JP2007223150A - Air ring for forming inflation film and inflation film forming apparatus equipped with the air ring - Google Patents

Air ring for forming inflation film and inflation film forming apparatus equipped with the air ring Download PDF

Info

Publication number
JP2007223150A
JP2007223150A JP2006046529A JP2006046529A JP2007223150A JP 2007223150 A JP2007223150 A JP 2007223150A JP 2006046529 A JP2006046529 A JP 2006046529A JP 2006046529 A JP2006046529 A JP 2006046529A JP 2007223150 A JP2007223150 A JP 2007223150A
Authority
JP
Japan
Prior art keywords
air
outlet
air supply
annular
inflation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046529A
Other languages
Japanese (ja)
Inventor
Tadanori Ishikawa
忠伯 石川
Minoru Takahashi
実 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Placo Co Ltd
Original Assignee
Placo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Placo Co Ltd filed Critical Placo Co Ltd
Priority to JP2006046529A priority Critical patent/JP2007223150A/en
Publication of JP2007223150A publication Critical patent/JP2007223150A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the generation of white streaks by eliminating a part lacking in cooling of a bubble by the measures of forming a gap through which the air flows to each other between adjoining air supply passages, mutually diverting part of the air between the adjoining partitions by the formed connecting passage of the air to make distributary in this gap, and solving the lack of the air flow quantity between the blow-off openings of the adjoining partitions. <P>SOLUTION: By forming the gap 57 through which the air flows to each other between the adjoining air supply passages 52 and by the formed connecting passage of the air that makes distributary in this gap 57, a thin-film cooling air layer is formed over the whole circumference of the bubble in the connecting passage and, therefore, the areas lack in the air quantity in the positions between the adjoining air supply passages 52 are eliminated. Further, by a large quantity of the cooling air sent, adjacently to the cooling air layer over the whole circumference of the bubble, from the each partitioned air supply passage 52, the surface of the bubble facing oppositely to the blow-off opening 50 is cooled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

合成樹脂をフイルム化する手段として、インフレーション法が多く用いられている。この方法は、比較的簡易な設備で生産が行えるため、コスト的に有利であるという長所を有している。この方法においてフイルムの厚みむら調整は、ダイリップの間隙を調整することによって行われる。しかしながらこの調整は熟練を要するとともに、長時間をかけて調整してもその厚み精度には限界があった。   As a means for forming a synthetic resin into a film, an inflation method is often used. This method has the advantage of being advantageous in terms of cost since it can be produced with relatively simple equipment. In this method, the thickness unevenness of the film is adjusted by adjusting the gap of the die lip. However, this adjustment requires skill, and even if the adjustment is performed over a long time, the thickness accuracy is limited.

このような問題を解決する手段として従来より多くの試みがなされてきた。例えば、チューブ状に押し出されて固化したフイルムの厚みを全周にわたって計測し、そのデータをもとに、ダイリップの間隙を自動調整するという方法がある。しかしながらこの方法は、ダイリップの間隙を調整するための機構が複雑でコスト高となるという問題が、さらには、ダイリップの間隙を調整するための機構をサーキュラーダイスに直接設ける必要があり、装置が大がかりになるという問題があった。   Many attempts have been made as means for solving such problems. For example, there is a method in which the thickness of the film extruded and solidified is measured over the entire circumference, and the die lip gap is automatically adjusted based on the data. However, this method has a problem that the mechanism for adjusting the gap of the die lip is complicated and expensive, and further, a mechanism for adjusting the gap of the die lip needs to be provided directly on the circular die, so that the apparatus is large. There was a problem of becoming.

一方、前記したと同様に、チューブ状に押し出されて固化したフイルムの厚みを全周にわたって計測し、次いでそのデータをもとに、エアリングから吹き付ける冷却エア流の温度を調整するという方法がある。この方法は、ダイリップからチューブ状に吐出する溶融樹脂に冷却エアを吹き付ける場合、冷却エアの温度を低くすればその部分の合成樹脂がより速く固化して厚みが厚くなり、逆に冷却エアの温度を高くすればその部分は合成樹脂の固化が遅くなり、よりブローアップが進行する結果、厚みが薄くなるという現象を利用したものであり、厚み精度改良において効果を示す。しかしながらこの方法は、溶融樹脂を冷却するための主たる手段であるエアリングから吹き付ける冷却エアの温度を直接的に制御するものである。従って、チューブ状に押し出された溶融樹脂に吹き付ける冷却エアの温度がそれぞれの箇所において制御され、良好な厚み精度のチューブ状フイルムが得られている状態から、押出量の増減、引き取り速度の増減、ブロー比の増減等の製造条件の変更に伴い、エアリングから供給する冷却エアのトータル量を増減させると、良好に制御されていた状態が崩れてしまい、再び制御が安定するまでに相当の時間を要するという問題があった。従ってこれらの方法は、生産条件の変化があるような場面での使用には適していなかった。さらに、これらの方法においては溶融樹脂を冷却するための能力のほとんどをエアリングが担っており、このエアリングの冷却能力が直接的に制御されるため、制御の振れが大きくなりやすいという欠点もあった。   On the other hand, as described above, there is a method in which the thickness of the film extruded and solidified in a tube shape is measured over the entire circumference, and then the temperature of the cooling air flow blown from the air ring is adjusted based on the data. . In this method, when cooling air is blown onto the molten resin discharged from the die lip in the form of a tube, if the temperature of the cooling air is lowered, the synthetic resin in the part solidifies faster and the thickness becomes thicker. If the height is increased, the portion of the portion uses the phenomenon that the solidification of the synthetic resin is delayed and the blow-up progresses, resulting in a decrease in the thickness, which is effective in improving the thickness accuracy. However, this method directly controls the temperature of the cooling air blown from the air ring, which is the main means for cooling the molten resin. Therefore, the temperature of the cooling air blown to the molten resin extruded into a tube shape is controlled at each location, and from the state where a tubular film with good thickness accuracy is obtained, the increase and decrease of the extrusion amount, the increase and decrease of the take-up speed, If the total amount of cooling air supplied from the air ring is increased / decreased due to changes in manufacturing conditions such as increase / decrease in blow ratio, the well-controlled state will collapse, and it will take a considerable amount of time to stabilize control again. There was a problem of requiring. Therefore, these methods are not suitable for use in situations where production conditions change. Further, in these methods, the air ring bears most of the ability to cool the molten resin, and the cooling ability of the air ring is directly controlled, so that the control fluctuation tends to be large. there were.

最新の従来技術においては、図5に示す前記従来の改良版として、エアリングのエア供給路52´を円周方向に少なくとも80分割し、仕切り壁53´より分割されたエア供給路52´における冷却エアの吹出し量を、このエアリングより下流に位置する厚み測定装置からフイルムの偏肉を電気信号として入力される中央演算システムからの出力信号により、前記厚みの変動に対応して電気的に制御している(特許文献1の図1参照)。
ヨーロッパ特許第0478641号公報
In the latest prior art, as the conventional improved version shown in FIG. 5, the air supply passage 52 'of the air ring is divided into at least 80 in the circumferential direction, and the air supply passage 52' divided by the partition wall 53 'is used. The amount of cooling air blown out in response to the variation in thickness is determined by an output signal from a central processing system that receives the thickness deviation of the film as an electrical signal from a thickness measuring device located downstream of the air ring. (See FIG. 1 of Patent Document 1).
European Patent No. 0476641

然るに、最新の従来技術をしても、前記隣接するエア供給路52´の位置において、この白筋の発生原因は明確に解明されていないが、各区分されたエア供給路52の壁面近くと、それぞれのエア供給路52の中央部分とでは、流体摩擦の影響で、風量乃至風速がそれぞれ異なることが考えられ、その結果、一様に冷却エアがバブル外周面に吹き付けられず、隣接するエア供給路52の境界箇所近傍の冷却エアの風量が不足がちとなり、成形中のフイルムの引き取り方向、即ち、長手方向に沿って冷却班と思われる白筋が前記エアリングの分割数に相当する本数発生する現象があり、製品の品質上好ましくないことが判明した。この白筋を解消すべく本件発明者は試行錯誤し、前記隣接する区分間でのエア供給通路52を改良することで、各通路の壁面近くの風量減少が起こらないようにして前記課題を解決した。   However, even if the latest prior art is used, the cause of the white streak is not clearly clarified at the position of the adjacent air supply path 52 ′, but near the wall surface of each divided air supply path 52. It is conceivable that the air volume or the wind speed differs from the central portion of each air supply path 52 due to the influence of fluid friction. As a result, the cooling air is not uniformly blown to the outer peripheral surface of the bubble, and the adjacent air The amount of cooling air in the vicinity of the boundary of the supply path 52 tends to be insufficient, and the number of white streaks that are considered to be cooling segments along the film take-up direction during molding, that is, the longitudinal direction, corresponds to the number of divisions of the air ring. It has been found that there is a phenomenon that occurs, which is undesirable in terms of product quality. In order to eliminate this white streak, the present inventor tried and errored, and improved the air supply passage 52 between the adjacent sections to solve the above-mentioned problem so that the air volume near the wall surface of each passage does not decrease. did.

前記課題を解決するために、本件特定発明においては、インフレーションフイルム成形ダイの環状吐出口近傍にこのダイと同心的に上下2段の環状吹出口を有するインフレーションフイルム成形用エアリングにおいて、
前記環状吐出口寄りの下段の環状吹出口は内側リップと中間リップにより形成され、前記上段の環状吹出口は前記中間リップと外側リップとによりラッパ状に形成され、
前記上段の環状吹出口に連なるエア供給路は、前記上段の環状吹出口の中心部から放射状に伸びる複数のエア供給路として形成され、隣接する区分のエア供給路は略垂直な仕切り壁でそれぞれ仕切られ、各仕切り壁は前記吹出口側ほど厚みが順次薄くなる平面細長な三角の横断面形状としてあり、これら仕切り壁の下面、上面のうちの一方はエア供給路の底面天井面のうちの一方から若干離間し、隣接するエア供給路間においてエアが相互に流れる間隙を形成し、この間隙で分流するエアの連絡路が形成されていることを特徴とするインフレーションフイルム成形用エアリングとしてある。
In order to solve the above-mentioned problem, in the present invention, in the air ring for forming an inflation film having an annular blowout port that is concentric with this die in the vicinity of the annular discharge port of the inflation film forming die,
The lower annular outlet near the annular outlet is formed by an inner lip and an intermediate lip, and the upper annular outlet is formed in a trumpet shape by the intermediate lip and the outer lip,
The air supply passages connected to the upper annular air outlet are formed as a plurality of air supply passages extending radially from the center of the upper annular air outlet, and the adjacent air supply passages are substantially vertical partition walls, respectively. Each partition wall is in the form of an elongated triangular cross section whose thickness is gradually reduced toward the outlet, and one of the lower and upper surfaces of the partition walls is the bottom ceiling surface of the air supply path. It is an air ring for forming an inflation film characterized in that it is slightly spaced from one side, a gap is formed between the adjacent air supply paths, in which air flows mutually, and an air communication path that divides the air is formed in this gap. .

更に前記課題を解決するために、関連発明は、前記エアリングと、前記インフレーションフイルム成形ダイの環状吐出口からチューブ状に吐出されたバブルが冷却・固化されて成形されたチューブ状フイルムの厚みを、その全周にわたって測定する厚み計測装置と、前記厚み計測装置によって得られたチューブ状フイルムの厚みデータに基づいて、前記エアリング内における複数のエア供給路から吹出される冷却エアの風量乃至温度を、エア供給路毎にそれぞれ独立して制御する制御装置とを備えることを特徴とするインフレーションフイルム成形装置としてある。   Further, in order to solve the above-mentioned problems, the related invention relates to the thickness of the air ring and the tubular film formed by cooling and solidifying the bubble discharged from the annular discharge port of the inflation film forming die in a tube shape. A thickness measuring device for measuring the entire circumference of the tube, and a flow rate or temperature of cooling air blown out from a plurality of air supply paths in the air ring based on the thickness data of the tubular film obtained by the thickness measuring device. Is provided with a control device that controls each air supply path independently.

前記のように構成したエアリングにおいては、隣接するエア供給路間でエアが相互に流れる間隙を形成し、この間隙で分流するエアの連絡路が形成されていることにより、隣接する区分間でエアの一部を分割させずに相互に連絡させ、隣接する区分エア流の壁面近くでの風量不足を解消し、これに伴いバブルの冷却不足箇所を解消し、前記白筋の発生を解消し、フイルムの肉厚の均一化を達成できる。換言すれば、隣接するエア供給路間でエアが相互に流れる間隙を形成し、この間隙で分流するエアの連絡路が形成されていることにより、連絡路でバブル全周にわたる薄膜の冷却エア層が形成されているため、前記吹出口の位置においてその一部に風量が不足する領域が解消され、更にこのバブル全周にわたる冷却エア層と接触して、各区分されたエア供給路から送られる大量の冷却エアでバブルの表面を冷却することにより、フロストラインの下側でまだ溶融状態にあるバブルを従来と同様に冷却できるとともに、成形中のフイルムの引き取り方向、即ち、長手方向に沿って冷却班と思われる白筋が前記エアリングの分割数に相当する本数発生する現象を解消する。
更に、詳細に証明すれば、図5に示される従来の完全に仕切り壁53´で仕切られているエア供給路52´を有するエアリングに比べて、隣接するエア供給路を流れる冷却エアの一部は相互連通し、バブル側において吹き付けられる時でも、隣接するエア供給路間にわたり連続した冷却エア層を存在させることができ、各エア供給路から吐出する冷却エアの風量乃至風速分布は放物線を描き、前記区分されたエア供給路から吐出される冷却エアは、前記放物線を連ねた波形の曲線を描くが、前記隣接するエア供給路間の間隙を通り吐出する冷却エア層が360度にわたり連続して形成され積層されているため、前記波形の曲線の谷部、即ち隣接するエア供給路の頂点に当たる冷却エア層の谷部の厚さを厚くでき、バブル冷却効果の低減を少なくし、冷却不足を解消できる。この結果、前記白筋が前記エア供給路の分割数に相当する本数発生する現象を解消できる。
In the air ring configured as described above, a gap in which air flows between adjacent air supply paths is formed, and an air communication path that divides the air is formed between the adjacent air supply paths. A part of the air is connected to each other without being divided, and the air flow shortage near the wall of the adjacent divided air flow is solved, and accordingly, the insufficient cooling of the bubble is eliminated, and the occurrence of the white stripe is eliminated. The thickness of the film can be made uniform. In other words, a gap for air to flow between adjacent air supply paths is formed, and a communication path for air to be shunted by this gap is formed, so that a cooling air layer of a thin film over the entire circumference of the bubble in the connection path Therefore, a region where the air volume is insufficient at a part of the air outlet is eliminated, and further, the cooling air layer over the entire circumference of the bubble is contacted and sent from each divided air supply path. By cooling the surface of the bubble with a large amount of cooling air, it is possible to cool the bubble still in the molten state below the frost line as in the conventional case, and along the film drawing direction during molding, that is, along the longitudinal direction. This eliminates the phenomenon that white stripes, which are considered to be cooling groups, occur in a number corresponding to the number of divisions of the air ring.
Further, if proved in detail, the cooling air flowing through the adjacent air supply path is compared with the conventional air ring having the air supply path 52 ′ shown in FIG. The parts communicate with each other, and even when blown on the bubble side, a continuous cooling air layer can exist between adjacent air supply paths, and the air volume or wind speed distribution of the cooling air discharged from each air supply path is a parabola. The cooling air that is drawn and discharged from the divided air supply passages draws a waveform curve that connects the parabolas, but the cooling air layer that discharges through the gap between the adjacent air supply passages continues for 360 degrees. Therefore, it is possible to increase the thickness of the trough portion of the corrugated curve, that is, the trough portion of the cooling air layer corresponding to the apex of the adjacent air supply path, and reduce the bubble cooling effect less. And the lack of cooling can be resolved. As a result, it is possible to eliminate the phenomenon in which the number of white streaks corresponding to the number of divisions of the air supply path occurs.

この形態は、請求項1乃至5記載の発明の代表的な実施の形態を示し、請求項6記載の関連発明の代表的な実施の形態と併せて説明する。   This embodiment shows a typical embodiment of the invention described in claims 1 to 5, and will be described together with a typical embodiment of the related invention described in claim 6.

図1において、10はインフレーションフイルム成形用エアリングを示し、インフレーションフイルム成形ダイ20の環状吐出口30近傍にこのダイ20と同心的に上下2段の環状吹出口40、50を有する。
前記環状吐出口30寄りの下段の環状吹出口40は内側リップ60と中間リップ70により形成され、この内側リップ60の先端は前記環状吐出口30から吐出されるバブルの流れ方向へこのバブルに沿って外側に傾斜している。前記上段の環状吹出口50は前記中間リップ70と外側リップ80とによりラッパ状に形成されている。
前記上段の環状吹出口50の上流であるエア供給路52はこのエアリングの周方向で例えば80個に区分され、この吹出口50に連なるエア供給路52は、前記上段の環状吹出口50の中心部から放射状に伸びる複数のエア供給路として形成され、隣接するエア供給路52は略垂直な仕切り壁53で仕切られ、この仕切り壁53には、隣接するエア供給路52間でエアが相互に流れる寸法の間隙57が形成され、この間隙57部分においてはエアは区間されることなく送風される。
前記仕切り壁53は、前記吹出口50側、即ちバブル側程、その厚みが順次薄くなり、その頂点54が全バブル側に位置する平面細長な三角の横断面形状としてあり、その下面55はエア供給路52の底面56から若干離間し、隣接するエア供給路52間でエアが相互に流れる間隙57を形成し、この間隙57で分流するエアの連絡路が形成されている。
In FIG. 1, reference numeral 10 denotes an inflation film forming air ring, which has two upper and lower annular air outlets 40, 50 concentric with the die 20 in the vicinity of the annular discharge port 30 of the inflation film forming die 20.
The lower annular outlet 40 near the annular outlet 30 is formed by an inner lip 60 and an intermediate lip 70, and the tip of the inner lip 60 follows the bubble in the flow direction of the bubble discharged from the annular outlet 30. And inclined outward. The upper annular outlet 50 is formed in a trumpet shape by the intermediate lip 70 and the outer lip 80.
The air supply path 52 upstream of the upper annular outlet 50 is divided into, for example, 80 pieces in the circumferential direction of the air ring, and the air supply path 52 connected to the outlet 50 is connected to the upper annular outlet 50. Formed as a plurality of air supply paths extending radially from the center, adjacent air supply paths 52 are partitioned by a substantially vertical partition wall 53, and air is passed between the adjacent air supply paths 52. A gap 57 of a size flowing in the air is formed, and air is blown in the gap 57 portion without being divided.
The partition wall 53 has a thin and thin triangular cross-sectional shape in which the thickness of the partition wall 53 gradually decreases toward the air outlet 50 side, that is, the bubble side, and the apex 54 is located on the side of all bubbles. A gap 57 is formed between the adjacent air supply paths 52, which is slightly spaced from the bottom surface 56 of the supply path 52, and an air communication path is formed in the gap 57.

前記間隙57の寸法は約1乃至5ミリメートルとしてある。この下段の環状吹出口40は周方向で360度にわたり連通している環状エア通路41に連なり、この下段の環状吹出口40からバブル吹き付けられる風量は、前記上段の環状吹出口50からバブル吹き付けられる風量の略2分の1としてある。なお、この風量を同等とすることもある。   The size of the gap 57 is about 1 to 5 millimeters. The lower annular air outlet 40 is connected to an annular air passage 41 that communicates 360 degrees in the circumferential direction, and the amount of air blown from the lower annular air outlet 40 is blown from the upper annular air outlet 50. It is about half of the air volume. In addition, this air volume may be made equivalent.

前記下段の環状吹出口40と前記上段の環状吹出口50は共通の送風機の2次側に連通配備されている。
好ましくは、前記中間リップ70と内側リップ60の上端は略水平で同一平面内に位置し、前記下段の環状吹出口40は略垂直な上向きとしてあり、前記上段の環状吹出口50における外側リップ80の前記エア供給路52との接続箇所近傍は内方に張り出す縮径部として形成され、前記吹出口51の中間リップ70上端とその外側リップ80の上端の直径および高さは大きく相違し、前記縮径部に連なるラッパ状の口縁を形成している。
このように形成することで、連絡路でバブル全周にわたる薄膜の冷却エア層と、各区分されたエア供給路52から送られる大量の冷却エア層が略積層された状態で、前記吹出口51から対面するバブルの表面に向けて吹き付けられ、バブル冷却を行う。この結果として、各仕切り壁53の壁面抵抗による風量減少が緩和され、明確な温度変化となって現れず、フロストラインの下側でまだ溶融状態にあるバブルをその全周において過剰冷却、過小冷却箇所を伴わずに均一に冷却するとともに、成形中のフイルムの引き取り方向、即ち、長手方向に沿って冷却班と思われる白筋が前記エアリングの分割数に相当する本数発生する現象を解消する。
前記エアリング10は最外層にポリエチレン層を有する5層フイルム成形用として最適である。
The lower annular blower outlet 40 and the upper annular blower outlet 50 are arranged in communication with the secondary side of a common blower.
Preferably, the upper ends of the intermediate lip 70 and the inner lip 60 are substantially horizontal and located in the same plane, the lower annular outlet 40 faces upward substantially perpendicularly, and the outer lip 80 of the upper annular outlet 50 faces upward. The vicinity of the connection point with the air supply path 52 is formed as a reduced diameter portion projecting inward, and the diameter and height of the upper end of the intermediate lip 70 of the outlet 51 and the upper end of the outer lip 80 thereof are greatly different. A trumpet-shaped lip that is continuous with the reduced diameter portion is formed.
By forming in this way, the air outlet 51 in a state in which the cooling air layer of the thin film covering the entire circumference of the bubble in the communication path and the large amount of cooling air layer sent from each divided air supply path 52 are substantially laminated. It is blown toward the surface of the bubble facing from the bubble to cool the bubble. As a result, the decrease in the air volume due to the wall resistance of each partition wall 53 is alleviated and does not appear as a clear temperature change, and bubbles that are still in the molten state below the frost line are overcooled and undercooled all around. Cools uniformly without any spots, and eliminates the phenomenon that the number of white streaks that seem to be a cooling section along the longitudinal direction of the film during molding, that is, the number of air rings, is generated. .
The air ring 10 is optimal for forming a five-layer film having a polyethylene layer as an outermost layer.

前記エアリング10と、前記インフレーションフイルム成形ダイ20の環状吐出口30からチューブ状に吐出されたバブルが冷却・固化されて成形されたチューブ状フイルムの厚みを、その全周にわたって測定する厚み計測装置90と、前記厚み計測装置90によって得られたチューブ状フイルムの厚みデータに基づいて、前記エアリング10内における複数のエア供給路52から吹出される冷却エアの風量を、エア供給路52毎にそれぞれ独立して制御する制御装置100とを、インフレーションフイルム成形装置101は備える。
なお、前記形態においては、この仕切り壁53の下面55をエア供給路52の底面56から若干離間し、隣接するエア供給路52間でエアが相互に流れる間隙57を形成しているが、この仕切り壁53の上面をエア供給路52の天井面から若干離間し、隣接するエア供給路52間でエアが相互に流れる間隙57を形成しても、この発明の技術的な範囲に入る。更に、前記冷却エアの風量に代えて、その温度を調整することもある。
A thickness measuring device that measures the thickness of the tubular film formed by cooling and solidifying the bubble discharged from the annular ring outlet 30 of the air ring 10 and the inflation film forming die 20 over the entire circumference. 90 and the amount of cooling air blown from the plurality of air supply paths 52 in the air ring 10 based on the thickness data of the tubular film obtained by the thickness measuring device 90 for each air supply path 52. The inflation film forming apparatus 101 includes a control apparatus 100 that controls each independently.
In the above embodiment, the lower surface 55 of the partition wall 53 is slightly separated from the bottom surface 56 of the air supply path 52 to form a gap 57 through which air flows between the adjacent air supply paths 52. Even if the upper surface of the partition wall 53 is slightly separated from the ceiling surface of the air supply path 52 and a gap 57 through which air flows between the adjacent air supply paths 52 is formed, it is within the technical scope of the present invention. Further, the temperature may be adjusted instead of the air volume of the cooling air.

実施の形態のエアリングの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the air ring of embodiment. 図1におけるエア供給路の一部区画縦断面図である。It is a partial division longitudinal cross-sectional view of the air supply path in FIG. 図2の概略横断面図である。FIG. 3 is a schematic cross-sectional view of FIG. 2. 図1におけるエアリングを備えるインフレーションフイルム成形装置の概略図である。It is the schematic of an inflation film forming apparatus provided with the air ring in FIG. 従来例のエアリングのエア供給路の一部区画断面図である。It is partial section sectional drawing of the air supply path of the air ring of a prior art example.

符号の説明Explanation of symbols

10 インフレーションフイルム成形用エアリング
20 インフレーションフイルム成形ダイ
30 環状吐出口
40 下段の環状吹出口
50 上段の環状吹出口
52、52´ エア供給路
53、53´ 仕切り壁
56、56´ 底面
57 間隙
10 Inflation film forming air ring 20 Inflation film forming die 30 Annular discharge port 40 Lower annular outlet 50 Upper annular outlet 52, 52 'Air supply path 53, 53' Partition walls 56, 56 'Bottom surface 57 Gap

Claims (6)

インフレーションフイルム成形ダイの環状吐出口近傍にこのダイと同心的に上下2段の環状吹出口を有するインフレーションフイルム成形用エアリングにおいて、
前記環状吐出口寄りの下段の環状吹出口は内側リップと中間リップにより形成され、前記上段の環状吹出口は前記中間リップと外側リップとによりラッパ状に形成され、
前記上段の環状吹出口に連なるエア供給路は、前記上段の環状吹出口の中心部から放射状に伸びる複数のエア供給路として形成され、隣接する区分のエア供給路は略垂直な仕切り壁でそれぞれ仕切られ、各仕切り壁は前記吹出口側ほど厚みが順次薄くなる平面細長な三角の横断面形状としてあり、これら仕切り壁の下面、上面のうちの一方はエア供給路の底面天井面のうちの一方から若干離間し、隣接するエア供給路間においてエアが相互に流れる間隙を形成し、この間隙で分流するエアの連絡路が形成されていることを特徴とするインフレーションフイルム成形用エアリング。
In the air ring for forming an inflation film, which has an annular blowout port that is concentric with this die in the vicinity of the annular discharge port of the inflation film forming die,
The lower annular outlet near the annular outlet is formed by an inner lip and an intermediate lip, and the upper annular outlet is formed in a trumpet shape by the intermediate lip and the outer lip,
The air supply passages connected to the upper annular air outlet are formed as a plurality of air supply passages extending radially from the center of the upper annular air outlet, and the adjacent air supply passages are substantially vertical partition walls, respectively. Each partition wall is in the form of an elongated triangular cross section whose thickness is gradually reduced toward the outlet, and one of the lower and upper surfaces of the partition walls is the bottom ceiling surface of the air supply path. An airfoil for forming an inflation film, characterized in that a gap is formed between the adjacent air supply passages so that air flows between the adjacent air supply passages, and an air communication passage is formed in the gap.
前記間隙の寸法は約1乃至5ミリメートルとしてあることを特徴とする請求項1記載のインフレーションフイルム成形用エアリング。 2. An air ring for forming an inflation film according to claim 1, wherein the size of the gap is about 1 to 5 millimeters. 前記下段の環状吹出口は周方向で360度にわたり連通している環状エア通路に連なり、この下段の環状吹出口からバブル吹き付けられる風量は、前記上段の環状吹出口からバブル吹き付けられる風量の略1:1〜1:2としてあることを特徴とする請求項1または2記載のインフレーションフイルム成形用エアリング。 The lower annular air outlet is connected to an annular air passage that communicates 360 degrees in the circumferential direction. The amount of air blown from the lower annular air outlet is approximately 1 of the amount of air blown from the upper annular air outlet. The air ring for forming an inflation film according to claim 1 or 2, wherein: 前記下段の環状吹出口と前記上段の環状吹出口は共通の送風機の2次側に連通配備され、前記中間リップと内側リップの上端は略水平で同一平面内に位置し、前記下段の環状吹出口は略垂直な上向きとしてあり、前記上段の環状吹出口における外側リップの根元近傍は内方に張り出す縮径部として形成され、前記吹出口の中間リップ上端とその外側リップの上端の直径および高さは大きく相違し、外側リップの前記縮径部に連なるラッパ状の口縁を形成していることを特徴とする請求項1、2または3記載のインフレーションフイルム成形用エアリング。 The lower annular blower outlet and the upper annular blower outlet are provided in communication with the secondary side of a common blower, and the upper ends of the intermediate lip and the inner lip are substantially horizontal and located in the same plane. The outlet is substantially vertically upward, and the vicinity of the root of the outer lip in the upper annular outlet is formed as a reduced diameter portion projecting inward, and the diameter of the upper end of the intermediate lip of the outlet and the upper end of the outer lip and 4. The air ring for forming an inflation film according to claim 1, wherein the height is greatly different, and a trumpet-shaped lip that is continuous with the reduced diameter portion of the outer lip is formed. 前記エアリングは複層フイルム成形用として、各仕切り壁は、その頂点が全バブル側に位置する程次第に厚みが薄くなる平面細長な三角の横断面形状としてあり、その下面はエア供給路の底面から若干離間し、隣接するエア供給路間でエアが相互に流れる間隙を形成し、この間隙で分流するエアの連絡路が形成されていることを特徴とする請求項1、2、3または4記載のインフレーションフイルム成形用エアリング。 The air ring is for forming a multi-layer film, and each partition wall has a plane elongated triangular cross-sectional shape whose thickness gradually decreases as the apexes are located on the entire bubble side, and its lower surface is the bottom surface of the air supply path A gap is formed between the adjacent air supply passages so as to allow air to flow between the adjacent air supply passages, and an air communication passage for shunting the gaps is formed. Inflation film forming air ring as described. 請求項1、2、3、4または5記載のエアリングと、前記インフレーションフイルム成形ダイの環状吐出口からチューブ状に吐出されたバブルが冷却・固化されて成形されたチューブ状フイルムの厚みを、その全周にわたって測定する厚み計測装置と、前記厚み計測装置によって得られたチューブ状フイルムの厚みデータに基づいて、前記エアリング内における複数のエア供給路から吹出される冷却エアの風量乃至温度を、エア供給路毎にそれぞれ独立して制御する制御装置とを備えることを特徴とするインフレーションフイルム成形装置。 The air ring according to claim 1, 2, 3, 4 or 5, and the thickness of the tubular film formed by cooling and solidifying the bubble discharged from the annular discharge port of the inflation film forming die into a tube shape, Based on the thickness measurement device that measures the entire circumference, and the thickness data of the tubular film obtained by the thickness measurement device, the flow rate or temperature of cooling air blown out from a plurality of air supply paths in the air ring is determined. An inflation film forming apparatus comprising: a control device that controls each air supply path independently.
JP2006046529A 2006-02-23 2006-02-23 Air ring for forming inflation film and inflation film forming apparatus equipped with the air ring Pending JP2007223150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046529A JP2007223150A (en) 2006-02-23 2006-02-23 Air ring for forming inflation film and inflation film forming apparatus equipped with the air ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046529A JP2007223150A (en) 2006-02-23 2006-02-23 Air ring for forming inflation film and inflation film forming apparatus equipped with the air ring

Publications (1)

Publication Number Publication Date
JP2007223150A true JP2007223150A (en) 2007-09-06

Family

ID=38545402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046529A Pending JP2007223150A (en) 2006-02-23 2006-02-23 Air ring for forming inflation film and inflation film forming apparatus equipped with the air ring

Country Status (1)

Country Link
JP (1) JP2007223150A (en)

Similar Documents

Publication Publication Date Title
CN106163766B (en) Thickness-nonuniform adjustment type gas ring
CN104582971A (en) Print head nozzle for use with additive manufacturing system
CN102245522A (en) Method for producing optical fiber preform
ITMI20001937A1 (en) PROCEDURE AND DEVICE TO COMMAND AND ADJUST THE THICKNESS PROFILE IN THE PRODUCTION OF BLOWN FILM
US4929162A (en) Air rings for production of blown plastic film
US10052799B2 (en) Internal cooling tower for film blowing lines
JP2007223150A (en) Air ring for forming inflation film and inflation film forming apparatus equipped with the air ring
FI84921C (en) EN ELLER FLERSKIKTS INLOPPSLAODA MED UTVIDGAD REGLERZON AV GENOMLOPPSVOLYM.
KR102264236B1 (en) Apparatus for manufacturing large diameter synthetic resin pipe and large diameter synthetic resin pipe prepared by using the same
JPWO2020137722A1 (en) Stopper for continuous casting and continuous casting method
US3762853A (en) Cooling means for tubular plastics film extruded in the form of a bubble through an annular nozzle orifice
CN108422650A (en) A kind of cooling device of film blowing device
RU2363576C2 (en) Extrusion nozzle for extrusion of hollow profiles
CN216860543U (en) Shunt material flow channel extrusion die structure
CN201552737U (en) Three-layer co-extrusion internal cooling die head
JP5598930B2 (en) Extrusion die and method for adjusting extrusion die
ES2937635T3 (en) Device and method for controlling the discharge of a sizing composition in a facility for manufacturing mineral wool
CN210501332U (en) Multilayer extrusion die head
CN210233990U (en) Cooling air ring of film blowing machine
FI70540B (en) FOER REFRIGERATION FOR OIL TILLVERKNING AV EN BANA AV SKUMMAT THERMOPLASTIC MATERIAL
CN100455427C (en) Multi-layer blown film molding machine and method of molding multi-layer blown film
KR102659214B1 (en) Sizing device for tube extrusion molding
ITMI951855A1 (en) PLANT FOR THE PRODUCTION OF BLOWN FILM OF THERMOPLASTIC MATERIAL
JP2008087362A (en) Spiral die
US20230264406A1 (en) Coextrusion die for manufacturing multilayer tubular preforms made from thermoplastic plastic

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Effective date: 20070627

Free format text: JAPANESE INTERMEDIATE CODE: A7425