JP2007221960A - Cylindrical linear motor - Google Patents

Cylindrical linear motor Download PDF

Info

Publication number
JP2007221960A
JP2007221960A JP2006042057A JP2006042057A JP2007221960A JP 2007221960 A JP2007221960 A JP 2007221960A JP 2006042057 A JP2006042057 A JP 2006042057A JP 2006042057 A JP2006042057 A JP 2006042057A JP 2007221960 A JP2007221960 A JP 2007221960A
Authority
JP
Japan
Prior art keywords
magnetic pole
permanent magnets
pole pitch
linear motor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006042057A
Other languages
Japanese (ja)
Inventor
Keiji Nagasaka
圭史 永坂
Makoto Nagata
良 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2006042057A priority Critical patent/JP2007221960A/en
Publication of JP2007221960A publication Critical patent/JP2007221960A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce fluctuation in the magnetic pole pitch of a stator without tightening the dimension tolerance of a permanent magnet, in a cylindrical linear motor. <P>SOLUTION: In the cylindrical shaft 12 which constitutes the outer shell of the stator of a cylindrical linear motor, a large number of the permanent magnets 13 are accommodated with S-poles and N-poles of the adjacent permanent magnets 13 mutually opposed with each other, holding a spacer member 18 for adjusting the magnetic pole pitch between. Then, in order to adjust the magnetic pole pitch (interval of the permanent magnets 13) of the stator 10, the spacer member 18 with a required thickness held between the respective permanent magnets 13 is selected from among a plurality of spacer members with different thickness prepared in advance. Thereby, fluctuations if any, in manufacturing found in the thickness of the permanent magnets can be absorbed by the adjustment of the thickness of the spacer member 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固定子の磁極ピッチを調整する機能を備えた円筒型リニアモータに関する発明である。   The present invention relates to a cylindrical linear motor having a function of adjusting the magnetic pole pitch of a stator.

近年、直線往復駆動用のアクチュエータとして円筒型リニアモータが注目されている。この円筒型リニアモータは、「シャフトモータ」とも呼ばれ、例えば、特許文献1(特開2000−139069号公報)、特許文献2(特許第3481759号公報)等に記載されているように、N極とS極の磁束を交互に発生するシャフト状の固定子の外側に、複数のコイルを内蔵した可動子を該シャフト状の固定子と同心状に配置し、該可動子に設けた磁気センサ(ホール素子)で固定子の磁極の位置を検出してコイルへの通電を切り換えることで可動子を固定子に沿って直線駆動するように構成したものが多い。   In recent years, a cylindrical linear motor has attracted attention as an actuator for linear reciprocating drive. This cylindrical linear motor is also referred to as a “shaft motor”. For example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2000-139069), Patent Document 2 (Japanese Patent No. 3481759), and the like, N A magnetic sensor in which a mover having a plurality of coils is arranged concentrically with the shaft-like stator outside the shaft-like stator that alternately generates magnetic poles and S-poles, and is provided on the mover In many cases, the mover is linearly driven along the stator by detecting the position of the magnetic pole of the stator with the (Hall element) and switching the energization to the coil.

この円筒型リニアモータの固定子は、特許文献1に記載されているように、1本の棒状磁性材料に着磁装置でN極とS極を交互に着磁して形成したものがあるが、1本の棒状磁性材料にN極とS極を等ピッチで強力に着磁することが難しく、高磁力化や磁極間の境界位置の高精度化が困難であり、高推力化や位置決め精度向上の要求を十分に満たすことができない。   As described in Patent Document 1, there is a cylindrical linear motor stator formed by alternately magnetizing N poles and S poles with a magnetizing device on a single bar-shaped magnetic material. It is difficult to strongly magnetize N pole and S pole at the same pitch on a single bar-shaped magnetic material, and it is difficult to increase the magnetic force and the boundary position between the magnetic poles. The demand for improvement cannot be fully met.

この課題を解決するために、円筒状のシャフト内に、予め着磁された多数の永久磁石を直線状に並べて収納することでシャフト状の固定子を構成するようにしたものが多い。この場合、隣接する永久磁石の同極どうしを互いに対向させて接合したり、或は、推力発生に寄与する磁束を増加させるために、隣接する永久磁石間にヨーク(磁性材料)を挟み込んだ構成のものもある(特許文献2参照)
特開2000−139069号公報 特許第3481759号公報
In order to solve this problem, in many cases, a shaft-shaped stator is configured by storing a large number of pre-magnetized permanent magnets in a straight line in a cylindrical shaft. In this case, a configuration in which a yoke (magnetic material) is sandwiched between adjacent permanent magnets in order to join the same poles of adjacent permanent magnets facing each other or to increase magnetic flux contributing to thrust generation. (See Patent Document 2)
JP 2000-139069 A Japanese Patent No. 3481759

一般に、永久磁石は、成形型により成形して製造したり、或は、それを焼結して製造するため、寸法ばらつきが大きくなる傾向がある。従って、多数の永久磁石を直線状に配列して固定子を製造すると、各永久磁石の厚み寸法の製造ばらつきにより磁極ピッチがばらついて推力が低下するという問題があった。   In general, a permanent magnet is manufactured by molding with a molding die, or is manufactured by sintering the permanent magnet. Therefore, when a stator is manufactured by arranging a large number of permanent magnets in a straight line, there is a problem that the magnetic pole pitch varies due to manufacturing variations in the thickness dimension of each permanent magnet and the thrust is reduced.

この推力の低下率Y[p.u.]は次式で算出される。
Y=1−cos{(X−n・D)/D×360°} ……(1)
ここで、Dは磁極ピッチ[mm]であり、Xは原点からの可動子の移動距離[mm]である(ある1つのN極の位置を原点とする)。nは、可動子が原点から距離X移動する過程で通過する磁極ピッチの回数である。
This thrust reduction rate Y [p. u. ] Is calculated by the following equation.
Y = 1−cos {(Xn · D) / D × 360 °} (1)
Here, D is the magnetic pole pitch [mm], and X is the moving distance [mm] of the mover from the origin (the position of one N pole is the origin). n is the number of magnetic pole pitches that the mover passes in the process of moving the distance X from the origin.

例えば、磁極ピッチD=60[mm]、可動子の移動距離X=910[mm]、磁極ピッチの通過回数n=15の場合は、可動子と固定子の磁極との位置関係が10[mm]ずれることが次式により算出される。
磁極ピッチのずれ=|910−60×15|=10[mm]
このずれた位置で可動子のコイルに通電すると、上記(1)式により推力が半分になってしまうことが分かる。
For example, when the magnetic pole pitch D = 60 [mm], the movement distance X of the mover X = 910 [mm], and the number n of passes of the magnetic pole pitch n = 15, the positional relationship between the mover and the magnetic pole of the stator is 10 [mm]. The deviation is calculated by the following equation.
Deviation of magnetic pole pitch = | 910−60 × 15 | = 10 [mm]
It can be seen that if the coil of the mover is energized at this shifted position, the thrust is halved by the above equation (1).

この対策として、従来は、永久磁石の寸法公差を厳しくすることで、要求精度を満たすようにしていたため、永久磁石の製造コストがかなり高くなってしまい、低コスト化の要求を満たすことができないという問題があった。   Conventionally, as the countermeasure accuracy has been satisfied by tightening the dimensional tolerance of the permanent magnet, the manufacturing cost of the permanent magnet becomes considerably high, and it is impossible to meet the demand for cost reduction. There was a problem.

また、可動子の移動位置を検出するリニアエンコーダを搭載したシステムでは、このリニアエンコーダの検出位置情報に基づいてコイルへの通電を切り換えることで、固定子の磁極の位置を検出する磁気センサを省略した磁気センサレス構成を採用することが考えられるが、前述した磁極ピッチのばらつきによりリニアエンコーダの検出位置情報と実際の磁極の位置との対応関係にずれが生じるため、推力の低下は避けられない。従って、磁気センサレス構成で推力の低下を回避するためには、(1) 永久磁石の寸法公差を厳しくして磁極ピッチのばらつきを小さくするか、或は、(2) リニアエンコーダの検出位置情報と実際の磁極の位置との対応関係を実測して、そのデータをリニアモータ制御装置のメモリに記憶しておき、リニアモータ駆動中にリニアエンコーダの検出位置情報とメモリの記憶データとに基づいて磁極の位置を検出してコイルへの通電を切り換える構成が考えられる。しかし、いずれの手法でも、かなりのコストアップを伴い、低コスト化の要求を満たすことができない。   In a system equipped with a linear encoder that detects the moving position of the mover, the magnetic sensor that detects the position of the magnetic pole of the stator is omitted by switching the energization to the coil based on the detected position information of the linear encoder. Although it is conceivable to adopt the magnetic sensorless configuration described above, a reduction in thrust is inevitable because the correspondence between the detected position information of the linear encoder and the actual magnetic pole position is deviated due to the aforementioned variation in magnetic pole pitch. Therefore, in order to avoid a decrease in thrust in the magnetic sensorless configuration, (1) tighten the dimensional tolerance of the permanent magnets to reduce the variation of the magnetic pole pitch, or (2) detect the linear encoder detection position information and The correspondence relationship with the actual magnetic pole position is measured, and the data is stored in the memory of the linear motor control device, and the magnetic pole is detected based on the detected position information of the linear encoder and the stored data in the memory while the linear motor is driven. It is conceivable to detect the position of the coil and switch the energization to the coil. However, any of these methods involves a considerable cost increase and cannot satisfy the demand for cost reduction.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、永久磁石の寸法公差を厳しくしなくても、固定子の磁極ピッチのばらつきを少なくすることができて、低コスト化や磁気センサレス化に対応することができる円筒型リニアモータを提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to reduce the variation in the magnetic pole pitch of the stator even if the dimensional tolerance of the permanent magnet is not strict. An object of the present invention is to provide a cylindrical linear motor that can cope with cost reduction and magnetic sensor-less.

上記目的を達成するために、請求項1に係る発明は、複数の永久磁石を直線状に組み付けたシャフト状の固定子の外側に、複数のコイルを内蔵した可動子を該固定子と同心状に配置し、前記可動子の移動位置に応じて前記複数のコイルへの通電を切り換えることで前記可動子を前記固定子に沿って直線駆動する円筒型リニアモータにおいて、前記固定子の各永久磁石の間に磁極ピッチを調整する磁極ピッチ調整手段を設けた構成としたものである。この構成では、各永久磁石の厚み寸法に製造ばらつきがあっても、そのばらつきを磁極ピッチ調整手段の調整により吸収することができるため、永久磁石の寸法公差を厳しくしなくても、固定子の磁極ピッチのばらつきを少なくすることができて、低コスト化や磁気センサレス化に対応することができる。   In order to achieve the above object, the invention according to claim 1 is characterized in that a mover including a plurality of coils is concentrically formed on the outside of a shaft-like stator in which a plurality of permanent magnets are linearly assembled. Each of the permanent magnets of the stator, wherein the permanent magnet is linearly driven along the stator by switching energization to the plurality of coils in accordance with the moving position of the mover. The magnetic pole pitch adjusting means for adjusting the magnetic pole pitch is provided between the two. In this configuration, even if there is a manufacturing variation in the thickness dimension of each permanent magnet, the variation can be absorbed by the adjustment of the magnetic pole pitch adjusting means. Therefore, even if the dimensional tolerance of the permanent magnet is not strict, Variations in the magnetic pole pitch can be reduced, and it is possible to cope with cost reduction and magnetic sensor-less.

ここで、磁極ピッチ調整手段の具体例としては、請求項2のように、予め準備された厚み寸法の異なる複数のスペーサ部材の中から必要とする厚み寸法のものを選択して各永久磁石の間に挟み込むことで磁極ピッチを調整するようにしたり、或は、請求項3のように、各永久磁石の間に挟み込むスペーサ部材の枚数を増減させることで磁極ピッチを調整するようにしても良い。これらいずれの場合でも、磁極ピッチ調整手段を安価に実現することができる。   Here, as a specific example of the magnetic pole pitch adjusting means, as in claim 2, a required thickness dimension is selected from a plurality of spacer members having different thickness dimensions prepared in advance. The magnetic pole pitch may be adjusted by being sandwiched between them, or the magnetic pole pitch may be adjusted by increasing or decreasing the number of spacer members sandwiched between the permanent magnets as in claim 3. . In either case, the magnetic pole pitch adjusting means can be realized at low cost.

この場合、請求項4のように、各永久磁石及び各スペーサ部材のそれぞれの中心部に形成した貫通孔を中心軸に挿通して該中心軸の両端を抜け止めすることで各永久磁石及び各スペーサ部材を一体化するようにすると良い。このようにすれば、多数の永久磁石とスペーサ部材を一直線状に配列した状態に簡単に組み立てることができる。   In this case, as in the fourth aspect, each permanent magnet and each spacer member are prevented from coming off by inserting a through hole formed in each central portion of each permanent magnet and each spacer member into the central axis and preventing both ends of the central axis. The spacer member may be integrated. If it does in this way, it can assemble easily in the state where many permanent magnets and spacer members were arranged in a straight line.

更に、請求項5のように、スペーサ部材には、中心軸にその外周側から差し込み可能な切欠部を形成するようにすると良い。このようにすれば、各永久磁石を中心軸に挿通した状態のまま、各永久磁石間の隙間からスペーサ部材を中心軸に容易に差し込んだり取り替えることができ、磁極ピッチの調整作業を容易に且つ精度良く行うことができる。   Further, as described in claim 5, the spacer member may be formed with a notch that can be inserted into the central axis from the outer peripheral side. In this way, it is possible to easily insert or replace the spacer member into the central axis from the gap between the permanent magnets while the permanent magnets are inserted through the central axis, and to easily adjust the magnetic pole pitch. It can be performed with high accuracy.

また、請求項6のように、各永久磁石の中心部に形成した貫通孔を中心ボルトに挿通し、磁極ピッチ調整手段は、前記各永久磁石間に挟み込ませて前記中心ボルトに螺合させた一対のナット間の隙間寸法を該ナットの螺進退により調整することで磁極ピッチを調整するようにしても良い。この構成では、中心ボルトに螺合したナットの螺進退により磁極ピッチの調整作業を極めて容易に且つ精度良く行うことができる。   According to another aspect of the present invention, a through hole formed in the center of each permanent magnet is inserted into the center bolt, and the magnetic pole pitch adjusting means is sandwiched between the permanent magnets and screwed into the center bolt. The magnetic pole pitch may be adjusted by adjusting the gap dimension between the pair of nuts by screwing back and forth of the nuts. In this configuration, the magnetic pole pitch can be adjusted very easily and accurately by screwing back and forth of the nut screwed into the center bolt.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図7に基づいて説明する。
図1及び図2に示すように、円筒型リニアモータ11は、円筒状のシャフト12内に多数の永久磁石13を直線状に並べて配置してシャフト状の固定子10を構成すると共に、シャフト12の外側に、複数のコイル14を内蔵した可動子15を該シャフト12と同心状に配置し、可動子15の移動位置に応じて複数のコイル14への通電を切り換えることで可動子15をシャフト12に沿って直線駆動するように構成されている。シャフト12内の各永久磁石13は、隣接する永久磁石13のS極どうし、N極どうしが後述する磁極ピッチ調整用のスペーサ部材18(磁極ピッチ調整手段)を挟んで対向するように配置されている。
A first embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the cylindrical linear motor 11 includes a shaft-shaped stator 10 in which a large number of permanent magnets 13 are arranged in a straight line in a cylindrical shaft 12, and the shaft 12 A mover 15 having a plurality of coils 14 built in is arranged concentrically with the shaft 12 on the outside, and by switching the energization to the plurality of coils 14 in accordance with the moving position of the mover 15, the mover 15 is placed on the shaft. 12 is configured to drive linearly along the line 12. The permanent magnets 13 in the shaft 12 are arranged so that the S poles and N poles of the adjacent permanent magnets 13 face each other with a magnetic pole pitch adjusting spacer member 18 (magnetic pole pitch adjusting means) described later. Yes.

また、シャフト12は、各永久磁石13の磁束を透過させる非磁性材料(例えばステンレス鋼)のパイプにより形成されている。可動子15のコイル14は、シャフト12(永久磁石13)の外周囲を取り巻くように該シャフト12と同心状に配置されている。そして、このシャフト12の両端部が、ベースフレーム16上に立設された支持ブラケット17に水平に固定されている。   The shaft 12 is formed of a pipe made of a nonmagnetic material (for example, stainless steel) that transmits the magnetic flux of each permanent magnet 13. The coil 14 of the mover 15 is disposed concentrically with the shaft 12 so as to surround the outer periphery of the shaft 12 (permanent magnet 13). Both ends of the shaft 12 are fixed horizontally to a support bracket 17 erected on the base frame 16.

次に、図3に基づいて固定子10の組立構造を詳しく説明する。固定子10の外殻を構成する円筒状のシャフト12内には、多数の永久磁石13が、隣接する永久磁石13のS極どうし、N極どうしが磁極ピッチ調整用のスペーサ部材18(磁極ピッチ調整手段)を挟んで対向するように収納されている。各スペーサ部材18は、ヨークを兼ねるように鉄等の磁性材料により円盤状若しくは短円柱状に形成され、各永久磁石13も短円柱状に形成されている。各永久磁石13と各スペーサ部材18は、それぞれの中心部に形成した貫通孔21,22に中心軸23が挿通され、該中心軸23の両端を次のようにして抜け止めすることで一体化されている。   Next, the assembly structure of the stator 10 will be described in detail with reference to FIG. In the cylindrical shaft 12 constituting the outer shell of the stator 10, a large number of permanent magnets 13 are arranged between the S poles of the adjacent permanent magnets 13 and the N poles are spacer members 18 for adjusting the magnetic pole pitch (the magnetic pole pitch). It is stored so as to face each other across the adjusting means). Each spacer member 18 is formed in a disk shape or a short columnar shape with a magnetic material such as iron so as to serve as a yoke, and each permanent magnet 13 is also formed in a short columnar shape. Each permanent magnet 13 and each spacer member 18 are integrated by inserting a central shaft 23 into through-holes 21 and 22 formed at the center of each permanent magnet 13 and preventing both ends of the central shaft 23 from coming off as follows. Has been.

中心軸23の両端部には、それぞれ雄ねじ部24,25が形成され、円筒状のシャフト12の両端開口部に嵌合装着される段付き形状のキャップ部材26,27の中心部には、中心軸23の雄ねじ部24,25に締め込むためのねじ孔28,29が形成されている。そして、固定子10を組み立てる場合は、まず、中心軸23の一方の雄ねじ部24のみにキャップ部材26を締め込んだ後、この中心軸23に所定数のスペーサ部材18と永久磁石13とを交互に差し込む。この後、中心軸23の他方の雄ねじ部25にナット30を締め付けることで、中心軸23に差し込まれた所定数の永久磁石13とスペーサ部材18をキャップ部材26とナット30で挟み付けて固定した状態にする。   Male screw portions 24 and 25 are formed at both ends of the central shaft 23, respectively, and the center portions of the stepped cap members 26 and 27 fitted and fitted to the both end openings of the cylindrical shaft 12 are at the center. Screw holes 28 and 29 for tightening into the male screw portions 24 and 25 of the shaft 23 are formed. When assembling the stator 10, first, the cap member 26 is fastened only to one male screw portion 24 of the central shaft 23, and then a predetermined number of spacer members 18 and permanent magnets 13 are alternately placed on the central shaft 23. Plug in. Thereafter, a nut 30 is fastened to the other male screw portion 25 of the central shaft 23, whereby a predetermined number of permanent magnets 13 and spacer members 18 inserted into the central shaft 23 are sandwiched and fixed by the cap member 26 and the nut 30. Put it in a state.

この後、この永久磁石13とスペーサ部材18の組立体をナット30側から円筒状のシャフト12内に挿入し、中心軸23の他方の雄ねじ部25にキャップ部材27を締め込み、各キャップ部材26,27の外周段付き部が円筒状のシャフト12の両端開口縁に当接して固定されるまでキャップ部材27を締め付けることで、永久磁石13とスペーサ部材18の組立体を円筒状のシャフト12内に組み付ける。   Thereafter, the assembly of the permanent magnet 13 and the spacer member 18 is inserted into the cylindrical shaft 12 from the nut 30 side, and the cap member 27 is fastened to the other male screw portion 25 of the central shaft 23, and each cap member 26 is inserted. , 27 is tightened until the cap member 27 is tightened until the outer peripheral stepped portions are fixed in contact with the opening edges of both ends of the cylindrical shaft 12, whereby the assembly of the permanent magnet 13 and the spacer member 18 is placed inside the cylindrical shaft 12. Assemble to.

この場合、固定子10の磁極ピッチ(永久磁石13の間隔)を調整するために、各永久磁石13間に挟み込むスペーサ部材18は、予め準備された厚み寸法の異なる複数のスペーサ部材の中から必要とする厚み寸法のものを選択するようにしている。   In this case, in order to adjust the magnetic pole pitch of the stator 10 (interval of the permanent magnets 13), the spacer member 18 sandwiched between the permanent magnets 13 is necessary from a plurality of spacer members prepared in advance with different thickness dimensions. The thickness dimension is selected.

更に、本実施例1では、各永久磁石13を中心軸23に組み付けた状態でスペーサ部材18を取替え可能とするために、図4に示すように、各スペーサ部材18には、中心軸23にその外周側から差し込み可能な切欠部31が形成されており、その結果、各スペーサ部材18の形状はC字型となっている。   Further, in the first embodiment, in order to make it possible to replace the spacer member 18 in a state where each permanent magnet 13 is assembled to the central shaft 23, as shown in FIG. A notch 31 that can be inserted from the outer peripheral side is formed, and as a result, the shape of each spacer member 18 is C-shaped.

この場合、中心軸23に差し込まれた永久磁石13とスペーサ部材18は、キャップ部材26とナット30で挟み付けて固定するため、スペーサ部材18の形状がC字型であっても、ナット30の締付け後はスペーサ部材18が中心軸23から脱落することはない。   In this case, since the permanent magnet 13 and the spacer member 18 inserted into the central shaft 23 are sandwiched and fixed by the cap member 26 and the nut 30, even if the shape of the spacer member 18 is C-shaped, After tightening, the spacer member 18 does not fall off the central shaft 23.

また、中心軸23からのスペーサ部材18の脱落をより確実に防止するために、図5に示すように、スペーサ部材18の貫通孔22に対して切欠部32を斜めに交差させるように形成し、中心軸23に対してスペーサ部材18を斜めにして切欠部32から貫通孔22まで差し込むようにしても良い。この構成では、中心軸23に嵌め込んだスペーサ部材18を永久磁石13間に挟み込んで、スペーサ部材18を中心軸23に対して直角となる状態に戻せば、スペーサ部材18の切欠部32と中心軸23とが交差した状態となるため、中心軸23からのスペーサ部材18の脱落が防止される。   Further, in order to more reliably prevent the spacer member 18 from falling off the central shaft 23, as shown in FIG. 5, the notch 32 is formed so as to obliquely intersect the through hole 22 of the spacer member 18. The spacer member 18 may be inclined with respect to the central axis 23 and inserted from the notch 32 to the through hole 22. In this configuration, when the spacer member 18 fitted to the central shaft 23 is sandwiched between the permanent magnets 13 and the spacer member 18 is returned to a state perpendicular to the central shaft 23, the notch 32 and the center of the spacer member 18 are centered. Since the shaft 23 intersects, the spacer member 18 is prevented from falling off from the central shaft 23.

また、スペーサ部材18は、ヨークも兼ねるため、スペーサ部材18(ヨーク)から可動子15のコイル14に鎖交する磁束のバランスが切欠部31,32によって少し乱されて可動子15に働く推力のバランスが少し悪くなる可能性が懸念される。この対策として、図6に示すように、スペーサ部材18の切欠部31に跨がるように鉄等の磁性材料で形成された磁性ボルト33を設け、この磁性ボルト33によって磁束の矯正とスペーサ部材18の脱落防止を図るようにしても良い。或は、スペーサ部材18の切欠部31,32に弾性変形可能な磁性材料(例えば磁性ゴム等)を嵌め込むようにしても良い。   Further, since the spacer member 18 also serves as a yoke, the balance of the magnetic flux interlinking from the spacer member 18 (yoke) to the coil 14 of the mover 15 is slightly disturbed by the notches 31 and 32, and the thrust force acting on the mover 15 is reduced. There is concern that the balance may be a little worse. As a countermeasure against this, as shown in FIG. 6, a magnetic bolt 33 made of a magnetic material such as iron is provided so as to straddle the notch 31 of the spacer member 18, and the magnetic bolt 33 corrects magnetic flux and spacer member. 18 may be prevented from falling off. Alternatively, an elastically deformable magnetic material (such as magnetic rubber) may be fitted into the notches 31 and 32 of the spacer member 18.

例えば、固定子10の界磁部分の全長が1500[mm]、磁極ピッチが60[mm]の場合、図7に示すように、1磁極ピッチの長さ60[mm]当たり、永久磁石13とスペーサ部材18がそれぞれ2個ずつ存在することになる。   For example, when the total length of the field portion of the stator 10 is 1500 [mm] and the magnetic pole pitch is 60 [mm], as shown in FIG. There are two spacer members 18 each.

この例では、固定子10の磁極の周期は1500/60=25[周期]となる。
永久磁石13とスペーサ部材18の寸法公差をそれぞれ±0.1[mm]とすると、固定子10の界磁部分の全長のプラス方向最大誤差は、25×4×0.1=10[mm]となる。
In this example, the period of the magnetic pole of the stator 10 is 1500/60 = 25 [period].
When the dimensional tolerances of the permanent magnet 13 and the spacer member 18 are ± 0.1 [mm], the maximum plus direction error of the total length of the field portion of the stator 10 is 25 × 4 × 0.1 = 10 [mm]. It becomes.

もし、固定子10の磁極とコイル14との位置関係が10[mm]ずれた状態でコイル14に通電した場合、推力の低下率Y[p.u.]が0.5となり、推力が半分になってしまう。   If the coil 14 is energized with the positional relationship between the magnetic poles of the stator 10 and the coil 14 shifted by 10 [mm], the thrust reduction rate Y [p. u. ] Becomes 0.5, and the thrust is halved.

Y=1−cos{10/60×360°}=1−cos60°=0.5
この場合、永久磁石13とスペーサ部材18の寸法公差を上記の公差の1/10以下に小さくすれば、推力の低下が0.5[%]以下に抑えられるが、このような厳密な公差管理は、かなりのコストアップを伴い、実用的ではない。
Y = 1−cos {10/60 × 360 °} = 1−cos 60 ° = 0.5
In this case, if the dimensional tolerance between the permanent magnet 13 and the spacer member 18 is reduced to 1/10 or less of the above-described tolerance, the reduction in thrust can be suppressed to 0.5 [%] or less. Is not practical with a significant cost increase.

そこで、本実施例1では、固定子10の磁極ピッチを調整するために、各永久磁石13間に挟み込むスペーサ部材18は、予め準備された厚み寸法の異なる複数のスペーサ部材の中から必要とする厚み寸法のものを選択するようにしている。これにより、各永久磁石13の厚み寸法に製造ばらつきがあっても、そのばらつきをスペーサ部材18の厚み調整により吸収することができるため、永久磁石13の寸法公差を厳しくしなくても、固定子10の磁極ピッチのばらつきを少なくすることができて、低コスト化の要求を満たすことができる。   Accordingly, in the first embodiment, in order to adjust the magnetic pole pitch of the stator 10, the spacer member 18 sandwiched between the permanent magnets 13 is required from among a plurality of spacer members prepared in advance with different thickness dimensions. The thing of thickness dimension is selected. As a result, even if there is a manufacturing variation in the thickness dimension of each permanent magnet 13, the variation can be absorbed by adjusting the thickness of the spacer member 18. The variation of the magnetic pole pitch of 10 can be reduced, and the demand for cost reduction can be satisfied.

しかも、本実施例1では、固定子10の磁極ピッチの精度を十分に確保できるため、可動子15の移動位置を検出するリニアエンコーダ(図示せず)を搭載していれば、このリニアエンコーダの検出位置情報に基づいてコイル14への通電を切り換えることで、固定子10の磁極の位置を検出する磁気センサを省略した磁気センサレス構成を採用することが可能となり、一層の低コスト化を実現できる。   In addition, in the first embodiment, the accuracy of the magnetic pole pitch of the stator 10 can be sufficiently secured. Therefore, if a linear encoder (not shown) for detecting the moving position of the mover 15 is mounted, the linear encoder By switching the energization to the coil 14 based on the detected position information, it is possible to adopt a magnetic sensorless configuration in which the magnetic sensor for detecting the position of the magnetic pole of the stator 10 is omitted, and further cost reduction can be realized. .

しかしながら、本発明は、固定子10の磁極の位置を検出する磁気センサを搭載して、この磁気センサの出力信号に基づいてコイル14への通電を切り換えるように構成しても良い。   However, the present invention may be configured such that a magnetic sensor for detecting the position of the magnetic pole of the stator 10 is mounted and the energization to the coil 14 is switched based on the output signal of the magnetic sensor.

また、本実施例1では、スペーサ部材18に、中心軸23にその外周側から差し込み可能な切欠部31(32)が形成されているため、中心軸23に組み付けた各永久磁石13とスペーサ部材18を挟み付けているナット30を緩めれば、各永久磁石13間で対向する同じ極性の磁力が反発し合って各永久磁石13の間隔が自然に広がる。これにより、中心軸23に各永久磁石13を挿通した状態のまま、各永久磁石13間の隙間から適宜の厚みのスペーサ部材18を中心軸23にその外周側から容易に差し込んだり取り替えることができ、磁極ピッチの調整作業を容易に且つ精度良く行うことができる利点がある。   Further, in the first embodiment, the spacer member 18 is formed with the notch 31 (32) that can be inserted into the central shaft 23 from the outer peripheral side, so that each permanent magnet 13 and spacer member assembled to the central shaft 23 is formed. If the nut 30 holding the pin 18 is loosened, the magnetic forces of the same polarity facing each other between the permanent magnets 13 repel each other, and the interval between the permanent magnets 13 is naturally expanded. Accordingly, the spacer member 18 having an appropriate thickness can be easily inserted into the central shaft 23 from the outer peripheral side or replaced from the gap between the permanent magnets 13 while the permanent magnets 13 are inserted into the central shaft 23. There is an advantage that the work of adjusting the magnetic pole pitch can be performed easily and accurately.

しかしながら、本発明は、切欠部31(32)が形成されていない円環状のスペーサ部材を用いても良い。この場合でも、中心軸23からナット30を取り外して、中心軸23から永久磁石13と円環状のスペーサ部材を抜き出せば、適宜の厚みのスペーサ部材と取り替えることができる。   However, the present invention may use an annular spacer member in which the notch 31 (32) is not formed. Even in this case, if the nut 30 is removed from the central shaft 23 and the permanent magnet 13 and the annular spacer member are extracted from the central shaft 23, the spacer member can be replaced with a spacer member having an appropriate thickness.

上記実施例1では、各永久磁石13の間に1つのスペーサ部材18を挟み込むようにしたが、図8に示す本発明の実施例2では、磁極ピッチ調整手段である各スペーサ部材35の厚みを上記実施例1のスペーサ部材18よりも薄く形成して、各永久磁石13の間に挟み込むスペーサ部材35の枚数を増減させることで固定子10の磁極ピッチを調整するようにしている。この場合、各スペーサ部材35の厚み以外の形状は、前記実施例1で説明した図4乃至図6のいずれの形状であっても良く、勿論、それ以外の形状であっても良いことは言うまでもない。   In the first embodiment, one spacer member 18 is sandwiched between the permanent magnets 13, but in the second embodiment of the present invention shown in FIG. 8, the thickness of each spacer member 35 that is a magnetic pole pitch adjusting means is set. The magnetic pole pitch of the stator 10 is adjusted by forming the spacer member 18 thinner than the spacer member 18 of the first embodiment and increasing or decreasing the number of spacer members 35 sandwiched between the permanent magnets 13. In this case, the shape of each spacer member 35 other than the thickness may be any of the shapes shown in FIGS. 4 to 6 described in the first embodiment, and of course, may be other shapes. Yes.

本実施例2では、各スペーサ部材35の厚みは同一であっても良いが、前記実施例1と同様に、予め準備された厚み寸法の異なる複数のスペーサ部材の中から必要とする厚み寸法のものを選択するようにしても良い。
以上説明した本実施例2においても、前記実施例1と同様の効果を得ることができる。
In the second embodiment, the thickness of each spacer member 35 may be the same. However, as in the first embodiment, a thickness of a required thickness is selected from a plurality of spacer members prepared in advance. You may make it choose a thing.
Also in the second embodiment described above, the same effect as in the first embodiment can be obtained.

前記実施例1では、永久磁石13とスペーサ部材18を挿通する中心軸23の両端部のみに雄ねじ部24,25を形成したが、図9に示す本発明の実施例3では、全長にわたって雄ねじ部が形成された中心ボルト36を用い、この中心ボルト36に多数の永久磁石13が挿通され、各永久磁石13間にはスペーサ部材18と一対のナット37(磁極ピッチ調整手段)とが交互に挿通されている。図9の例では、永久磁石13を2個挟んだ間隔(1磁極ピッチの間隔)で一対のナット37を配置したが、これ以外の間隔で一対のナット37を配置しても良い。   In the first embodiment, the male screw portions 24 and 25 are formed only at both ends of the central shaft 23 through which the permanent magnet 13 and the spacer member 18 are inserted. However, in the third embodiment of the present invention shown in FIG. A large number of permanent magnets 13 are inserted into the central bolt 36, and a spacer member 18 and a pair of nuts 37 (magnetic pole pitch adjusting means) are alternately inserted between the permanent magnets 13. Has been. In the example of FIG. 9, the pair of nuts 37 is disposed at an interval between two permanent magnets 13 (interval of one magnetic pole pitch), but the pair of nuts 37 may be disposed at an interval other than this.

この場合、一対のナット37は中心ボルト36に螺合されているが、永久磁石13とスペーサ部材18は、中心ボルト36に単に挿通されているだけであり、中心ボルト36に螺合された一対のナット37間の隙間寸法を該ナット37の螺進退により調整することで永久磁石13とスペーサ部材18の位置を中心ボルト36に沿ってずらして固定子10の磁極ピッチを調整するようにしている。その他の構成は、前記実施例1と同じである。   In this case, the pair of nuts 37 is screwed into the center bolt 36, but the permanent magnet 13 and the spacer member 18 are merely inserted through the center bolt 36, and the pair of screws screwed into the center bolt 36 is used. By adjusting the gap dimension between the nuts 37 by screwing back and forth of the nuts 37, the positions of the permanent magnet 13 and the spacer member 18 are shifted along the center bolt 36 to adjust the magnetic pole pitch of the stator 10. . Other configurations are the same as those of the first embodiment.

この構成では、中心ボルト36に螺合したナット37の螺進退により固定子10の磁極ピッチの調整作業を極めて容易に且つ精度良く行うことができる。
尚、一対のナット37の間には、弾性変形可能な磁性材料(例えば磁性ゴム等)を挟み込んで磁束効率を高めるようにしても良い。
In this configuration, the adjustment work of the magnetic pole pitch of the stator 10 can be performed very easily and accurately by the screwing back and forth of the nut 37 screwed into the center bolt 36.
Note that an elastically deformable magnetic material (for example, magnetic rubber) may be sandwiched between the pair of nuts 37 to increase the magnetic flux efficiency.

以上説明した各実施例1〜3では、1本の中心軸23(中心ボルト36)に固定子10を構成する全ての永久磁石13とスペーサ部材18(ナット37)を組み付けるようにしたが、中心軸23(中心ボルト36)を複数に分割して、個々に組み立て、それらを円筒状のシャフト12内に収納して中心軸23を組み立てるように構成しても良い。   In each of the first to third embodiments described above, all the permanent magnets 13 and the spacer members 18 (nuts 37) constituting the stator 10 are assembled to one central shaft 23 (central bolt 36). The shaft 23 (center bolt 36) may be divided into a plurality of pieces and assembled individually, and the shaft 23 may be housed in the cylindrical shaft 12 to assemble the center shaft 23.

本発明の実施例1の円筒型リニアモータを搭載した装置を概略的に示す図である。It is a figure which shows roughly the apparatus carrying the cylindrical linear motor of Example 1 of this invention. 実施例1の円筒型リニアモータの主要部の斜視図である。It is a perspective view of the principal part of the cylindrical linear motor of Example 1. 実施例1の円筒型リニアモータの主要部の断面図である。1 is a cross-sectional view of a main part of a cylindrical linear motor according to Embodiment 1. FIG. スペーサ部材の第1例を説明する図である。It is a figure explaining the 1st example of a spacer member. スペーサ部材の第2例を説明する図である。It is a figure explaining the 2nd example of a spacer member. スペーサ部材の第3例を説明する図である。It is a figure explaining the 3rd example of a spacer member. 1磁極ピッチ当たりの永久磁石とスペーサ部材の配列を説明する図である。It is a figure explaining the arrangement | sequence of the permanent magnet and spacer member per magnetic pole pitch. 実施例2の円筒型リニアモータの主要部の断面図である。It is sectional drawing of the principal part of the cylindrical linear motor of Example 2. FIG. 実施例3の円筒型リニアモータの主要部の断面図である。It is sectional drawing of the principal part of the cylindrical linear motor of Example 3.

符号の説明Explanation of symbols

10…固定子、11…円筒型リニアモータ、12…円筒状のシャフト、13…永久磁石、14…コイル、15…可動子、16…ベースフレーム、17…支持ブラケット、18…スペーサ部材(磁極ピッチ調整手段)、21,22…貫通孔、23…中心軸、26,27…キャップ部材、31,32…切欠部、33…磁性ボルト、35…スペーサ部材(磁極ピッチ調整手段)、36…中心ボルト、37…ナット(磁極ピッチ調整手段)   DESCRIPTION OF SYMBOLS 10 ... Stator, 11 ... Cylindrical linear motor, 12 ... Cylindrical shaft, 13 ... Permanent magnet, 14 ... Coil, 15 ... Movable element, 16 ... Base frame, 17 ... Support bracket, 18 ... Spacer member (magnetic pole pitch) Adjusting means) 21, 22 ... through hole, 23 ... center shaft, 26,27 ... cap member, 31, 32 ... notch, 33 ... magnetic bolt, 35 ... spacer member (magnetic pole pitch adjusting means), 36 ... center bolt 37 ... nut (magnetic pole pitch adjusting means)

Claims (6)

複数の永久磁石を直線状に組み付けたシャフト状の固定子の外側に、複数のコイルを内蔵した可動子を該固定子と同心状に配置し、前記可動子の移動位置に応じて前記複数のコイルへの通電を切り換えることで前記可動子を前記固定子に沿って直線駆動する円筒型リニアモータにおいて、
前記固定子の各永久磁石の間に磁極ピッチを調整する磁極ピッチ調整手段を設けたことを特徴とする円筒型リニアモータ。
A mover incorporating a plurality of coils is arranged concentrically with the stator on the outside of a shaft-like stator in which a plurality of permanent magnets are linearly assembled, and the plurality of movers are moved according to the movement position of the mover. In a cylindrical linear motor that linearly drives the mover along the stator by switching energization to a coil,
A cylindrical linear motor comprising magnetic pole pitch adjusting means for adjusting a magnetic pole pitch between the permanent magnets of the stator.
前記磁極ピッチ調整手段は、予め準備された厚み寸法の異なる複数のスペーサ部材の中から必要とする厚み寸法のものを選択して前記各永久磁石の間に挟み込むことで磁極ピッチを調整することを特徴とする請求項1に記載の円筒型リニアモータ。   The magnetic pole pitch adjusting means adjusts the magnetic pole pitch by selecting a required thickness dimension from a plurality of spacer members having different thickness dimensions prepared in advance and sandwiching them between the permanent magnets. The cylindrical linear motor according to claim 1, wherein: 前記磁極ピッチ調整手段は、前記各永久磁石の間に挟み込むスペーサ部材の枚数を増減させることで磁極ピッチを調整することを特徴とする請求項1に記載の円筒型リニアモータ。   2. The cylindrical linear motor according to claim 1, wherein the magnetic pole pitch adjusting means adjusts the magnetic pole pitch by increasing or decreasing the number of spacer members sandwiched between the permanent magnets. 前記各永久磁石及び前記各スペーサ部材は、それぞれの中心部に形成した貫通孔を中心軸に挿通して該中心軸の両端を抜け止めすることで一体化されていることを特徴とする請求項2又は3に記載の円筒型リニアモータ。   The permanent magnets and the spacer members are integrated by inserting through holes formed in the central portions of the permanent magnets through the central shaft and preventing both ends of the central shaft from coming off. The cylindrical linear motor according to 2 or 3. 前記スペーサ部材には、前記中心軸にその外周側から差し込み可能な切欠部が形成されていることを特徴とする請求項4に記載の円筒型リニアモータ。   5. The cylindrical linear motor according to claim 4, wherein the spacer member is formed with a notch that can be inserted into the central shaft from an outer peripheral side thereof. 前記各永久磁石は、その中心部に形成した貫通孔が中心ボルトに挿通され、
前記磁極ピッチ調整手段は、前記各永久磁石間に挟み込ませて前記中心ボルトに螺合させた一対のナット間の隙間寸法を該ナットの螺進退により調整することで磁極ピッチを調整することを特徴とする請求項1に記載の円筒型リニアモータ。
Each of the permanent magnets has a through hole formed in the center thereof inserted through a center bolt,
The magnetic pole pitch adjusting means adjusts the magnetic pole pitch by adjusting a gap dimension between a pair of nuts sandwiched between the permanent magnets and screwed into the central bolt by screwing back and forth of the nuts. The cylindrical linear motor according to claim 1.
JP2006042057A 2006-02-20 2006-02-20 Cylindrical linear motor Withdrawn JP2007221960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042057A JP2007221960A (en) 2006-02-20 2006-02-20 Cylindrical linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042057A JP2007221960A (en) 2006-02-20 2006-02-20 Cylindrical linear motor

Publications (1)

Publication Number Publication Date
JP2007221960A true JP2007221960A (en) 2007-08-30

Family

ID=38498588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042057A Withdrawn JP2007221960A (en) 2006-02-20 2006-02-20 Cylindrical linear motor

Country Status (1)

Country Link
JP (1) JP2007221960A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104090A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
JP2010104093A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
JP2010104092A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
JP2011223697A (en) * 2010-04-07 2011-11-04 Hitachi Metals Ltd Linear motor
JP2013208025A (en) * 2012-03-29 2013-10-07 Sanyo Denki Co Ltd Cylindrical linear motor
US20130342037A1 (en) * 2011-03-22 2013-12-26 Sumida Corporation Vibration-powered generator
WO2014084156A1 (en) * 2012-11-30 2014-06-05 日立金属株式会社 Actuator and actuator manufacturing method
JP2016103888A (en) * 2014-11-27 2016-06-02 山洋電気株式会社 Linear motor
JP2016144286A (en) * 2015-01-30 2016-08-08 日本パルスモーター株式会社 Linear motor shaft and manufacturing method of same
US11817755B2 (en) 2021-06-01 2023-11-14 Apple Inc. Axisymmetric linear resonant actuators

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104093A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
JP2010104092A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
JP2010104090A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
JP2011223697A (en) * 2010-04-07 2011-11-04 Hitachi Metals Ltd Linear motor
US9240710B2 (en) * 2011-03-22 2016-01-19 Sumida Corporation Vibration-powered generator
US20130342037A1 (en) * 2011-03-22 2013-12-26 Sumida Corporation Vibration-powered generator
JP2013208025A (en) * 2012-03-29 2013-10-07 Sanyo Denki Co Ltd Cylindrical linear motor
US9379599B2 (en) 2012-03-29 2016-06-28 Sanyo Denki Co., Ltd. Tubular linear motor
WO2014084156A1 (en) * 2012-11-30 2014-06-05 日立金属株式会社 Actuator and actuator manufacturing method
CN104813571A (en) * 2012-11-30 2015-07-29 日立金属株式会社 Actuator and actuator manufacturing method
JPWO2014084156A1 (en) * 2012-11-30 2017-01-05 日立金属株式会社 Actuator and manufacturing method of actuator
US9762112B2 (en) 2012-11-30 2017-09-12 Hitachi Metals, Ltd. Actuator and method of manufacturing actuator
JP2016103888A (en) * 2014-11-27 2016-06-02 山洋電気株式会社 Linear motor
JP2016144286A (en) * 2015-01-30 2016-08-08 日本パルスモーター株式会社 Linear motor shaft and manufacturing method of same
US11817755B2 (en) 2021-06-01 2023-11-14 Apple Inc. Axisymmetric linear resonant actuators

Similar Documents

Publication Publication Date Title
JP2007221960A (en) Cylindrical linear motor
US7471018B2 (en) Linear motor and manufacturing method of linear motor
KR101531736B1 (en) Direct acting rotating actuator
JP5294762B2 (en) Linear motor
JP5964633B2 (en) Tubular linear motor
JP6120563B2 (en) Motor drive device
JP2008289344A (en) Linear motor
JP5300325B2 (en) Linear motor
JP2009509491A5 (en)
JP2008206335A (en) Cylindrical linear motor
JPWO2005124980A1 (en) Manufacturing method of linear motor
KR20100106531A (en) Electric motor for operating a shutter element or solar protection element in a building
JP2011155757A (en) Linear motor
WO2005124981A1 (en) Linear motor and method of producing linear motor
JP5277554B2 (en) Linear actuator
JP2006353022A (en) Linear motor
JP2010035296A (en) Magnet skew structure for cylindrical linear motor
JP5623219B2 (en) motor
JP4551157B2 (en) Cylinder type linear motor
JP2006353024A (en) Cylindrical linear motor
JP2013225985A (en) Linear slider
JP2006074881A (en) Mover of cylinder type linear motor
JP2008271753A (en) Armature for cylindrical linear motor, and the cylindrical linear motor
JP2023069885A (en) Cylindrical type liner motor
WO2024084701A1 (en) Power generation element, power generation module, rotation speed detector, and power generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512