JP2007218106A - Fuel injection control device for cylinder injection spark ignition type internal combustion engine - Google Patents

Fuel injection control device for cylinder injection spark ignition type internal combustion engine Download PDF

Info

Publication number
JP2007218106A
JP2007218106A JP2006036556A JP2006036556A JP2007218106A JP 2007218106 A JP2007218106 A JP 2007218106A JP 2006036556 A JP2006036556 A JP 2006036556A JP 2006036556 A JP2006036556 A JP 2006036556A JP 2007218106 A JP2007218106 A JP 2007218106A
Authority
JP
Japan
Prior art keywords
fuel
pressure
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006036556A
Other languages
Japanese (ja)
Inventor
Nozomi Nakamura
望 中村
Fumiaki Hiraishi
文昭 平石
Toshimi Fukuda
利実 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006036556A priority Critical patent/JP2007218106A/en
Publication of JP2007218106A publication Critical patent/JP2007218106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device for a cylinder injection spark ignition type internal combustion engine materializing shortening of start time and stable start at a time of cold start with a simple structure. <P>SOLUTION: This device is provided with a main fuel injection control means S20 injecting fuel of predetermined quantity from a fuel injection valve into a combustion chamber of each cylinder until reaching perfect explosion when the internal combustion engine is in a cold condition (S12) and it is detected that pressure correlation value of fuel reaches predetermined equivalent value (predetermined stroke number X2), and a pilot fuel injection control means S18 controlling valve open period of the fuel injection valve short to keep fuel injection quantity injected from the fuel injection valve into the combustion chamber of each cylinder in each compression stroke according to pressure of fuel less than the predetermined quantity until pressure correlation value of fuel reaches predetermined equivalent value when the internal combustion engine is in the cold condition (S12) and it is detected that pressure correlation value of fuel does not reach the predetermined equivalent value (predetermined stroke number X2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、筒内噴射型火花点火式内燃機関の燃料噴射制御装置に係り、詳しくは筒内噴射型火花点火式内燃機関の冷態始動時における燃料噴射制御技術に関する。   The present invention relates to a fuel injection control device for a cylinder injection type spark ignition type internal combustion engine, and more particularly to a fuel injection control technique at the time of cold start of a cylinder injection type spark ignition type internal combustion engine.

一般に、吸気行程で燃料を噴射可能なガソリンエンジンでは、冷態始動時においては、着火を確実にするため、燃料をクランキング開始時点で通常よりも多めに供給し、徐々に通常の燃料量に移行させるように燃料制御している。
しかしながら、このように冷態始動時において燃料を増量すると、エンジンが冷態であるために燃料が気化し難く未燃燃料が多く発生し、排ガス及び燃費の悪化を招くという問題がある。
Generally, in a gasoline engine that can inject fuel during the intake stroke, at the time of cold start, in order to ensure ignition, fuel is supplied more than usual at the start of cranking, and gradually becomes a normal fuel amount. The fuel is controlled so as to shift.
However, when the amount of fuel is increased at the time of cold start in this way, there is a problem that since the engine is cold, the fuel is difficult to vaporize and a large amount of unburned fuel is generated, leading to deterioration of exhaust gas and fuel consumption.

そこで、筒内噴射型のガソリンエンジンにおいて、冷態始動時には圧縮行程で燃料噴射を行う構成の燃料噴射制御技術が開発されている(特許文献1参照)。
このように圧縮行程で燃料噴射を行うようにすることにより、冷態始動時であっても燃料を点火プラグ近傍に集めて効率よく燃焼させることが可能となり、供給する燃料を必要最小限に留めて未燃燃料の発生を抑え、排ガス及び燃費の悪化を防止することが可能である。
特開2001−317390号公報
Therefore, in a cylinder injection type gasoline engine, a fuel injection control technique has been developed in which fuel injection is performed in a compression stroke at the time of cold start (see Patent Document 1).
By performing fuel injection in the compression stroke in this way, fuel can be collected in the vicinity of the spark plug and burned efficiently even during cold start, and the supplied fuel is kept to the minimum necessary. Thus, it is possible to suppress the generation of unburned fuel and prevent deterioration of exhaust gas and fuel consumption.
JP 2001-317390 A

ところで、筒内噴射型のガソリンエンジンにおいて圧縮行程で燃料噴射を行う場合、圧縮され高圧となった燃焼室内に燃料を噴射する必要があることから、必然的に燃料を高圧にしなければならず、通常はエンジンの回転によって作動する高圧ポンプによって燃料を高圧にまで昇圧するようにしている。
しかしながら、始動初期においては、エンジンが作動を開始した段階であるため、エンジンの回転は遅く、暫くの間は高圧ポンプを十分に機能させることができず、上記特許文献1に記載されるように燃料が高圧になるのを待って燃料供給を開始すると、燃料供給開始のタイミングが遅れて始動性が悪いという問題がある。
By the way, when fuel injection is performed in a compression stroke in an in-cylinder injection type gasoline engine, it is necessary to inject fuel into a combustion chamber that has been compressed to high pressure. Normally, the fuel is boosted to a high pressure by a high-pressure pump that is operated by the rotation of the engine.
However, in the initial stage of the start, since the engine has started to operate, the engine rotation is slow, and the high-pressure pump cannot function sufficiently for a while, as described in Patent Document 1 above. If the fuel supply is started after waiting for the fuel to become high pressure, there is a problem that the start of fuel supply is delayed and the startability is poor.

一方、燃料が高圧になるのを待たずに燃料供給を開始し、このとき高圧時と同量の燃料を噴射すると、燃料噴射する度に燃料の圧力(以下、燃圧)がもともと低い上にさらにその分だけ低下し、高圧ポンプの作動に拘わらず燃圧がなかなか上昇せず、燃料を十分に供給できずにエンジンの始動が安定せず、やはり始動性が悪いという問題がある。
このようなことから、高圧ポンプを高出力化或いは大型化したり高圧ポンプを作動させるためのモータ等を別途設けることも考えられるが、高圧ポンプを高出力化或いは大型化したり専用のモータ等を備えることはコスト的、スペース的に不利となり好ましいことではない。
On the other hand, if the fuel supply is started without waiting for the fuel to become high pressure, and the same amount of fuel is injected as at the time of high pressure, the fuel pressure (hereinafter referred to as the fuel pressure) is originally lowered each time the fuel is injected. There is a problem that the fuel pressure does not rise easily regardless of the operation of the high pressure pump, the fuel cannot be supplied sufficiently, the engine start is not stable, and the startability is poor.
For this reason, it is conceivable to provide a high-pressure pump with a higher output or a larger size, or to provide a motor for operating the high-pressure pump separately. This is not preferable because it is disadvantageous in terms of cost and space.

本発明は、上述した事情に基づきなされたもので、その目的とするところは、簡単な構成にして冷態始動時における始動時間の短縮及び安定した始動の実現を図った筒内噴射型火花点火式内燃機関の燃料噴射制御装置を提供することにある。   The present invention has been made on the basis of the above-described circumstances, and the object of the present invention is to provide an in-cylinder injection type spark ignition that has a simple configuration and shortens the starting time and realizes a stable starting at the cold start. An object of the present invention is to provide a fuel injection control device for an internal combustion engine.

上記の目的を達成するため、請求項1の筒内噴射型火花点火式内燃機関の燃料噴射制御装置は、燃焼室に燃料を直接噴射する燃料噴射弁を各気筒に備えた筒内噴射型火花点火式内燃機関の燃料噴射制御装置であって、前記内燃機関の作動により燃料を加圧して高圧の燃料を前記燃料噴射弁に供給する高圧ポンプと、前記内燃機関が冷態にあることを検出する冷態検出手段と、前記高圧ポンプにより加圧された燃料の圧力または圧力相関値を検出する燃圧検出手段と、前記内燃機関の始動時に、前記冷態検出手段により前記内燃機関が冷態にあることが検出され、前記燃圧検出手段により燃料の圧力が所定圧以上または圧力相関値が所定圧相当値に達したことが検出されたときには、完爆に至るまで前記燃料噴射弁から各気筒の燃焼室にそれぞれ所定量の燃料を噴射するよう該燃料噴射弁の開弁期間を制御する主燃料噴射制御手段と、前記内燃機関の始動時に、前記冷態検出手段により前記内燃機関が冷態にあることが検出され、前記燃圧検出手段により燃料の圧力が所定圧より小さいまたは圧力相関値が所定圧相当値に達していないことが検出されたときには、燃料の圧力が前記所定圧以上となるまでまたは前記圧力相関値が前記所定圧相当値に達するまで該燃料の圧力に応じて前記燃料噴射弁から各気筒の燃焼室にそれぞれ圧縮行程にて噴射する燃料噴射量が前記所定量よりも少なくなるよう前記燃料噴射弁の開弁期間を短く制御する先行燃料噴射制御手段とを備えたことを特徴とする。   In order to achieve the above object, a fuel injection control device for a cylinder injection type spark ignition type internal combustion engine according to claim 1 provides a cylinder injection type spark in which each cylinder has a fuel injection valve for directly injecting fuel into a combustion chamber. A fuel injection control device for an ignition type internal combustion engine, comprising: a high pressure pump that pressurizes fuel by operating the internal combustion engine and supplies high pressure fuel to the fuel injection valve; and detects that the internal combustion engine is in a cold state A cold detection means for detecting the pressure of the fuel pressurized by the high pressure pump or a pressure correlation value, and the internal combustion engine is cooled by the cold detection means when the internal combustion engine is started. When it is detected that the fuel pressure is greater than a predetermined pressure or the pressure correlation value has reached a value corresponding to the predetermined pressure, the fuel pressure detection means detects the fuel from the fuel injection valve to each cylinder until a complete explosion occurs. In the combustion chamber A main fuel injection control means for controlling a valve opening period of the fuel injection valve so as to inject a predetermined amount of fuel; and when the internal combustion engine is started, the cold detection means detects that the internal combustion engine is cold When the fuel pressure detecting means detects that the fuel pressure is smaller than the predetermined pressure or the pressure correlation value does not reach the predetermined pressure equivalent value, or until the fuel pressure exceeds the predetermined pressure or the pressure correlation The fuel injection is performed so that the fuel injection amount injected from the fuel injection valve into the combustion chamber of each cylinder in the compression stroke is smaller than the predetermined amount according to the pressure of the fuel until the value reaches the predetermined pressure equivalent value. And a preceding fuel injection control means for controlling the valve opening period to be short.

請求項2の筒内噴射型火花点火式内燃機関の燃料噴射制御装置では、請求項1において、前記圧力相関値は、前記内燃機関の始動開始後に積算される該内燃機関の行程数であって、前記燃圧検出手段は該内燃機関の行程数を検出する行程数検出手段であり、前記所定圧相当値は、前記内燃機関の始動開始後に燃料の圧力が前記所定圧になるまでに積算されると予測される所定行程数であることを特徴とする。   In a fuel injection control device for a cylinder injection type spark ignition type internal combustion engine according to claim 2, in claim 1, the pressure correlation value is a number of strokes of the internal combustion engine integrated after the start of the internal combustion engine. The fuel pressure detecting means is a stroke number detecting means for detecting the number of strokes of the internal combustion engine, and the predetermined pressure equivalent value is integrated until the fuel pressure reaches the predetermined pressure after the start of the internal combustion engine. The predetermined number of strokes is predicted.

請求項3の筒内噴射型火花点火式内燃機関の燃料噴射制御装置では、請求項1または2において、前記先行燃料噴射制御手段は、燃料を前記所定量より少ない範囲で連続的または断続的に増加させることを特徴とする。   According to a third aspect of the present invention, there is provided a fuel injection control device for an in-cylinder spark ignition type internal combustion engine. In the first or second aspect of the present invention, the preceding fuel injection control means continuously or intermittently supplies fuel within a range smaller than the predetermined amount. It is characterized by increasing.

請求項1の筒内噴射型火花点火式内燃機関の燃料噴射制御装置によれば、内燃機関の作動により燃料を加圧して高圧の燃料を燃料噴射弁に供給する高圧ポンプを有する場合において、内燃機関の始動時にそれぞれ主燃料噴射制御手段における所定量よりも少ない量の燃料を燃料噴射弁から各気筒の燃焼室に圧縮行程で噴射するよう燃料噴射弁の開弁期間を短く制御する先行燃料噴射制御手段を備えるようにしたので、圧縮行程で燃料供給を開始する場合において、燃圧が未だ十分に上昇しておらず所定圧より小さいようなときには所定量よりも少ない量の燃料が先行的に噴射されることになり、燃圧の低下を防止し燃料を十分に供給可能にして内燃機関の始動の安定化を図りつつ、燃料が高圧になるのを待たずに燃料供給を開始することで燃料供給開始のタイミング遅れを防止して始動時間の短縮を図ることができる。   According to the fuel injection control device for a cylinder injection type spark ignition type internal combustion engine according to claim 1, when the internal combustion engine has a high pressure pump that pressurizes the fuel and supplies high pressure fuel to the fuel injection valve by the operation of the internal combustion engine, Prior fuel injection for controlling the opening period of the fuel injection valve to be short so that a smaller amount of fuel than the predetermined amount in the main fuel injection control means is injected from the fuel injection valve to the combustion chamber of each cylinder during the compression stroke when the engine is started Since the control means is provided, when the fuel supply is started in the compression stroke, if the fuel pressure has not yet sufficiently increased and is smaller than the predetermined pressure, an amount of fuel smaller than the predetermined amount is injected in advance. Therefore, it is possible to prevent the fuel pressure from decreasing and to sufficiently supply the fuel to stabilize the start of the internal combustion engine, and to start the fuel supply without waiting for the fuel to become high pressure. It is possible to shorten the startup time by preventing the timing delay of the start of the supply.

これにより、コスト増等もなく簡単な構成にして冷態始動時における始動性の向上を図ることができる。
請求項2の筒内噴射型火花点火式内燃機関の燃料噴射制御装置によれば、内燃機関の始動開始後に圧力相関値である内燃機関の行程数が所定圧相当値である所定行程数となるまでの間は先行燃料噴射制御手段により所定量よりも少ない量の燃料が燃料噴射弁から各気筒の燃焼室に先行的に噴射されることになり、例えば燃圧を直接検出することが困難な場合であっても、内燃機関の行程数に基づいて容易に冷態始動時における始動性の向上を図ることができる。
Thereby, it is possible to improve the startability at the time of cold start with a simple configuration without increasing costs.
According to the fuel injection control device for the in-cylinder spark ignition internal combustion engine according to claim 2, after the start of the internal combustion engine, the number of strokes of the internal combustion engine, which is a pressure correlation value, becomes a predetermined number of strokes corresponding to a predetermined pressure. Until this time, the amount of fuel smaller than the predetermined amount is injected in advance from the fuel injection valve into the combustion chamber of each cylinder by the preceding fuel injection control means, for example, when it is difficult to directly detect the fuel pressure Even so, it is possible to easily improve the startability during the cold start based on the number of strokes of the internal combustion engine.

請求項3の筒内噴射型火花点火式内燃機関の燃料噴射制御装置によれば、先行燃料噴射制御手段において燃料を燃圧の上昇に応じて連続的または断続的に増加させることにより、内燃機関の始動の安定化を図りつつより一層始動時間を短縮することが可能であり、冷態始動時における始動性のさらなる向上を図ることができる。   According to the fuel injection control device for a cylinder injection type spark ignition internal combustion engine according to claim 3, the fuel is continuously or intermittently increased in accordance with the increase in the fuel pressure in the preceding fuel injection control means, thereby It is possible to further shorten the start time while stabilizing the start, and further improve the startability at the cold start.

以下、図面を参照して本発明の実施形態を説明する。
先ず、第1実施例について説明する。
図1を参照すると、車両に搭載された筒内噴射型火花点火式内燃機関、即ち筒内噴射ガソリンエンジンの縦断面図及び本発明の第1実施例に係る燃料噴射制御装置の概略構成図が示されており、以下同図に基づき本発明に係る筒内噴射型火花点火式内燃機関の燃料噴射制御装置の構成を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described.
Referring to FIG. 1, a longitudinal sectional view of a cylinder injection type spark ignition type internal combustion engine mounted on a vehicle, that is, a cylinder injection gasoline engine, and a schematic configuration diagram of a fuel injection control device according to the first embodiment of the present invention are shown. A configuration of a fuel injection control device for an in-cylinder injection type spark ignition type internal combustion engine according to the present invention will be described below with reference to FIG.

符号1は自動車用の筒内噴射型ガソリンエンジン(以下、単にエンジンと記す)であり、当該エンジン1は燃焼室5や吸気装置等が筒内噴射可能に設計されている。
詳しくは、エンジン1は、例えば、燃料噴射モード(運転モード)を切換えることで、吸気行程噴射モードでの運転、即ち均質混合燃焼を行う吸気行程での燃料噴射、または圧縮行程噴射モードでの運転、即ち層状燃焼を行う圧縮行程での燃料噴射をそれぞれ実施可能な筒内噴射型火花点火式直列4気筒ガソリンエンジンであり、吸気行程噴射モードでは、容易にして理論空燃比(ストイキオ)での運転やリッチ空燃比での運転の他、リーン空燃比での運転が可能であり、圧縮行程噴射モードでは、リーン空燃比での運転及び超リーン空燃比での運転が可能である。
Reference numeral 1 denotes an in-cylinder injection gasoline engine for automobiles (hereinafter simply referred to as an engine). The engine 1 is designed such that the combustion chamber 5 and the intake device can be injected into the cylinder.
Specifically, the engine 1 is operated in the intake stroke injection mode by switching the fuel injection mode (operation mode), that is, the fuel injection in the intake stroke in which the homogeneous mixture combustion is performed, or the operation in the compression stroke injection mode. That is, this is an in-cylinder spark ignition type in-line four-cylinder gasoline engine capable of performing fuel injection in a compression stroke in which stratified combustion is performed. In addition to the operation at the rich air-fuel ratio, the operation at the lean air-fuel ratio is possible. In the compression stroke injection mode, the operation at the lean air-fuel ratio and the operation at the super-lean air-fuel ratio are possible.

エンジン1のシリンダヘッド2には、気筒毎に、点火プラグ3とともに電磁式にして高圧型のインジェクタ(燃料噴射弁)4がシリンダ6に対し斜めに取り付けられており、燃焼室5内に燃料を直接噴射可能である。また、シリンダ6内を摺動して往復動するピストン7の頂面には、圧縮行程においてインジェクタ4から噴射した燃料噴霧が上死点近傍で点火プラグ3に到達するよう例えば半球状の窪み、即ちキャビティ8が形成されている。   A cylinder head 2 of the engine 1 is provided with a spark plug 3 and an electromagnetic high pressure injector (fuel injection valve) 4 obliquely attached to the cylinder 6 for each cylinder. Direct injection is possible. Further, on the top surface of the piston 7 that slides and reciprocates in the cylinder 6, for example, a hemispherical depression so that the fuel spray injected from the injector 4 in the compression stroke reaches the spark plug 3 near the top dead center, That is, the cavity 8 is formed.

動弁機構としては例えばDOHC(ダブルオーバヘッドカム)型4弁式の機構が採用されており、シリンダヘッド2の上部には、吸排気弁9,10をそれぞれ駆動するべく、吸気側カムシャフト11と排気側カムシャフト12とが回転自在に軸支されている。
シリンダヘッド2には、両カムシャフト11,12の間を抜けるようにして、略直立方向に延びて吸気ポート13が形成されており、該吸気ポート13を通過した吸気流が燃焼室5内で通常とは逆方向の逆タンブル流を生起可能である。排気ポート14については、通常のエンジンと同様に略水平方向に形成されている。
As the valve operating mechanism, for example, a DOHC (double overhead cam) type four-valve mechanism is adopted, and an intake side camshaft 11 and an intake side camshaft 11 are respectively disposed above the cylinder head 2 so as to drive the intake and exhaust valves 9 and 10. An exhaust camshaft 12 is rotatably supported.
An intake port 13 is formed in the cylinder head 2 so as to pass between the camshafts 11 and 12 so as to extend in a substantially upright direction, and the intake air flow passing through the intake port 13 is generated in the combustion chamber 5. It is possible to generate a reverse tumble flow in the opposite direction to normal. About the exhaust port 14, it is formed in the substantially horizontal direction like a normal engine.

図中符号16は冷却水温Tw を検出する水温センサである(冷態検出手段)。また、符号17はクランク角信号を出力するクランク角センサであり、クランク角情報からはエンジン1が実行した行程数やエンジン回転速度Neを検出可能である。クランクシャフトの半分の回転数で回転するカムシャフト11には、気筒判別信号を出力する気筒判別センサ(図示せず)が取り付けられており、これによりクランク角信号がどの気筒のものか判別可能である。   Reference numeral 16 in the drawing is a water temperature sensor for detecting the cooling water temperature Tw (cool state detecting means). Reference numeral 17 denotes a crank angle sensor that outputs a crank angle signal. The number of strokes executed by the engine 1 and the engine rotational speed Ne can be detected from the crank angle information. A cylinder discriminating sensor (not shown) that outputs a cylinder discriminating signal is attached to the camshaft 11 that rotates at half the number of revolutions of the crankshaft, so that it is possible to discriminate which cylinder the crank angle signal belongs to. is there.

吸気ポート13には吸気マニホールド21を介して吸気管が接続されており、吸気管には、エアクリーナ、スロットル弁及びスロットルポジションセンサ(TPS)、エアフローセンサ等が設けられている(共に図示せず)。
排気ポート14には排気マニホールド41を介して排気管が接続されており、排気管には三元触媒やマフラー等(共に図示せず)が設けられている。
An intake pipe is connected to the intake port 13 via an intake manifold 21. The intake pipe is provided with an air cleaner, a throttle valve, a throttle position sensor (TPS), an air flow sensor, and the like (both not shown). .
An exhaust pipe is connected to the exhaust port 14 via an exhaust manifold 41. The exhaust pipe is provided with a three-way catalyst, a muffler, and the like (both not shown).

図中符号50は、上記インジェクタ4に高圧の燃料を供給するための燃料供給ユニットであり、該燃料供給ユニット50は、管路を介してインジェクタ4に接続される一方、燃料タンク52に接続されている。詳しくは、燃料供給ユニット50には、高圧燃料ポンプ(高圧ポンプ)54が介装されており、当該高圧燃料ポンプ54は、カムシャフト12の端部に同期回転可能に連結されている。故に、エンジン1の作動時には、この高圧燃料ポンプ54により高燃圧(例えば、5MPa)の燃料をインジェクタ4に供給可能であり、これにより、筒内が高圧となる圧縮行程においても燃料をインジェクタ4から筒内に向けて良好に噴射可能である。なお、燃料供給ユニット50には、図示しないが、高圧燃料ポンプ54から吐出された燃料の燃圧を所望の圧力に調圧する調圧弁等が設けられている。   Reference numeral 50 in the figure denotes a fuel supply unit for supplying high-pressure fuel to the injector 4, and the fuel supply unit 50 is connected to the injector 4 through a pipe line and is connected to a fuel tank 52. ing. Specifically, a high-pressure fuel pump (high-pressure pump) 54 is interposed in the fuel supply unit 50, and the high-pressure fuel pump 54 is connected to the end of the camshaft 12 so as to be capable of synchronous rotation. Therefore, when the engine 1 is in operation, the high-pressure fuel pump 54 can supply a fuel with a high fuel pressure (for example, 5 MPa) to the injector 4, so that the fuel can be supplied from the injector 4 even in a compression stroke in which the inside of the cylinder becomes a high pressure. It can be injected well into the cylinder. Although not shown, the fuel supply unit 50 is provided with a pressure regulating valve for regulating the fuel pressure of the fuel discharged from the high-pressure fuel pump 54 to a desired pressure.

車室内には、電子コントロールユニット(ECU)70が設置されており、このECU70には図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等が備えられており、このECU70によりエンジン1の総合的な制御が行われる。
そして、ECU70の入力側には上述の水温センサ16、クランク角センサ17等の各種センサ類やイグニションスイッチ72が電気的に接続されており、一方、出力側にはインジェクタ4、燃料供給ユニット50、セルモータ74等の各種駆動装置類が接続されており、各種駆動装置類には各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期等がそれぞれ出力される。これにより、例えば、空燃比が適正な目標空燃比に制御されてインジェクタ4から適正量の燃料が適正なタイミングで噴射され、点火プラグ3により適正なタイミングで火花点火が実施される。
An electronic control unit (ECU) 70 is installed in the passenger compartment. The ECU 70 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs, control maps, and the like. A processing device (CPU), a timer counter, and the like are provided, and the ECU 70 performs overall control of the engine 1.
Various sensors such as the water temperature sensor 16 and the crank angle sensor 17 and the ignition switch 72 are electrically connected to the input side of the ECU 70, while the injector 4, the fuel supply unit 50, Various drive devices such as a cell motor 74 are connected, and a fuel injection amount, a fuel injection timing, an ignition timing, and the like calculated based on detection information from various sensors are output to the various drive devices. Thereby, for example, the air-fuel ratio is controlled to an appropriate target air-fuel ratio, an appropriate amount of fuel is injected from the injector 4 at an appropriate timing, and spark ignition is performed at an appropriate timing by the spark plug 3.

また、特に本発明に係る燃料噴射制御装置では、エンジン1の冷態始動時において、燃料噴射モード(運転モード)を圧縮行程噴射モードとしてエンジン1を運転するようにしており、以下、本発明に係る始動制御について説明する。
図2を参照すると、ECU70により実行される本発明の第1実施例に係る始動制御の制御ルーチンがフローチャートで示されており、以下、同フローチャートに沿い説明する。
In particular, in the fuel injection control device according to the present invention, when the engine 1 is cold-started, the engine 1 is operated with the fuel injection mode (operation mode) as the compression stroke injection mode. Such start control will be described.
Referring to FIG. 2, the control routine of the start control according to the first embodiment of the present invention executed by the ECU 70 is shown in a flowchart, and will be described below along the flowchart.

イグニションスイッチ72が始動操作され、始動制御が開始されると、先ずステップS10において、イグニションがONとされてセルモータ74によりエンジン1のクランキングが開始され、これによりエンジン1の始動が開始される。
ステップS12では、エンジン1が冷機状態(冷態)にあるか否かを判別する。詳しくは、水温センサ16からの冷却水温情報Twに基づいて判別する。判別結果が偽(No)で冷却水温Twが所定温度以上であってエンジン1が暖機状態にあると判定された場合には、ステップS22に進む。
When the ignition switch 72 is started and the start control is started, first, in step S10, the ignition is turned on and the cranking of the engine 1 is started by the cell motor 74, whereby the start of the engine 1 is started.
In step S12, it is determined whether or not the engine 1 is in a cold state (cold state). Specifically, the determination is made based on the cooling water temperature information Tw from the water temperature sensor 16. If the determination result is false (No) and it is determined that the coolant temperature Tw is equal to or higher than the predetermined temperature and the engine 1 is in the warm-up state, the process proceeds to step S22.

ステップS22では、暖機状態における通常の始動制御を行う。具体的には、例えば燃料噴射モードを吸気行程噴射モードに切り換え、始動性を高めるべく燃料量を始動時以外の通常の運転時の量よりも増量して燃料噴射を行う。
一方、ステップS12の判別結果が真(Yes)で冷却水温Twが所定温度より低くエンジン1が冷態にあると判定された場合には、ステップS14に進む。
In step S22, normal start control in the warm-up state is performed. Specifically, for example, the fuel injection mode is switched to the intake stroke injection mode, and fuel injection is performed by increasing the fuel amount from the amount during normal operation other than at the time of starting to improve the startability.
On the other hand, if the determination result in step S12 is true (Yes) and it is determined that the coolant temperature Tw is lower than the predetermined temperature and the engine 1 is in the cold state, the process proceeds to step S14.

ステップS14では、エンジン1のクランキングが開始されてからエンジン1の実行した行程数、即ちエンジン1の始動開始後の行程数(圧力相関値)が下限行程数X1以上であるか否かを判別する。ここに、エンジン1の始動開始後の行程数はECU70のタイマカウンタにより積算されるものであり(燃圧検出手段)、下限行程数X1とは、エンジン1のクランキングが開始された後、燃圧が燃料噴射を開始可能な最低限の圧力、即ち下限圧P1となるまでに積算されると予測されるエンジン1の行程数である。詳しくは、エンジン1のクランキングが開始されると高圧燃料ポンプ54が作動し、これにより燃料が徐々に加圧されることになるのであるが、高圧燃料ポンプ54がエンジン1の一行程間に加圧できる圧力量は高圧燃料ポンプ54に固有の値であることから、下限行程数X1は、当該圧力量が上記下限圧P1となるまでに積算される行程数に予め実験等により設定されている(例えば、始動後5行程)。   In step S14, it is determined whether or not the number of strokes executed by the engine 1 since the cranking of the engine 1 is started, that is, whether the number of strokes after starting the engine 1 (pressure correlation value) is equal to or greater than the lower limit stroke number X1. To do. Here, the number of strokes after the start of the engine 1 is accumulated by the timer counter of the ECU 70 (fuel pressure detecting means). The lower limit stroke number X1 is the fuel pressure after cranking of the engine 1 is started. This is the number of strokes of the engine 1 that is predicted to be accumulated until the minimum pressure at which fuel injection can be started, that is, the lower limit pressure P1. Specifically, when cranking of the engine 1 is started, the high-pressure fuel pump 54 is operated, whereby the fuel is gradually pressurized. Since the amount of pressure that can be pressurized is a value inherent to the high-pressure fuel pump 54, the lower limit stroke number X1 is set in advance by experiments or the like to the number of strokes accumulated until the pressure amount reaches the lower limit pressure P1. (For example, 5 strokes after starting).

ステップS14の判別結果が偽(No)で、エンジン1の始動開始後の行程数が下限行程数X1に達していない場合には、下限行程数X1に達するのを待つ。一方、判別結果が真(Yes)で、エンジン1の始動開始後の行程数が下限行程数X1に達したと判定された場合には、ステップS16に進む。
ステップS16では、エンジン1の始動開始後の行程数(圧力相関値)が所定行程数X2(所定圧相当値)以上であるか否かを判別する。ここに、所定行程数X2とは、エンジン1のクランキングが開始された後、燃圧が常用の高圧P2となるまでに積算されると予測されるエンジン1の行程数である。詳しくは、この所定行程数X2についても、上記下限行程数X1と同様に圧力量が上記常用の高圧P2となるまでに積算される行程数に予め設定されている(例えば、下限行程数X1後4〜8行程)。
If the determination result in step S14 is false (No), and the number of strokes after starting the engine 1 has not reached the lower limit stroke number X1, it waits for the lower limit stroke number X1 to be reached. On the other hand, if the determination result is true (Yes) and it is determined that the number of strokes after starting the engine 1 has reached the lower limit stroke number X1, the process proceeds to step S16.
In step S16, it is determined whether or not the number of strokes (pressure correlation value) after the start of the engine 1 is equal to or greater than a predetermined stroke number X2 (predetermined pressure equivalent value). Here, the predetermined number of strokes X2 is the number of strokes of the engine 1 that is predicted to be accumulated until the fuel pressure reaches the normal high pressure P2 after the cranking of the engine 1 is started. Specifically, the predetermined number of strokes X2 is also set in advance to the number of strokes accumulated until the pressure amount reaches the normal high pressure P2 in the same manner as the lower limit number of strokes X1 (for example, after the lower limit number of strokes X1). 4-8 strokes).

ステップS16の判別結果が偽(No)で、エンジン1の始動開始後の行程数が未だ所定行程数X2に達しない場合には、ステップS18に進む。
ステップS18では、燃料噴射モードを圧縮行程噴射モードに切り換え、燃焼室5内で燃料を起爆させるのに最小限必要な少量の燃料をインジェクタ4から各気筒に噴射する(先行燃料噴射制御手段)。詳しくは、後述する圧縮行程噴射モードにおける通常の始動時の量(パルス幅T2、所定量)よりも少ない量(パルス幅T1)(T2>T1)の燃料を噴射する。
If the determination result in step S16 is false (No) and the number of strokes after starting the engine 1 has not yet reached the predetermined stroke number X2, the process proceeds to step S18.
In step S18, the fuel injection mode is switched to the compression stroke injection mode, and a minimum amount of fuel necessary for detonating the fuel in the combustion chamber 5 is injected from the injector 4 to each cylinder (preceding fuel injection control means). More specifically, an amount of fuel (pulse width T1) (T2> T1) smaller than the normal starting amount (pulse width T2, predetermined amount) in the compression stroke injection mode described later is injected.

このように、エンジン1の始動開始後の行程数が所定行程数X2に未だ達していないような燃圧が低い状況において、圧縮行程噴射モードのもとで少量の燃料により燃料噴射を開始すると、層状燃焼の特性により、燃圧が常用の高圧P2に達するのを待って燃料噴射を開始するよりも早期に燃焼を開始でき、操作者に始動しているという安心感を与えることができる。また、燃料噴射によっても燃圧がそれほど減少することがないので、燃料噴射を行いつつも燃圧を速やかに常用の高圧P2まで安定的に上昇させることができることとなる。   In this manner, when fuel injection is started with a small amount of fuel under the compression stroke injection mode in a situation where the fuel pressure is low such that the number of strokes after the start of the engine 1 has not yet reached the predetermined stroke number X2, Due to the characteristics of combustion, combustion can be started earlier than when fuel injection is started after waiting for the fuel pressure to reach the normal high pressure P2, and it is possible to give the operator a sense of safety that the engine has started. Further, since the fuel pressure does not decrease so much by fuel injection, the fuel pressure can be quickly and stably increased to the normal high pressure P2 while performing fuel injection.

一方、ステップS16の判別結果が真(Yes)で、エンジン1の始動開始後の行程数が所定行程数X2に達したと判定された場合には、ステップS20に進む。
ステップS20では、燃料噴射モードを圧縮行程噴射モードに保持したまま、当該圧縮行程噴射モードにおけるエンジン回転速度Neに応じた通常の始動時の量(パルス幅T2、所定量)の燃料をインジェクタ4から各気筒に噴射する(主燃料噴射制御手段)。つまり、行程数が所定行程数X2に達すれば燃圧は常用の高圧P2に達しており、通常の始動時の量の燃料を噴射しても燃圧が大きく低下することはないと判断でき、故に、エンジン1の始動開始後の行程数が所定行程数X2に達したと判定された後は、通常通り圧縮行程噴射モードにおけるエンジン回転速度Neに応じた始動時の燃料供給を開始する。
On the other hand, if the determination result in step S16 is true (Yes) and it is determined that the number of strokes after starting the engine 1 has reached the predetermined stroke number X2, the process proceeds to step S20.
In step S20, while maintaining the fuel injection mode in the compression stroke injection mode, a normal starting amount (pulse width T2, predetermined amount) of fuel corresponding to the engine speed Ne in the compression stroke injection mode is supplied from the injector 4. Injection into each cylinder (main fuel injection control means). In other words, if the number of strokes reaches the predetermined number of strokes X2, the fuel pressure has reached the normal high pressure P2, and it can be determined that the fuel pressure does not drop greatly even if the amount of fuel at the normal starting time is injected. After it is determined that the number of strokes after the start of the engine 1 has reached the predetermined stroke number X2, fuel supply at the start according to the engine rotational speed Ne in the compression stroke injection mode is started as usual.

この場合、エンジン1では既に少量の燃料の供給によって燃焼が行われていることから、引き続き通常の始動時の燃料の供給を実施したときには燃料の霧化が良好に促進されることになり、燃焼が速やかに進展して完爆に至ることとなる。これにより、エンジン回転速度Neを急速にアイドル回転速度Niまで上昇させることが可能である。
燃焼が完爆に至った後はイグニションスイッチ72の始動操作を終了する。これにより当該始動制御は終了する。
In this case, since the combustion is already performed in the engine 1 by supplying a small amount of fuel, the fuel atomization is favorably promoted when the fuel supply at the normal starting time is continued, and the combustion is performed. Will progress quickly and reach a complete explosion. As a result, the engine speed Ne can be rapidly increased to the idle speed Ni.
After the combustion reaches a complete explosion, the starting operation of the ignition switch 72 is terminated. Thus, the start control is finished.

以上説明したように、本発明に係る始動制御によれば、冷態始動時、エンジン1の始動開始後の行程数が所定行程数X2に未だ達していないような燃圧が低い状況では圧縮行程噴射モードで先行的に最小限必要な少量の燃料を噴射し、その後、行程数が所定行程数X2に達して燃圧が常用の高圧P2まで上昇したら圧縮行程噴射モードを保持したまま通常の始動時の量の燃料を噴射するようにしており、これにより、冷態始動時であっても、容易にして、早期に燃焼を開始するようにでき、且つ、燃圧を低下なく安定して速やかに上昇させることができる。   As described above, according to the start control according to the present invention, during the cold start, the compression stroke injection is performed in a low fuel pressure state where the number of strokes after the start of the engine 1 has not yet reached the predetermined stroke number X2. A minimum amount of fuel is injected in advance in the mode, and after that, when the number of strokes reaches the predetermined number of strokes X2 and the fuel pressure rises to the normal high pressure P2, the compression stroke injection mode is maintained and the normal starting time is maintained. The amount of fuel is injected so that even during cold start, combustion can be started easily and early, and the fuel pressure can be increased stably and quickly without a decrease. be able to.

即ち、図3を参照すると、上記本発明に係る始動制御を実施した場合の各気筒(#1〜#4)のインジェクタ駆動信号、燃圧、エンジン回転速度Neの関係がタイムチャートで示されているが、同図に示すように、エンジン1の始動開始後の行程数が下限行程数X1を超えた後所定行程数X2に未だ達していないような燃圧が低い状況では先行的に少量(パルス幅T1)の燃料を噴射し、その後、行程数が所定行程数X2に達して燃圧が常用の高圧P2まで上昇したら通常の始動時の量(パルス幅T2)の燃料を噴射することにより、冷態始動時であっても早期に燃焼を開始するとともに燃圧を低下なく安定して速やかに上昇させ、エンジン回転速度Neをスムーズに上昇させることができる。   That is, referring to FIG. 3, the relationship among the injector drive signal, fuel pressure, and engine rotational speed Ne of each cylinder (# 1 to # 4) when the start control according to the present invention is implemented is shown in a time chart. However, as shown in the figure, when the fuel pressure is low such that the number of strokes after starting the engine 1 exceeds the lower limit stroke number X1 and has not yet reached the predetermined stroke number X2, a small amount (pulse width) T1) fuel is injected, and after that, when the number of strokes reaches the predetermined number of strokes X2 and the fuel pressure rises to the normal high pressure P2, a normal start-up amount (pulse width T2) of fuel is injected. Even at the time of starting, combustion can be started at an early stage and the fuel pressure can be increased stably and promptly without decreasing, and the engine speed Ne can be increased smoothly.

つまり、図4を参照すると、燃圧が高圧になるのを待って燃料噴射を開始した従来の場合(実線)及び燃圧が高圧にならないうちに通常の始動時の燃料量で燃料噴射を開始した従来の場合(破線)の各気筒(#1〜#4)のインジェクタ駆動信号、燃圧、エンジン回転速度Neの関係が比較してタイムチャートで示されており、当該図4の従来の場合にあっては、燃料噴射の開始のタイミングが遅れたり(実線)、燃圧が低下してエンジン回転速度Neがなかなか上昇しなかったり(破線)するのであるが、図3に示す如く本発明に係る始動制御を実施することにより、このような燃料噴射の開始遅れや燃圧の低下を好適に防止することができる。   That is, referring to FIG. 4, the conventional case where fuel injection is started after the fuel pressure becomes high (solid line) and the conventional case where fuel injection is started with the fuel amount at the normal start before the fuel pressure becomes high. In the case of (dotted line), the relationship among the injector drive signal, fuel pressure, and engine speed Ne of each cylinder (# 1 to # 4) is compared and shown in a time chart. In the conventional case of FIG. The start timing of fuel injection is delayed (solid line), or the fuel pressure decreases and the engine rotational speed Ne does not increase easily (broken line). As shown in FIG. By implementing this, it is possible to suitably prevent such a delay in the start of fuel injection and a decrease in fuel pressure.

これにより、簡単な構成にして始動時間の短縮及び安定した始動の実現を図ることができ、冷態始動時における始動性を向上させることができる。
また、冷態始動時には最初から多めの燃料を噴射しても霧化が促進されずに燃焼に寄与しない余剰燃料が多く発生することを考えると、最小限必要な少量の燃料を先行的に噴射することにより、余剰燃料の発生を極力防止でき、燃費の悪化を抑えることもできる。
As a result, the start time can be shortened and a stable start can be realized with a simple configuration, and the startability at the cold start can be improved.
Also, at the time of cold start, even if more fuel is injected from the beginning, atomization is not promoted and a lot of surplus fuel is generated that does not contribute to combustion. By doing so, generation | occurrence | production of excess fuel can be prevented as much as possible, and deterioration of fuel consumption can also be suppressed.

また、同様の理由から、高圧燃料ポンプ54を必要以上に高出力或いは大型のものにする必要がなくなり、高圧燃料ポンプ54の低出力化或いは小型化を図りコスト増、スペース増を抑えることもできる。
次に、第2実施例について説明する。
当該第2実施例は、上記第1実施例がエンジン1の始動開始後の行程数によって燃料噴射制御をするのに対し直接燃圧を視て燃料噴射制御を行う点が上記第1実施例と異なっており、以下、第1実施例と異なる部分についてのみ説明する。
For the same reason, it is not necessary to make the high-pressure fuel pump 54 have a higher output or a larger size than necessary, and it is possible to reduce the output or size of the high-pressure fuel pump 54 and to suppress an increase in cost and space. .
Next, a second embodiment will be described.
The second embodiment differs from the first embodiment in that the fuel injection control is performed by directly looking at the fuel pressure, while the fuel injection control is performed by the number of strokes after the start of the engine 1 in the second embodiment. Hereinafter, only the parts different from the first embodiment will be described.

具体的には、第2実施例では、高圧燃料ポンプ54が図示しないものの燃圧を検出する圧力センサ(燃圧検出手段)を含んで構成されている。
そして、図5を参照すると、本発明の第2実施例に係る始動制御の制御ルーチンがフローチャートで示されており、以下、同フローチャートに沿い説明する。なお、ここでは上記図2との共通部分については適宜説明を省略する。
Specifically, in the second embodiment, the high-pressure fuel pump 54 is configured to include a pressure sensor (fuel pressure detecting means) that detects a fuel pressure (not shown).
Referring to FIG. 5, the control routine of the start control according to the second embodiment of the present invention is shown in a flowchart, and will be described along the flowchart. In addition, description about a common part with the said FIG. 2 is abbreviate | omitted suitably here.

ステップS10を経てステップS12の判別結果が真(Yes)でエンジン1が冷態にあると判定された場合には、ステップS14’に進む。
ステップS14’では、圧力センサからの情報に基づき、直接に燃圧が燃料噴射を開始可能な最低限の圧力、即ち下限圧P1以上であるか否かを判別する。判別結果が偽(No)で、燃圧が下限圧P1に達しない場合には、下限圧P1に達するのを待つ。一方、判別結果が真(Yes)で、燃圧が下限圧P1に達したと判定された場合には、ステップS16’に進む。
If the determination result in step S12 is true (Yes) through step S10 and it is determined that the engine 1 is in the cold state, the process proceeds to step S14 ′.
In step S14 ′, it is determined based on information from the pressure sensor whether or not the fuel pressure is equal to or higher than the minimum pressure at which fuel injection can be started directly, that is, the lower limit pressure P1. If the determination result is false (No) and the fuel pressure does not reach the lower limit pressure P1, the process waits until the lower limit pressure P1 is reached. On the other hand, if the determination result is true (Yes) and it is determined that the fuel pressure has reached the lower limit pressure P1, the process proceeds to step S16 ′.

ステップS16’では、やはり圧力センサからの情報に基づき、直接に燃圧が常用の高圧P2以上であるか否かを判別する。
ステップS16’の判別結果が偽(No)で、燃圧が常用の高圧P2に達していない場合には、ステップS18に進み、上記同様に燃料噴射モードを圧縮行程噴射モードに切り換え、燃焼室5内で燃料を起爆させるのに最小限必要な少量(パルス幅T1)の燃料をインジェクタ4から各気筒に噴射する(先行燃料噴射制御手段)。
In step S16 ′, it is determined whether or not the fuel pressure is equal to or higher than the normal high pressure P2 based on the information from the pressure sensor.
If the determination result in step S16 ′ is false (No) and the fuel pressure has not reached the normal high pressure P2, the process proceeds to step S18, and the fuel injection mode is switched to the compression stroke injection mode in the same manner as described above. Then, a minimum amount of fuel (pulse width T1) necessary for detonating the fuel is injected from the injector 4 to each cylinder (preceding fuel injection control means).

一方、ステップS16’ の判別結果が真(Yes)で、燃圧が常用の高圧P2以上と判定された場合には、ステップS20に進み、燃料噴射モードを圧縮行程噴射モードに保持したまま、当該圧縮行程噴射モードにおけるエンジン回転速度Neに応じた通常の始動時の量(パルス幅T2、所定量)の燃料をインジェクタ4から各気筒に噴射する(主燃料噴射制御手段)。   On the other hand, if the determination result in step S16 ′ is true (Yes) and it is determined that the fuel pressure is equal to or higher than the normal high pressure P2, the process proceeds to step S20, and the compression is performed while the fuel injection mode is maintained in the compression stroke injection mode. A normal starting amount (pulse width T2, predetermined amount) of fuel corresponding to the engine speed Ne in the stroke injection mode is injected from the injector 4 to each cylinder (main fuel injection control means).

このように、信頼性高く燃圧を検出することが可能であれば、間接的でなく直接に燃圧を検出して始動制御を行うようにしてもよく、これにより、上記同様、冷態始動時であっても早期に燃焼を開始するようにでき、且つ、燃圧を低下なく安定して速やかに上昇させることができ、簡単な構成にして始動時間の短縮及び安定した始動の実現を図り、冷態始動時における始動性を向上させることができる。   As described above, if it is possible to detect the fuel pressure with high reliability, the start control may be performed by directly detecting the fuel pressure instead of indirectly, and as described above, at the time of the cold start. Even in such a case, combustion can be started at an early stage, and the fuel pressure can be stably and promptly increased without a decrease. The simple configuration reduces the start time and realizes a stable start. The startability at the start can be improved.

また、最小限必要な少量の燃料を先行的に噴射することにより、余剰燃料の発生を防止して燃費の悪化を抑えることができるし、高圧燃料ポンプ54の低出力化或いは小型化を図ることでコスト増、スペース増を抑えることもできる。
以上で実施形態の説明を終えるが、本発明の実施形態は上記実施形態に限られるものではない。
Further, by injecting a minimum amount of fuel in advance, it is possible to prevent the generation of surplus fuel and suppress deterioration of fuel consumption, and to reduce the output or size of the high-pressure fuel pump 54. This can reduce the cost and space.
This is the end of the description of the embodiment. However, the embodiment of the present invention is not limited to the above embodiment.

例えば、上記実施形態では、先行的に噴射する燃料を起爆に最小限必要な少量(パルス幅T1)に固定したが、例えば燃圧の上昇に応じ、燃料噴射量を通常の始動時の量(パルス幅T2)に向けて連続的または断続的に増加(可変)させるようにしてもよい。このようにすれば、より一層始動時間を短縮することができ、冷態始動時における始動性をさらに向上させることができる。   For example, in the above-described embodiment, the fuel to be injected in advance is fixed to a minimum amount (pulse width T1) necessary for initiation, but, for example, the fuel injection amount is changed to a normal start amount (pulse It may be increased (variable) continuously or intermittently toward the width T2). In this way, the start time can be further shortened, and the startability at the cold start can be further improved.

また、上記実施形態では、エンジン1の始動開始後の行程数によって燃料噴射制御をする場合(第1実施例)と直接燃圧を視て燃料噴射制御を行う場合(第2実施例)とを分けて説明したが、これらを併せ、エンジン1の始動開始後の行程数と燃圧との双方を監視しながら燃料噴射制御を行うようにしてもよい。   Moreover, in the said embodiment, the case where fuel injection control is performed by the number of strokes after the start of the engine 1 (first embodiment) is divided from the case where fuel injection control is performed by looking directly at the fuel pressure (second embodiment). However, the fuel injection control may be performed while monitoring both the number of strokes after starting the engine 1 and the fuel pressure.

車両に搭載された筒内噴射型火花点火式内燃機関の縦断面図及び本発明の第1実施例に係る燃料噴射制御装置の概略構成図である。1 is a longitudinal sectional view of a cylinder injection type spark ignition type internal combustion engine mounted on a vehicle and a schematic configuration diagram of a fuel injection control device according to a first embodiment of the present invention. 本発明の第1実施例に係る始動制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the starting control which concerns on 1st Example of this invention. 本発明に係る始動制御を実施した場合の各気筒(#1〜#4)のインジェクタ駆動信号、燃圧、エンジン回転速度Neの関係を示すタイムチャートである。It is a time chart which shows the relationship between the injector drive signal of each cylinder (# 1- # 4), fuel pressure, and engine speed Ne when the starting control which concerns on this invention is implemented. 燃圧が高圧になるのを待って燃料噴射を開始した従来の場合(実線)及び燃圧が高圧にならないうちに通常の始動時の燃料量で燃料噴射を開始した従来の場合(破線)の各気筒(#1〜#4)のインジェクタ駆動信号、燃圧、エンジン回転速度Neの関係を比較して示すタイムチャートである。Each cylinder in the conventional case where the fuel injection is started after the fuel pressure becomes high (solid line) and in the conventional case where the fuel injection is started with the normal fuel amount before the fuel pressure becomes high (broken line) It is a time chart which compares and shows the relationship of the injector drive signal, fuel pressure, and engine rotational speed Ne of (# 1- # 4). 本発明の第2実施例に係る始動制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the starting control which concerns on 2nd Example of this invention.

符号の説明Explanation of symbols

1 エンジン
4 インジェクタ(燃料噴射弁)
16 水温センサ(冷態検出手段)
17 クランク角センサ
54 高圧燃料ポンプ(高圧ポンプ)
70 電子コントロールユニット(ECU)
72 イグニションスイッチ
74 セルモータ
1 Engine 4 Injector (fuel injection valve)
16 Water temperature sensor (cool state detection means)
17 Crank angle sensor 54 High-pressure fuel pump (high-pressure pump)
70 Electronic Control Unit (ECU)
72 Ignition switch 74 Cell motor

Claims (3)

燃焼室に燃料を直接噴射する燃料噴射弁を各気筒に備えた筒内噴射型火花点火式内燃機関の燃料噴射制御装置であって、
前記内燃機関の作動により燃料を加圧して高圧の燃料を前記燃料噴射弁に供給する高圧ポンプと、
前記内燃機関が冷態にあることを検出する冷態検出手段と、
前記高圧ポンプにより加圧された燃料の圧力または圧力相関値を検出する燃圧検出手段と、
前記内燃機関の始動時に、前記冷態検出手段により前記内燃機関が冷態にあることが検出され、前記燃圧検出手段により燃料の圧力が所定圧以上または圧力相関値が所定圧相当値に達したことが検出されたときには、完爆に至るまで前記燃料噴射弁から各気筒の燃焼室にそれぞれ所定量の燃料を噴射するよう該燃料噴射弁の開弁期間を制御する主燃料噴射制御手段と、
前記内燃機関の始動時に、前記冷態検出手段により前記内燃機関が冷態にあることが検出され、前記燃圧検出手段により燃料の圧力が所定圧より小さいまたは圧力相関値が所定圧相当値に達していないことが検出されたときには、燃料の圧力が前記所定圧以上となるまでまたは前記圧力相関値が前記所定圧相当値に達するまで該燃料の圧力に応じて前記燃料噴射弁から各気筒の燃焼室にそれぞれ圧縮行程にて噴射する燃料噴射量が前記所定量よりも少なくなるよう前記燃料噴射弁の開弁期間を短く制御する先行燃料噴射制御手段と、
を備えたことを特徴とする筒内噴射型火花点火式内燃機関の燃料噴射制御装置。
A fuel injection control device for a cylinder injection type spark ignition type internal combustion engine provided with a fuel injection valve in each cylinder for directly injecting fuel into a combustion chamber,
A high-pressure pump that pressurizes fuel by operating the internal combustion engine and supplies high-pressure fuel to the fuel injection valve;
Cold detection means for detecting that the internal combustion engine is cold;
Fuel pressure detecting means for detecting the pressure of the fuel pressurized by the high pressure pump or a pressure correlation value;
When the internal combustion engine is started, the cold detection means detects that the internal combustion engine is cold, and the fuel pressure detection means detects that the fuel pressure is equal to or higher than a predetermined pressure or the pressure correlation value has reached a predetermined pressure equivalent value. When it is detected, main fuel injection control means for controlling a valve opening period of the fuel injection valve so as to inject a predetermined amount of fuel from the fuel injection valve into the combustion chamber of each cylinder until a complete explosion is reached,
When the internal combustion engine is started, the cold state detection means detects that the internal combustion engine is cold, and the fuel pressure detection means detects that the fuel pressure is smaller than a predetermined pressure or the pressure correlation value reaches a predetermined pressure equivalent value. When it is detected that the fuel does not reach the predetermined pressure or until the pressure correlation value reaches the predetermined pressure equivalent value, the combustion from the fuel injection valve to each cylinder is combusted according to the fuel pressure. Preceding fuel injection control means for controlling the opening period of the fuel injection valve to be shorter so that the fuel injection amount injected into the chamber in the compression stroke is less than the predetermined amount;
A fuel injection control device for an in-cylinder injection type spark ignition type internal combustion engine.
前記圧力相関値は、前記内燃機関の始動開始後に積算される該内燃機関の行程数であって、前記燃圧検出手段は該内燃機関の行程数を検出する行程数検出手段であり、
前記所定圧相当値は、前記内燃機関の始動開始後に燃料の圧力が前記所定圧になるまでに積算されると予測される所定行程数であることを特徴とする、請求項1記載の筒内噴射型火花点火式内燃機関の燃料噴射制御装置。
The pressure correlation value is the number of strokes of the internal combustion engine accumulated after the start of the internal combustion engine, and the fuel pressure detection means is a stroke number detection means for detecting the number of strokes of the internal combustion engine,
2. The in-cylinder engine according to claim 1, wherein the predetermined pressure equivalent value is a predetermined number of strokes estimated to be accumulated until the fuel pressure reaches the predetermined pressure after the start of the internal combustion engine. A fuel injection control device for an injection type spark ignition type internal combustion engine.
前記先行燃料噴射制御手段は、燃料を前記所定量より少ない範囲で連続的または断続的に増加させることを特徴とする、請求項1または2記載の筒内噴射型火花点火式内燃機関の燃料噴射制御装置。   The fuel injection for a direct injection spark ignition type internal combustion engine according to claim 1 or 2, wherein the preceding fuel injection control means continuously or intermittently increases the fuel in a range smaller than the predetermined amount. Control device.
JP2006036556A 2006-02-14 2006-02-14 Fuel injection control device for cylinder injection spark ignition type internal combustion engine Pending JP2007218106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036556A JP2007218106A (en) 2006-02-14 2006-02-14 Fuel injection control device for cylinder injection spark ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036556A JP2007218106A (en) 2006-02-14 2006-02-14 Fuel injection control device for cylinder injection spark ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007218106A true JP2007218106A (en) 2007-08-30

Family

ID=38495676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036556A Pending JP2007218106A (en) 2006-02-14 2006-02-14 Fuel injection control device for cylinder injection spark ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007218106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082771A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Starting device for internal combustion engine
CN114076050A (en) * 2020-08-11 2022-02-22 丰田自动车株式会社 Fuel injection control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336439A (en) * 2000-05-24 2001-12-07 Fuji Heavy Ind Ltd Fuel injection control device for in-cylinder fuel injection engine
JP2003106195A (en) * 2001-09-28 2003-04-09 Mazda Motor Corp Control system for spark ignition type direct injection engine
JP2003193884A (en) * 2001-12-27 2003-07-09 Mazda Motor Corp Control device for engine
JP2005030228A (en) * 2003-07-08 2005-02-03 Nissan Motor Co Ltd Fuel injection control device for cylinder direct injection spark ignition engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336439A (en) * 2000-05-24 2001-12-07 Fuji Heavy Ind Ltd Fuel injection control device for in-cylinder fuel injection engine
JP2003106195A (en) * 2001-09-28 2003-04-09 Mazda Motor Corp Control system for spark ignition type direct injection engine
JP2003193884A (en) * 2001-12-27 2003-07-09 Mazda Motor Corp Control device for engine
JP2005030228A (en) * 2003-07-08 2005-02-03 Nissan Motor Co Ltd Fuel injection control device for cylinder direct injection spark ignition engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082771A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Starting device for internal combustion engine
CN114076050A (en) * 2020-08-11 2022-02-22 丰田自动车株式会社 Fuel injection control device
CN114076050B (en) * 2020-08-11 2023-07-21 丰田自动车株式会社 Fuel injection control device

Similar Documents

Publication Publication Date Title
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
JP5741352B2 (en) Start control device for compression self-ignition engine
JP5786679B2 (en) Start control device for compression self-ignition engine
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP5928354B2 (en) Spark ignition multi-cylinder engine starter
US7331333B2 (en) Direct fuel injection/spark ignition engine control device
JP2006348863A (en) Starter of internal combustion engine
US7561957B1 (en) Spark-ignition direct-injection cold start strategy using high pressure start
JP2006291903A (en) Control device for internal combustion engine
JP2006348861A (en) Starter of internal combustion engine
JP2006214377A (en) Starting device of internal combustion engine
JP4521426B2 (en) In-cylinder injection internal combustion engine control device
US7478625B1 (en) Engine cranking system with cylinder deactivation for a direct injection engine
JP2010203414A (en) Control device for internal combustion engine
JP6395025B2 (en) Fuel injection device for internal combustion engine
JP2007218106A (en) Fuel injection control device for cylinder injection spark ignition type internal combustion engine
JP5332871B2 (en) Fuel injection control device for spark ignition internal combustion engine
JP5994653B2 (en) Spark ignition multi-cylinder engine starter
JP5831168B2 (en) Start control device for compression self-ignition engine
JP2006132398A (en) Control method for dual injection type internal combustion engine
JP5935275B2 (en) Start control device for compression self-ignition engine
JP2016109015A (en) Control device of engine
JP2008133793A (en) Engine stop control device
JP2008215246A (en) Fuel injection control device for internal combustion engine
US11002163B2 (en) Valve timing controller and valve timing control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100728