳香族化合物あるいは脂肪族化合物は、枝分かれや置換基を有しても良く、フッ素原子を1以上含んでいてもよい。 Preferred examples of the anion component, R B -SO V - atomic (where, v is an integer from 2 to 4, R B is 1-50 aromatic compound or aliphatic compound carbon atoms) An anionic component containing can be illustrated. An anionic component containing the above atomic group is advantageous in terms of electrical conductivity and potential window. Here, the aromatic compound or the aliphatic compound may have a branch or a substituent, and may contain one or more fluorine atoms.

中でも、R1−SO2−原子団(ここで、R1は、炭素数が1〜50個の芳香族化合物あるいは脂肪族化合物であり、枝分かれや置換基を有しても良く、フッ素原子を1以上含んでいてもよい)を有するアニオン成分は好ましく例示できる。 Among them, R 1 —SO 2 —atomic group (where R 1 is an aromatic compound or aliphatic compound having 1 to 50 carbon atoms, may have a branch or a substituent, An anionic component having 1 or more) may be preferably exemplified.

さらに、好ましいアニオン成分の例としては、ビス(トリフルオロメチルスルフォニル)イミドアニオン(TFSI)原子団、CHF2−CF2−CH2OSO3 -原子団、CHF2−(CF23−CH2OSO3 -原子団、CF3−(CF22−CH2OSO3 -原子団、CF3−(CF26−CH2OSO3 -原子団、CHF2−CF2−CH2SO3 -原子団、CHF2−(CF23−CH2SO3 -原子団、CF3−(CF22−CH2SO3 -原子団、CF3−(CF26−CH2SO3 -原子団、および、CF3−(CF23−(CH22SO3 -原子団からなる群から選ばれる1以上の原子団などを例示する事ができ、これらは、電気伝導度および電位窓の点で好ましく用いる事が出来る。 Further, examples of preferable anion components include bis (trifluoromethylsulfonyl) imide anion (TFSI) atomic group, CHF 2 —CF 2 —CH 2 OSO 3 atomic group, CHF 2 — (CF 2 ) 3 —CH 2. OSO 3 - atomic, CF 3 - (CF 2) 2 -CH 2 OSO 3 - atomic, CF 3 - (CF 2) 6 -CH 2 OSO 3 - atomic, CHF 2 -CF 2 -CH 2 SO 3 - atomic, CHF 2 - (CF 2) 3 -CH 2 SO 3 - atomic, CF 3 - (CF 2) 2 -CH 2 SO 3 - atomic, CF 3 - (CF 2) 6 -CH 2 SO 3 - atomic, and, CF 3 - (CF 2) 3 - (CH 2) 2 SO 3 - , such as one or more atomic groups selected from the group consisting of atomic can be exemplified, and these are electrically conductive It can be preferably used in terms of degree and potential window.

アニオン成分は、カルボキシアニオン(−COO-)を含むことが好ましく、この場合、低コストで、かつ比較的容易に製造できるという利点が得られる。 The anion component preferably contains a carboxy anion (—COO ). In this case, an advantage is obtained that it can be produced at a low cost and relatively easily.

上記に、アニオン成分に含有され得る好ましい構造について述べたが、無論、本発明のイオン液体に含有され得るアニオン成分はこれらの例に限定されるものではない。   Although the preferable structure which can be contained in the anion component was described above, of course, the anion component which can be contained in the ionic liquid of the present invention is not limited to these examples.

本発明の最も典型的なイオン液体としては、たとえば、下記の式(8)〜(12)、   As the most typical ionic liquid of the present invention, for example, the following formulas (8) to (12),

Figure 2007224001
Figure 2007224001

Figure 2007224001
Figure 2007224001

Figure 2007224001
Figure 2007224001

Figure 2007224001
Figure 2007224001

Figure 2007224001
Figure 2007224001

に示される構造を有するイオン液体が例示できる。
<電位窓>
イオン液体は、電気化学的に安定であり、イオン液体自身が酸化や還元分解を受けない電位領域(すなわち電位窓)が広いことも大きな特徴である。一般に酸化に対する安定性はアニオン種に依存し、一方、還元に対する安定性はカチオン種に依存する。本発明のイオン液体の電位窓は、たとえば、−1.5V〜+1.5Vの範囲内、さらに好ましくは−2.0V〜+2.0Vの範囲内とされることができる。
An ionic liquid having the structure shown in FIG.
<Potential window>
The ionic liquid is also characterized by being electrochemically stable and having a wide potential region (that is, a potential window) where the ionic liquid itself does not undergo oxidation or reductive decomposition. In general, the stability to oxidation depends on the anionic species, while the stability to reduction depends on the cationic species. The potential window of the ionic liquid of the present invention can be, for example, in the range of −1.5 V to +1.5 V, more preferably in the range of −2.0 V to +2.0 V.

<粘度>
本発明に係るイオン液体は、カチオン成分を形成するいずれか1つの炭素原子に2個のフッ素原子が結合していることにより低粘度である点で有利である。本発明のイオン液体の粘度は、たとえば0.01〜100ポイズ(すなわち0.001〜10Pa・s)の範囲内とされることができる。粘度が100ポイズ以下、さらに50ポイズ以下である場合、該イオン液体を電気デバイス用材料や反応用溶媒等に使用する際好都合である。
<Viscosity>
The ionic liquid according to the present invention is advantageous in that the viscosity is low because two fluorine atoms are bonded to any one carbon atom forming the cation component. The viscosity of the ionic liquid of the present invention can be, for example, in the range of 0.01 to 100 poise (that is, 0.001 to 10 Pa · s). When the viscosity is 100 poise or less, and further 50 poise or less, it is convenient to use the ionic liquid as an electric device material or a reaction solvent.

なお本発明において、粘度は下記の方法で測定され得る。すなわち、E型粘度計(たとえば東機産業・TV−22)を使用して、25℃において測定される、回転開始後3分間後の粘度の測定結果を採用することができる。   In the present invention, the viscosity can be measured by the following method. That is, using a E-type viscometer (for example, Toki Sangyo, TV-22), it is possible to employ the measurement result of the viscosity 3 minutes after the start of rotation, which is measured at 25 ° C.

<ガラス転移温度>
本発明に係るイオン液体はまた、カチオン成分を形成するいずれか1つの炭素原子に2個のフッ素原子が結合していることにより低ガラス転移温度である点で有利である。本発明のイオン液体のガラス転移温度は、たとえば−150〜+50℃の範囲内とされることができる。ガラス転移温度が50℃以下、さらに20℃以下である場合、該イオン液体が種々の用途における使用温度近傍で液体状態を保つことができ、たとえば該イオン液体が電解コンデンサの電解液として用いられる場合において、良好な低温特性が付与される点で好ましい。
<Glass transition temperature>
The ionic liquid according to the present invention is also advantageous in that it has a low glass transition temperature because two fluorine atoms are bonded to any one carbon atom forming the cation component. The glass transition temperature of the ionic liquid of the present invention can be set in the range of −150 to + 50 ° C., for example. When the glass transition temperature is 50 ° C. or lower, and further 20 ° C. or lower, the ionic liquid can maintain a liquid state in the vicinity of the use temperature in various applications. For example, when the ionic liquid is used as an electrolytic solution of an electrolytic capacitor Is preferable in that good low temperature characteristics are imparted.

なおガラス転移温度は、たとえばDSC(示差走査熱量計)を用い、昇温速度および降温速度を10℃/分程度として測定されることができる。   The glass transition temperature can be measured, for example, using a DSC (Differential Scanning Calorimeter), with a temperature increase rate and a temperature decrease rate of about 10 ° C./min.

<電気伝導度>
本発明に係るイオン液体はまた、低ガラス転移温度、低粘度でありながら、電気伝導度を所望の程度確保できる点で有利である。本発明のイオン液体の電気伝導度は、たとえば0.1〜50mS/cmの範囲内であることができる。電気伝導度が0.1mS/cm以上、さらに2.0mS/cm以上である場合、該イオン液体を電解液として好ましく使用できる。
<Electrical conductivity>
The ionic liquid according to the present invention is also advantageous in that a desired degree of electrical conductivity can be secured while having a low glass transition temperature and a low viscosity. The electrical conductivity of the ionic liquid of the present invention can be in the range of, for example, 0.1 to 50 mS / cm. When the electrical conductivity is 0.1 mS / cm or more, and further 2.0 mS / cm or more, the ionic liquid can be preferably used as an electrolytic solution.

<水分量>
イオン液体は、本質的にカチオン成分とアニオン成分とからなる塩のみによって構成されるものであり、水等の他の成分がイオン液体中に混入していないことが理想的であるが、実際の使用時においては若干の水分が混入する場合がある。本発明に係るイオン液体においては、カチオン成分が、1つの炭素原子に2個のフッ素原子が結合した構造を有することにより、たとえばパーフルオロ化された構造を有するカチオン成分を含むイオン液体等と比べてより疎水性であり、水分が混入し難い傾向がある。これにより、良好な電気伝導度が長期間維持できる。
<Moisture content>
The ionic liquid is essentially composed only of a salt composed of a cation component and an anion component, and ideally, other components such as water are not mixed in the ionic liquid. Some moisture may be mixed during use. In the ionic liquid according to the present invention, since the cation component has a structure in which two fluorine atoms are bonded to one carbon atom, for example, compared with an ionic liquid containing a cation component having a perfluorinated structure. It is more hydrophobic and tends to be less likely to contain moisture. Thereby, good electrical conductivity can be maintained for a long time.

本発明に係るイオン液体においては、たとえば25℃で電量滴定法で測定される水分量が1000ppm以下であることが好ましい。該水分量が1000ppm以下である場合電気伝導度が長期間良好に維持される。   In the ionic liquid according to the present invention, for example, the water content measured by a coulometric titration method at 25 ° C. is preferably 1000 ppm or less. When the water content is 1000 ppm or less, the electrical conductivity is maintained well for a long period.

<カチオン成分の製造方法>
本発明に係るイオン液体は、たとえば、フッ素化試薬を用いてハロゲン化ケト炭化水素またはその誘導体のケトン基のみを選択的にフッ素基に置換するフッ素化反応によって、2個のフッ素原子が1つの炭素原子に結合した構造を形成するフッ素化工程を含む製造方法により製造されることができる。
<Method for producing cationic component>
The ionic liquid according to the present invention has two fluorine atoms, for example, by a fluorination reaction in which only a ketone group of a halogenated keto hydrocarbon or a derivative thereof is selectively substituted with a fluorine group using a fluorinating reagent. It can be manufactured by a manufacturing method including a fluorination step for forming a structure bonded to a carbon atom.

典型的には、アルゴン、チッ素等の不活性ガス雰囲気下、溶媒中でハロゲン化ケト炭化水素またはその誘導体をフッ素化試薬と反応させることにより、対応するジフルオロハロゲン化炭化水素またはその誘導体を得ることができる。   Typically, a corresponding difluorohalogenated hydrocarbon or derivative thereof is obtained by reacting a halogenated keto hydrocarbon or derivative thereof with a fluorinating reagent in a solvent under an inert gas atmosphere such as argon or nitrogen. be able to.

ハロゲン化ケト炭化水素としては、ハロゲン化ケト脂肪族炭化水素、ハロゲン化ケト脂環式炭化水素、ハロゲン化ケト芳香族炭化水素またはこれらの誘導体が使用できる。たとえばハロゲン化−2−ケト炭化水素またはその誘導体、さらにハロゲン化−2−ケト脂肪族炭化水素またはその誘導体は、低ガラス転移温度、低粘度であるイオン液体を容易に与える点で好ましく使用される。さらに、ハロゲン化−2−ケトアルカンは好ましく例示できる。   As the halogenated keto hydrocarbon, a halogenated keto aliphatic hydrocarbon, a halogenated keto alicyclic hydrocarbon, a halogenated keto aromatic hydrocarbon, or a derivative thereof can be used. For example, halogenated-2-keto hydrocarbons or derivatives thereof, and further halogenated-2-keto aliphatic hydrocarbons or derivatives thereof are preferably used in that they easily provide an ionic liquid having a low glass transition temperature and a low viscosity. . Furthermore, a halogenated-2-ketoalkane can be preferably exemplified.

溶媒およびフッ素化試薬としては従来公知のものを適宜選択できる。フッ素化試薬としては、たとえば、N−フルオロ−5−(トリフルオロメチル)ピリジニウム−2−スルホネート、S−(トリフルオロメチル)ジベンゾチオフェニウム−3−スルホネート、N,N’−ジフルオロ−2,2’−ビピリジニウム−ビス(テトラフルオロボレート),1,1,2,3,3,3−ヘキサフルオロ−1−ジエチルアミノ−プロパン、ビス(2−メトキシエチル)アミノサルファートリフルオリド、トリエチルアミノ−トリスヒドロフルオリド等のフッ素化試薬が好ましく使用され得る。本発明のフッ素化反応に対しては、ビス(2−メトキシエチル)アミノサルファートリフルオリドが、反応回収率、反応選択性の点から好適に使用される。   A conventionally well-known thing can be suitably selected as a solvent and a fluorination reagent. Examples of the fluorinating reagent include N-fluoro-5- (trifluoromethyl) pyridinium-2-sulfonate, S- (trifluoromethyl) dibenzothiophenium-3-sulfonate, N, N′-difluoro-2, 2'-bipyridinium-bis (tetrafluoroborate), 1,1,2,3,3,3-hexafluoro-1-diethylamino-propane, bis (2-methoxyethyl) aminosulfur trifluoride, triethylamino-trishydro A fluorinating reagent such as fluoride can be preferably used. For the fluorination reaction of the present invention, bis (2-methoxyethyl) aminosulfur trifluoride is preferably used from the viewpoint of reaction recovery rate and reaction selectivity.

溶媒としては、たとえばケトン類、塩素化アルカン類、エーテル類、アミン系溶媒等の極性溶媒が好ましく使用される。ハロゲン化ケト炭化水素またはその誘導体、およびフッ素化試薬の溶解性の点、反応生成物であるジフルオロハロゲン化炭化水素またはその誘導体の回収率、反応選択性の点から、特に塩化メチレン等の塩素化アルカン類が好適である。   As the solvent, for example, polar solvents such as ketones, chlorinated alkanes, ethers and amine solvents are preferably used. Chlorination of methylene chloride, etc., especially from the point of solubility of halogenated keto hydrocarbons or their derivatives and fluorinating reagents, recovery rate of reaction products, difluorohalogenated hydrocarbons or their derivatives, and reaction selectivity Alkanes are preferred.

フッ素化反応で得られたジフルオロハロゲン化炭化水素またはその誘導体の回収が特に困難を見出さないことは有機合成化学者の知識を持ってすれば自明ではあり、たとえば、反応生成物を水中に滴下した後、抽出、精製を行なう方法等で適切に回収できる。続いて、得られたジフルオロハロゲン化炭化水素またはその誘導体を、たとえば4級化窒素を含有する化合物と反応させて4級化窒素を含有するハロゲン化塩とし、さらに、本発明のイオン液体のアニオン成分となるアニオンを含む塩として、たとえばリチウム化合物等を用い、塩交換を行なうことによって、目的のイオン液体を得ることができる。   It is obvious from the knowledge of organic synthetic chemists that recovery of difluorohalogenated hydrocarbons or derivatives thereof obtained by fluorination reaction is not particularly difficult. For example, the reaction product was dropped into water. Thereafter, it can be appropriately recovered by a method such as extraction and purification. Subsequently, the obtained difluorohalogenated hydrocarbon or derivative thereof is reacted with, for example, a compound containing quaternized nitrogen to form a halogenated salt containing quaternized nitrogen, and further, the anion of the ionic liquid of the present invention As a salt containing an anion as a component, for example, a lithium compound or the like is used, and a target ionic liquid can be obtained by performing salt exchange.

なお、イオン液体の調製方法の詳細は、たとえば国際出願公開第2005/012599号パンフレット等に記載されるイオン液体の合成法の常法に従うことができる。   The details of the method for preparing the ionic liquid can be in accordance with a conventional method for synthesizing the ionic liquid described in, for example, International Application Publication No. 2005/012599.

本発明はまた、上述のイオン液体を含有する電解コンデンサに関する。本発明に係るイオン液体は、電池やコンデンサなどの電気デバイスにおける電解液や各種化学反応における反応用溶媒に対して好ましく適用される。本発明に係るイオン液体においてはガラス転移温度が低いため、たとえば電解コンデンサの電解液として用いられる場合には、低温領域での駆動電圧の向上等、低温特性の向上という利点が得られる。   The present invention also relates to an electrolytic capacitor containing the ionic liquid described above. The ionic liquid according to the present invention is preferably applied to an electrolytic solution in an electric device such as a battery or a capacitor or a reaction solvent in various chemical reactions. Since the ionic liquid according to the present invention has a low glass transition temperature, for example, when it is used as an electrolytic solution of an electrolytic capacitor, an advantage of improving low temperature characteristics such as improvement of driving voltage in a low temperature region can be obtained.

[実施例]
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<評価方法>
後述の実施例および比較例で得られたイオン液体について、下記の方法で特性評価を行なった。
<Evaluation method>
Characteristics of the ionic liquids obtained in Examples and Comparative Examples described later were evaluated by the following methods.

(電位窓測定)
30ml容量のビーカーに、実施例および比較例で得たイオン液体の20mlからなる測定試料を入れ、作用電極、対極、参照極を配置した。作用電極にφ1mm×5mmの白金、対極に10mm×10mm×0.1mmの白金板、参照電極には、Ag/Ag+電極(ビーエーエス社製RE−5電極)を使用した。続いて、10mV/secの走査速度で、0Vからプラス側に電位を走査し、20mA/cm2の電流が流れるまで測定を実施してプラス側の電位窓を測定した。マイナス側の電位窓の測定は、プラス側の測定が終了した後、測定試料を入れかえ、上記のプラス側の電位窓の測定と同様の手順で、10mV/secの走査速度で、0Vからマイナス側に電位を走査し、20mA/cm2の電流が流れるまで測定を実施することにより行なった。電位窓の測定は、電気化学アナライザー(ソーラトロン社製1255B)を用い行なった。
(Potential window measurement)
A measurement sample consisting of 20 ml of the ionic liquid obtained in Examples and Comparative Examples was placed in a 30 ml capacity beaker, and a working electrode, a counter electrode, and a reference electrode were arranged. A platinum plate of φ1 mm × 5 mm was used as the working electrode, a platinum plate of 10 mm × 10 mm × 0.1 mm was used as the counter electrode, and an Ag / Ag + electrode (RE-5 electrode manufactured by BAES) was used as the reference electrode. Subsequently, the potential was scanned from 0 V to the plus side at a scanning speed of 10 mV / sec, and measurement was performed until a current of 20 mA / cm 2 flowed, and the plus-side potential window was measured. The negative potential window is measured after the positive measurement is completed, the measurement sample is replaced, and the same procedure as the measurement of the positive potential window described above is used, and the scanning speed is 10 mV / sec. The voltage was scanned until the current of 20 mA / cm 2 flowed. The measurement of the potential window was performed using an electrochemical analyzer (1255B manufactured by Solartron).

(粘度)
E型粘度計(東機産業・TV−22)を使用し、25℃で、回転開始後3分間後のイオン液体の粘度の測定結果を、粘度(単位:ポイズ)として求めた。
(viscosity)
Using an E-type viscometer (Toki Sangyo, TV-22), the measurement result of the viscosity of the ionic liquid 3 minutes after the start of rotation at 25 ° C. was determined as the viscosity (unit: poise).

(親水性、疎水性)
実施例および比較例で得たイオン液体の10gを25℃において純水20gと混合し、25℃で12時間放置した後において、水と相分離し、2相に分かれたイオン液体を疎水性と評価し、純水と混ざり合ったままであったイオン液体を親水性と評価した。
(Hydrophilic, hydrophobic)
10 g of the ionic liquids obtained in Examples and Comparative Examples were mixed with 20 g of pure water at 25 ° C. and allowed to stand at 25 ° C. for 12 hours, and then phase-separated from water to make the ionic liquid separated into two phases hydrophobic. The ionic liquid that was evaluated and remained mixed with pure water was evaluated as hydrophilic.

(電気伝導度)
東陽テクニカ製「solartron1255Bインピーダンスアナライザー」を使用し、25℃での電気伝導度の測定結果をイオン液体の電気伝導度(単位:mS/cm)として評価した。
(Electrical conductivity)
Using a “solartron 1255B impedance analyzer” manufactured by Toyo Technica, the measurement result of the electrical conductivity at 25 ° C. was evaluated as the electrical conductivity (unit: mS / cm) of the ionic liquid.

(水分量)
三菱化学製の微量水分測定装置「CA−100型」を使用し、窒素雰囲気下、25℃での水分量の測定結果をイオン液体中の水分量(単位:ppm)として評価した。
(amount of water)
Using a trace moisture measuring device “CA-100” manufactured by Mitsubishi Chemical, the moisture content measurement result at 25 ° C. in a nitrogen atmosphere was evaluated as the moisture content (unit: ppm) in the ionic liquid.

(ガラス転移温度)
島津製作所製のDSC(示差走査熱量計)「DSC−50」を用い、昇温速度および降温速度を10℃/分に設定し、−120℃から100℃まで昇温し、100℃から−120℃まで降温し、さらに−120℃から100℃まで2回目の昇温をし、2回目の昇温時のピークからガラス転移温度(単位:℃)を測定した。
(Glass-transition temperature)
Using a DSC (Differential Scanning Calorimeter) “DSC-50” manufactured by Shimadzu Corporation, the temperature increase rate and the temperature decrease rate were set to 10 ° C./min, the temperature was increased from −120 ° C. to 100 ° C., and from 100 ° C. to −120 The temperature was lowered to ° C., the temperature was raised for the second time from −120 ° C. to 100 ° C., and the glass transition temperature (unit: ° C.) was measured from the peak at the time of the second temperature rise.

(ガス化挙動)
島津製作所製のTGA(熱重量測定装置)「TGA−50」を用い、昇温速度5℃/分で、25℃から500℃まで昇温し、イオン液体1のTGAスペクトルを測定した。
(Gasification behavior)
Using a TGA (thermogravimetric measuring device) “TGA-50” manufactured by Shimadzu Corporation, the temperature was raised from 25 ° C. to 500 ° C. at a temperature rising rate of 5 ° C./min, and the TGA spectrum of the ionic liquid 1 was measured.

<実施例1>
(1)4−ブロモブタン−2−オンの合成
アルゴン雰囲気下、ナスフラスコにアルミニウムクロライド(4.00g,30.0mmol),ジクロロメタン(30ml)を入れ、−50℃に冷却した後、3−ブロモプロピオニルクロライド(5.14g,30.0mmol)を加えて30分撹拌した。−30℃まで昇温し、2時間経過後にトリメチルアルミニウム(1.4M n−ヘキサン中,8.70ml)を滴下し、−30℃から室温まで5時間かけてゆっくり戻した。0℃まで冷却し、水を加えて反応を停止した後、ジクロロメタン抽出を3回行ない、有機層を無水硫酸マグネシウムで乾燥させた後ろ過し、エバポレーターを用いて水につけて減圧濃縮を行なった。シリカゲルフラッシュカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1〜0:1)で精製し、4−ブロモブタン−2−オン(3.54g,23.4mmol)を収率78%で得た。生成物の構造はNMR,IRにて確認した。結果を下記に示す。なお、薄層クロマトグラフィーの展開位置から測定した上記生成物のRf値は、
Rf=0.36(ヘキサン/酢酸エチル=4/1)
であった。
<Example 1>
(1) Synthesis of 4-bromobutan-2-one In an argon atmosphere, aluminum chloride (4.00 g, 30.0 mmol) and dichloromethane (30 ml) were placed in an eggplant flask, cooled to −50 ° C., and then 3-bromopropionyl. Chloride (5.14 g, 30.0 mmol) was added and stirred for 30 minutes. The temperature was raised to −30 ° C., and after 2 hours, trimethylaluminum (1.4M in n-hexane, 8.70 ml) was added dropwise, and the temperature was slowly returned from −30 ° C. to room temperature over 5 hours. After cooling to 0 ° C. and adding water to stop the reaction, extraction with dichloromethane was performed three times. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo using an evaporator. Purification by silica gel flash column chromatography (hexane: ethyl acetate = 6: 1 to 0: 1) gave 4-bromobutan-2-one (3.54 g, 23.4 mmol) in a yield of 78%. The structure of the product was confirmed by NMR and IR. The results are shown below. The Rf value of the product measured from the development position of thin layer chromatography is
Rf = 0.36 (hexane / ethyl acetate = 4/1)
Met.

[NMRスペクトルデータ]
1HNMR(400MHz,ppm,CDCl3,J=Hz)δ=2.20(3H,s),3.05(2H,t,J=6.3),3.55(2H,t,J=6.3).
13CNMR(100MHz,ppm,CDCl3)δ=25.31,30.23,45.94,205.38.
[IRスペクトルデータ]
IR(neat,cm-1)2978,2916,1717,1366,1335,1267,1159,1007,549.
[NMR spectral data]
1 HNMR (400 MHz, ppm, CDCl 3 , J = Hz) δ = 2.20 (3H, s), 3.05 (2H, t, J = 6.3), 3.55 (2H, t, J = 6.3).
13 C NMR (100 MHz, ppm, CDCl 3 ) δ = 25.31, 30.23, 45.94, 205.38.
[IR spectrum data]
IR (neat, cm −1 ) 2978, 2916, 1717, 1366, 1335, 1267, 1159, 1007, 549.

(2)1−ブロモ−3,3−ジフルオロブタンの合成
アルゴン雰囲気中、ナスフラスコに4−ブロモブタン−2−オン(1.51g,10mmol)のジクロロメタン(5.0ml)溶液中に、ビス(2−メトキシエチル)アミノサルファートリフルオリド(アルドリッチ製)(3.76g,17mmol)のジクロロメタン(2.0ml)溶液を室温で滴下した。ついで、この混合物にエタノール(5.0ml)を加えて5日間室温で攪拌した。反応経過はガスクロマトグラフィーで追跡し、原料ケトンのピークが消失し、ジフルオロメチレン体に変換された段階で、0℃まで冷却してから水を加えて反応を停止し、ジクロロメタン抽出を行った。有機層を3回水洗したのち、有機層を無水MgSO4で乾燥した後ろ過し、1−ブロモ−3,3−ジフルオロブタンを含む溶液を得た。
GC(100℃,昇温なし)
1−ブロモ−3,3−ジフルオロブタン・・・1.84min.
4−ブロモブタン−2−オン・・・2.34min.
(CH3OCH2CH22NSF3・・・2.98min.
(3)エチル−(3,3−ジフルオロブチル)ジメチルアンモニウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに、上記で得た1−ブロモ−3,3−ジフルオロブタンを含む溶液を入れ、ジメチルエチルアミン(0.73g,10mmol)を加えて60℃で2日間加熱還流した。反応液を放冷して室温にもどし、ヘキサン−酢酸エチル(4:1)混合液で洗浄し、エバポレーターで減圧濃縮した後、凍結乾燥したところ、褐色泥状物として、臭化物塩であるエチル−(3,3−ジフルオロブチル)ジメチルアンモニウム=ブロミド(2.54g)が得られた。ヘキサンと酢酸エチルを完全には除去出来なかったため、収率は求められなかった。生成物の構造はNMR,IRにて確認した。結果を下記に示す。
(2) Synthesis of 1-bromo-3,3-difluorobutane In an argon atmosphere, a bromo (2 ml) solution of 4-bromobutan-2-one (1.51 g, 10 mmol) in a dichloromethane (5.0 ml) solution in an eggplant flask. -Methoxyethyl) aminosulfur trifluoride (manufactured by Aldrich) (3.76 g, 17 mmol) in dichloromethane (2.0 ml) was added dropwise at room temperature. Subsequently, ethanol (5.0 ml) was added to the mixture and stirred at room temperature for 5 days. The progress of the reaction was monitored by gas chromatography, and when the peak of the raw material ketone disappeared and converted to a difluoromethylene, the reaction was stopped by adding water after cooling to 0 ° C., followed by extraction with dichloromethane. After the organic layer was washed with water three times, the organic layer was dried over anhydrous MgSO 4 and then filtered to obtain a solution containing 1-bromo-3,3-difluorobutane.
GC (100 ° C, no temperature rise)
1-bromo-3,3-difluorobutane ... 1.84 min.
4-Bromobutan-2-one ... 2.34 min.
(CH 3 OCH 2 CH 2 ) 2 NSF 3 ... 2.98 min.
(3) Synthesis of ethyl- (3,3-difluorobutyl) dimethylammonium bromide Under an argon atmosphere, the solution containing 1-bromo-3,3-difluorobutane obtained above was placed in an eggplant flask, and dimethylethylamine ( 0.73 g, 10 mmol) was added, and the mixture was heated to reflux at 60 ° C. for 2 days. The reaction solution is allowed to cool to room temperature, washed with a hexane-ethyl acetate (4: 1) mixed solution, concentrated under reduced pressure using an evaporator, and lyophilized to obtain a brown muddy substance, which is an ethyl bromide salt, ethyl- (3,3-Difluorobutyl) dimethylammonium bromide (2.54 g) was obtained. Since hexane and ethyl acetate could not be completely removed, no yield was determined. The structure of the product was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.48(3H,t,J=7.3),1.78(3H,t,J=18.8),2.60−2.78(2H,m),3.46(2H,t,J=7.8),3.53(6H,s),3.85(2H,q,J=7.3).
13CNMR(126MHz,ppm,CDCl3,J=Hz)δ=7.92,23.41(t,JCF=29.8),30.93(t,JCF=25.0),48.04,50.16,57.76,122.02(t,JCF=240.0).
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.91(sex,JFF=17.3).
[IRスペクトルデータ]
IR(neat,cm-1)3018,1628,1466,1398,1350,1238,1020,961,916,868,804.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.48 (3H, t, J = 7.3), 1.78 (3H, t, J = 18.8), 2.60− 2.78 (2H, m), 3.46 (2H, t, J = 7.8), 3.53 (6H, s), 3.85 (2H, q, J = 7.3).
13 C NMR (126 MHz, ppm, CDCl 3 , J = Hz) δ = 7.92, 23.41 (t, J CF = 29.8), 30.93 (t, J CF = 25.0), 48. 04, 50.16, 57.76, 122.02 (t, J CF = 240.0).
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.91 (sex, J FF = 17.3).
[IR spectrum data]
IR (neat, cm −1 ) 3018, 1628, 1466, 1398, 1350, 1238, 1020, 961, 916, 868, 804.

(4)エチル(3,3−ジフルオロブチル)ジメチルアンモニウム=ビス(トリフルオロメタンスルフォニル)イミドの合成
アルゴン雰囲気下、ナスフラスコに、上記の臭化物塩であるエチル−(3,3−ジフルオロブチル)ジメチルアンモニウム=ブロミド(1.00g,4.06mmol)とLiTFSI(リチウム=ビス(トリフルオロメタンスルフォニル)イミド)(Li(CF3SO22N)(1.23g,4.28mmol)との混合物と、ドライ−アセトン(4.0ml)とを入れ、室温で24時間攪拌して塩交換を行なった。続いて、エバポレータで減圧濃縮したのち純水で洗浄、ついでヘキサン−酢酸エチル(4:1)混合液で洗浄した。これをドライ−アセトン(4.0ml)で希釈し、活性炭(0.5g)を加えて室温で3時間攪拌し、セライト濾過し、ついでアセトン溶液のまま活性アルミナ(中性TypeII)カラムに5回通し減圧濃縮してアセトンを留去した。50℃で24時間真空加熱乾燥し、24時間凍結乾燥して、黄色の粘性のある液体として、下記の式(8)、
(4) Synthesis of ethyl (3,3-difluorobutyl) dimethylammonium = bis (trifluoromethanesulfonyl) imide In an eggplant flask under an argon atmosphere, ethyl bromide salt ethyl- (3,3-difluorobutyl) dimethylammonium = Bromide (1.00 g, 4.06 mmol) and LiTFSI (Lithium bis (trifluoromethanesulfonyl) imide) (Li (CF 3 SO 2 ) 2 N) (1.23 g, 4.28 mmol) and dry -Acetone (4.0 ml) was added, and salt exchange was performed by stirring at room temperature for 24 hours. Subsequently, the resultant was concentrated under reduced pressure with an evaporator, washed with pure water, and then washed with a mixed solution of hexane-ethyl acetate (4: 1). This was diluted with dry-acetone (4.0 ml), activated carbon (0.5 g) was added, and the mixture was stirred at room temperature for 3 hours, filtered through celite, and then applied to an activated alumina (neutral type II) column five times with the acetone solution. The solution was concentrated under reduced pressure, and acetone was distilled off. It is dried by heating under vacuum at 50 ° C. for 24 hours, freeze-dried for 24 hours, and the following formula (8) as a yellow viscous liquid:

Figure 2007224001
Figure 2007224001

に示される構造の、エチル(3,3−ジフルオロブチル)ジメチルアンモニウムカチオンとTFSI(トリフルオロメタンスルホニルイミド)アニオンとの塩である、エチル(3,3−ジフルオロブチル)ジメチルアンモニウム=ビス(トリフルオロメタンスルフォニル)イミドからなるイオン液体1(721mg,1.62mmol)を収率39%で得た。イオン液体1の構造はNMR,IRにて確認した。結果を下記に示す。また、前述した測定条件でイオン液体1のDSC測定およびTGA測定を行なった。 Ethyl (3,3-difluorobutyl) dimethylammonium bis (trifluoromethanesulfonyl), which is a salt of an ethyl (3,3-difluorobutyl) dimethylammonium cation and a TFSI (trifluoromethanesulfonylimide) anion ) Ionic liquid 1 consisting of imide (721 mg, 1.62 mmol) was obtained in a yield of 39%. The structure of the ionic liquid 1 was confirmed by NMR and IR. The results are shown below. Further, DSC measurement and TGA measurement of the ionic liquid 1 were performed under the measurement conditions described above.

[NMRスペクトルデータ]
1H−NMR(300MHz,ppm,DMSO−d6,J=Hz)σ=1.25(sextet、J=9Hz、3H)、2.70(triplet、J=9Hz、3H)、3.10(singlet、3H)、3.25(quintet、J=9Hz、2H)、3.42(quintet、J=9Hz、3H)
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.48(3H,t,J=7.3),1.78(3H,t,J=18.8),2.60−2.78(2H,m),3.46(2H,t,J=7.8),3.53(6H,s),3.85(2H,q,J=7.3).
13CNMR(126MHz,ppm,CDCl3,J=Hz)δ=7.92,23.41(t,JCF=29.8),30.93(t,JCF=25.0),48.04,50.16,57.76,121.18(q,JCF=320.5),122.02(t,JCF=240.0).
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.91(dsex,JFF=328.3,17.3),82.72(d,JFF=201.5).
[IRスペクトルデータ]
IR(neat,cm-1)2961,2885,1472,1396,1333,1139,1057,899,791,619.
[NMR spectral data]
1 H-NMR (300 MHz, ppm, DMSO-d 6 , J = Hz) σ = 1.25 (sextet, J = 9 Hz, 3H), 2.70 (triplet, J = 9 Hz, 3H), 3.10 ( singlet, 3H), 3.25 (quintet, J = 9 Hz, 2H), 3.42 (quintet, J = 9 Hz, 3H)
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.48 (3H, t, J = 7.3), 1.78 (3H, t, J = 18.8), 2.60− 2.78 (2H, m), 3.46 (2H, t, J = 7.8), 3.53 (6H, s), 3.85 (2H, q, J = 7.3).
13 C NMR (126 MHz, ppm, CDCl 3 , J = Hz) δ = 7.92, 23.41 (t, J CF = 29.8), 30.93 (t, J CF = 25.0), 48. 04, 50.16, 57.76, 121.18 (q, J CF = 320.5), 122.02 (t, J CF = 240.0).
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.91 (dsex, J FF = 328.3, 17.3), 82.72 (d, J FF = 201.5).
[IR spectrum data]
IR (neat, cm −1 ) 2961, 2885, 1472, 1396, 1333, 1139, 1057, 899, 791, 619.

図1は、実施例1で得たイオン液体1のFT−IRチャートを示す図であり、図2は、実施例1で得たイオン液体1のDSCチャートを示す図であり、図3は、実施例1で得たイオン液体1のTGAチャートを示す図である。図2に示すチャートからピーク解析によりイオン液体1のガラス転移温度を求めたところ、−78℃であった。また、図3に示すチャートから、イオン液体1は約300℃付近まで液体状態を維持できていることが確認できた。   FIG. 1 is a diagram showing an FT-IR chart of the ionic liquid 1 obtained in Example 1, FIG. 2 is a diagram showing a DSC chart of the ionic liquid 1 obtained in Example 1, and FIG. 2 is a diagram showing a TGA chart of the ionic liquid 1 obtained in Example 1. FIG. It was -78 degreeC when the glass transition temperature of the ionic liquid 1 was calculated | required by the peak analysis from the chart shown in FIG. Moreover, from the chart shown in FIG. 3, it was confirmed that the ionic liquid 1 was able to maintain the liquid state up to about 300 ° C.

<実施例2>
下記の操作でイオン液体2を合成した。
<Example 2>
Ionic liquid 2 was synthesized by the following operation.

(1)メチルシクロペンタノールの合成
アルゴン雰囲気下、ナスフラスコにシクロペンタノン(2.10g,25.0mmol)と、テトラヒドロフラン(25ml)を入れ、−78℃に冷却して15分間撹拌した後、メチルリチウム(1.4M ジエチルエーテル中,35.7ml)を滴下し、−78℃のまま2日間撹拌を続けた。塩化アンモニウム水溶液を加えて反応を停止した後、ジエチルエーテル抽出を3回行い、有機層を無水硫酸マグネシウムで乾燥させた後ろ過し、エバポレーターを用いて水につけて減圧濃縮を行ない、1−メチルシクロペンタノールの粗製物を1.98g得た。これを精製せずに次の反応に使用した。
(1) Synthesis of methylcyclopentanol Under an argon atmosphere, cyclopentanone (2.10 g, 25.0 mmol) and tetrahydrofuran (25 ml) were placed in an eggplant flask, cooled to −78 ° C. and stirred for 15 minutes, Methyl lithium (1.4M in diethyl ether, 35.7 ml) was added dropwise and stirring was continued for 2 days at -78 ° C. After stopping the reaction by adding an aqueous ammonium chloride solution, extraction with diethyl ether was performed three times. The organic layer was dried over anhydrous magnesium sulfate, filtered, concentrated in water using an evaporator, and concentrated under reduced pressure. 1.98 g of a crude product of pentanol was obtained. This was used in the next reaction without purification.

(2)6−ブロモヘキサン−2−オンの合成
アルゴン雰囲気下、ナスフラスコに1−メチルシクロペンタノール(1.98g,19.8mmolあるものとする)の粗製物、炭酸カリウム(16.42g,118mmol),クロロホルム(40ml)を入れ、0℃に冷却して15分間撹拌した後、臭素(15.8g,99.0mmol)を加えて8時間反応させた。チオ硫酸ナトリウム水溶液で反応を停止させ、ジクロロメタン抽出を3回行い、有機層を無水硫酸マグネシウムで乾燥させた後ろ過、減圧濃縮を行った。シリカゲルフラッシュカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1〜0:1)で精製し、6−ブロモヘキサン−2−オン(2.44g,13.6mmol)を収率69%(2ステップ)で得た。生成物の構造はNMR,IRにて確認した。結果を下記に示す。なお、薄層クロマトグラフィーの展開位置から測定した上記生成物のRf値は、
Rf=0.43(ヘキサン/酢酸エチル=4/1)
であった。
(2) Synthesis of 6-bromohexane-2-one A crude product of 1-methylcyclopentanol (assuming 1.98 g, 19.8 mmol) in an eggplant flask under an argon atmosphere, potassium carbonate (16.42 g, 118 mmol) and chloroform (40 ml) were added, and the mixture was cooled to 0 ° C. and stirred for 15 minutes, and bromine (15.8 g, 99.0 mmol) was added and reacted for 8 hours. The reaction was stopped with an aqueous sodium thiosulfate solution, extracted with dichloromethane three times, the organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification by silica gel flash column chromatography (hexane: ethyl acetate = 6: 1 to 0: 1) gave 6-bromohexane-2-one (2.44 g, 13.6 mmol) in 69% yield (2 steps). Obtained. The structure of the product was confirmed by NMR and IR. The results are shown below. The Rf value of the product measured from the development position of thin layer chromatography is
Rf = 0.43 (hexane / ethyl acetate = 4/1)
Met.

[NMRスペクトルデータ]
1HNMR(400MHz,ppm,CDCl3,J=Hz)δ=1.67−1.78(2H,m),1.83−1.90(2H,m),2.16(3H,s),2.48(2H,t,J=7.3),3.41(2H,t,J6.5).
13CNMR(100MHz,ppm,CDCl3)δ=22.16,29.84,31.92,33.27,42.43,208.16.
[IRスペクトルデータ]
IR(neat,cm-1)2943,2872,1717,1655,1362,1256,1163,725,648,559.
[NMR spectral data]
1 HNMR (400 MHz, ppm, CDCl 3 , J = Hz) δ = 1.7-1.78 (2H, m), 1.83-1.90 (2H, m), 2.16 (3H, s) , 2.48 (2H, t, J = 7.3), 3.41 (2H, t, J6.5).
13 C NMR (100 MHz, ppm, CDCl 3 ) δ = 2.16, 29.84, 31.92, 33.27, 42.43, 208.16.
[IR spectrum data]
IR (neat, cm −1 ) 2943, 2872, 1717, 1655, 1362, 1256, 1163, 725, 648, 559.

(3)1−ブロモ−5,5−ジフルオロヘキサンの合成
アルゴン雰囲気下、ナスフラスコに6−ブロモヘキサン−2−オン(3.58g,20.0mmol)、ジクロロメタン(15ml)を入れて、[ビス(2−メトキシエチル)アミノ]サルファートリフルオリド(7.52g,34.0mmol)、エタノール(184mg,4.00mmol)の順に滴下し、5日間室温で撹拌した。ガスクロマトグラフィーで下記の検出位置におけるスペクトルを評価することによって基質がなくなったことを確認し、0℃まで冷却してから水を加えて反応を停止した後、水洗浄を3回行ない、有機層を無水硫酸マグネシウムで乾燥させた後ろ過し、1−ブロモ−5,5−ジフルオロヘキサンを含む反応溶液を得た。
GC(100℃,昇温なし)
1−ブロモ−5,5−ジフルオロヘキサン・・・2.82min.
6−ブロモヘキサン−2−オン・・・4.65min.
(CH3OCH2CH22NSF3・・・2.98min.
(3) Synthesis of 1-bromo-5,5-difluorohexane Under an argon atmosphere, 6-bromohexane-2-one (3.58 g, 20.0 mmol) and dichloromethane (15 ml) were placed in an eggplant flask. (2-Methoxyethyl) amino] sulfur trifluoride (7.52 g, 34.0 mmol) and ethanol (184 mg, 4.00 mmol) were added dropwise in this order, and the mixture was stirred at room temperature for 5 days. After confirming the absence of the substrate by evaluating the spectrum at the following detection position by gas chromatography, cooling to 0 ° C, adding water to stop the reaction, washing with water three times, and organic layer Was dried over anhydrous magnesium sulfate and filtered to obtain a reaction solution containing 1-bromo-5,5-difluorohexane.
GC (100 ° C, no temperature rise)
1-Bromo-5,5-difluorohexane ... 2.82 min.
6-Bromohexane-2-one ... 4.65 min.
(CH 3 OCH 2 CH 2 ) 2 NSF 3 ... 2.98 min.

(4)エチル(5,5−ジフルオロヘキシル)ジメチルアンモニウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに1−ブロモ−5,5−ジフルオロヘキサン(1.01g,5.00mmolあるものとする)を含む反応溶液とエチルジメチルアミン(512mg,7.00mmol)を入れ、100℃で24時間加熱還流した。放冷後減圧濃縮し、有機溶媒(ヘキサン:酢酸エチル=4:1)で5回洗浄した後、減圧乾燥して、褐色ヘドロ状のエチル(5,5−ジフルオロヘキシル)ジメチルアンモニウム=ブロミドを1.41g得た。ヘキサンと酢酸エチルとを完全には除去出来なかったため、収率は求められなかった。生成物の構造はNMR,IRにて確認した。結果を下記に示す。
(4) Synthesis of ethyl (5,5-difluorohexyl) dimethylammonium bromide Under a argon atmosphere, 1-bromo-5,5-difluorohexane (1.01 g, 5.00 mmol shall be contained) is contained in the eggplant flask. The reaction solution and ethyldimethylamine (512 mg, 7.00 mmol) were added, and the mixture was heated to reflux at 100 ° C. for 24 hours. After cooling, the mixture was concentrated under reduced pressure, washed 5 times with an organic solvent (hexane: ethyl acetate = 4: 1), and then dried under reduced pressure to give brown sludge-like ethyl (5,5-difluorohexyl) dimethylammonium bromide as 1. .41 g was obtained. Since hexane and ethyl acetate could not be completely removed, no yield was determined. The structure of the product was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.48(3H,t,J=7.3),1.61(3H,t,J=18.4),1.63(2H,quin,J=7.8),1.86(2H,quin,J=7.8),1.93−2.02(2H,m),3.47(2H,t,J=11.0),3.55(6H,s),3.87(2H,q,J=7.3).
13CNMR(126MHz,ppm,CD3OD,J=Hz)δ=7.16,19.44,21.89,22.21(t,JCF=27.9),36.80(t,JCF=26.0),49.81,58.85,68.07,124.11(t,JCF=237.1).
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.67(sex,JFF=17.2).
[IRスペクトルデータ]
IR(neat,cm-1)2963,2716,2091,1636,1471,1396,1238,1124,1022,916.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.48 (3H, t, J = 7.3), 1.61 (3H, t, J = 18.4), 1.63 ( 2H, quin, J = 7.8), 1.86 (2H, quin, J = 7.8), 1.93-2.02 (2H, m), 3.47 (2H, t, J = 11) .0), 3.55 (6H, s), 3.87 (2H, q, J = 7.3).
13 C NMR (126 MHz, ppm, CD 3 OD, J = Hz) δ = 7.16, 19.44, 21.89, 22.21 (t, J CF = 27.9), 36.80 (t, J CF = 26.0), 49.81, 58.85, 68.07, 124.11 (t, J CF = 237.1).
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.67 (sex, J FF = 17.2).
[IR spectrum data]
IR (neat, cm −1 ) 2963, 2716, 2091, 1636, 1471, 1396, 1238, 1124, 1022, 916.

(5)エチル(5,5−ジフルオロヘキシル)ジメチルアンモニウム=ビス(トリフルオロメタンスルフォニル)イミドの合成
アルゴン雰囲気下、ナスフラスコに、エチル(5,5−ジフルオロヘキシル)ジメチルアンモニウム=ブロミド(1.37g,5.00mmolあるものとする)と、リチウム=ビス(トリフルオロメタンスルフォニル)イミド(1.44g,5.00mmol)と、アセトン(5ml)とを入れ24時間室温で撹拌して塩交換を行なった。減圧濃縮後、有機溶媒(ヘキサン:酢酸エチル=4:1)と水とで各5回ずつ洗浄し濃縮した。その後、アセトン(5ml)と活性炭(1.0g)とを加え、室温で3時間撹拌した後、セライトろ過で活性炭を除去した。続いてアルミナショートカラムに5回通し、減圧濃縮した後、50℃で24時間真空加熱乾燥、24時間凍結乾燥して、黄色油状物として、下記の式(9)、
(5) Synthesis of ethyl (5,5-difluorohexyl) dimethylammonium bis (trifluoromethanesulfonyl) imide In an eggplant flask under an argon atmosphere, ethyl (5,5-difluorohexyl) dimethylammonium bromide (1.37 g, 5.00 mmol), lithium bis (trifluoromethanesulfonyl) imide (1.44 g, 5.00 mmol), and acetone (5 ml) were added and stirred at room temperature for 24 hours for salt exchange. After concentration under reduced pressure, the organic solvent (hexane: ethyl acetate = 4: 1) and water were washed 5 times each and concentrated. Thereafter, acetone (5 ml) and activated carbon (1.0 g) were added, and the mixture was stirred at room temperature for 3 hours, and then the activated carbon was removed by Celite filtration. Subsequently, after passing through an alumina short column 5 times and concentrating under reduced pressure, vacuum drying at 50 ° C. for 24 hours and freeze-drying for 24 hours to obtain a yellow oily substance, the following formula (9),

Figure 2007224001
Figure 2007224001

で示される構造の、エチル(5,5−ジフルオロへキシル)ジメチルアンモニウムカチオンとTFSIアニオンとの塩である、エチル(5,5−ジフルオロヘキシル)ジメチルアンモニウム=ビス(トリフルオロメタンスルフォニル)イミド(1.52g,3.21mmol)からなるイオン液体2を収率41.2%で得た。イオン液体2の構造はNMR,IRにて確認した。結果を下記に示す。 Embedded image Ethyl (5,5-difluorohexyl) dimethylammonium bis (trifluoromethanesulfonyl) imide (1.) is a salt of an ethyl (5,5-difluorohexyl) dimethylammonium cation and a TFSI anion. 52 g, 3.21 mmol) was obtained with a yield of 41.2%. The structure of the ionic liquid 2 was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.48(3H,t,J=7.3),1.61(3H,t,J=18.4),1.63(2H,quin,J=7.8),1.86(2H,quin,J=7.8),1.93−2.02(2H,m),3.47(2H,t,J=11.0),3.55(6H,s),3.87(2H,q,J=7.3).
13CNMR(126MHz,ppm,CD3OD,J=Hz)δ=7.16,19.44,21.89,22.21(t,JCF=27.9),36.80(t,JCF=26.0),49.81,58.85,68.07,121.18(q,JCF=320.5),124.11(t,JCF=237.1).
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.91(dsex,JFF=328.3,17.3),82.72(d,JFF=201.5).
[IRデータ]
IR(neat,cm-1)2961,2885,1742,1396,1333,1139,1057,899,791,741.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.48 (3H, t, J = 7.3), 1.61 (3H, t, J = 18.4), 1.63 ( 2H, quin, J = 7.8), 1.86 (2H, quin, J = 7.8), 1.93-2.02 (2H, m), 3.47 (2H, t, J = 11) .0), 3.55 (6H, s), 3.87 (2H, q, J = 7.3).
13 C NMR (126 MHz, ppm, CD3OD, J = Hz) δ = 7.16, 19.44, 21.89, 22.21 (t, J CF = 27.9), 36.80 (t, J CF = 26.0), 49.81, 58.85, 68.07, 121.18 (q, J CF = 320.5), 124.11 (t, J CF = 237.1).
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.91 (dsex, J FF = 328.3, 17.3), 82.72 (d, J FF = 201.5).
[IR data]
IR (neat, cm −1 ) 2961, 2885, 1742, 1396, 1333, 1139, 1057, 899, 791, 741.

<実施例3>
ジメチルエチルアミンの代わりに1−メチルイミダゾールを用い、下記の方法でイオン液体3を合成した。
<Example 3>
Ionic liquid 3 was synthesized by the following method using 1-methylimidazole instead of dimethylethylamine.

(1)4−ブロモブタン−2−オンの合成
アルゴン雰囲気下、ナスフラスコにアルミニウムクロライド(4.00g,30.0mmol),ジクロロメタン(30ml)を入れ、−50℃に冷却した後、3−ブロモプロピオニルクロライド(5.14g,30.0mmol)を加えて30分撹拌した。−30℃まで昇温し、2時間経過後にトリメチルアルミニウム(1.4M n−ヘキサン中,8.70ml)を滴下し、−30℃から室温まで5時間かけてゆっくり戻した。0℃まで冷却し、水を加えて反応を停止した後、ジクロロメタン抽出を3回行ない、有機層を無水硫酸マグネシウムで乾燥させた後ろ過し、エバポレーターを用いて水につけて減圧濃縮を行なった。シリカゲルフラッシュカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1〜0:1)で精製し、4−ブロモブタン−2−オン(3.54g,23.4mmol)を収率78%で得た。生成物の構造はNMR,IRにて確認した。結果を下記に示す。なお、薄層クロマトグラフィーの展開位置から測定した上記生成物のRf値は、
Rf=0.36(ヘキサン/酢酸エチル=4/1)
であった。
(1) Synthesis of 4-bromobutan-2-one In an argon atmosphere, aluminum chloride (4.00 g, 30.0 mmol) and dichloromethane (30 ml) were placed in an eggplant flask, cooled to −50 ° C., and then 3-bromopropionyl. Chloride (5.14 g, 30.0 mmol) was added and stirred for 30 minutes. The temperature was raised to −30 ° C., and after 2 hours, trimethylaluminum (1.4M in n-hexane, 8.70 ml) was added dropwise, and the temperature was slowly returned from −30 ° C. to room temperature over 5 hours. After cooling to 0 ° C. and adding water to stop the reaction, extraction with dichloromethane was performed three times. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo using an evaporator. Purification by silica gel flash column chromatography (hexane: ethyl acetate = 6: 1 to 0: 1) gave 4-bromobutan-2-one (3.54 g, 23.4 mmol) in a yield of 78%. The structure of the product was confirmed by NMR and IR. The results are shown below. The Rf value of the product measured from the development position of thin layer chromatography is
Rf = 0.36 (hexane / ethyl acetate = 4/1)
Met.

[NMRスペクトルデータ]
1HNMR(400MHz,ppm,CDCl3,J=Hz)δ=2.20(3H,s),3.05(2H,t,J=6.3),3.55(2H,t,J=6.3).
13CNMR(100MHz,ppm,CDCl3)δ=25.31,30.23,45.94,205.38.
[IRスペクトルデータ]
IR(neat,cm-1)2978,2916,1717,1366,1335,1267,1159,1007,549.
[NMR spectral data]
1 HNMR (400 MHz, ppm, CDCl 3 , J = Hz) δ = 2.20 (3H, s), 3.05 (2H, t, J = 6.3), 3.55 (2H, t, J = 6.3).
13 C NMR (100 MHz, ppm, CDCl 3 ) δ = 25.31, 30.23, 45.94, 205.38.
[IR spectrum data]
IR (neat, cm −1 ) 2978, 2916, 1717, 1366, 1335, 1267, 1159, 1007, 549.

(2)1−ブロモ−3,3−ジフルオロブタンの合成
アルゴン雰囲気下、ナスフラスコに4−ブロモブタン−2−オン(3.02g,20.0mmol)、ジクロロメタン(15ml)を入れて、[ビス(2−メトキシエチル)アミノ]サルファートリフルオリド(7.52g,34.0mmol)、エタノール(184mg,4.00mmol)の順に滴下し、5日間室温で撹拌した。ガスクロマトグラフィーで下記の検出位置におけるスペクトルを評価することによって基質がなくなったことを確認し、0℃まで冷却してから水を加えて反応を停止した後、水洗浄を3回行ない、有機層を無水硫酸マグネシウムで乾燥させた後ろ過し、1−ブロモ−3,3−ジフルオロブタンを含む反応溶液を得た。
GC(100℃,昇温なし)
1−ブロモ−3,3−ジフルオロブタン・・・1.84min.
4−ブロモブタン−2−オン・・・2.34min.
(CH3OCH2CH22NSF3・・・2.98min.
(2) Synthesis of 1-bromo-3,3-difluorobutane Under an argon atmosphere, 4-bromobutan-2-one (3.02 g, 20.0 mmol) and dichloromethane (15 ml) were placed in an eggplant flask, and [bis ( 2-Methoxyethyl) amino] sulfur trifluoride (7.52 g, 34.0 mmol) and ethanol (184 mg, 4.00 mmol) were added dropwise in this order, and the mixture was stirred at room temperature for 5 days. After confirming the absence of the substrate by evaluating the spectrum at the following detection position by gas chromatography, cooling to 0 ° C, adding water to stop the reaction, washing with water three times, and organic layer Was dried over anhydrous magnesium sulfate and filtered to obtain a reaction solution containing 1-bromo-3,3-difluorobutane.
GC (100 ° C, no temperature rise)
1-bromo-3,3-difluorobutane ... 1.84 min.
4-Bromobutan-2-one ... 2.34 min.
(CH 3 OCH 2 CH 2 ) 2 NSF 3 ... 2.98 min.

(3)1−(3,3−ジフルオロブチル)−3−メチルイミダゾリウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに1−ブロモ−3,3−ジフルオロブタン(3.46g,20.0mmolあるものとする)を含む反応溶液と1−メチルイミダゾール(1.97g,24.0mmol)を入れ、100℃で24時間加熱還流した。放冷後減圧濃縮し、有機溶媒(ヘキサン:酢酸エチル=4:1)で5回洗浄した後、減圧乾燥して、黒褐色油状物として1−(3,3−ジフルオロブチル)−3−メチルイミダゾリウム=ブロミド(2.78g,10.9mmol)を収率54%(2ステップ)で得た。生成物の構造はNMRにて確認した。結果を下記に示す。
(3) Synthesis of 1- (3,3-difluorobutyl) -3-methylimidazolium bromide 1-bromo-3,3-difluorobutane (3.46 g, 20.0 mmol) in an eggplant flask under an argon atmosphere And 1-methylimidazole (1.97 g, 24.0 mmol) were added, and the mixture was heated to reflux at 100 ° C. for 24 hours. After cooling, the mixture was concentrated under reduced pressure, washed 5 times with an organic solvent (hexane: ethyl acetate = 4: 1), and then dried under reduced pressure to give 1- (3,3-difluorobutyl) -3-methylimidazo as a black-brown oil. Lithium bromide (2.78 g, 10.9 mmol) was obtained in 54% yield (2 steps). The structure of the product was confirmed by NMR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.60(3H,t,J=18.8),1.89−1.98(2H,m),4.11(3H,s),4.42(2H,t,J=7.3),7.51(2H,d,J=11.3),10.60(1H,s).
13CNMR(126MHz,ppm,CDCl3,J=Hz)δ=23.19(t,JCF=26.5),30.53,37.41(t,JCF=24.8),43.75,122.64(t,JCF=226.6),136.09.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.91(sex,JFF=17.3).
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.60 (3H, t, J = 18.8), 1.89-1.98 (2H, m), 4.11 (3H, s), 4.42 (2H, t, J = 7.3), 7.51 (2H, d, J = 11.3), 10.60 (1H, s).
13 C NMR (126 MHz, ppm, CDCl 3 , J = Hz) δ = 2.19 (t, J CF = 26.5), 30.53, 37.41 (t, J CF = 24.8), 43. 75, 122.64 (t, J CF = 226.6), 136.09.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.91 (sex, J FF = 17.3).

(4)1−(3,3−ジフルオロブチル)−3−メチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミドの合成
アルゴン雰囲気下、ナスフラスコに1−(3,3−ジフルオロブチル)−3−メチルイミダゾリウム=ブロミド(2.78g,10.9mmol)と、リチウム=ビス(トリフルオロメタンスルフォニル)イミド(3.16g,11.0mmol)と、アセトン(12ml)とを入れ24時間室温で撹拌して塩交換を行なった。減圧濃縮後、有機溶媒(ヘキサン:酢酸エチル=4:1)と水とで各5回ずつ洗浄し濃縮した。その後、アセトン(12ml)と活性炭(1.5g)とを加え、室温で3時間撹拌した後、セライトろ過で活性炭を除去した。続いてアルミナショートカラムに5回通し、減圧濃縮した後、50℃で24時間真空加熱乾燥、24時間凍結乾燥して、赤褐色油状物として、下記の式(10)、
(4) Synthesis of 1- (3,3-difluorobutyl) -3-methylimidazolium bis (trifluoromethanesulfonyl) imide 1- (3,3-difluorobutyl) -3-methyl in an eggplant flask under an argon atmosphere Imidazolium bromide (2.78 g, 10.9 mmol), lithium bis (trifluoromethanesulfonyl) imide (3.16 g, 11.0 mmol) and acetone (12 ml) were added and stirred for 24 hours at room temperature to give a salt. Exchange was performed. After concentration under reduced pressure, the organic solvent (hexane: ethyl acetate = 4: 1) and water were washed 5 times each and concentrated. Thereafter, acetone (12 ml) and activated carbon (1.5 g) were added, and the mixture was stirred at room temperature for 3 hours, and then the activated carbon was removed by Celite filtration. Subsequently, after passing through an alumina short column 5 times and concentrating under reduced pressure, vacuum drying at 50 ° C. for 24 hours and freeze-drying for 24 hours to obtain a reddish brown oily substance, the following formula (10),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(3,3−ジフルオロブチル)−3−メチルイミダゾリウムカチオンとTFSIアニオンとの塩である1−(3,3−ジフルオロブチル)−3−メチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミド(1.52g,3.36mmol)からなるイオン液体3を収率21.8%で得た。イオン液体3の構造はNMR,IRにて確認した。結果を下記に示す。 1- (3,3-difluorobutyl) -3-methylimidazolium bis ((), a salt of 1- (3,3-difluorobutyl) -3-methylimidazolium cation and TFSI anion The ionic liquid 3 consisting of trifluoromethanesulfonyl) imide (1.52 g, 3.36 mmol) was obtained in a yield of 21.8%. The structure of the ionic liquid 3 was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.60(3H,t,J=18.8),1.89−1.98(2H,m),4.11(3H,s),4.42(2H,t,J=7.3),7.51(2H,d,J=11.3),10.60(1H,s).
13CNMR(126MHz,ppm,CDCl3,J=Hz)δ=23.19(t,JCF=26.5),30.53,37.41(t,JCF=24.8),43.75,119.72(q,JCF=320.9),122.64(t,JCF=226.6),136.09.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=69.44(dsex,JFF=132.4,17.3),82.54(d,JFF=241.8).
[IRスペクトルデータ]
IR(neat,cm-1)3123,2853,1560,1331,1136,1057,908,843,791,615.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.60 (3H, t, J = 18.8), 1.89-1.98 (2H, m), 4.11 (3H, s), 4.42 (2H, t, J = 7.3), 7.51 (2H, d, J = 11.3), 10.60 (1H, s).
13 C NMR (126 MHz, ppm, CDCl 3 , J = Hz) δ = 2.19 (t, J CF = 26.5), 30.53, 37.41 (t, J CF = 24.8), 43. 75, 119.72 (q, J CF = 320.9), 122.64 (t, J CF = 226.6), 136.09.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 69.44 (dsex, J FF = 132.4, 17.3), 82.54 (d, J FF = 241.8).
[IR spectrum data]
IR (neat, cm −1 ) 3123, 2853, 1560, 1331, 1136, 1057, 908, 843, 791, 615.

<実施例4>
実施例3で記載される方法と同様の方法で得た1−ブロモ−3,3−ジフルオロブタンを用い、下記の方法で、1−(3,3−ジフルオロブチル)ピリジニウム=ビス(トリフルオロメタンスルフォニル)イミドを合成した。
<Example 4>
Using 1-bromo-3,3-difluorobutane obtained by a method similar to that described in Example 3 and using the following method, 1- (3,3-difluorobutyl) pyridinium bis (trifluoromethanesulfonyl) ) An imide was synthesized.

(1)1−(3,3−ジフルオロブチル)ピリジニウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに1−ブロモ−3,3−ジフルオロブタン(3.46g,20.0mmolあるものとする)を含む反応溶液とピリジン(1.90g,24.0mmol)とを入れ、100℃で24時間加熱還流した。放冷後減圧濃縮し、有機溶媒(ヘキサン:酢酸エチル=4:1)で5回洗浄した後、減圧乾燥して、褐色油状物として1−(3,3−ジフルオロブチル)ピリジニウム=ブロミド(94.2mg,0.37mmol)を、収率1.9%(2ステップ)で得た。生成物の構造はNMR,IRにて確認した。結果を下記に示す。
(1) Synthesis of 1- (3,3-difluorobutyl) pyridinium = bromide In a argon flask, 1-bromo-3,3-difluorobutane (3.46 g, 20.0 mmol) is contained in an eggplant flask. The reaction solution and pyridine (1.90 g, 24.0 mmol) were added and heated to reflux at 100 ° C. for 24 hours. After allowing to cool, the mixture was concentrated under reduced pressure, washed 5 times with an organic solvent (hexane: ethyl acetate = 4: 1), dried under reduced pressure, and 1- (3,3-difluorobutyl) pyridinium bromide (94 0.2 mg, 0.37 mmol) was obtained with a yield of 1.9% (2 steps). The structure of the product was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.71(3H,t,J=19.2),2.81−2.90(2H,m),5.29(2H,t,J=6.5),8.10(2H,t,J=6.9),8.52(1H,t,J=7.8),9.59(2H,d,J=5.5).
13CNMR(125MHz,ppm,CD3OD,J=Hz)δ=23.89(t,JCF=25.9),39.16(t,JCF=25.0),43.93,124.45(t,JCF=238.9),129.48,142.97,146.47.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.86(sex,JFF=17.3).
[IRスペクトルデータ]
IR(neat,cm-1)2635,2347,2104,1612,1582,1539,1489,1400,1030,912.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.71 (3H, t, J = 19.2), 2.81-2.90 (2H, m), 5.29 (2H, t, J = 6.5), 8.10 (2H, t, J = 6.9), 8.52 (1H, t, J = 7.8), 9.59 (2H, d, J = 5) .5).
13 C NMR (125 MHz, ppm, CD3OD, J = Hz) δ = 2.89 (t, J CF = 25.9), 39.16 (t, J CF = 25.0), 43.93, 124.45 (T, J CF = 238.9), 129.48, 142.97, 146.47.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.86 (sex, J FF = 17.3).
[IR spectrum data]
IR (neat, cm −1 ) 2635, 2347, 2104, 1612, 1582, 1539, 1489, 1400, 1030, 912.

続いて、実施例3と同様の方法で、リチウム=ビス(トリフルオロメタンスルフォニル)イミドを反応させて塩交換を行ない、下記の式(11)、   Subsequently, in the same manner as in Example 3, lithium = bis (trifluoromethanesulfonyl) imide was reacted to perform salt exchange, and the following formula (11),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(3,3−ジフルオロブチル)ピリジニウムカチオンとTFSIアニオンとの塩である、1−(3,3−ジフルオロブチル)ピリジニウム=ビス(トリフルオロメタンスルフォニル)イミドからなるイオン液体4を収率15.8%で得た。 An ionic liquid composed of 1- (3,3-difluorobutyl) pyridinium bis (trifluoromethanesulfonyl) imide, which is a salt of a 1- (3,3-difluorobutyl) pyridinium cation and a TFSI anion 4 was obtained in a yield of 15.8%.

<実施例5>
LiTFSIの代わりに、2,2,3,3,4,4,5,5−オクタフルオロペンタン硫酸アンモニウムを用いた他は、実施例1と同様の方法で、下記の式(13)、
<Example 5>
Except for using 2,2,3,3,4,4,5,5-octafluoropentanesulfate ammonium instead of LiTFSI, the same method as in Example 1, the following formula (13),

Figure 2007224001
Figure 2007224001

で示される構造の、エチル(3,3−ジフルオロブチル)ジメチルアンモニウムカチオンと2,2,3,3,4,4,5,5−オクタフルオロペンタン硫酸アニオンとのフッ素化硫酸塩である、エチル(3,3−ジフルオロブチル)ジメチルアンモニウム=2,2,3,3,4,4,5,5−オクタフルオロペンタンスルフォニルイミドからなるイオン液体5を収率32.3%で得た。イオン液体5の構造は1HNMRにて確認した。 Ethyl which is a fluorinated sulfate salt of ethyl (3,3-difluorobutyl) dimethylammonium cation and 2,2,3,3,4,4,5,5-octafluoropentanesulfate anion having the structure represented by The ionic liquid 5 consisting of (3,3-difluorobutyl) dimethylammonium = 2,2,3,3,4,4,5,5-octafluoropentanesulfonylimide was obtained in a yield of 32.3%. The structure of the ionic liquid 5 was confirmed by 1 HNMR.

<実施例6>
実施例3に記載される方法と同様の方法で得た1−ブロモ−3,3−ジフルオロブタンを用い、下記の方法でイオン液体6を合成した。
<Example 6>
Using 1-bromo-3,3-difluorobutane obtained by the same method as described in Example 3, ionic liquid 6 was synthesized by the following method.

(1)1−(3,3−ジフルオロブチル)−2,3−ジメチルイミダゾリウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに1−ブロモ−3,3−ジフルオロブタン(5.19g,30.0mmolあるものとする)を含む反応溶液と1,2−ジメチルイミダゾール(3.46g,36.0mmol)とを入れ、100℃で24時間加熱還流した。放冷後減圧濃縮し、有機溶媒(ヘキサン:酢酸エチル=4:1)で5回洗浄した後、減圧乾燥して、黒色固体の1−(3,3−ジフルオロブチル)−2,3−ジメチルイミダゾリウム=ブロミド(2.50g,9.29mmol)を、収率31%(2ステップ)で得た。生成物の構造はNMRにて確認した。結果を下記に示す。
(1) Synthesis of 1- (3,3-difluorobutyl) -2,3-dimethylimidazolium bromide In an argon atmosphere, 1-bromo-3,3-difluorobutane (5.19 g, 30.0 mmol) was added to an eggplant flask. A reaction solution containing 1) and 1,2-dimethylimidazole (3.46 g, 36.0 mmol) were added and heated to reflux at 100 ° C. for 24 hours. After cooling, the mixture was concentrated under reduced pressure, washed 5 times with an organic solvent (hexane: ethyl acetate = 4: 1), dried under reduced pressure, and 1- (3,3-difluorobutyl) -2,3-dimethyl as a black solid. Imidazolium bromide (2.50 g, 9.29 mmol) was obtained in 31% yield (2 steps). The structure of the product was confirmed by NMR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.68(3H,t,J=18.8),2.40−2.50(2H,m),2.65(3H,s),3.83(3H,s),4.35(2H,t,J=6.9),7.23(1H,d,J=2.2),7.32(1H,d,J=2.3).
13CNMR(100MHz,ppm,CDCl3,J=Hz)δ=9.13,23.32(t,JCF=28.1),34.97,36.89(t,JCF=24.8),42.17(t,JCF=5.0),120.53,122.49,122.49(t,JCF=238.2).
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.75(sex,JFF=17.3).
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.68 (3H, t, J = 18.8), 2.40-2.50 (2H, m), 2.65 (3H, s), 3.83 (3H, s), 4.35 (2H, t, J = 6.9), 7.23 (1H, d, J = 2.2), 7.32 (1H, d, J = 2.3).
13 C NMR (100 MHz, ppm, CDCl 3 , J = Hz) δ = 9.13, 23.32 (t, J CF = 28.1), 34.97, 36.89 (t, J CF = 24.8) ), 42.17 (t, J CF = 5.0), 120.53, 122.49, 122.49 (t, J CF = 238.2).
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.75 (sex, J FF = 17.3).

(2)1−(3,3−ジフルオロブチル)−2,3−ジメチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミドの合成
アルゴン雰囲気下、ナスフラスコに1−(3,3−ジフルオロブチル)−2,3−ジメチルイミダゾリウム=ブロミド(2.50g,9.29mmol)と、リチウム=ビス(トリフルオロメタンスルフォニル)イミド(2.73g,9.51mmol)と、アセトン(10ml)とを入れ24時間室温で撹拌して塩交換を行なった。減圧濃縮後、有機溶媒(ヘキサン:酢酸エチル=4:1)と水とで各5回ずつ洗浄し濃縮した。その後、アセトン(10ml)と活性炭(1.5g)とを加え、室温で3時間撹拌した後、セライトろ過で活性炭を除去した。続いてアルミナショートカラムに5回通し、減圧濃縮した後、50℃で24時間真空加熱乾燥、24時間凍結乾燥して、褐色油状物として、下記の式(14)、
(2) Synthesis of 1- (3,3-difluorobutyl) -2,3-dimethylimidazolium = bis (trifluoromethanesulfonyl) imide 1- (3,3-difluorobutyl) -2 in an eggplant flask under an argon atmosphere , 3-dimethylimidazolium bromide (2.50 g, 9.29 mmol), lithium bis (trifluoromethanesulfonyl) imide (2.73 g, 9.51 mmol), and acetone (10 ml) were added for 24 hours at room temperature. Salt exchange was performed with stirring. After concentration under reduced pressure, the organic solvent (hexane: ethyl acetate = 4: 1) and water were washed 5 times each and concentrated. Thereafter, acetone (10 ml) and activated carbon (1.5 g) were added, and the mixture was stirred at room temperature for 3 hours, and then the activated carbon was removed by Celite filtration. Subsequently, after passing through an alumina short column 5 times and concentrating under reduced pressure, vacuum drying at 50 ° C. for 24 hours and freeze-drying for 24 hours to obtain a brown oily product, the following formula (14),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(3,3−ジフルオロブチル)−2,3−ジメチルイミダゾリウムカチオンと、ビス(トリフルオロメタンスルフォニル)イミドアニオンとの塩である、1−(3,3−ジフルオロブチル)−2,3−ジメチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミド(3.22g,6.86mmol)からなるイオン液体6を収率74%で得た。イオン液体6の構造はNMR,IRにて確認した。結果を下記に示す。 1- (3,3-difluorobutyl) which is a salt of a 1- (3,3-difluorobutyl) -2,3-dimethylimidazolium cation and a bis (trifluoromethanesulfonyl) imide anion having a structure represented by The ionic liquid 6 consisting of) -2,3-dimethylimidazolium bis (trifluoromethanesulfonyl) imide (3.22 g, 6.86 mmol) was obtained in a yield of 74%. The structure of the ionic liquid 6 was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.68(3H,t,J=18.8),2.40−2.50(2H,m),2.65(3H,s),3.83(3H,s),4.35(2H,t,J=6.9),7.23(1H,d,J=2.2),7.32(1H,d,J=2.3).
13CNMR(100MHz,ppm,CDCl3,J=Hz)δ=9.13,23.32(t,JCF=28.1),34.97,36.89(t,JCF=24.8),42.17(t,JCF=5.0),119.69(q,JCF=320.9),120.53,122.49,122.49(t,JCF=238.2).
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=68.69(sex,JFF=17.3),82.83.
[IRスペクトルデータ]
IR(neat,cm-1)3153,2957,1593,1541,1333,1140,1059,908,740,617.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.68 (3H, t, J = 18.8), 2.40-2.50 (2H, m), 2.65 (3H, s), 3.83 (3H, s), 4.35 (2H, t, J = 6.9), 7.23 (1H, d, J = 2.2), 7.32 (1H, d, J = 2.3).
13 C NMR (100 MHz, ppm, CDCl 3 , J = Hz) δ = 9.13, 23.32 (t, J CF = 28.1), 34.97, 36.89 (t, J CF = 24.8) ), 42.17 (t, J CF = 5.0), 119.69 (q, J CF = 320.9), 120.53, 122.49, 122.49 (t, J CF = 238.2) ).
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 68.69 (sex, J FF = 17.3), 82.83.
[IR spectrum data]
IR (neat, cm −1 ) 3153, 2957, 1593, 1541, 1333, 1140, 1059, 908, 740, 617.

<実施例7>
実施例2に記載される方法と同様の方法で得た1−ブロモ−5,5−ジフルオロヘキサンを用い、下記の方法でイオン液体7を合成した。
<Example 7>
Using 1-bromo-5,5-difluorohexane obtained by the same method as described in Example 2, ionic liquid 7 was synthesized by the following method.

(1)1−(5,5−ジフルオロヘキシル)−3−メチルイミダゾリウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに1−ブロモ−5,5−ジフルオロヘキサン(2.01g,10.0mmolあるものとする)を含む反応溶液と、1−メチルイミダゾール(985mg,12.0mmol)とを入れ、100℃で24時間加熱還流した。放冷後減圧濃縮し、有機溶媒(ヘキサン:酢酸エチル=4:1)で5回洗浄した後、減圧乾燥して、黒褐色ヘドロ状の1−(5,5−ジフルオロヘキシル)−3−メチルイミダゾリウム=ブロミドの粗製物を2.90g得た。ヘキサンと酢酸エチルとを完全には除去出来なかったため、収率は求められなかった。生成物の構造はNMR,IRにて確認した。結果を下記に示す。
(1) Synthesis of 1- (5,5-difluorohexyl) -3-methylimidazolium = bromide 1-bromo-5,5-difluorohexane (2.01 g, 10.0 mmol) in an eggplant flask under an argon atmosphere And 1-methylimidazole (985 mg, 12.0 mmol) were added, and the mixture was heated to reflux at 100 ° C. for 24 hours. After standing to cool, the solution was concentrated under reduced pressure, washed 5 times with an organic solvent (hexane: ethyl acetate = 4: 1), dried under reduced pressure, and 1- (5,5-difluorohexyl) -3-methylimidazo in the form of a dark brown sludge. 2.90 g of a crude product of lithium bromide was obtained. Since hexane and ethyl acetate could not be completely removed, no yield was determined. The structure of the product was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.57(2H,q,J=7.8),1.60(3H,t,J=18.8),1.89−1.97(2H,m),2.03(2H,quin,J=7.4),4.11(3H,s),4.42(2H,t,J=7.3),7.51(2H,d,J=13.3),10.60(1H,s).
13CNMR(126MHz,ppm,CD3OD,J=Hz)δ=20.55,30.47(t,JCF=27.8),30.75,36.66,38.00(t,JCF=25.9),50.48,123.55,124.95,125.44(t,JCF=237.1),137.90.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.64(sex,JFF=17.3).
[IRスペクトルデータ]
IR(neat,cm-1)2955,2874,1709,1572,1396,1240,1173,1132,885,623.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.57 (2H, q, J = 7.8), 1.60 (3H, t, J = 18.8), 1.89− 1.97 (2H, m), 2.03 (2H, quin, J = 7.4), 4.11 (3H, s), 4.42 (2H, t, J = 7.3), 7. 51 (2H, d, J = 13.3), 10.60 (1H, s).
13 C NMR (126 MHz, ppm, CD3OD, J = Hz) δ = 20.55, 30.47 (t, J CF = 27.8), 30.75, 36.66, 38.00 (t, J CF = 25.9), 50.48, 123.55, 124.95, 125.44 (t, J CF = 237.1), 137.90.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.64 (sex, J FF = 17.3).
[IR spectrum data]
IR (neat, cm −1 ) 2955, 2874, 1709, 1572, 1396, 1240, 1173, 1132, 885, 623.

(2)1−(5,5−ジフルオロヘキシル)−3−メチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミドの合成
アルゴン雰囲気下、ナスフラスコに1−(5,5−ジフルオロヘキシル)−3−メチルイミダゾリウム=ブロミド(2.83g,10.0mmolあるものとする)の粗製物と、リチウム=ビス(トリフルオロメタンスルフォニル)イミド(2.87g,10.0mmol)と、アセトン(10ml)とを入れ24時間室温で撹拌して塩交換を行なった。減圧濃縮後、有機溶媒(ヘキサン:酢酸エチル=4:1)と水とで各5回ずつ洗浄し濃縮した。その後、アセトン(10ml)と活性炭(1.0g)とを加え、室温で3時間撹拌した後、セライトろ過で活性炭を除去した。続いてアルミナショートカラムに5回通し、減圧濃縮した後、50℃で24時間真空加熱乾燥、24時間凍結乾燥して、褐色油状物として、下記の式(15)、
(2) Synthesis of 1- (5,5-difluorohexyl) -3-methylimidazolium = bis (trifluoromethanesulfonyl) imide 1- (5,5-difluorohexyl) -3-methyl in an eggplant flask under an argon atmosphere Put a crude product of imidazolium bromide (2.83 g, 10.0 mmol), lithium bis (trifluoromethanesulfonyl) imide (2.87 g, 10.0 mmol) and acetone (10 ml). Salt exchange was performed by stirring at room temperature for an hour. After concentration under reduced pressure, the organic solvent (hexane: ethyl acetate = 4: 1) and water were washed 5 times each and concentrated. Thereafter, acetone (10 ml) and activated carbon (1.0 g) were added, and the mixture was stirred at room temperature for 3 hours, and then the activated carbon was removed by Celite filtration. Subsequently, after passing through an alumina short column 5 times and concentrating under reduced pressure, vacuum drying at 50 ° C. for 24 hours and freeze-drying for 24 hours to obtain the following formula (15),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(5,5−ジフルオロヘキシル)−3−メチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミド(2.88g,5.96mmol)からなるイオン液体7を、収率60%(3ステップ)で得た。イオン液体7の構造はNMR,IRにて確認した。結果を下記に示す。 An ionic liquid 7 having a structure represented by the formula: 1- (5,5-difluorohexyl) -3-methylimidazolium = bis (trifluoromethanesulfonyl) imide (2.88 g, 5.96 mmol) was obtained at a yield of 60%. (3 steps). The structure of the ionic liquid 7 was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.57(2H,q,J=7.8),1.60(3H,t,J=18.8),1.89−1.97(2H,m),2.03(2H,quin,J=7.4),4.11(3H,s),4.42(2H,t,J=7.3),7.51(2H,d,J=13.3),10.60(1H,s).
13CNMR(126MHz,ppm,CD3OD,J=Hz)δ=20.55,30.47(t,JCF=27.8),30.75,36.66,38.00(t,JCF=25.9),50.48,119.75(q,JCF=320.8),123.55,124.95,125.44(t,JCF=237.1),137.90.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.87(dsex,JFF=242.4,17.3),82.69(d,JFF=133.2).
[IRスペクトルデータ]
IR(neat,cm-1)3123,2964,1576,1396,1333,1198,1138,1059,740,617.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.57 (2H, q, J = 7.8), 1.60 (3H, t, J = 18.8), 1.89− 1.97 (2H, m), 2.03 (2H, quin, J = 7.4), 4.11 (3H, s), 4.42 (2H, t, J = 7.3), 7. 51 (2H, d, J = 13.3), 10.60 (1H, s).
13 C NMR (126 MHz, ppm, CD3OD, J = Hz) δ = 20.55, 30.47 (t, J CF = 27.8), 30.75, 36.66, 38.00 (t, J CF = 25.9), 50.48, 119.75 (q, J CF = 320.8), 123.55, 124.95, 125.44 (t, J CF = 237.1), 137.90.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.87 (dsex, J FF = 242.4, 17.3), 82.69 (d, J FF = 133.2).
[IR spectrum data]
IR (neat, cm −1 ) 3123, 2964, 1576, 1396, 1333, 1198, 1138, 1059, 740, 617.

<実施例8>
実施例2に記載される方法と同様の方法で得た1−ブロモ−5,5−ジフルオロヘキサンを用い、下記の方法でイオン液体8を合成した。
<Example 8>
Using 1-bromo-5,5-difluorohexane obtained by the same method as described in Example 2, ionic liquid 8 was synthesized by the following method.

(1)1−(5,5−ジフルオロヘキシル)−2,3−ジメチルイミダゾリウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに1−ブロモ−5,5−ジフルオロヘキサン(419mg,2.08mmolあるものとする)を含む反応溶液と、1,2−ジメチルイミダゾール(240mg,2.50mmol)とを入れ、100℃で24時間加熱還流した。放冷後減圧濃縮し、有機溶媒(ヘキサン:酢酸エチル=4:1)で5回洗浄した後、減圧乾燥して、褐色固体の1−(5,5−ジフルオロヘキシル)−2,3−ジメチルイミダゾリウム=ブロミドの粗製物を640mg得た。生成物の構造はNMR,IRにて確認した。結果を下記に示す。
(1) Synthesis of 1- (5,5-difluorohexyl) -2,3-dimethylimidazolium = bromide 1-bromo-5,5-difluorohexane (419 mg, 2.08 mmol) in an eggplant flask under argon atmosphere And a reaction solution containing 1,2-dimethylimidazole (240 mg, 2.50 mmol), and heated to reflux at 100 ° C. for 24 hours. After standing to cool, the solution was concentrated under reduced pressure, washed 5 times with an organic solvent (hexane: ethyl acetate = 4: 1), dried under reduced pressure, and 1- (5,5-difluorohexyl) -2,3-dimethyl as a brown solid. 640 mg of a crude product of imidazolium bromide was obtained. The structure of the product was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.59(2H,quin,J=7.8),1.60(3H,t,J=18.3),1.85−1.98(2H,m),2.14(2H,quin,J=2.3),2.84(3H,s),4.02(3H,s),4.31(2H,t,J=7.4),7.65(1H,d,J=2.3),7.68(1H,d,J=2.3).
13CNMR(126MHz,ppm,CD3OD,J=Hz)δ=9.88,20.64,23.48(t,JCF=23.0),30.35,35.65,38.07(t,JCF=25.9),43.14,122.13,123.65,125.25(t,JCF=237.1),145.87.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.75(sex,JFF=17.3).
[IRスペクトルデータ]
IR(neat,cm-1)1587,1541,1398,1337,1256,1226,1184,1132,910,669.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.59 (2H, quin, J = 7.8), 1.60 (3H, t, J = 18.3), 1.85 1.98 (2H, m), 2.14 (2H, quin, J = 2.3), 2.84 (3H, s), 4.02 (3H, s), 4.31 (2H, t, J = 7.4), 7.65 (1H, d, J = 2.3), 7.68 (1H, d, J = 2.3).
13 C NMR (126 MHz, ppm, CD3OD, J = Hz) δ = 9.88, 20.64, 23.48 (t, J CF = 23.0), 30.35, 35.65, 38.07 (t , J CF = 25.9), 43.14, 122.13, 123.65, 125.25 (t, J CF = 237.1), 145.87.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.75 (sex, J FF = 17.3).
[IR spectrum data]
IR (neat, cm −1 ) 1587, 1541, 1398, 1337, 1256, 1226, 1184, 1132, 910, 669.

(2)1−(5,5−ジフルオロブチル)−2,3−ジメチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミドの合成
アルゴン雰囲気下、ナスフラスコに1−(5,5−ジフルオロヘキシル)−2,3−ジメチルイミダゾリウム=ブロミド(618mg,2.08mmolあるものとする)の粗製物と、リチウム=ビス(トリフルオロメタンスルフォニル)イミド(603mg,2.10mmol)と、アセトン(3ml)とを入れ24時間室温で撹拌して塩交換を行なった。減圧濃縮後、有機溶媒(ヘキサン:酢酸エチル=4:1)と水とで各5回ずつ洗浄し濃縮した。その後、アセトン(3ml)と活性炭(0.5g)とを加え、室温で3時間撹拌した後、セライトろ過で活性炭を除去した。続いてアルミナショートカラムに5回通し、減圧濃縮した後、50℃で24時間真空加熱乾燥、24時間凍結乾燥して、褐色油状物として、下記の式(16)、
(2) Synthesis of 1- (5,5-difluorobutyl) -2,3-dimethylimidazolium = bis (trifluoromethanesulfonyl) imide 1- (5,5-difluorohexyl) -2 in an eggplant flask under an argon atmosphere , 3-dimethylimidazolium bromide (618 mg, 2.08 mmol) crude, lithium bis (trifluoromethanesulfonyl) imide (603 mg, 2.10 mmol) and acetone (3 ml) were added. Salt exchange was performed by stirring at room temperature for an hour. After concentration under reduced pressure, the organic solvent (hexane: ethyl acetate = 4: 1) and water were washed 5 times each and concentrated. Thereafter, acetone (3 ml) and activated carbon (0.5 g) were added, and the mixture was stirred at room temperature for 3 hours, and then the activated carbon was removed by Celite filtration. Subsequently, after passing through an alumina short column 5 times and concentrating under reduced pressure, vacuum drying at 50 ° C. for 24 hours and freeze-drying for 24 hours to obtain a brown oily product, the following formula (16),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(5,5−ジフルオロヘキシル)−2,3−ジメチルイミダゾリウム=ビス(トリフルオロメタンスルフォニル)イミド(808mg,1.62mmol)からなるイオン液体8を、収率78%(3ステップ)で得た。イオン液体8の構造はNMR,IRにて確認した。結果を下記に示す。 An ionic liquid 8 having a structure represented by the formula: 1- (5,5-difluorohexyl) -2,3-dimethylimidazolium = bis (trifluoromethanesulfonyl) imide (808 mg, 1.62 mmol) was obtained at a yield of 78%. (3 steps). The structure of the ionic liquid 8 was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.59(2H,quin,J=7.8),1.60(3H,t,J=18.3),1.85−1.98(2H,m),2.14(2H,quin,J=2.3),2.84(3H,s),4.02(3H,s),4.31(2H,t,J=7.4),7.65(1H,d,J=2.3),7.68(1H,d,J=2.3).
13CNMR(126MHz,ppm,CD3OD,J=Hz)δ=9.88,20.64,23.48(t,JCF=23.0),30.35,35.65,38.07(t,JCF=25.9),43.14,119.12(q,JCF=321.3),122.13,123.65,125.25(t,JCF=237.1),145.87.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=71.05(dsex,JFF=351.2,17.3),82.64(d,JFF=167.0).
[IRスペクトルデータ]
IR(neat,cm-1)3152,2963,1591,1541,1396,1333,1194,1138,1059,617.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.59 (2H, quin, J = 7.8), 1.60 (3H, t, J = 18.3), 1.85 1.98 (2H, m), 2.14 (2H, quin, J = 2.3), 2.84 (3H, s), 4.02 (3H, s), 4.31 (2H, t, J = 7.4), 7.65 (1H, d, J = 2.3), 7.68 (1H, d, J = 2.3).
13 C NMR (126 MHz, ppm, CD3OD, J = Hz) δ = 9.88, 20.64, 23.48 (t, J CF = 23.0), 30.35, 35.65, 38.07 (t , J CF = 25.9), 43.14, 119.12 (q, J CF = 321.3), 122.13, 123.65, 125.25 (t, J CF = 237.1), 145 .87.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 71.05 (dsex, J FF = 351.2, 17.3), 82.64 (d, J FF = 167.0).
[IR spectrum data]
IR (neat, cm −1 ) 3152, 2963, 1591, 1541, 1396, 1333, 1194, 1138, 1059, 617.

<実施例9>
実施例2に記載される方法と同様の方法で得た1−ブロモ−5,5−ジフルオロヘキサンを用い、下記の方法で1−(5,5−ジフルオロヘキシル)ピリジニウム=ブロミドを合成した。
<Example 9>
Using 1-bromo-5,5-difluorohexane obtained by the same method as described in Example 2, 1- (5,5-difluorohexyl) pyridinium bromide was synthesized by the following method.

(1)1−(5,5−ジフルオロヘキシル)ピリジニウム=ブロミドの合成
アルゴン雰囲気下、ナスフラスコに1−ブロモ−5,5−ジフルオロヘキサン(419mg,2.08mmolあるものとする)を含む反応溶液とピリジン(197mg,2.50mmol)とを入れ、100℃で24時間加熱還流した。放冷後減圧濃縮し、有機溶媒(ヘキサン:酢酸エチル=4:1)で5回洗浄した後、減圧乾燥して、褐色油状物として、1−(5,5−ジフルオロヘキシル)ピリジニウム=ブロミド(164mg,0.65mmol)を、収率31%(2ステップ)で得た。生成物の構造はNMR,IRにて確認した。結果を下記に示す。
(1) Synthesis of 1- (5,5-difluorohexyl) pyridinium = bromide Reaction solution containing 1-bromo-5,5-difluorohexane (419 mg, 2.08 mmol) in an eggplant flask under an argon atmosphere And pyridine (197 mg, 2.50 mmol) were added, and the mixture was heated to reflux at 100 ° C. for 24 hours. After allowing to cool, the mixture was concentrated under reduced pressure, washed 5 times with an organic solvent (hexane: ethyl acetate = 4: 1), and then dried under reduced pressure to give 1- (5,5-difluorohexyl) pyridinium bromide ( 164 mg, 0.65 mmol) was obtained in 31% yield (2 steps). The structure of the product was confirmed by NMR and IR. The results are shown below.

[NMRスペクトルデータ]
1HNMR(500MHz,ppm,CDCl3,J=Hz)δ=1.59(3H,t,J=18.4),1.64(2H,quin,J=7.8),1.91−2.01(2H,m),2.17(2H,quin,J=7.8),5.12(2H,t,J=7.8),8.14(2H,t,J=6.9),8.54(1H,t,J=7.5),9.66(2H,d,J=5.9).
13CNMR(125MHz,ppm,CD3OD,J=Hz)δ=20.43,23.45(t,JCF=27.8),32.00,37.93(t,JCF=25.0),42.98,125.39(t,JCF=237.5),129.51,145.98,146.95.
19FNMR(470MHz,ppm,CDCl3,J=Hz)δ=70.77(sex,JFF=17.3).
[IRスペクトルデータ]
IR(neat,cm-1)2943,2872,1709,1634,1582,1489,1396,1325,1136,887.
[NMR spectral data]
1 HNMR (500 MHz, ppm, CDCl 3 , J = Hz) δ = 1.59 (3H, t, J = 18.4), 1.64 (2H, quin, J = 7.8), 1.91− 2.01 (2H, m), 2.17 (2H, quin, J = 7.8), 5.12 (2H, t, J = 7.8), 8.14 (2H, t, J = 6) .9), 8.54 (1H, t, J = 7.5), 9.66 (2H, d, J = 5.9).
13 C NMR (125 MHz, ppm, CD3OD, J = Hz) δ = 20.43, 23.45 (t, J CF = 27.8), 32.00, 37.93 (t, J CF = 25.0) 42.98, 125.39 (t, J CF = 237.5), 129.51, 145.98, 146.95.
19 FNMR (470 MHz, ppm, CDCl 3 , J = Hz) δ = 70.77 (sex, J FF = 17.3).
[IR spectrum data]
IR (neat, cm −1 ) 2943, 2872, 1709, 1634, 1582, 1489, 1396, 1235, 1136, 887.

続いて、実施例8と同様の方法で、リチウム=ビス(トリフルオロメタンスルフォニル)イミドを反応させて塩交換を行ない、下記の式(17)、   Subsequently, in the same manner as in Example 8, lithium = bis (trifluoromethanesulfonyl) imide was reacted to perform salt exchange, and the following formula (17),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(5,5−ジフルオロヘキシル)ピリジニウム=ビス(トリフルオロメタンスルフォニル)イミドからなるイオン液体9を得た。 An ionic liquid 9 composed of 1- (5,5-difluorohexyl) pyridinium bis (trifluoromethanesulfonyl) imide having a structure represented by the formula:

<実施例10>
1−ブロモ−3,3−ジフルオロブタンと、N−メチルピペリジンと、リチウム=ビス(トリフルオロメタンスルフォニル)イミドとを用い、実施例3と同様の方法で、下記の式(18)、
<Example 10>
In the same manner as in Example 3 using 1-bromo-3,3-difluorobutane, N-methylpiperidine, and lithium bis (trifluoromethanesulfonyl) imide, the following formula (18),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(3,3−ジフルオロブチル)−1−メチルピペリジニウム=ビス(トリフルオロメタンスルフォニル)イミドからなるイオン液体10を得た。 The ionic liquid 10 consisting of 1- (3,3-difluorobutyl) -1-methylpiperidinium = bis (trifluoromethanesulfonyl) imide having a structure represented by

<実施例11>
1−ブロモ−3,3−ジフルオロブタンと、N−メチルピロリジンと、リチウム=ビス(トリフルオロメタンスルフォニル)イミドとを用い、実施例3と同様の方法で、下記の式(19)、
<Example 11>
In the same manner as in Example 3 using 1-bromo-3,3-difluorobutane, N-methylpyrrolidine, and lithium bis (trifluoromethanesulfonyl) imide, the following formula (19),

Figure 2007224001
Figure 2007224001

で示される構造の、1−(3,3−ジフルオロブチル)−1−メチルピロリジニウム=ビス(トリフルオロメタンスルフォニル)イミドからなるイオン液体11を得た。 The ionic liquid 11 consisting of 1- (3,3-difluorobutyl) -1-methylpyrrolidinium = bis (trifluoromethanesulfonyl) imide having the structure represented by

<比較例1>
1−エチル3−メチルイミダゾリウムテトラフルオロボレイト(BF4)(関東化学製)からなるイオン液体を用いた。
<Comparative Example 1>
An ionic liquid composed of 1-ethyl 3-methylimidazolium tetrafluoroborate (BF 4 ) (manufactured by Kanto Chemical) was used.

各実施例および比較例1で得たイオン液体の一覧を表1に示す。また、各実施例および比較例1につき、前述の方法で評価した電位窓、電気伝導度、粘度、親水性、水分量、ガラス転移温度の結果を表2に示す。   Table 1 shows a list of ionic liquids obtained in each Example and Comparative Example 1. Table 2 shows the results of the potential window, electrical conductivity, viscosity, hydrophilicity, water content, and glass transition temperature evaluated by the above-described methods for each of Examples and Comparative Example 1.

Figure 2007224001
Figure 2007224001

Figure 2007224001
Figure 2007224001

表2に示す結果から、各実施例に係るイオン液体においては、比較例1に係るイオン液体と比べて電位窓が広いことが分かる。また、各実施例に係るイオン液体においては、比較例1と比べて粘度が若干高いものの、いずれもE型粘度計による測定で約3P程度またはこれより低い粘度を有し、低粘度のイオン液体が得られていた。   From the results shown in Table 2, it can be seen that the ionic liquid according to each example has a wider potential window than the ionic liquid according to Comparative Example 1. In addition, the ionic liquids according to the respective examples have slightly higher viscosities than those of Comparative Example 1, but each has a viscosity of about 3P or lower as measured by an E-type viscometer, and has a low viscosity. Was obtained.

表2に示す結果から、比較例1に係るイオン液体が親水性であったのに対し、各実施例で得られたイオン液体は疎水性を示したことが分かる。また表2に示す結果より、比較例1に係るイオン液体は1200ppmの水分を含んでいたのに対し、各実施例に係るイオン液体は650ppmまたはそれより少ない水分を含むに留まっていた。   From the results shown in Table 2, it can be seen that the ionic liquid according to Comparative Example 1 was hydrophilic, whereas the ionic liquid obtained in each Example showed hydrophobicity. From the results shown in Table 2, the ionic liquid according to Comparative Example 1 contained 1200 ppm of water, whereas the ionic liquid according to each Example contained only 650 ppm or less of water.

表2に示す結果から、各実施例に係るイオン液体においては、比較例1に係るイオン液体と比べて電気伝導度が低いものの、1.5mS/cm以上の電気伝導度を有し、電気伝導度を所望の程度確保できることが分かる。   From the results shown in Table 2, the ionic liquid according to each example has an electric conductivity of 1.5 mS / cm or more, although the electric conductivity is lower than that of the ionic liquid according to comparative example 1, and the electric conductivity It can be seen that the desired degree can be secured.

表2に示す結果から、各実施例に係るイオン液体のガラス転移温度は、いずれも−74℃以下であり、比較例1に係るイオン液体のガラス転移温度の11℃と比べて著しく低い値であった。   From the results shown in Table 2, the glass transition temperature of each of the ionic liquids according to each example is −74 ° C. or less, which is significantly lower than the glass transition temperature of 11 ° C. of the ionic liquid according to Comparative Example 1. there were.

これらの結果から、本発明に係るイオン液体は、1つの炭素原子に2個のフッ素原子が結合した特異な構造を有することにより、電位窓、疎水性、電気伝導度において所望の性能を維持しつつ、低粘度であり、ガラス転移温度が著しく低いという特性が付与されていることが分かる。   From these results, the ionic liquid according to the present invention has a unique structure in which two fluorine atoms are bonded to one carbon atom, thereby maintaining desired performance in potential window, hydrophobicity, and electrical conductivity. However, it can be seen that the properties of low viscosity and extremely low glass transition temperature are imparted.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

上記のように、本発明に係るイオン液体は、各種電気デバイス用材料、各種反応用溶媒として広く利用することができる。   As described above, the ionic liquid according to the present invention can be widely used as various electrical device materials and various reaction solvents.

実施例1で得たイオン液体1のFT−IRチャートを示す図である。2 is a diagram showing an FT-IR chart of the ionic liquid 1 obtained in Example 1. FIG. 実施例1で得たイオン液体1のDSCチャートを示す図である。1 is a diagram showing a DSC chart of an ionic liquid 1 obtained in Example 1. FIG. 実施例1で得たイオン液体1のTGAチャートを示す図である。2 is a diagram showing a TGA chart of the ionic liquid 1 obtained in Example 1. FIG.

Claims (21)

カチオン成分およびアニオン成分からなるイオン液体であって、前記カチオン成分を形成するいずれか1つの炭素原子に2個のフッ素原子が結合していることを特徴とするイオン液体。   An ionic liquid comprising a cation component and an anion component, wherein two fluorine atoms are bonded to any one carbon atom forming the cation component. 前記カチオン成分が、ジフルオロアルキル基、ジフルオロシクロアルキル基およびジフルオロベンジル基からなる群から選択される原子団を含むことを特徴とする、請求項1に記載のイオン液体。   2. The ionic liquid according to claim 1, wherein the cation component includes an atomic group selected from the group consisting of a difluoroalkyl group, a difluorocycloalkyl group, and a difluorobenzyl group. 前記カチオン成分が、下記の式(1)、
Figure 2007224001
(式(1)中、m,nはそれぞれ独立して0あるいは正の整数である。X,Yは、それぞれ独立して2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含む基である)
または、下記の式(2)、
Figure 2007224001
(式(2)中、aは正の整数あるいは0であり,bは正の整数である。Xは2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含む基である。)
で示される化学構造を含むことを特徴とする、請求項1または2に記載のイオン液体。
The cationic component is represented by the following formula (1),
Figure 2007224001
(In the formula (1), m and n are each independently 0 or a positive integer. X and Y are each independently a divalent group comprising an aliphatic hydrocarbon group and an alicyclic carbonization. A group containing one or more selected from the group consisting of a hydrogen group, an aromatic hydrocarbon group, a carbonyl group, an ester group, an ether group, an acyl group, an imino group, a carboxyl group, and an amino group)
Or the following formula (2),
Figure 2007224001
(In the formula (2), a is a positive integer or 0, and b is a positive integer. X is a divalent group, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic group. (It is a group containing one or more selected from the group consisting of a hydrocarbon group, a carbonyl group, an ester group, an ether group, an acyl group, an imino group, a carboxyl group, and an amino group.)
The ionic liquid according to claim 1, comprising a chemical structure represented by the formula:
前記カチオン成分が、アルキル基の末端2位の炭素原子に2個のフッ素原子が結合した構造を含むことを特徴とする、請求項1または2に記載のイオン液体。   The ionic liquid according to claim 1, wherein the cation component includes a structure in which two fluorine atoms are bonded to the carbon atom at the terminal 2-position of the alkyl group. 前記カチオン成分が、下記の式(3)、
Figure 2007224001
(式(3)中、Xは2価の基であって、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、カルボニル基、エステル基、エーテル基、アシル基、イミノ基、カルボキシル基、アミノ基からなる群から選択される1以上を含む基である。)
に示される化学構造を含むことを特徴とする請求項3に記載のイオン液体。
The cation component is represented by the following formula (3):
Figure 2007224001
(In formula (3), X is a divalent group, and is an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, carbonyl group, ester group, ether group, acyl group, imino group. , A group containing one or more selected from the group consisting of a carboxyl group and an amino group.)
The ionic liquid according to claim 3, comprising a chemical structure represented by
前記カチオン成分が、アンモニウムおよびその誘導体、イミダゾリニウムおよびその誘導体、ピリジニウムおよびその誘導体、ピロリジニウムおよびその誘導体、ピロリニウムおよびその誘導体、ピラジニウムおよびその誘導体、ピリミジニウムおよびその誘導体、トリアゾニウムおよび誘導体、トリアジニウムおよびその誘導体、トリアジン誘導体カチオン、キノリニウムおよびその誘導体、イソキノリニウムおよびその誘導体、インドリニウムおよびその誘導体、キノキサリニウムおよびその誘導体、ピペラジニウムおよびその誘導体、オキサゾリニウムおよびその誘導体、チアゾリニウムおよびその誘導体、モルフォリニウムおよびその誘導体、ピペラジンおよびその誘導体,スルホニウムおよびその誘導体、ホスホニウムおよびその誘導体、からなる群から選ばれる1種類以上であることを特徴とする、請求項1〜5のいずれかに記載のイオン液体。   The cationic component is ammonium and derivatives thereof, imidazolinium and derivatives thereof, pyridinium and derivatives thereof, pyrrolidinium and derivatives thereof, pyrrolinium and derivatives thereof, pyrazinium and derivatives thereof, pyrimidinium and derivatives thereof, triazonium and derivatives thereof, triazinium and derivatives thereof , Triazine derivative cations, quinolinium and its derivatives, isoquinolinium and its derivatives, indolinium and its derivatives, quinoxalinium and its derivatives, piperazinium and its derivatives, oxazolinium and its derivatives, thiazolinium and its derivatives, morpholinium and its derivatives, piperazine and its Its derivatives, sulfonium and its derivatives, phosphonium and its Conductor, and wherein the at one or more selected from the group consisting of an ionic liquid according to any one of claims 1 to 5. 前記アニオン成分が、フッ素を含む原子団である、請求項1〜6のいずれかに記載のイオン液体。   The ionic liquid according to claim 1, wherein the anion component is an atomic group containing fluorine. 前記アニオン成分における水素原子の個数nHとフッ素原子の個数nFとの比が、nH:nF=0:100〜60:40であることを特徴とする、請求項7に記載のイオン液体。   8. The ionic liquid according to claim 7, wherein the ratio of the number of hydrogen atoms nH to the number of fluorine atoms nF in the anion component is nH: nF = 0: 100 to 60:40. 前記アニオン成分が、下記の式(4)、
Figure 2007224001
(式(4)において、xは1〜20の整数であり、yは0〜5の整数である。)
式(5)、
Figure 2007224001
(式(5)において、zは1〜20の整数であり、yは0〜5の整数である。)
式(6)、
Figure 2007224001
(式(6)において、xは1〜20の整数であり、yは0〜5の整数である。)
および式(7)、
Figure 2007224001
(式(7)において、zは1〜20の整数であり、yは0〜5の整数である。)
で示される化学構造からなる群から選択される1以上の化学構造を含むことを特徴とする、請求項7または8に記載のイオン液体。
The anion component is represented by the following formula (4):
Figure 2007224001
(In Formula (4), x is an integer of 1-20, and y is an integer of 0-5.)
Formula (5),
Figure 2007224001
(In Formula (5), z is an integer of 1-20, and y is an integer of 0-5.)
Formula (6),
Figure 2007224001
(In Formula (6), x is an integer of 1-20, and y is an integer of 0-5.)
And formula (7),
Figure 2007224001
(In Formula (7), z is an integer of 1-20 and y is an integer of 0-5.)
The ionic liquid according to claim 7, comprising one or more chemical structures selected from the group consisting of chemical structures represented by:
前記アニオン成分が、ビス(トリフルオロメチルスルホニル)イミドアニオン原子団、CHF2−CF2−CH2OSO3 -原子団、CHF2−(CF23−CH2OSO3 -原子団、CF3−(CF22−CH2OSO3 -原子団、CF3−(CF26−CH2OSO3 -原子団、CHF2−CF2−CH2SO3 -原子団、CHF2−(CF23−CH2SO3 -原子団、CF3−(CF22−CH2SO3 -原子団、CF3−(CF26−CH2SO3 -原子団、および、CF3−(CF23−(CH22SO3 -原子団、からなる群から選ばれる1種類以上の原子団を含むことを特徴とする請求項7〜9のいずれかに記載のイオン液体。 The anion component is a bis (trifluoromethylsulfonyl) imide anion group, CHF 2 —CF 2 —CH 2 OSO 3 group, CHF 2 — (CF 2 ) 3 —CH 2 OSO 3 group, CF 3 - (CF 2) 2 -CH 2 OSO 3 - atomic, CF 3 - (CF 2) 6 -CH 2 OSO 3 - atomic, CHF 2 -CF 2 -CH 2 SO 3 - atomic, CHF 2 - ( CF 2) 3 -CH 2 SO 3 - atomic, CF 3 - (CF 2) 2 -CH 2 SO 3 - atomic, CF 3 - (CF 2) 6 -CH 2 SO 3 - atomic, and, CF 3 - (CF 2) 3 - (CH 2) 2 SO 3 - ions according to any one of claims 7-9, characterized in that it comprises an atomic group, one or more atomic groups selected from the group consisting of liquid. 前記アニオン成分が、RB−SOV -原子団(ただし、vは2〜4までの整数、RBは炭素数が1〜50個の芳香族化合物あるいは脂肪族化合物である)を含むことを特徴とする請求項7〜10のいずれかに記載のイオン液体。 The anion component, R B -SO V - atomic (where, v is an integer from 2 to 4, R B is a carbon number of 1-50 aromatic compound or aliphatic compound) to include The ionic liquid according to any one of claims 7 to 10, wherein 前記アニオン成分が、カルボキシアニオン(−COO-)を含むことを特徴とする請求項7に記載のイオン液体。 The ionic liquid according to claim 7, wherein the anion component contains a carboxy anion (—COO ). 下記の式(8)に示される構造を有する、請求項1に記載のイオン液体。
Figure 2007224001
The ionic liquid according to claim 1, which has a structure represented by the following formula (8).
Figure 2007224001
下記の式(9)に示される構造を有する、請求項1に記載のイオン液体。
Figure 2007224001
The ionic liquid according to claim 1, which has a structure represented by the following formula (9).
Figure 2007224001
下記の式(10)に示される構造を有する、請求項1に記載のイオン液体。
Figure 2007224001
The ionic liquid according to claim 1, which has a structure represented by the following formula (10).
Figure 2007224001
下記の式(11)に示される構造を有する、請求項1に記載のイオン液体。
Figure 2007224001
The ionic liquid according to claim 1, which has a structure represented by the following formula (11).
Figure 2007224001
下記の式(12)に示される構造を有する、請求項1に記載のイオン液体。
Figure 2007224001
The ionic liquid according to claim 1, which has a structure represented by the following formula (12).
Figure 2007224001
請求項1〜17のいずれかに記載のイオン液体を得るための製造方法であって、
前記カチオン成分の製造において、フッ素化試薬を用いてハロゲン化ケト炭化水素またはその誘導体のケトン基のみをフッ素化するフッ素化工程を含むことを特徴とする、イオン液体の製造方法。
A production method for obtaining the ionic liquid according to claim 1,
The method for producing an ionic liquid, wherein the production of the cationic component includes a fluorination step in which only a ketone group of a halogenated keto hydrocarbon or a derivative thereof is fluorinated using a fluorination reagent.
前記ハロゲン化ケト炭化水素がハロゲン化−2−ケトアルカンであり、
前記フッ素化工程において、前記フッ素化試薬を用いて前記ハロゲン化−2−ケトアルカンの末端2位のケトン基のみをフッ素化する反応を経由することを特徴とする請求項18に記載のイオン液体の製造方法。
The halogenated keto hydrocarbon is a halogenated-2-ketoalkane;
19. The ionic liquid according to claim 18, wherein in the fluorination step, the fluorinated reagent is passed through a reaction of fluorinating only the ketone group at the terminal 2-position of the halogenated-2-ketoalkane using the fluorinating reagent. Production method.
前記ハロゲン化ケト炭化水素の誘導体がハロゲン化−2−ケト炭化水素誘導体であり、
前記フッ素化工程において、前記フッ素化試薬を用いて前記ハロゲン化−2−ケト炭化水素誘導体の末端2位のケトン基のみをフッ素化する反応を経由することを特徴とする請求項18に記載のイオン液体の製造方法。
The derivative of the halogenated keto hydrocarbon is a halogenated-2-keto hydrocarbon derivative;
19. The fluorination step according to claim 18, wherein the fluorination step passes through a reaction of fluorinating only the ketone group at the terminal 2-position of the halogenated-2-keto hydrocarbon derivative using the fluorination reagent. A method for producing an ionic liquid.
請求項1〜17のいずれかに記載のイオン液体、または、請求項18〜20のいずれかに記載のイオン液体の製造方法により得られるイオン液体、を含むことを特徴とする、電解コンデンサ。
An electrolytic capacitor comprising the ionic liquid according to any one of claims 1 to 17 or the ionic liquid obtained by the method for producing an ionic liquid according to any one of claims 18 to 20.
JP2006066509A 2006-01-24 2006-03-10 Ionic liquid and method for producing the same, and electrolytic capacitor including the ionic liquid Expired - Fee Related JP5088918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066509A JP5088918B2 (en) 2006-01-24 2006-03-10 Ionic liquid and method for producing the same, and electrolytic capacitor including the ionic liquid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006014677 2006-01-24
JP2006014677 2006-01-24
JP2006066509A JP5088918B2 (en) 2006-01-24 2006-03-10 Ionic liquid and method for producing the same, and electrolytic capacitor including the ionic liquid

Publications (2)

Publication Number Publication Date
JP2007224001A true JP2007224001A (en) 2007-09-06
JP5088918B2 JP5088918B2 (en) 2012-12-05

Family

ID=38546137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066509A Expired - Fee Related JP5088918B2 (en) 2006-01-24 2006-03-10 Ionic liquid and method for producing the same, and electrolytic capacitor including the ionic liquid

Country Status (1)

Country Link
JP (1) JP5088918B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211577B2 (en) 2008-05-19 2012-07-03 Panasonic Corporation Nonaqueous solvent and nonaqueous electrolytic solution for electricity storage device and nonaqueous electricity storage device, lithium secondary battery and electric double layer capacitor using the same
US8247118B2 (en) 2008-10-21 2012-08-21 Panasonic Corporation Non-aqueous solvent and non-aqueous electrolytic solution for energy storage device, and energy storage device, lithium secondary battery and electric double-layer capacitor each comprising the non-aqueous solvent or the non-aqueous electrolytic solution
JP2013530494A (en) * 2010-05-12 2013-07-25 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Metal-air battery with performance-enhancing additives
CN110911735A (en) * 2019-11-05 2020-03-24 华中科技大学 Quasi-solid electrolyte for lithium metal battery and preparation method thereof
WO2023008288A1 (en) * 2021-07-26 2023-02-02 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229174A (en) * 1998-02-16 1999-08-24 Mitsubishi Materials Corp Plating bath for forming projecting electrode of semiconductor wafer, and plating method
WO2003106419A1 (en) * 2002-06-01 2003-12-24 ダイキン工業株式会社 Room-temperature molten salt, process for producing the same and applications thereof
WO2005012599A1 (en) * 2003-07-31 2005-02-10 Kaneka Corporation Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor and electrolyte thereof
JP2005314332A (en) * 2004-04-30 2005-11-10 Kaneka Corp Ionic liquid and method for producing the same
WO2006051897A1 (en) * 2004-11-12 2006-05-18 Kaneka Corporation Ionic liquid and its production method, method for forming oxide film on metal surface, electrolytic capacitor and electrolyte
JP2006131615A (en) * 2004-11-03 2006-05-25 Toyota Motor Corp Ordinary temperature molten salt and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229174A (en) * 1998-02-16 1999-08-24 Mitsubishi Materials Corp Plating bath for forming projecting electrode of semiconductor wafer, and plating method
WO2003106419A1 (en) * 2002-06-01 2003-12-24 ダイキン工業株式会社 Room-temperature molten salt, process for producing the same and applications thereof
WO2005012599A1 (en) * 2003-07-31 2005-02-10 Kaneka Corporation Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor and electrolyte thereof
JP2005314332A (en) * 2004-04-30 2005-11-10 Kaneka Corp Ionic liquid and method for producing the same
JP2006131615A (en) * 2004-11-03 2006-05-25 Toyota Motor Corp Ordinary temperature molten salt and method for producing the same
WO2006051897A1 (en) * 2004-11-12 2006-05-18 Kaneka Corporation Ionic liquid and its production method, method for forming oxide film on metal surface, electrolytic capacitor and electrolyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211577B2 (en) 2008-05-19 2012-07-03 Panasonic Corporation Nonaqueous solvent and nonaqueous electrolytic solution for electricity storage device and nonaqueous electricity storage device, lithium secondary battery and electric double layer capacitor using the same
US8247118B2 (en) 2008-10-21 2012-08-21 Panasonic Corporation Non-aqueous solvent and non-aqueous electrolytic solution for energy storage device, and energy storage device, lithium secondary battery and electric double-layer capacitor each comprising the non-aqueous solvent or the non-aqueous electrolytic solution
US9184478B2 (en) 2010-05-10 2015-11-10 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
US10374236B2 (en) 2010-05-10 2019-08-06 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
US11196057B2 (en) 2010-05-10 2021-12-07 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
JP2013530494A (en) * 2010-05-12 2013-07-25 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Metal-air battery with performance-enhancing additives
JP2017027948A (en) * 2010-05-12 2017-02-02 アリゾナ ボード オブ リージェンツ アクティング フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティArizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal-air cell with performance enhancing additive
CN110911735A (en) * 2019-11-05 2020-03-24 华中科技大学 Quasi-solid electrolyte for lithium metal battery and preparation method thereof
WO2023008288A1 (en) * 2021-07-26 2023-02-02 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Also Published As

Publication number Publication date
JP5088918B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5021778B2 (en) Hydrophobic liquid salt
JP5339542B2 (en) Ionic liquid
JP4820994B2 (en) Perfluoroalkyl group derivative gelling agent
JP5088918B2 (en) Ionic liquid and method for producing the same, and electrolytic capacitor including the ionic liquid
JP5950662B2 (en) Ionic liquid, electrolyte and lithium secondary battery
JP4820993B2 (en) Organic liquid gelling agent comprising aromatic compound having perfluoroalkyl group
KR101413775B1 (en) Fluoroalkane derivative, gelling agent and gel composition
JP2005139100A (en) Ordinary temperature melted salt
JP5583899B2 (en) Process for producing ionic compounds
Tran et al. Synthesis of new fluorinated imidazolium ionic liquids and their prospective function as the electrolytes for lithium-ion batteries
Mei et al. Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties
KR102285191B1 (en) Silicon-containing sulfuric acid ester salt
JP2004175667A (en) Onium salt
JP2009155289A (en) Ionic liquid and method for producing the same
US8345407B2 (en) Low viscosity ionic liquids
JP2010258333A (en) Electrolyte using quaternary ammonium salt electrolyte, and electrochemical element
JP2005104846A (en) Quaternary ammonium ambient-temperature molten salt and its manufacturing method
JP2005225843A (en) Method for producing alkoxyalkyl group-containing quaternary ammonium salt
Rüther et al. A new family of ionic liquids based on N, N-dialkyl-3-azabicyclo [3.2. 2] nonanium cations: organic plastic crystal behaviour and highly reversible lithium metal electrodeposition
WO2010142445A2 (en) New imidazolium salts having liquid crystal characteristics, useful as electrolytes
WO2014061482A1 (en) Ionic liquid
JP2010215512A (en) Ionic liquid, method for producing ionic liquid, electrolyte and lithium secondary battery
JP2010058046A (en) Agent and method for removal of protic solvent
JP7575399B2 (en) Method for preparing fluorinated alcohols
JP5443095B2 (en) Pyridinium salt derivative, production method thereof, and liquid crystal material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees