JP2007218755A - Alignment angle inspection device of photoelectric encoder - Google Patents

Alignment angle inspection device of photoelectric encoder Download PDF

Info

Publication number
JP2007218755A
JP2007218755A JP2006040160A JP2006040160A JP2007218755A JP 2007218755 A JP2007218755 A JP 2007218755A JP 2006040160 A JP2006040160 A JP 2006040160A JP 2006040160 A JP2006040160 A JP 2006040160A JP 2007218755 A JP2007218755 A JP 2007218755A
Authority
JP
Japan
Prior art keywords
grating
inspection
photoelectric encoder
scale
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006040160A
Other languages
Japanese (ja)
Inventor
Kenji Kojima
健司 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2006040160A priority Critical patent/JP2007218755A/en
Publication of JP2007218755A publication Critical patent/JP2007218755A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate alignment deviation in the rotation direction easily, quantitatively and highly accurately. <P>SOLUTION: This photoelectric encoder for detecting relative displacement between a scale 10 and a detection head 20 is provided with inspection lattices 42a, 42b having plus and minus angle offset θof to reference lattices 26, 12, and angle deviation between the lattices is detected based on a light receiving signal acquired by interaction between an inspection lattice and a reference lattice or a reference lattice for inspection disposed at the same angle as the reference lattice. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スケールと検出ヘッドの相対位置を検出するための光電式エンコーダのアライメント角度検査装置に係り、特に、受光素子と検出基板の回転方向アライメント評価や、スケールと検出ヘッドの回転方向アライメント評価に用いるのに好適な、光電式エンコーダのアライメント角度検査装置に関する。   The present invention relates to an alignment angle inspection apparatus for a photoelectric encoder for detecting a relative position between a scale and a detection head, and in particular, an evaluation of a rotational direction alignment between a light receiving element and a detection substrate, and an evaluation of a rotational direction alignment between a scale and a detection head. It is related with the alignment angle test | inspection apparatus of the photoelectric encoder suitable for using for this.

スケール10と検出ヘッド20の相対変位を検出するための光電式エンコーダのうち、図1に示すような3格子の反射型エンコーダ構成では、光源22で発生され、COG(Chip On Glass)基板等の検出基板24上の第1格子26、及び、スケール10上の第2格子(スケール格子とも称する)12の作用を受けた光を受光するための、第3格子29が一体的に形成された受光素子アレイ(PDA)チップ28を検出基板24に実装している。又、図2に示す如く、第1格子26は、検出基板24上のパターンとして形成されている。従って、第1格子26とPDAチップ28の相対位置は、実装の位置精度に応じて、図3に示す如くX、Y、θがずれる。   Among the photoelectric encoders for detecting the relative displacement between the scale 10 and the detection head 20, in the three-grating reflective encoder configuration as shown in FIG. 1, the light source 22 generates a COG (Chip On Glass) substrate or the like. Light reception in which a third grating 29 is integrally formed to receive light that has been subjected to the action of the first grating 26 on the detection substrate 24 and the second grating (also referred to as a scale grating) 12 on the scale 10. An element array (PDA) chip 28 is mounted on the detection substrate 24. In addition, as shown in FIG. 2, the first grating 26 is formed as a pattern on the detection substrate 24. Accordingly, the relative positions of the first grating 26 and the PDA chip 28 are shifted in X, Y, and θ as shown in FIG. 3 according to the mounting position accuracy.

PDAチップ28と第1格子26の相対角度がずれた場合は、図3に示したようにPDAチップ28の端では信号量が低下又は他相の信号が入ることによって、直流成分が増加し、精度が劣化する。スケール目盛ピッチが微細になる程、位置ずれの影響は大きく、例えば明縞と暗縞が共に4μmの4/4μmスケールでは、モアレ方向(θ)に0.2°の回転誤差が生じると、長さ1mm当たり約3.5μmの傾斜が生じ、特性上無視できない位置ずれが発生する。従って、格子の位置合わせは非常に重要である。   When the relative angle between the PDA chip 28 and the first grating 26 is deviated, as shown in FIG. 3, the signal amount decreases or a signal of another phase enters at the end of the PDA chip 28, and the direct current component increases. Accuracy deteriorates. The finer the scale scale pitch, the greater the effect of misalignment. For example, in a 4/4 μm scale where both bright stripes and dark stripes are 4 μm, a long rotation error of 0.2 ° in the moire direction (θ) An inclination of about 3.5 μm per 1 mm occurs, and a positional shift that cannot be ignored in terms of characteristics occurs. Therefore, the alignment of the grid is very important.

一方、光電式エンコーダではないが、特許文献1や2には、くし歯状マークを用いた露光用マスクの位置合わせ技術が記載されている。   On the other hand, although not a photoelectric encoder, Patent Documents 1 and 2 describe an alignment technique for an exposure mask using comb-like marks.

特開平3−262901号公報JP-A-3-262901 特開平4−7814号公報JP-A-4-7814

しかしながら、光電式エンコーダの回転方向アライメント評価に適したものではなかった。   However, it was not suitable for evaluating the rotational alignment of the photoelectric encoder.

なおX、Y方向のずれは、図4に示すパッド部30の重なり度合で評価することもできるが、回転方向を定量的に判断するためには、複数点のずれ量を測定しなければならない。   Note that the deviation in the X and Y directions can be evaluated by the degree of overlap of the pad portions 30 shown in FIG. 4, but in order to quantitatively determine the rotation direction, the deviation amounts at a plurality of points must be measured. .

更に、図4のように、検出基板24とPDAチップ28の間には半田バンプ32があり、数十μm離れているため、高倍率の顕微鏡では両方に同時にピントを合わせることが難しく、逆に低倍率では読み取りの分解能が悪く、調整量を決めるための正確な位置誤差を求めることが難しいという問題点も有していた。   Further, as shown in FIG. 4, since there are solder bumps 32 between the detection substrate 24 and the PDA chip 28 and they are separated by several tens of μm, it is difficult to focus on both at the same time with a high magnification microscope. At low magnifications, the resolution of reading is poor, and it is difficult to obtain an accurate position error for determining the adjustment amount.

本発明は、前記従来の問題点を解消するべくなされたもので、回転方向のアライメントずれを、容易に、且つ、定量的、高精度に評価できるようにすることを課題とする。   The present invention has been made to solve the above-described conventional problems, and it is an object of the present invention to make it possible to easily, quantitatively and accurately evaluate misalignment in the rotational direction.

本発明は、スケールと検出ヘッドの相対変位を検出するための光電式エンコーダにおいて、基準となる格子に対して、プラス及びマイナスの角度オフセットを持った検査用格子を設け、該検査用格子と基準格子又は該基準格子と同じ角度で配設された検査用基準格子の相互作用により得られた受光信号に基づいて、格子間の角度ずれを検出できるようにされていることを特徴とする光電式エンコーダのアライメント角度検査装置により、前記課題を解決したものである。   In the photoelectric encoder for detecting the relative displacement between the scale and the detection head, the present invention provides an inspection grating having positive and negative angular offsets with respect to a reference grating, and the inspection grating and the reference A photoelectric system characterized in that an angular deviation between the gratings can be detected based on a received light signal obtained by the interaction of a grating or an inspection reference grating arranged at the same angle as the reference grating. The problem is solved by an encoder alignment angle inspection device.

又、前記基準格子を、検出基板に形成された第1格子として、該第1格子と受光素子の角度ずれを検出するようにしたものである。   The reference grating is a first grating formed on the detection substrate, and an angular deviation between the first grating and the light receiving element is detected.

又、前記基準格子を、スケール格子として、スケールと検出ヘッドの角度ずれを検出するようにしたものである。   Further, the reference grating is used as a scale grating to detect an angular deviation between the scale and the detection head.

又、前記検査用格子を、受光素子アレイとしたものである。   The inspection grating is a light receiving element array.

本発明は、又、前記のアライメント角度検査装置を備えたことを特徴とする光電式エンコーダを提供するものである。   The present invention also provides a photoelectric encoder comprising the alignment angle inspection apparatus.

又、前記のアライメント角度検査装置の出力により、受光素子チップの検出基板への実装角度が制御されるチップ実装装置を提供するものである。   Further, the present invention provides a chip mounting apparatus in which the mounting angle of the light receiving element chip on the detection substrate is controlled by the output of the alignment angle inspection apparatus.

本発明によれば、検査用格子と基準格子又は該基準格子と同じ角度で配設された検査用基準格子の相互作用により得られた受光信号に基づいて、格子間の角度ずれ量が分かるので、高精度で定量的な測定が容易に可能となる。   According to the present invention, the amount of angular deviation between the gratings can be determined based on the received light signal obtained by the interaction between the inspection grating and the reference grating or the inspection reference grating arranged at the same angle as the reference grating. Highly accurate and quantitative measurement can be easily performed.

従って、従来、顕微鏡下で行なっていたPDAチップと検出基板の位置ずれ検査作業を、電気信号のモニタのみで行なえ、組立精度を向上しつつ、組立工程の所要時間を短縮できる。   Therefore, it is possible to perform the positional deviation inspection work between the PDA chip and the detection substrate, which has been conventionally performed under a microscope, only by monitoring the electric signal, and the time required for the assembly process can be shortened while improving the assembly accuracy.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、本発明をPDAチップ28と検出基板24の回転方向アライメント評価に適用したもので、図5に示す如く、基準となる格子である第1格子(検出基板24上のスリットパターン)16と、PDAチップ28上に第3格子29と一体的に形成された主信号検出用受光素子と、同じくPDAチップ28上に、前記第1格子16に対して角度オフセット±θofを持った2つの格子と受光部からなる検査用PDA42a、42bを持ち、この検査用PDA42a、42bは、第1格子16の両側を延長した検査用第1格子の信号を検出し、第1格子16とPDAチップ28の角度ずれに対応した信号を出力するようにされている。   In the first embodiment of the present invention, the present invention is applied to the rotational direction alignment evaluation of the PDA chip 28 and the detection substrate 24. As shown in FIG. 5, the first lattice (on the detection substrate 24) is a reference lattice. 16), a main signal detecting light-receiving element integrally formed with the third grating 29 on the PDA chip 28, and an angular offset ± θof with respect to the first grating 16 on the PDA chip 28. The inspection PDAs 42a and 42b are composed of two gratings each having a light receiving portion, and the inspection PDAs 42a and 42b detect the signals of the first grating for inspection extended from both sides of the first grating 16, and the first grating 16 16 and a signal corresponding to the angular deviation between the PDA chip 28 are output.

本実施形態は、PDAチップ28内に、第1格子26に対してオフセット角度±θofを持たせた検査用PDA42a、42bを各1個配置し、この検査用PDA42a、42bと重なる位置にも、基準となる第1格子26のパターンを配置したことを特徴とする。他の点については、従来と同じであるので詳細な説明は省略する。   In the present embodiment, one PDA 42a and 42b for inspection each having an offset angle ± θof with respect to the first grating 26 is arranged in the PDA chip 28, and at a position overlapping with the PDAs 42a and 42b for inspection, A feature is that a pattern of the first lattice 26 serving as a reference is arranged. Since the other points are the same as the conventional ones, detailed description thereof is omitted.

これにより、回転ずれが無い場合は、左右の検査用PDA42a、42bの受光面積は同じであるが、回転ずれが生じた場合は、左右の受光面積の差が大きくなる。従って、検出基板24の端子から、この検査用PDA42a、42bの出力を引き出せるようにしておき、所定の光量を当てて左右の検査用PDA42a、42bの出力差をモニタすれば、回転ずれ量が分かる。   Thereby, when there is no rotational deviation, the light receiving areas of the left and right inspection PDAs 42a and 42b are the same, but when a rotational deviation occurs, the difference between the left and right light receiving areas becomes large. Accordingly, if the output of the inspection PDAs 42a and 42b can be drawn from the terminals of the detection substrate 24, and the output difference between the right and left inspection PDAs 42a and 42b is monitored by applying a predetermined amount of light, the amount of rotational deviation can be determined. .

ここで、オフセット角度θofは、受光面積=(信号量)の変化が大きい8°以下、好ましくは5°以下とすることが望ましい。   Here, it is desirable that the offset angle θof be 8 ° or less, preferably 5 ° or less, in which the change of the light receiving area = (signal amount) is large.

図6に示す如く、回転量と格子間の重なりによって形成される光が透過可能な有効受光部面積を概念的に計算した結果を図7(A)に示す。PDオフセット角度を±θof、回転ずれ角度をθ、格子幅を共にW、重なり長さをL(=W/sin(θof+θ))、有効受光部面積をS(=L×W=W/sinθ)とすると、1組の有効受光面積差は次式に示す如くとなる。 As shown in FIG. 6, FIG. 7A shows the result of conceptual calculation of the effective light receiving portion area through which light formed by the rotation amount and the overlap between the gratings can be transmitted. PD offset angle is ± θof, rotation deviation angle is θ, grating width is W, overlap length is L (= W / sin (θof + θ)), and effective light receiving area is S (= L × W = W 2 / sinθ) ), One set of effective light receiving area difference is as shown in the following equation.

S1−S2=W/[1/sin(θof+θ)+1/sin(−θof−θ)] …(1) S1-S2 = W 2 / [ 1 / sin (θof + θ) + 1 / sin (-θof-θ)] ... (1)

光信号量は有効受光部面積に比例するため、図7(B)に示す如く、角度ずれが大きくなると急激に信号量(|S1−S2|)の変化が大きくなる。   Since the optical signal amount is proportional to the effective light receiving area, as shown in FIG. 7B, the change in the signal amount (| S1-S2 |) increases rapidly as the angular deviation increases.

実際の測定は、図8に示す如く、PDAチップ28を検出基板24に実装した後、受光面側から照明光源50及びコリメータレンズ52により平行光を照射した状態で、PDAチップ28の検出基板24側の下面にある検査用PDA42a、42bの出力信号を、出力パッド56及びプローブ58等で評価回路60に取出し計算処理させる。   In actual measurement, as shown in FIG. 8, after the PDA chip 28 is mounted on the detection substrate 24, parallel light is irradiated from the light receiving surface side by the illumination light source 50 and the collimator lens 52. The output signals of the inspection PDAs 42a and 42b on the lower surface on the side are taken out by the evaluation circuit 60 by the output pad 56, the probe 58, etc., and subjected to calculation processing.

具体的には、前記検査用PDA42a、42bの出力を評価回路60のIV(電流/電圧)変換アンプ(IVA)62a、62bを介して入力し、差動アンプ64でその差を演算して、予め取得しておいた図7(B)に示すようなデータに基づいて回転量演算部66で回転量を演算し、その結果を出力する。このようにして、検出基板24内の複数チップをモニタすれば、全体的な傾向が分かり、測定精度も上がる。   Specifically, the outputs of the inspection PDAs 42a and 42b are input via IV (current / voltage) conversion amplifiers (IVA) 62a and 62b of the evaluation circuit 60, and the difference is calculated by the differential amplifier 64. Based on the data as shown in FIG. 7B acquired in advance, the rotation amount calculator 66 calculates the rotation amount and outputs the result. In this way, if a plurality of chips in the detection substrate 24 are monitored, the overall tendency can be understood and the measurement accuracy can be improved.

更に、チップ実装装置72のオフセット制御が電気的に行なわれていれば、実装装置補正値計算部68で補正値を演算し、インターフェイス(I/F)70を介してチップ実装装置72に回転量を転送することで、チップ実装装置72の条件設定にフィードバックしたり、チップ実装装置72に組込むことも可能である。   Further, if the offset control of the chip mounting apparatus 72 is electrically performed, the correction value is calculated by the mounting apparatus correction value calculation unit 68, and the rotation amount is supplied to the chip mounting apparatus 72 via the interface (I / F) 70. Can be fed back to the condition setting of the chip mounting apparatus 72, or incorporated into the chip mounting apparatus 72.

フィードバック手法やサンプリング手法等は、一般的な光学式重ね合わせ検査方法を応用できる。又、PDA、第1格子のどちらにオフセット角θofを持たせても、同様の効果が得られる。   A general optical overlay inspection method can be applied to the feedback method and the sampling method. The same effect can be obtained regardless of whether the PDA or the first grating has the offset angle θof.

次に、図9を参照して、セパレート型光電式エンコーダのモアレチェックに適用した、本発明の第2実施形態を詳細に説明する。   Next, a second embodiment of the present invention applied to a moire check of a separate photoelectric encoder will be described in detail with reference to FIG.

本実施形態は、第1格子26の代わりに、スケール格子12(スケール10)とPDAチップ28(検出ヘッド20)の回転ずれを検出するようにしたもので、原理は第1実施形態とほぼ同様であり、検査用PDA42a、42bからの信号を計算する演算回路と回転量アラームを設ける。   In this embodiment, instead of the first grating 26, a rotational deviation between the scale grating 12 (scale 10) and the PDA chip 28 (detection head 20) is detected, and the principle is substantially the same as that of the first embodiment. An arithmetic circuit for calculating signals from the inspection PDAs 42a and 42b and a rotation amount alarm are provided.

更に、検出基板24がガラス等の透明体で無い場合は、検査用PDA42a、42bへの照明光が通る位置に、図9中に破線で示す如く、窓44a、44bを設ける。   Further, when the detection substrate 24 is not a transparent body such as glass, windows 44a and 44b are provided at positions where illumination light to the inspection PDAs 42a and 42b passes, as indicated by broken lines in FIG.

本実施形態によれば、スケール格子12(スケール10)に対する検出ヘッド20の回転ずれを検出でき、位置調整に利用できる。   According to the present embodiment, the rotational deviation of the detection head 20 with respect to the scale grid 12 (scale 10) can be detected and used for position adjustment.

なお、主信号受光素子内に検査用パターン(42a、42b)を入れるだけでなく、検査用パターン及び受光素子を別のICチップとしてもよい。   Not only the inspection patterns (42a and 42b) are placed in the main signal light receiving element, but the inspection pattern and the light receiving element may be separate IC chips.

更に、受光素子アレイの代わりに、第3格子と別体の受光素子の組合せを用いても良い。   Further, a combination of the third grating and a separate light receiving element may be used instead of the light receiving element array.

前記実施形態においては、本発明が3格子の反射型エンコーダに適用されていたが、本発明の適用対象はこれに限定されず、2格子型や透過型エンコーダにも同様に適用できる。   In the above embodiment, the present invention is applied to a three-grating reflective encoder, but the application target of the present invention is not limited to this, and the present invention can be similarly applied to a two-grating or transmissive encoder.

従来の反射型エンコーダの一般的な構成を示す断面図Sectional drawing which shows the general structure of the conventional reflective encoder 同じく検出基板を示す平面図Similarly, a plan view showing the detection substrate 同じく回転方向アライメントずれの例を示す平面図Similarly, a plan view showing an example of rotational direction misalignment 同じく検出基板上のPDAチップを示す断面図Similarly, a cross-sectional view showing a PDA chip on a detection substrate 本発明の第1実施形態の構成を示す平面図The top view which shows the structure of 1st Embodiment of this invention. 本発明の原理を説明するためのスリットの重なりを示す平面図Plan view showing overlap of slits for explaining the principle of the present invention 同じくオフセット角度と面積及び回転ずれの関係を示す線図Diagram showing the relationship between offset angle, area and rotational deviation 第1実施形態による測定例を示すブロック図Block diagram showing a measurement example according to the first embodiment 本発明の第2実施形態を示す平面図The top view which shows 2nd Embodiment of this invention

符号の説明Explanation of symbols

10…スケール
12…スケール格子(第2格子)
20…検出ヘッド
22…光源
24…検出基板
26…第1格子
28…受光素子アレイ(PDA)チップ
42a、42b…検査用PDA
58…プローブ
60…評価回路
66…回転量演算部
72…チップ実装装置
10 ... Scale 12 ... Scale lattice (second lattice)
DESCRIPTION OF SYMBOLS 20 ... Detection head 22 ... Light source 24 ... Detection board 26 ... 1st grating | lattice 28 ... Light receiving element array (PDA) chip | tip 42a, 42b ... PDA for test | inspection
58 ... Probe 60 ... Evaluation circuit 66 ... Rotation amount calculation unit 72 ... Chip mounting device

Claims (6)

スケールと検出ヘッドの相対変位を検出するための光電式エンコーダにおいて、
基準となる格子に対して、プラス及びマイナスの角度オフセットを持った検査用格子を設け、
該検査用格子と基準格子又は該基準格子と同じ角度で配設された検査用基準格子の相互作用により得られた受光信号に基づいて、格子間の角度ずれを検出できるようにされていることを特徴とする光電式エンコーダのアライメント角度検査装置。
In the photoelectric encoder for detecting the relative displacement between the scale and the detection head,
An inspection grid with positive and negative angular offsets is provided for the reference grid,
The angle deviation between the gratings can be detected on the basis of the light reception signal obtained by the interaction between the inspection grating and the reference grating or the inspection reference grating arranged at the same angle as the reference grating. An alignment angle inspection device for a photoelectric encoder.
前記基準格子が、検出基板に形成された第1格子であり、該第1格子と受光素子の角度ずれを検出するようにされていることを特徴とする請求項1に記載の光電式エンコーダのアライメント角度検査装置。   2. The photoelectric encoder according to claim 1, wherein the reference grating is a first grating formed on a detection substrate, and an angular deviation between the first grating and the light receiving element is detected. Alignment angle inspection device. 前記基準格子が、スケール格子であり、スケールと検出ヘッドの角度ずれを検出するようにされていることを特徴とする請求項1に記載の光電式エンコーダのアライメント角度検査装置。   2. The alignment angle inspection apparatus for a photoelectric encoder according to claim 1, wherein the reference grating is a scale grating and detects an angular deviation between the scale and the detection head. 前記検査用格子が、受光素子アレイであることを特徴とする請求項1乃至3のいずれかに記載の光電式エンコーダのアライメント角度検査装置。   4. The photoelectric encoder alignment angle inspection apparatus according to claim 1, wherein the inspection grid is a light receiving element array. 請求項1乃至4のいずれかに記載のアライメント角度検査装置を備えたことを特徴とする光電式エンコーダ。   A photoelectric encoder comprising the alignment angle inspection device according to claim 1. 請求項2又は4に記載のアライメント角度検査装置の出力により受光素子チップの検出基板への実装角度が制御されることを特徴とするチップ実装装置。   5. A chip mounting apparatus, wherein the mounting angle of the light receiving element chip on the detection substrate is controlled by the output of the alignment angle inspection apparatus according to claim 2 or 4.
JP2006040160A 2006-02-17 2006-02-17 Alignment angle inspection device of photoelectric encoder Pending JP2007218755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040160A JP2007218755A (en) 2006-02-17 2006-02-17 Alignment angle inspection device of photoelectric encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040160A JP2007218755A (en) 2006-02-17 2006-02-17 Alignment angle inspection device of photoelectric encoder

Publications (1)

Publication Number Publication Date
JP2007218755A true JP2007218755A (en) 2007-08-30

Family

ID=38496220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040160A Pending JP2007218755A (en) 2006-02-17 2006-02-17 Alignment angle inspection device of photoelectric encoder

Country Status (1)

Country Link
JP (1) JP2007218755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014704A (en) * 2008-04-30 2010-01-21 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Cal encoder with code wheel misalignment correction and automatic gain control
CN109253697A (en) * 2017-07-13 2019-01-22 台濠科技股份有限公司 The sensing wafer structure of optics ruler reading head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014704A (en) * 2008-04-30 2010-01-21 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Cal encoder with code wheel misalignment correction and automatic gain control
CN109253697A (en) * 2017-07-13 2019-01-22 台濠科技股份有限公司 The sensing wafer structure of optics ruler reading head

Similar Documents

Publication Publication Date Title
US7825368B2 (en) Absolute position length-measurement type encoder
EP1766335B1 (en) Scale and readhead apparatus
US7687765B2 (en) Encoder including a two dimensional photo-detector having two signal processing sections for pixels in a first and a second direction
CN101268337A (en) System for detecting motion of a body
US7667188B2 (en) Position measuring device including a scale having an integrated reference marking
US7601947B2 (en) Encoder that optically detects positional information of a scale
JPH06258102A (en) Measuring device
US6649925B2 (en) Methods of calibrating a position measurement device
CN102853855A (en) Optical encoder including passive readhead
US6333511B1 (en) Methods and apparatus for position determination
JP2002286507A (en) Optical encoder device
JP5111225B2 (en) Measuring apparatus, measuring method, exposure apparatus and device manufacturing method
US7952625B2 (en) Calibration element for calibrating the magnification ratio of a camera, and a calibration method
JP5824342B2 (en) Linear encoder
EP2741057B1 (en) Photoelectric absolute encoder and installation method therefor
JPH02129518A (en) Photoelectric position measuring apparatus
US7145131B2 (en) Absolute encoder
JP2007218755A (en) Alignment angle inspection device of photoelectric encoder
US10168189B1 (en) Contamination and defect resistant optical encoder configuration for providing displacement signal having a plurality of spatial phase detectors arranged in a spatial phase sequence along a direction transverse to the measuring axis
US20200378803A1 (en) Optical encoder
US5038491A (en) Scale for use for measurement of the displacement of an object to be examined, and displacement measuring apparatus
KR101434925B1 (en) Fixed-point detector and displacement-measuring apparatus
US11353583B2 (en) Optical position-measurement device with varying focal length along a transverse direction
JP2007218754A (en) Misalignment inspection device
JP2008064498A (en) Electromagnetic induction encoder