JP2007218160A - Ignition coil for multiple discharge type ignition device - Google Patents

Ignition coil for multiple discharge type ignition device Download PDF

Info

Publication number
JP2007218160A
JP2007218160A JP2006039096A JP2006039096A JP2007218160A JP 2007218160 A JP2007218160 A JP 2007218160A JP 2006039096 A JP2006039096 A JP 2006039096A JP 2006039096 A JP2006039096 A JP 2006039096A JP 2007218160 A JP2007218160 A JP 2007218160A
Authority
JP
Japan
Prior art keywords
magnetic
coil
discharge
ignition
ignition coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039096A
Other languages
Japanese (ja)
Inventor
Yoshio Ishida
良夫 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2006039096A priority Critical patent/JP2007218160A/en
Publication of JP2007218160A publication Critical patent/JP2007218160A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple discharge type ignition device alternately repeating capacitive discharge and inductive discharge and having relatively high degree of freedom even if a structure is simple with one switching element in a control circuit. <P>SOLUTION: The ignition coil 4 having magnetic coupling structure in which magnetic coupling of a primary coil 41 and a secondary coil 42 is set good when spark discharge current is low and is set bad when spark discharge current is high is used for the multiple discharge type ignition device having a structure charging energy charged in an energy accumulation coil when the switching element is on and discharged when the same is off to a charge and discharge capacitor, and a structure having the primary coil of the ignition coil 4 put in a discharge path of the capacitor. Consequently, the ignition device of high degree of freedom in design is provided without being easily influenced by connection and contamination condition of a spark plug. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は主として内燃機関に用いられる多重放電型点火装置の点火コイルに関するものである。   The present invention relates to an ignition coil of a multiple discharge ignition device mainly used for an internal combustion engine.

従来、内燃機関点火装置は近年の排気ガス対策や燃費向上のための高圧縮リーン燃焼に適合するために、高エネルギーの点火装置が求められており、容量性放電と誘導性放電を組み合わせた多重放電型点火装置(例えば、特許第2811781号明細書)が考えられている。
特許第2811781号
Conventionally, an internal combustion engine ignition device has been required to have a high energy ignition device in order to be compatible with recent high-compression lean combustion for exhaust gas countermeasures and fuel efficiency improvement, and a multiple combination of capacitive discharge and inductive discharge is required. A discharge ignition device (for example, Japanese Patent No. 2811778) is considered.
Japanese Patent No. 28117781

しかし、上述などの従来のものは、点火コイルへ電力供給するための制御回路の考案が主体であり、点火栓へ出力供給する点火コイルの最適構造を追求したものが無く、従来構造の点火コイルを用いて高い出力性能を得ることを目的としたもので有って、その回路も大容量のスイッチング素子を2個必要とし、その制御回路は極めて部品点数が多く複雑となると同時に、高価となるという問題がある。従って、本発明では多重放電点火装置に最適な点火コイル構造を検討することによって、スイッチング素子が一個の制御回路の簡単な構成で有っても、容量性放電と誘導性放電を交互に繰り返す比較的自由度の高い多重放電型点火装置を得ることを目的とする。   However, the conventional ones such as those described above are mainly devised for a control circuit for supplying power to the ignition coil, and there is no one pursuing the optimum structure of the ignition coil for supplying power to the ignition plug. The circuit also requires two large-capacity switching elements, and its control circuit is very complicated and expensive. There is a problem. Therefore, by examining the optimum ignition coil structure for the multiple discharge ignition device in the present invention, a comparison in which capacitive discharge and inductive discharge are alternately repeated even if the switching element has a simple configuration of one control circuit. An object of the present invention is to obtain a multiple discharge ignition device having a high degree of freedom.

上述の課題を解決するために、本発明では次のような構成とする。請求項1においては、
スイッチング素子のオン時に直流電源からの電流によってエネルギー蓄積コイルに蓄積され、オフ時に放電されるエネルギーを充放電キャパシタに充電する構成と、少なくとも上記キャパシタの放電経路に点火コイルの一次線輪を介する構成とした多重放電型点火装置において、上記点火コイルの一次線輪と二次線輪の磁気結合を点火栓での火花放電する以前や火花放電電流が小さい時には良好に設定され、火花放電電流が大きい時には悪化する磁気結合構造としたことを特徴とする多重放電型点火装置の点火コイルとすることによって、点火栓の接続や汚染状態に左右され難く出力電圧と放電持続時間の長い出力エネルギーの大きな点火装置が得られるものである。
In order to solve the above-described problems, the present invention has the following configuration. In claim 1,
A configuration in which energy stored in the energy storage coil by the current from the DC power source when the switching element is turned on and discharged in the off state is charged in the charge / discharge capacitor, and a configuration in which at least the primary coil of the ignition coil is connected to the discharge path of the capacitor In the multiple discharge type ignition device, the magnetic coupling between the primary coil and the secondary coil of the ignition coil is set well before spark discharge at the spark plug or when the spark discharge current is small, and the spark discharge current is large. Ignition of a large output energy with a long output voltage and long discharge duration, which is less affected by the connection of the spark plug and the contamination state, by using an ignition coil of a multiple discharge ignition device characterized by a magnetic coupling structure that sometimes deteriorates A device is obtained.

この発明の請求項2に係る多重放電型点火装置では、前記点火コイルの磁気回路の磁束の流れ方向に対して、一次線輪と二次線輪をセパレート構造に配置した多重放電型点火装置の点火コイルとする。   In the multiple discharge ignition device according to claim 2 of the present invention, the multiple discharge ignition device in which the primary wire and the secondary wire are arranged in a separate structure with respect to the flow direction of the magnetic flux of the magnetic circuit of the ignition coil. Ignition coil.

この発明の請求項3に係る多重放電型点火装置では、前記点火コイルの磁気回路を外鉄型または内鉄型閉磁路の磁性体で構成し、上記一次線輪と二次線輪の接する近傍から二次線輪の中間近傍までの間に、少なくとも1個の磁路間隙を設けた多重放電型点火装置の点火コイルとする。   In the multiple discharge ignition device according to claim 3 of the present invention, the magnetic circuit of the ignition coil is formed of a magnetic body of an outer iron type or an inner iron type closed magnetic circuit, and the vicinity where the primary wire ring and the secondary wire ring are in contact with each other. To an ignition coil of a multiple discharge ignition device in which at least one magnetic path gap is provided in the middle of the secondary wire ring.

同様にこの発明の請求項4に係る多重放電型点火装置では、前記磁路間隙の少なくとも一個に、前記キャパシタの一次線輪への放電電流によって発生する磁束の極性とは逆方向の極性に、磁石を設けた多重放電型点火装置の点火コイルとすることによって、点火コイルを小型化ができる。   Similarly, in the multiple discharge ignition device according to claim 4 of the present invention, at least one of the magnetic path gaps has a polarity opposite to the polarity of the magnetic flux generated by the discharge current to the primary ring of the capacitor, By using the ignition coil of the multiple discharge ignition device provided with a magnet, the ignition coil can be reduced in size.

この発明の請求項5に係る多重放電型点火装置では、前記点火コイルの磁気回路を外鉄型または内鉄型閉磁路の磁性体で構成し、上記一次線輪と二次線輪の間に、上記磁気回路のバイパス磁気回路を設けた多重放電型点火装置の点火コイルとすることによって、自由度の高い設計でこの発明の目的を達成できる。   In the multiple discharge ignition device according to claim 5 of the present invention, the magnetic circuit of the ignition coil is formed of a magnetic material of an outer iron type or an inner iron type closed magnetic circuit, and is interposed between the primary wire ring and the secondary wire ring. By using the ignition coil of the multiple discharge ignition device provided with the bypass magnetic circuit of the magnetic circuit, the object of the present invention can be achieved with a highly flexible design.

同様にこの発明の請求項6に係る多重放電型点火装置では、前記磁気回路のバイパス磁気回路には少なくとも一個の間隙を設けて磁気抵抗を大きく設定した多重放電型点火装置の点火コイルとすることによって、さらに自由度の高い設計でこの発明の目的を達成できる。   Similarly, in the multiple discharge ignition device according to claim 6 of the present invention, an ignition coil of the multiple discharge ignition device in which at least one gap is provided in the bypass magnetic circuit of the magnetic circuit and the magnetic resistance is set large. Thus, the object of the present invention can be achieved with a design having a higher degree of freedom.

この発明の請求項7に係る多重放電型点火装置では、前記点火コイルの磁気回路を棒状磁性体からなる開磁路を構成し、上記一次線輪と二次線輪の各々の外周に別個のスリットの入った補助磁性体を設置した多重放電型点火装置の点火コイルとする。   In the multiple discharge ignition device according to claim 7 of the present invention, the magnetic circuit of the ignition coil is configured as an open magnetic path made of a rod-like magnetic body, and is separately provided on the outer circumference of each of the primary wire ring and the secondary wire ring. An ignition coil of a multi-discharge type ignition device provided with an auxiliary magnetic body having a slit.

同様にこの発明の請求項8に係る多重放電型点火装置では、前記点火コイルの磁気回路を棒状磁性体からなる開磁路を構成し、上記一次線輪の両端部にリング状の磁性体板を設置した多重放電型点火装置の点火コイルとする。   Similarly, in the multiple discharge ignition device according to claim 8 of the present invention, the magnetic circuit of the ignition coil is configured as an open magnetic path made of a rod-shaped magnetic body, and ring-shaped magnetic plates are formed at both ends of the primary wire ring. Is an ignition coil of a multiple discharge ignition device.

同様にこの発明の請求項9に係る多重放電型点火装置では、前記棒状磁性体に巻回した一次線輪と二次線輪の全体を、外周にスリットの入った補助磁性体を設置した多重放電型点火装置の点火コイルとすることによって、点火コイルを小型化ができる。   Similarly, in the multiple discharge ignition device according to claim 9 of the present invention, the entire primary wire and the secondary wire wound around the rod-shaped magnetic body are arranged in a multiple with an auxiliary magnetic body having a slit on the outer periphery. By using the ignition coil of the discharge ignition device, the ignition coil can be reduced in size.

この発明によれば、近年の燃費と排気ガス対策で要求されている高圧縮リーン混合気での燃料直噴内燃機関などに対応するために、高出力エネルギーの点火装置が望まれているが、比較的高周波数で交互に連続して印加される質の異なるエネルギーに対応できる点火コイルを用いることで、容量性放電と誘導性放電を任意に交互に繰り返す高出力電圧を保ちながら高出力エネルギーで、設計の自由度の高い多重放電型点火装置が、安価に得られるものである。   According to the present invention, an ignition device with high output energy is desired in order to cope with a fuel direct injection internal combustion engine or the like with a highly compressed lean air-fuel mixture, which has been required in recent years for fuel efficiency and exhaust gas countermeasures. By using an ignition coil that can respond to energy of different qualities applied alternately and continuously at a relatively high frequency, high output energy can be maintained while maintaining a high output voltage that repeats capacitive discharge and inductive discharge alternately. A multiple discharge ignition device with a high degree of design freedom can be obtained at low cost.

図1はこの発明の第一の実施例であり、図2は当該実施例を作動させるための代表的な回路図、図3は当該回路図の作動を説明するための各部波形図、さらに図4はこの発明の基本的特性を示すものである。   1 is a first embodiment of the present invention, FIG. 2 is a typical circuit diagram for operating the embodiment, FIG. 3 is a waveform diagram for explaining the operation of the circuit diagram, and FIG. 4 shows the basic characteristics of the present invention.

図1は点火コイル4の構造を示す図であり、E型磁性体12と13を突き合わせて、その中心コア部14の合わせ部に間隙15を構成し、上記中心コア部14には各々のボビンに巻回された一次線輪41と二次線輪42がセパレート構造に設置され、外鉄型閉磁路点火コイルを構成している。また、上記一次線輪41と二次線輪42の間には、上記E型磁性体で構成する磁気回路をバイパス磁気回路を構成する磁性体16が、適当な間隙を保持する絶縁材17と一体に挿入されている。なお、当該図1は、中心線より下部は一次線輪41と二次線輪42を破断して示している。   FIG. 1 is a view showing the structure of the ignition coil 4. The E-type magnetic bodies 12 and 13 are abutted to each other, and a gap 15 is formed at the mating portion of the central core portion 14. A primary wire ring 41 and a secondary wire ring 42 wound around are installed in a separate structure, and constitute an outer iron type closed magnetic circuit ignition coil. Further, between the primary wire ring 41 and the secondary wire ring 42, the magnetic body 16 constituting the bypass magnetic circuit is connected to the insulating material 17 holding an appropriate gap between the magnetic circuit made of the E-type magnetic body. It is inserted integrally. Note that FIG. 1 shows the primary wire ring 41 and the secondary wire ring 42 broken below the center line.

上記構造の点火コイル4は、点火栓の接続や汚染状態に左右され難く出力電圧と放電持続時間の長い出力エネルギーの大きな火花放電を得る多重放電型点火装置に用いることにより、極めて設計の自由度の高いものとなる。図2にその代表的な多重放電型点火装置での実施例を示す。   The ignition coil 4 having the above-described structure is extremely free of design freedom by being used in a multiple discharge ignition device that obtains a spark discharge having a large output energy with a long output voltage and a long discharge duration, which is hardly affected by the connection of the spark plug and the contamination state. Will be expensive. FIG. 2 shows an embodiment of a typical multiple discharge ignition device.

図2において、端子1は図示しない直流電源に接続されており、当該端子1はエネルギー蓄積コイル2と逆流防止手段3と点火コイル4の一時線輪41およびスイッチング素子5の直列回路を介して接地されている。上記点火コイル4の一時線輪41と上記スイッチング素子5の直列回路はキャパシタ6とダイオード11の各々によって分路され、さらに上記スイッチング素子5は転流用のダイオード7によって分路されている。上記点火コイル4の二次線輪42の出力には点火栓8が接続され、また、スイッチング素子5の制御端子は駆動回路9に接続され、さらに上記駆動回路9の入力端子はECU10の出力端子に接続されている。上記スイッチング素子5、キャパシタ6、点火コイル4、ダイオード7と11,点火栓8および駆動回路9からなる構成は、一気筒当たりの点火ユニット100であり、他の気筒の点火ユニット101と102および103のそれぞれと並列に接続されていて、それらの入力端子は上記ECU10の出力端子に接続され、当該実施例は4気筒用内燃機関の点火装置を構成している。なお、ダイオード7はアバランシェダイオードまたは定電圧ダイオードを用いたスイッチング素子5の保護素子である。   2, the terminal 1 is connected to a DC power source (not shown), and the terminal 1 is grounded through a series circuit of an energy storage coil 2, a backflow prevention means 3, a temporary wire ring 41 of an ignition coil 4, and a switching element 5. Has been. A series circuit of the temporary wire ring 41 of the ignition coil 4 and the switching element 5 is shunted by a capacitor 6 and a diode 11, and the switching element 5 is shunted by a commutation diode 7. The spark plug 8 is connected to the output of the secondary wire ring 42 of the ignition coil 4, the control terminal of the switching element 5 is connected to the drive circuit 9, and the input terminal of the drive circuit 9 is the output terminal of the ECU 10. It is connected to the. The switching element 5, the capacitor 6, the ignition coil 4, the diodes 7 and 11, the spark plug 8, and the drive circuit 9 are the ignition units 100 per cylinder, and the ignition units 101, 102, and 103 of the other cylinders. These input terminals are connected to the output terminal of the ECU 10, and this embodiment constitutes an ignition device for a four-cylinder internal combustion engine. The diode 7 is a protection element for the switching element 5 using an avalanche diode or a constant voltage diode.

例えば42Vの電源が投入されると、エネルギー蓄積コイル2と逆流防止手段3およびキャパシタ6に電流が流れ、キャパシタ6には直流電源電圧までの電荷が蓄積される。次に、駆動回路9がECU10から時間t0で点火信号を受けるとスイッチング素子5がオンとなって上記キャパシタ6の充電電荷が一次線輪41に放電すると同時に、エネルギー蓄積コイル2と点火コイル4に電流が流れることにより磁気エネルギーの蓄積が開始される。   For example, when a power supply of 42 V is turned on, a current flows through the energy storage coil 2, the backflow prevention means 3 and the capacitor 6, and charges up to the DC power supply voltage are stored in the capacitor 6. Next, when the drive circuit 9 receives an ignition signal from the ECU 10 at time t 0, the switching element 5 is turned on, and the charge of the capacitor 6 is discharged to the primary ring 41, and at the same time, the energy storage coil 2 and the ignition coil 4 are discharged. Accumulation of magnetic energy is started by the flow of current.

上記キャパシタ6の一次線輪41への放電により、二次線輪42に4.6kV程度の電圧を誘起するが、点火栓8に放電するには至らず上記放電電荷は一次線輪41とダイオード6を介して放電する。当該放電時間はキャパシタ6のキャパシタンスと一次線輪41のインダクタンスによってほぼ決定されるが、当該実施例の場合の放電時間は0.3mSで設定されており、時間t0から上記略放電終了設定前の0.22mS後の時間t1でスイッチング素子5がオフとなって、点火コイル4に蓄積された磁気エネルギーの放出により、二次線輪42に30kV程度の電圧を誘起して点火栓8に火花放電を開始する。一方、エネルギー蓄積コイル2の磁気エネルギーの誘起電圧300V程度により、上記キャパシタ6を充電する。   The discharge of the capacitor 6 to the primary wire ring 41 induces a voltage of about 4.6 kV in the secondary wire ring 42, but the discharge charge does not reach the spark plug 8, and the discharge charge is generated from the primary wire ring 41 and the diode. 6 is discharged. Although the discharge time is substantially determined by the capacitance of the capacitor 6 and the inductance of the primary wire ring 41, the discharge time in the present embodiment is set at 0.3 mS, and from time t0 to the time before the above-mentioned approximately discharge end setting. At time t1 after 0.22 mS, the switching element 5 is turned off, and the magnetic energy stored in the ignition coil 4 is released, so that a voltage of about 30 kV is induced in the secondary wire ring 42 and a spark discharge is generated in the spark plug 8. To start. On the other hand, the capacitor 6 is charged with an induced voltage of about 300 V of magnetic energy of the energy storage coil 2.

当該機関クランキングの最初の0.22mS程度の放電遅れは、クランキング回転数の遅延角にして0.18度程度であるために問題にはならない。   The discharge delay of about 0.22 mS at the beginning of the engine cranking is not a problem because the delay angle of the cranking rotational speed is about 0.18 degrees.

次に、上記火花放電終了する前の時間例えば0.12mSの後に、時間t2に改めてスイッチング素子5がオンとなることにより、キャパシタ6の上記300Vの高電圧電荷が一次線輪41に印加されて、二次線輪42には前記放電電圧とは逆方向の33kVの高電圧を誘起して、点火栓8に反転電流が流れると同時に、再度エネルギー蓄積コイル2に磁気エネルギーの蓄積が始まり、続いて点火コイル4にも磁気エネルギーが蓄積される。   Next, after the time before the end of the spark discharge, for example, 0.12 mS, the switching element 5 is turned on again at time t2, so that the high voltage charge of 300 V of the capacitor 6 is applied to the primary wire ring 41. In the secondary ring 42, a high voltage of 33 kV opposite to the discharge voltage is induced, and an inversion current flows through the spark plug 8, and at the same time, magnetic energy starts to be stored in the energy storage coil 2 again. Thus, magnetic energy is also accumulated in the ignition coil 4.

次に、上記スイッチング素子5は、0.2mS後の時間t3に再度オフとなることにより、点火コイル4に磁気エネルギーを二次線輪42に誘起して点火栓8の火花放電電流が再度反転して持続する。一方、エネルギー蓄積コイル2の磁気エネルギーの誘起電圧により、上記キャパシタ6を再充電する。   Next, the switching element 5 is turned off again at time t3 after 0.2 mS, so that magnetic energy is induced in the ignition coil 4 in the secondary wire ring 42 and the spark discharge current of the spark plug 8 is reversed again. And last. On the other hand, the capacitor 6 is recharged by the induced voltage of the magnetic energy of the energy storage coil 2.

以下、スイッチング素子5は、0.2mS間オン、0.12mS間オフの周期で繰り返すことにより、点火栓8ではエネルギー蓄積コイル2の充電によるキャパシタ6の放電での容量性放電と、点火コイル4の磁気エネルギー直接放出での誘導性放電を交互に繰り返し、例えば4回繰り返しの後、ECU10からの放電時間終了予告時間tnが指示された直後の時間tmまでの最後のスイッチング素子5のオン時間は、次期点火タイミングの最初の点火コイル4の二次線輪42に誘起される出力エネルギーを大きくするために、上述のオン時間より長い0.4mS程度に設定されており、キャパシタ6のキャパシタンスと一次線輪41のインダクタンスからなる容量性放電が持続した後、スイッチング素子5がオフとなると、点火コイル4に蓄積された磁気エネルギーは、それまでのものより数段大きいために点火栓8の誘導性放電電流は高出力のものとなる。また同時に、エネルギー蓄積コイル2の磁気エネルギー電圧は400V程度と大きく、キャパシタ6に充電される電荷を十分に蓄えて、次の点火タイミングまで待機する。   Thereafter, the switching element 5 is repeatedly turned on for 0.2 mS and turned off for 0.12 mS, so that in the spark plug 8, the capacitive discharge due to the discharge of the capacitor 6 due to the charging of the energy storage coil 2 and the ignition coil 4. The inductive discharge in the direct release of the magnetic energy is alternately repeated, for example, after four repetitions, the on-time of the last switching element 5 until the time tm immediately after the discharge time end notice time tn is instructed from the ECU 10 is In order to increase the output energy induced in the secondary wire ring 42 of the first ignition coil 4 at the next ignition timing, the output energy is set to about 0.4 mS, which is longer than the above-mentioned on time, and the capacitance of the capacitor 6 and the primary After the capacitive discharge consisting of the inductance of the wire ring 41 continues, when the switching element 5 is turned off, the ignition coil 4 Product is magnetic energy, inductive discharge current of the spark plug 8 to several orders greater than that of until it becomes a high output. At the same time, the magnetic energy voltage of the energy storage coil 2 is as large as about 400 V, and the charge stored in the capacitor 6 is sufficiently stored and waits until the next ignition timing.

再度点火タイミングが来ると、時間t0でスイッチング素子5がオンとなり、キャパシタ6に前述した十分な充電電荷が一次線輪41に印加されることにより、二次線輪42に誘起された40kVを越える電圧によって点火栓8に火花放電を開始すると同時に、エネルギー蓄積コイル2と点火コイル4への磁気エネルギーの蓄積が始まる。続いて0.22mS後の時間t1にスイッチング素子5がオフとなると、上記エネルギー蓄積コイル2の磁気エネルギーがキャパシタ6の充電電流となると同時に、点火コイル4の磁気エネルギーは二次線輪42に誘起される電圧により、点火栓8には反転放電電流が流れ、当該放電が終了する前の0.12mS後の時間t2に再度スイッチング素子5をオンとして、キャパシタ6の放電による容量性放電が点火栓8に再反転放電として行われ、以下、前段落に説明した様にスイッチング素子5のオン・オフを数回繰り返し、ECU10の制御信号に基づく駆動回路9からの出力が継続する間、繰り返し多重放電が行われる。   When the ignition timing comes again, the switching element 5 is turned on at time t0, and the above-described sufficient charging charge is applied to the primary wire 41 to the capacitor 6 to exceed 40 kV induced in the secondary wire 42. At the same time as spark discharge is started in the spark plug 8 by the voltage, storage of magnetic energy in the energy storage coil 2 and the ignition coil 4 starts. Subsequently, when the switching element 5 is turned off at time t1 after 0.22 mS, the magnetic energy of the energy storage coil 2 becomes the charging current of the capacitor 6 and the magnetic energy of the ignition coil 4 is induced in the secondary wire ring 42. Due to the applied voltage, a reverse discharge current flows through the spark plug 8, and the switching element 5 is turned on again at time t 2 after 0.12 mS before the discharge is completed. 8 is performed as re-inversion discharge, and thereafter, as described in the previous paragraph, ON / OFF of the switching element 5 is repeated several times, and while the output from the drive circuit 9 based on the control signal of the ECU 10 continues, the multiple discharge is repeated. Is done.

上述の作動は図3に示され、Sは機関の回転数や負荷条件および電源電圧により適宜制御判断により、ECU10が決定する点火ユニットの基本動作範囲、Vsは上記ECU10の制御に基づいて発振動作する駆動回路9の出力信号、Vcはキャパシタ6の略両端電圧、i2は点火栓8の放電電流である。   The above-described operation is shown in FIG. 3, where S is the basic operation range of the ignition unit determined by the ECU 10 by appropriate control judgment based on the engine speed, load condition, and power supply voltage, and Vs is the oscillation operation based on the control of the ECU 10. The output signal of the drive circuit 9 to be operated, Vc is the voltage across the capacitor 6, and i 2 is the discharge current of the spark plug 8.

図3に示されるように、高圧縮時に置かれた時の点火栓8の初期放電電圧は25kV程度高い電圧を要求されるが、一度放電が行われると点火栓8の近傍のイオン化により20kV程度の低い電圧でも放電を継続することができるために、点火栓8の寿命を考慮してスイッチング素子5のスイッチング周期を上げて出力電圧を低下させている。   As shown in FIG. 3, the initial discharge voltage of the spark plug 8 when placed at the time of high compression is required to be about 25 kV high, but once the discharge is performed, about 20 kV due to ionization in the vicinity of the spark plug 8. Since discharge can be continued even at a low voltage, the switching period of the switching element 5 is increased to reduce the output voltage in consideration of the life of the spark plug 8.

図3の破線後の右半分に示される作動図は、機関が安定負荷条件を保っている時の代表的なものを示し、スイッチング素子5のオン・オフ回数3回に設定されているものである。   The operation diagram shown in the right half after the broken line in FIG. 3 shows a typical operation when the engine maintains a stable load condition, and the switching element 5 is set to be turned on and off three times. is there.

また、機関回転数が高くなると、これに反比例して放電持続時間Sを短く設定する必要があり、上記スイッチング素子5のオン・オフ周期を短くすることも行われるが、負荷条件によっては、まれに高い放電電圧が要求されることもあり、上述の様にスイッチング素子5のスイッチング回数を減少させることが好まく、当該実施例の場合の最小スイッチング回数は2回である。   Further, when the engine speed increases, it is necessary to set the discharge duration S to be inversely proportional to this, and the ON / OFF cycle of the switching element 5 is also shortened. However, depending on the load condition, it is rare. Therefore, it is preferable to reduce the switching frequency of the switching element 5 as described above, and the minimum switching frequency in this embodiment is two times.

さらに、当該発明の出力電圧の高低制御は、主としてエネルギー蓄積コイル2へのエネルギー蓄積通電時間、言い換えればスイッチング素子5のオン時間で決まり、特に、前述した点火スイッチ投入時の機関クランキング時の一発目以外は、時間tn後のオン時間がエネルギー蓄積コイル2の蓄積エネルギーを決め、キャパシタ6の充電電荷量を左右することになるために、ことのほか重要である。特に、当該オン時間は、機関クランキング時とそれに続くアイドル回転時などの電源電圧が低い時に、長く設定される。   Further, the level control of the output voltage of the present invention is mainly determined by the energy storage energization time to the energy storage coil 2, in other words, the on-time of the switching element 5, and in particular, at the time of engine cranking when the ignition switch is turned on. Other than the occurrence, the ON time after the time tn determines the stored energy of the energy storage coil 2 and determines the charge amount of the capacitor 6. In particular, the on-time is set longer when the power supply voltage is low, such as during engine cranking and subsequent idle rotation.

上記スイッチング素子5のスイッチングのオンやオフ時間制御回路のシンプルな構成は、全てをECU10の制御に任せることであるが、当該構成の比較的安易な実現の方法は、当該実施例のように駆動回路9内にECU10の点火指令時間S後に、スイッチング素子5をそれまでの通常時のオン時間に対して長い時間、少なくとも一回固定した時間オンにする回路構成を有することにより実現できる。   The simple configuration of the switching on / off time control circuit of the switching element 5 is to leave everything to the control of the ECU 10, but a relatively easy implementation method of the configuration is driven as in the embodiment. This can be realized by having a circuit configuration in which the switching element 5 is turned on at least once for a fixed time after the ignition command time S of the ECU 10 in the circuit 9 for a longer time than the normal on time.

上記エネルギー蓄積コイル2は最大通電時間設定に対して、通常は磁気飽和しないように設計されている。   The energy storage coil 2 is normally designed not to be magnetically saturated with respect to the maximum energization time setting.

以上は、主として回路動作について説明をしたが、上記エネルギー蓄積コイル2に蓄積されたエネルギーをスイッチング素子5のオンとオフ時に、点火栓8に放電電流が途切れることなく有効に放出するには、点火コイル4の特性が極めて重要である。   The above mainly described the circuit operation. In order to effectively discharge the energy stored in the energy storage coil 2 to the spark plug 8 without interruption when the switching element 5 is turned on and off, The characteristics of the coil 4 are extremely important.

すなわち、点火コイル4の二次線輪42は一般的に0.05程度のマグネットワイヤを1万回前後巻回することによる浮遊容量と点火栓8または点火栓8への接続導線などの浮遊容量の合成負荷が、内燃機関への実装状態により影響されるが、点火コイル4の出力電圧が、当該負荷状態によって影響されにくいもので無くてはならない。   That is, the secondary wire ring 42 of the ignition coil 4 generally has a floating capacity obtained by winding a magnet wire of about 0.05 times around 10,000 times and a floating capacity such as the ignition plug 8 or a connecting wire to the ignition plug 8. However, the output voltage of the ignition coil 4 must be difficult to be affected by the load state.

また、点火栓8への火花放電を開始するためには、上述の25kV程度の電圧を必要とし、火花放電開始後は、1kV前後の放電電圧を保ちながら30mA以上の放電電流を所定時間維持することが要求される。すなわち、上述の短時間に繰り返される比較的高い周波数でもスイッチング素子5のオンとオフの各々の時間内に、二次線輪42の負荷変動に追随したエネルギー供給形態が要求される。   Further, in order to start the spark discharge to the spark plug 8, the above-mentioned voltage of about 25 kV is required, and after starting the spark discharge, a discharge current of 30 mA or more is maintained for a predetermined time while maintaining a discharge voltage of around 1 kV. Is required. That is, an energy supply form that follows the load fluctuation of the secondary wire ring 42 is required within each time when the switching element 5 is turned on and off even at a relatively high frequency that is repeated in a short time.

図1に示した構造の点火コイル4は、当該要求を満たすように設計された構造のもので、前述したように一次線輪41と二次線輪42をセパレート構造に配置して、さらには点火コイル4の磁気回路に、間隙やバイパス磁気回路をいることで、一次と二次線輪のそれぞれの巻軸に誘起される磁束の変動の影響を少なくできる構造としている。   The ignition coil 4 having the structure shown in FIG. 1 has a structure designed so as to satisfy the requirements. As described above, the primary wire ring 41 and the secondary wire ring 42 are arranged in a separate structure, and further, By providing a gap and a bypass magnetic circuit in the magnetic circuit of the ignition coil 4, the influence of magnetic flux fluctuations induced on the respective winding axes of the primary and secondary wire rings can be reduced.

すなわち、スイッチング素子5が時間t0にオンとなると、キャパシタ6の400Vの充電電荷が一次線輪41へ放電され、当該放電電流によって発生する点火コイル4の磁気回路の磁束φ1が中心コア部に示した矢印方向に発生し、二次線輪42には当該磁束より90°位相が遅れた出力電圧が誘起され、上記二次線輪42と点火栓8の浮遊容量に流れる漏れ電流は上記出力電圧よりも90°進み電流となっているために、上記磁束は間隙15による磁気抵抗があるものの上記漏れ電流による磁束の方向も略同相であり、比較的損失の少ない所定の電圧を発生する。   That is, when the switching element 5 is turned on at time t0, the charged charge of 400 V of the capacitor 6 is discharged to the primary wire ring 41, and the magnetic flux φ1 of the magnetic circuit of the ignition coil 4 generated by the discharge current is shown in the central core portion. Is generated in the direction of the arrow, and an output voltage 90 ° behind the magnetic flux is induced in the secondary wire ring 42, and the leakage current flowing in the floating capacity of the secondary wire ring 42 and the spark plug 8 is the output voltage. Therefore, although the magnetic flux has a magnetic resistance due to the gap 15, the direction of the magnetic flux due to the leakage current is substantially in phase and generates a predetermined voltage with relatively little loss.

次に、点火栓8への印加電圧が25kV程度の電圧に達すると、点火栓8に火花放電電流が流れ、上記二次線輪42には一次線輪41への通電電流による矢印方向の磁束φ1とは、逆方向の磁束φ2が流れることになり、上記矢印方向の磁束φ1を打ち消す方向の磁束φ2となるが、磁路間隙15の介在による磁気抵抗の効果、さらには、点火栓8の無放電時の磁束φ1の量が少ないときは磁気抵抗が大きいために殆ど磁束の流れがない磁性体16と絶縁材17で構成するバイパス磁気回路に、磁束φ1と磁束φ2が共に大きくなると、相反する方向から互いに合流して流れる経路が形成されることにより、上記一次線輪41の電流は点火栓8の放電電流が限界を越えて大きくなると減少し、放電電流が小さくなると増加することで、点火栓8の火花放電電流を最適なレベルで継続することができる。   Next, when the voltage applied to the spark plug 8 reaches a voltage of about 25 kV, a spark discharge current flows through the spark plug 8, and the secondary wire ring 42 has a magnetic flux in the direction of the arrow due to the current applied to the primary wire ring 41. The magnetic flux φ2 in the opposite direction flows through φ1 and becomes the magnetic flux φ2 in the direction of canceling out the magnetic flux φ1 in the direction of the arrow. However, the effect of magnetoresistance due to the interposition of the magnetic path gap 15 is further improved. When the amount of the magnetic flux φ1 at the time of no discharge is small, since the magnetic resistance is large, if both the magnetic flux φ1 and the magnetic flux φ2 are increased in the bypass magnetic circuit composed of the magnetic body 16 and the insulating material 17 having almost no magnetic flux, By forming a flow path that merges and flows from each other, the current of the primary wire ring 41 decreases when the discharge current of the spark plug 8 increases beyond the limit, and increases when the discharge current decreases. Of the spark plug 8 It is possible to continue the flowers discharge current at the optimal level.

上記点火コイル4の二次線輪42に発生する出力電圧V2と電流i2は、図4に示される挙動特性を示す。   The output voltage V2 and current i2 generated in the secondary wire ring 42 of the ignition coil 4 exhibit the behavioral characteristics shown in FIG.

次に、上記スイッチング素子5が時間t1でオンからオフに移行すると一次線輪41への通電電流により発生し蓄積され、磁路間隙15などによって最適値に維持されていた磁束φ1が急激に減衰することによって、二次線輪42にそれまでとは逆方向の極性に磁気エネルギーが放電され、図3に示されるように点火栓8の電流が反転する。   Next, when the switching element 5 shifts from on to off at time t1, the magnetic flux φ1 generated and accumulated by the energizing current to the primary wire ring 41 and maintained at the optimum value by the magnetic path gap 15 or the like is rapidly attenuated. By doing so, the magnetic energy is discharged to the secondary wire ring 42 in the opposite direction to the polarity so far, and the current of the spark plug 8 is reversed as shown in FIG.

以下、スイッチング素子5が時間t2で再度オンになると、点火コイル4の磁気回路の中の磁束の変化は、上述の挙動を繰り返す。   Hereinafter, when the switching element 5 is turned on again at time t2, the change of the magnetic flux in the magnetic circuit of the ignition coil 4 repeats the above behavior.

なお、上記実施例で説明した点火コイル4において、E型磁性体を突き合わせた中心コア部14に構成された間隙15の位置は、上記一次線輪41と二次線輪42の接する近傍から二次線輪42の中間近傍までの間隔δに設置することが好ましく、上記間隙は中心コア部14に限定されず側面コア部との両方またはどちらか一方にのみに付けられても同様の特性を得ることが出来る。また上記一次線輪41と二次線輪42の巻幅に対する当該間隙15の位置の選定によっては、上記バイパス磁気回路は不要である。   In the ignition coil 4 described in the above embodiment, the position of the gap 15 formed in the central core portion 14 with which the E-type magnetic body is abutted is two from the vicinity where the primary wire ring 41 and the secondary wire ring 42 are in contact with each other. It is preferable that the gap be set at a distance δ up to the middle of the next ring 42, and the gap is not limited to the central core portion 14, and the same characteristics can be obtained even if it is attached to both or only one of the side core portions. Can be obtained. Further, depending on the selection of the position of the gap 15 with respect to the winding width of the primary wire ring 41 and the secondary wire ring 42, the bypass magnetic circuit is unnecessary.

バイパス磁気回路は、より設計の自由度を得るためのもので有って、磁性体16の断面積と絶縁体17の厚さは相反する関係に選定され、磁性体16の断面積が極端に少ないときには絶縁体17を無くすることも出来るし、断面積を大きく選定する時に磁性体16は主磁気回路を形成するE型磁性体と一体にすることも可能である。   The bypass magnetic circuit is for obtaining a greater degree of design freedom, and the cross-sectional area of the magnetic body 16 and the thickness of the insulator 17 are selected to be in an opposite relationship, and the cross-sectional area of the magnetic body 16 is extremely large. When the number is small, the insulator 17 can be eliminated, and when the cross-sectional area is selected to be large, the magnetic body 16 can be integrated with the E-type magnetic body forming the main magnetic circuit.

図5は、この発明の第二の実施例を示す図であり、図1の実施例との相違はE型磁性体の突き合わせ構造の外鉄型閉磁路構造に対して、コ型磁性体18と19の突き合わせ構造の内鉄型閉磁路構造で構成されている。図1との同一符号は同一または同等のものであり、図示をしていないが主磁気回路の途中には間隙15を設けてあり、従って、磁気回路に発生する磁束の挙動も第一の実施例と同様であり、第一の実施例と同様に上記間隙は中心コア部14に限定されず側面コア部との両方またはどちらか一方にのみに付けられても同様の特性を得ることが出来る。   FIG. 5 is a view showing a second embodiment of the present invention. The difference from the embodiment of FIG. 1 is that the co-type magnetic body 18 is different from the outer-type closed magnetic circuit structure of the E-type magnetic body butting structure. And an inner iron type closed magnetic circuit structure of 19 butting structures. 1 are the same or equivalent, and although not shown, a gap 15 is provided in the middle of the main magnetic circuit. Therefore, the behavior of the magnetic flux generated in the magnetic circuit is also the first implementation. As in the first embodiment, the same gap can be obtained when the gap is not limited to the central core portion 14 but is attached to both or only one of the side core portions. .

図6(a)と(b)および(c)は、この発明の第三の実施例であり、前記点火コイル4の磁気回路を棒状磁性体20からなる開磁路を構成し、上記一次線輪41と二次線輪42の各々の外周に図6(b)に示す断面の個別のスリットの入った一部破断して示される補助磁性体21と22を設置して、さらにた上記一次線輪41の両端部に図6(c)の平面図で示されたリング状の磁性体板23と24を設置した開磁路構造の点火コイル4としている。   6 (a), 6 (b) and 6 (c) show a third embodiment of the present invention, in which the magnetic circuit of the ignition coil 4 constitutes an open magnetic path made of a rod-shaped magnetic body 20, and the primary line Auxiliary magnetic bodies 21 and 22 shown in a partially broken manner with individual slits in the cross section shown in FIG. 6B are installed on the outer circumferences of the ring 41 and the secondary wire ring 42, respectively, and the primary An ignition coil 4 having an open magnetic circuit structure in which ring-shaped magnetic plates 23 and 24 shown in the plan view of FIG.

上記第三の実施例に於いても、磁気回路に発生する磁束の基本的な挙動には変わりが無い。しかし、棒状磁性体20に間隙を持たせるために2本に分離しても良いが、元来が漏洩磁束の多い開磁路であることから通常は一本の棒状磁性体20で構成され、リング状の磁性体23と24の両方あるいは一方を省略して、補助磁性体21と22のみとすることも可能である。   In the third embodiment, the basic behavior of the magnetic flux generated in the magnetic circuit remains unchanged. However, although it may be separated into two in order to give a gap to the rod-shaped magnetic body 20, it is usually composed of a single rod-shaped magnetic body 20 because it is originally an open magnetic path with a large amount of leakage magnetic flux, It is also possible to omit only one or both of the ring-shaped magnetic bodies 23 and 24 and use only the auxiliary magnetic bodies 21 and 22.

また、リング状磁性体23と24を用いる時には、外周にスリットの入った補助磁性体21と22を一体のものを用いることも可能である。なお、高電圧側の絶縁に問題が無ければ、リング状磁性体23を二次線輪42の両端部にも配置できる。   In addition, when the ring-shaped magnetic bodies 23 and 24 are used, it is possible to use the auxiliary magnetic bodies 21 and 22 having slits on the outer periphery as one body. If there is no problem in the insulation on the high voltage side, the ring-shaped magnetic body 23 can be arranged at both ends of the secondary wire 42.

以上、説明した第一から第三の実施例に於いて、主磁気回路に設置された間隙に、時間t0から始まるスイッチング素子5がオンの時に一次線輪41に流れる電流によって発生する磁束φ1の流れを妨げる方向に、磁石を挿入することによって、主磁気回路の磁性体の断面積を小さくすることが可能となると同時に、時間t1やt3でスイッチング素子5がオフになるときの磁束の変化量を増加することが可能である。なお、第三の実施例での磁石の設置場所は、棒状鉄心20のを2本に分離するか一次線輪41側の端部に設置されることが好ましい。   In the first to third embodiments described above, the magnetic flux φ1 generated by the current flowing through the primary wire ring 41 when the switching element 5 starting from time t0 is turned on in the gap installed in the main magnetic circuit. By inserting a magnet in a direction that impedes the flow, the cross-sectional area of the magnetic body of the main magnetic circuit can be reduced, and at the same time, the amount of change in magnetic flux when the switching element 5 is turned off at time t1 or t3. Can be increased. In addition, it is preferable that the installation location of the magnet in a 3rd Example isolate | separates the rod-shaped iron core 20 into two, or is installed in the edge part at the side of the primary wire ring 41 side.

上記実施例説明した多重放電型点火装置を構成する図2の回路は、様々な構成の回路の一例であり、キャパシタ6にダイオード11による分路を設けてスイッチング素子5がオンした後のキャパシタ6の再充電による転流を妨げているが、当該ダイオード11の主たる役割は、比較的高価なキャパシタ6を各々の点火ユニット100から103の多気筒展開に共有するために用いられているものであり、当該構成に囚われない。   The circuit of FIG. 2 constituting the multiple discharge ignition device described in the above embodiment is an example of a circuit having various configurations. The capacitor 6 is provided with a shunt by the diode 11 in the capacitor 6 and the switching element 5 is turned on. The main role of the diode 11 is used to share the relatively expensive capacitor 6 in the multi-cylinder deployment of each ignition unit 100 to 103. , Is not trapped in the configuration.

また部品トラブルの冗長性を確保するためには、エネルギー蓄積コイル2と逆流防止手段3とキャパシタ6およびダイオード11からなる主要部品を、内燃機関の構成が4気筒の場合は2気筒毎に1セット、6気筒の場合は3気筒毎に1セット、また8気筒の場合は4気筒毎に1セットを各々設定することもある。   Also, in order to ensure the redundancy of component trouble, one set of main components including the energy storage coil 2, the backflow prevention means 3, the capacitor 6 and the diode 11 is set for every two cylinders when the internal combustion engine has four cylinders. In the case of six cylinders, one set may be set for every three cylinders, and in the case of eight cylinders, one set may be set for every four cylinders.

発明の第一の実施例を示す図。The figure which shows the 1st Example of invention. 発明の実施例を用いた代表的な回路図。1 is a typical circuit diagram using an embodiment of the invention. 図2の各部作動波形。The operation waveform of each part of FIG. 発明の実施例の特性図。The characteristic view of the Example of invention. 発明の第二の実施例を示す図。The figure which shows the 2nd Example of invention. (a),(b),(c)発明の第三の実施例を示す図。(A), (b), (c) The figure which shows the 3rd Example of invention.

符号の説明Explanation of symbols

1:電源端子
2:エネルギー蓄積コイル
3:逆流防止手段
4:点火コイル
41:一次線輪
42:二次線輪
5:スイッチング素子
6:キャパシタ
7,11:ダイオード
8:点火栓
9:駆動回路
10:ECU
12,13:E型磁性体
14:中心コア部
15:間隙
16:磁性体
17:絶縁体
18,19:コ型磁性体
20:棒状磁性体
21,22:補助磁性体
23,24:リング状磁性体
100,101,102,103:点火ユニット
1: power supply terminal 2: energy storage coil 3: backflow prevention means 4: ignition coil 41: primary wire ring 42: secondary wire ring 5: switching element 6: capacitor 7, 11: diode 8: spark plug 9: drive circuit 10 : ECU
12, 13: E-type magnetic body 14: Central core portion 15: Gap 16: Magnetic body 17: Insulator 18, 19: Co-type magnetic body 20: Rod-shaped magnetic bodies 21, 22: Auxiliary magnetic bodies 23, 24: Ring shape Magnetic bodies 100, 101, 102, 103: ignition unit

Claims (9)

スイッチング素子のオン時に直流電源からの電流によってエネルギー蓄積コイルに蓄積され、オフ時に放電されるエネルギーを充放電キャパシタに充電する構成と、少なくとも上記キャパシタの放電経路に点火コイルの一次線輪を介する構成とした多重放電型点火装置において、上記点火コイルの一次線輪と二次線輪の磁気結合を点火栓での火花放電する以前や火花放電電流が小さい時には良好に設定され、火花放電電流が大きい時には悪化する磁気結合構造としたことを特徴とする多重放電型点火装置の点火コイル。 A configuration in which energy stored in the energy storage coil by the current from the DC power source when the switching element is turned on and discharged in the off state is charged in the charge / discharge capacitor, and a configuration in which at least the primary coil of the ignition coil is connected to the discharge path of the capacitor In the multiple discharge type ignition device, the magnetic coupling between the primary coil and the secondary coil of the ignition coil is set well before spark discharge at the spark plug or when the spark discharge current is small, and the spark discharge current is large. An ignition coil of a multiple discharge ignition device characterized by a magnetic coupling structure that sometimes deteriorates. 前記点火コイルの磁気回路の磁束の流れ方向に対して、一次線輪と二次線輪をセパレート構造に配置した請求項1に記載の多重放電型点火装置の点火コイル。 The ignition coil of the multiple discharge ignition device according to claim 1, wherein the primary wire and the secondary wire are arranged in a separate structure with respect to the flow direction of the magnetic flux of the magnetic circuit of the ignition coil. 前記点火コイルの磁気回路を外鉄型または内鉄型閉磁路の磁性体で構成し、上記一次線輪と二次線輪の接する近傍から二次線輪の中間近傍までの間に、少なくとも1個の磁路間隙を設けた請求項1と2に記載の多重放電型点火装置の点火コイル。 The magnetic circuit of the ignition coil is made of a magnetic material having an outer iron type or an inner iron type closed magnetic circuit, and at least 1 between the vicinity of the primary wire ring and the secondary wire ring and the vicinity of the middle of the secondary wire ring. The ignition coil of the multiple discharge ignition device according to claim 1 or 2, wherein a plurality of magnetic path gaps are provided. 前記磁路間隙の少なくとも一個に、前記キャパシタの一次線輪への放電電流によって発生する磁束の極性とは逆方向の極性に、磁石を設けた請求項3に記載の多重放電型点火装置の点火コイル。 The ignition of the multiple discharge ignition device according to claim 3, wherein a magnet is provided in at least one of the magnetic path gaps in a direction opposite to the polarity of the magnetic flux generated by the discharge current to the primary ring of the capacitor. coil. 前記点火コイルの磁気回路を外鉄型または内鉄型閉磁路の磁性体で構成し、上記一次線輪と二次線輪の間に、上記磁気回路のバイパス磁気回路を設けた請求項1乃至4に記載の多重放電型点火装置の点火コイル。 The magnetic circuit of the said ignition coil is comprised with the magnetic body of an outer iron type or an inner iron type closed magnetic circuit, The bypass magnetic circuit of the said magnetic circuit was provided between the said primary wire ring and the secondary wire ring. 5. The ignition coil of the multiple discharge ignition device according to 4. 前記磁気回路のバイパス磁気回路には、少なくとも一個の間隙を設けて磁気抵抗を大きく設定した請求項5に記載の多重放電型点火装置の点火コイル。 6. The ignition coil of a multiple discharge ignition device according to claim 5, wherein the bypass magnetic circuit of the magnetic circuit is provided with at least one gap to increase a magnetic resistance. 前記点火コイルの磁気回路を棒状磁性体からなる開磁路を構成し、上記一次線輪と二次線輪の各々の外周に別個のスリットの入った補助磁性体を設置した請求項2に記載の多重放電型点火装置の点火コイル。 The magnetic circuit of the said ignition coil comprises the open magnetic path which consists of a rod-shaped magnetic body, The auxiliary | assistant magnetic body which entered the separate slit in each outer periphery of the said primary wire ring and a secondary wire ring was installed. Ignition coil of multiple discharge type ignition device. 前記点火コイルの磁気回路を棒状磁性体からなる開磁路を構成し、上記一次線輪の両端部にリング状の磁性体板を設置した請求項2,または7に記載の多重放電型点火装置の点火コイル。 The multiple discharge ignition device according to claim 2, wherein the magnetic circuit of the ignition coil comprises an open magnetic path made of a rod-shaped magnetic body, and ring-shaped magnetic plates are installed at both ends of the primary wire ring. Ignition coil. 前記棒状磁性体に巻回した一次線輪と二次線輪の全体を、外周にスリットの入った補助磁性体を設置した請求項8に記載の多重放電型点火装置の点火コイル。 9. The ignition coil for a multiple discharge ignition device according to claim 8, wherein an auxiliary magnetic body having a slit on the outer periphery is installed on the entire primary wire and the secondary wire wound around the rod-shaped magnetic body.
JP2006039096A 2006-02-16 2006-02-16 Ignition coil for multiple discharge type ignition device Pending JP2007218160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039096A JP2007218160A (en) 2006-02-16 2006-02-16 Ignition coil for multiple discharge type ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039096A JP2007218160A (en) 2006-02-16 2006-02-16 Ignition coil for multiple discharge type ignition device

Publications (1)

Publication Number Publication Date
JP2007218160A true JP2007218160A (en) 2007-08-30

Family

ID=38495722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039096A Pending JP2007218160A (en) 2006-02-16 2006-02-16 Ignition coil for multiple discharge type ignition device

Country Status (1)

Country Link
JP (1) JP2007218160A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135966A (en) * 1991-11-15 1993-06-01 Tdk Corp Transformer
JPH0935962A (en) * 1995-07-19 1997-02-07 Hitachi Ltd Ignition coil
JPH11153079A (en) * 1997-09-17 1999-06-08 Matsushita Electric Ind Co Ltd Igniter
JP2003234220A (en) * 2002-02-06 2003-08-22 Sony Corp Switching transformer and switching power supply
JP2004304199A (en) * 1994-12-09 2004-10-28 Denso Corp Ignition coil for internal-combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135966A (en) * 1991-11-15 1993-06-01 Tdk Corp Transformer
JP2004304199A (en) * 1994-12-09 2004-10-28 Denso Corp Ignition coil for internal-combustion engine
JPH0935962A (en) * 1995-07-19 1997-02-07 Hitachi Ltd Ignition coil
JPH11153079A (en) * 1997-09-17 1999-06-08 Matsushita Electric Ind Co Ltd Igniter
JP2003234220A (en) * 2002-02-06 2003-08-22 Sony Corp Switching transformer and switching power supply

Similar Documents

Publication Publication Date Title
JP6002697B2 (en) Ignition device for internal combustion engine
JPH06117347A (en) Ignition device of internal combustion engine
US4177782A (en) Ignition system providing sparks for two ignition plugs in each cylinder from a single ignition coil
JP2004247571A (en) Ignition device for internal-combustion
JP2010151069A (en) Ignition device for internal combustion engine
JPS6142111B2 (en)
JPH0587967B2 (en)
JP2007218160A (en) Ignition coil for multiple discharge type ignition device
JP2000310175A (en) Ignition device for internal combustion engine
JP2006303447A (en) Ignition coil
US7098765B2 (en) Ignition coil having magnetic flux reducing inner structure
KR20010052759A (en) Spark ignition system having a capacitive discharge system and a magnetic core-coil assembly
JP2011074906A (en) Ignitor for internal combustion engine
JP4089484B2 (en) Ignition device for internal combustion engine
JP4621638B2 (en) Ignition device
US5425348A (en) Distributorless ignition system for an internal combustion engine
JP2013096383A (en) Ignition device of internal combustion engine
EP0887546B1 (en) An ignition device for an internal combustion engine
JP2002004990A (en) Ignition device of internal combustion engine
EP1327772B1 (en) Ignition system having improved spark-on-make blocking diode implementation
JP2010106739A (en) Multi-ignition type ignition device for internal combustion engine
JP2000009010A (en) Ignition device for internal combustion engine
JP3423672B2 (en) Ignition device for internal combustion engine
JPH0311876Y2 (en)
CN102486151A (en) Double-power supply independent igniting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712