JP2007218093A - Gas enrichment device for internal combustion engine - Google Patents

Gas enrichment device for internal combustion engine Download PDF

Info

Publication number
JP2007218093A
JP2007218093A JP2006036101A JP2006036101A JP2007218093A JP 2007218093 A JP2007218093 A JP 2007218093A JP 2006036101 A JP2006036101 A JP 2006036101A JP 2006036101 A JP2006036101 A JP 2006036101A JP 2007218093 A JP2007218093 A JP 2007218093A
Authority
JP
Japan
Prior art keywords
enriched air
internal combustion
combustion engine
cylinder
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006036101A
Other languages
Japanese (ja)
Inventor
Isamu Hotta
勇 堀田
Masaaki Kubo
賢明 久保
Hidekazu Murase
英一 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006036101A priority Critical patent/JP2007218093A/en
Publication of JP2007218093A publication Critical patent/JP2007218093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas enrichment device optimal for a reciprocating internal combustion engine, compact and capable of providing sufficient quantity of oxygen enriched air and inhibiting cost increase. <P>SOLUTION: Nitrogen adsorbent 24 is provided in a communication path 23 capable of communicating with a cylinder 4 for combustion through an oxygen enrichment valve 22. The oxygen enrichment valve 22 is opened in compression stroke and air in the cylinder 4 is introduced into the nitrogen adsorbent 24 to make nitrogen adsorbed at a time of coast, and oxygen enrichment air is stored in the oxygen enrichment air tank 11. Nitrogen adsorbed in the nitrogen adsorbent is desorbed and is introduced into the cylinder in expansion stroke. The oxygen enrichment valve 22 is closed in exhaust stroke, and an exhaust valve 19 is opened to exhaust nitrogen. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の気体富化装置に関し、特に、レシプロ式内燃機関に最適な気体富化装置に関する。   The present invention relates to a gas enrichment device for an internal combustion engine, and more particularly to a gas enrichment device optimal for a reciprocating internal combustion engine.

例えば、火花点火燃焼を行う内燃機関において、リーン燃焼を行うことで熱効率が向上することが知られている。一方、リーン燃焼を行うことで燃焼安定性が低下する。そのため、リーン燃焼において、確実に着火し、安定な燃焼を行うために酸素富化空気等を供給することが有効である。
従来、酸素富化空気を生成する装置としては、酸素分離膜又は窒素分離膜を用いることが一般的に行われており、内燃機関にこのような酸素富化空気生成装置を適用した例としては、例えば特許文献1に記載されたものがある。
For example, in an internal combustion engine that performs spark ignition combustion, it is known that thermal efficiency is improved by performing lean combustion. On the other hand, combustion stability is reduced by performing lean combustion. Therefore, in lean combustion, it is effective to supply oxygen-enriched air or the like to ignite reliably and perform stable combustion.
Conventionally, as an apparatus for generating oxygen-enriched air, an oxygen separation membrane or a nitrogen separation membrane is generally used. As an example of applying such an oxygen-enriched air generation apparatus to an internal combustion engine, For example, there is one described in Patent Document 1.

特許文献1の技術は、過給機のコンプレッサを介装した通路に酸素生成膜を設け、酸素生成膜を通過した酸素富化空気を、エンジンに供給する構成である。
特表平3−503196号公報
The technology of Patent Document 1 is a configuration in which an oxygen generation film is provided in a passage provided with a compressor of a supercharger, and oxygen-enriched air that has passed through the oxygen generation film is supplied to the engine.
Japanese National Patent Publication No. 3-503196

しかしながら、特許文献1のような分離膜を用いた酸素富化空気生成装置を内燃機関に適用した場合、十分な量の酸素富化空気を得るには、装置の構造が複雑で大型化し、また、大幅なコストアップが避けられないという問題がある。
本発明は上記問題点に着目してなされたもので、コンパクトで、且つ、コストアップを抑制できるレシプロ式内燃機関に最適な気体富化装置を提供することを目的とする。
However, when an oxygen-enriched air generating apparatus using a separation membrane as in Patent Document 1 is applied to an internal combustion engine, the structure of the apparatus is complicated and large in size to obtain a sufficient amount of oxygen-enriched air, and There is a problem that a significant cost increase is inevitable.
The present invention has been made paying attention to the above-described problems, and an object thereof is to provide a gas enrichment device that is compact and optimal for a reciprocating internal combustion engine that can suppress an increase in cost.

このため、本発明の内燃機関の気体富化装置は、空気中の酸素及び窒素のいずれか一方の気体を吸着・脱離可能な吸着剤と、空気の吸入吐出動作を行う富化空気生成用シリンダ内のピストン往復動による圧力変化に基づいて、前記シリンダと連通可能な連通路に介装した前記吸着剤に前記シリンダ内の正圧を作用させて前記一方の気体を吸着させ、前記吸着剤に前記シリンダ内の負圧を作用させて吸着気体を脱離させる圧力調整手段とを備え、前記圧力調整手段により、前記吸着剤の吸着・脱離を制御して、吸入空気に比べて吸着気体濃度が異なる空気を生成して所望の富化空気を得る構成としたことを特徴とする。   For this reason, the gas enrichment device for an internal combustion engine according to the present invention is for generating an enriched air that performs an intake / discharge operation of an air and an adsorbent capable of adsorbing / desorbing one of oxygen and nitrogen in the air. Based on the pressure change due to the reciprocating motion of the piston in the cylinder, the one gas is adsorbed by applying a positive pressure in the cylinder to the adsorbent interposed in the communication path that can communicate with the cylinder. Pressure adjusting means for desorbing the adsorbed gas by applying a negative pressure in the cylinder to the adsorbed gas by controlling the adsorption / desorption of the adsorbent by the pressure adjusting means. It is characterized in that a desired enriched air is obtained by generating air having different concentrations.

本発明によれば、シリンダ内のピストン往復動による圧力変化を利用して、シリンダで吸入した空気に含まれる気体(酸素又は窒素)の吸着剤による吸着・脱離を制御して、所望の富化空気を得る構成としたので、例えばレシプロ式内燃機関に適用する場合に、多少の変更を加える程度の構成で、十分な量の富化気体を生成することが可能となり、コンパクトな構成で且つコストアップが抑制できる気体富化装置を提供できる。   According to the present invention, by utilizing the pressure change caused by the reciprocating motion of the piston in the cylinder, the adsorption / desorption by the adsorbent of the gas (oxygen or nitrogen) contained in the air sucked in the cylinder is controlled, and the desired wealth is obtained. For example, when applied to a reciprocating internal combustion engine, it is possible to generate a sufficient amount of enriched gas with a configuration that is slightly modified, and a compact configuration. A gas enrichment device capable of suppressing an increase in cost can be provided.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係る気体富化装置をレシプロ式内燃機関に適用した第1実施形態の概略構成図である。
図1において、図示しない吸気管を介して吸入された吸入空気は、コレクタ1から各吸気ポート2を介してエンジン3の各シリンダ4内に導入される。各シリンダ4内の排気は各排気ポート5及び排気管6を通り排気される。また、燃料タンク7内の燃料は燃料配管8に介装した燃料ポンプ9により各燃料噴射弁10に供給され、各燃料噴射弁10により各吸気ポート2へ噴射供給される。富化空気貯蔵タンクとしての酸素富化空気タンク11に貯められた酸素富化空気は、ガス配管12を通り各ガス噴射弁13に供給され、各ガス噴射弁13により各吸気ポート2へ噴射供給可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a first embodiment in which a gas enrichment apparatus according to the present invention is applied to a reciprocating internal combustion engine.
In FIG. 1, intake air sucked through an intake pipe (not shown) is introduced from the collector 1 into each cylinder 4 of the engine 3 through each intake port 2. The exhaust in each cylinder 4 is exhausted through each exhaust port 5 and exhaust pipe 6. The fuel in the fuel tank 7 is supplied to each fuel injection valve 10 by a fuel pump 9 interposed in the fuel pipe 8, and is supplied to each intake port 2 by each fuel injection valve 10. Oxygen-enriched air stored in an oxygen-enriched air tank 11 serving as an enriched air storage tank is supplied to each gas injection valve 13 through the gas pipe 12 and supplied to each intake port 2 by each gas injection valve 13. Is possible.

図2及び図3は、本実施形態のエンジン3の詳細図である。
図において、エンジン3の各燃焼用シリンダ4は、シリンダヘッド14、シリンダブロック15及びピストン16により構成される燃焼室17を有し、吸気バルブ18及び排気バルブ19を介して、吸気ポート2から吸入空気を導入し、排気ポート5から排気を排出する。
2 and 3 are detailed views of the engine 3 of the present embodiment.
In the figure, each combustion cylinder 4 of the engine 3 has a combustion chamber 17 constituted by a cylinder head 14, a cylinder block 15 and a piston 16, and is sucked from an intake port 2 through an intake valve 18 and an exhaust valve 19. Air is introduced and exhaust is discharged from the exhaust port 5.

前記吸気バルブ18,19を駆動するカム軸20の一方の端には、前記燃料ポンプ9が配置されている。尚、燃料ポンプ9は、電動式のフィードポンプを用いてもよく、燃料を加圧供給可能な構成であれば良い。吸気行程において燃焼室17へと導かれた混合気は圧縮行程において燃焼室17で高温高圧状態となる。そして、この混合気は、点火プラグ21により点火され燃焼する。尚、燃料は直接燃焼室17へ供給してもよい。また、混合気の着火手段は点火プラグに代えてグロープラグを用いてもよい。   The fuel pump 9 is disposed at one end of a camshaft 20 that drives the intake valves 18 and 19. The fuel pump 9 may be an electric feed pump as long as the fuel can be pressurized and supplied. The air-fuel mixture introduced into the combustion chamber 17 in the intake stroke becomes a high temperature and high pressure state in the combustion chamber 17 in the compression stroke. The air-fuel mixture is ignited by the spark plug 21 and burned. The fuel may be supplied directly to the combustion chamber 17. Further, a glow plug may be used instead of the spark plug as the air-fuel mixture ignition means.

そして、本実施形態は、富化空気として酸素富化空気を生成する構成であり、シリンダ4には、排気バルブ19とカム軸を共用するカム機構により開閉制御される制御バルブとしての酸素富化用バルブ22が設けられ、この酸素富化用バルブ22を介してシリンダ4の燃焼室17と連通可能な連通路23がシリンダヘッド14に形成されている。前記連通路23は、前記酸素富化用バルブ22が開弁したときに導入される燃焼室17内の空気に含まれる窒素を吸着・脱離可能な窒素吸着剤24が介装され、窒素吸着剤24の下流側にチェック弁25が介装されて前記酸素富化空気タンク11に接続している。尚、前記窒素吸着剤24は、例えばゼオライト等が考えられるが、同様の機能を有するものであればこれに限定しない。   The present embodiment is configured to generate oxygen-enriched air as the enriched air, and the cylinder 4 has an oxygen-enriched control valve that is controlled to open and close by a cam mechanism that shares the exhaust valve 19 and the camshaft. A valve 22 is provided, and a communication passage 23 that can communicate with the combustion chamber 17 of the cylinder 4 via the oxygen enrichment valve 22 is formed in the cylinder head 14. The communication passage 23 is provided with a nitrogen adsorbent 24 capable of adsorbing and desorbing nitrogen contained in the air in the combustion chamber 17 introduced when the oxygen enrichment valve 22 is opened. A check valve 25 is interposed downstream of the agent 24 and connected to the oxygen-enriched air tank 11. The nitrogen adsorbent 24 may be, for example, zeolite, but is not limited to this as long as it has a similar function.

前記酸素富化空気タンク11には、酸素富化空気の残量をモニタリングする残量検知手段として圧力センサ26と、酸素富化空気タンク11の酸素富化空気を大気に開放する大気開放手段としての開放バルブ27とが備えられ、前記圧力センサ26が所定の圧力を超えたことを検出するとエンジンコントロールユニット(以下、ECUとする)28において酸素富化空気残量が所定値を越えたと判断しECU28からの指令信号により開放バルブ27を開弁させて一部の酸素富化空気を大気開放するように制御される。尚、酸素富化空気残量をモニタリングする手段は本方式に限らない。   The oxygen-enriched air tank 11 has a pressure sensor 26 as a remaining amount detecting means for monitoring the remaining amount of oxygen-enriched air, and an atmosphere opening means for releasing the oxygen-enriched air in the oxygen-enriched air tank 11 to the atmosphere. When the pressure sensor 26 detects that the predetermined pressure has been exceeded, an engine control unit (hereinafter referred to as ECU) 28 determines that the remaining oxygen-enriched air has exceeded a predetermined value. Control is performed to open a part of the oxygen-enriched air to the atmosphere by opening the release valve 27 by a command signal from the ECU 28. The means for monitoring the oxygen-enriched air remaining amount is not limited to this method.

本実施形態は、富化空気生成用シリンダとしてレシプロ式内燃機関の燃焼用シリンダ4を共用する構成であり、排気バルブ19を富化空気生成用シリンダの吐出バルブとして用いる。そして、本実施形態は、シリンダ4内のピストン往復動に基づく燃焼室17内の圧力変化を、酸素富化用バルブ22を開弁して窒素吸着剤24に作用させて窒素吸着剤24による窒素の吸着・脱離を制御して吸入空気に比べて吸着気体濃度が異なる空気を生成して所望の富化空気として酸素富化空気を得る構成である。ここで、吸気バルブ18、排気バルブ19(吐出バルブ)及びピストン16を備えたシリンダ4と、酸素富化バルブ22とを備えて圧力調整手段が構成される。   In this embodiment, the combustion cylinder 4 of the reciprocating internal combustion engine is shared as the enriched air generating cylinder, and the exhaust valve 19 is used as the discharge valve of the enriched air generating cylinder. In the present embodiment, the pressure change in the combustion chamber 17 based on the reciprocating motion of the piston in the cylinder 4 is applied to the nitrogen adsorbent 24 by opening the oxygen enrichment valve 22, so that the nitrogen by the nitrogen adsorbent 24 In this configuration, the adsorption / desorption is controlled to generate air having an adsorbed gas concentration different from that of the intake air to obtain oxygen-enriched air as desired enriched air. Here, the pressure adjusting means is configured to include the intake valve 18, the exhaust valve 19 (discharge valve), the cylinder 4 including the piston 16, and the oxygen-enriched valve 22.

エンジン3は、ECU28により統合的に制御される。ECU28は、図示しないが、クランク角センサ信号、冷却水温、アクセル開度信号等が入力され、これらの信号に基づいてエンジン3の運転制御を実行する。バルブモード切替部29は、ECU28からの指令により、エンジン運転状態が通常運転の場合は、ロストモーション機構を動作させて酸素富化用バルブ22を閉弁状態に保持し、コースト時は酸素富化空気生成動作を実行すべく、ロストモーション機構を解除して酸素富化バルブ22を開閉動作させる。   The engine 3 is controlled by the ECU 28 in an integrated manner. Although not shown, the ECU 28 receives a crank angle sensor signal, a coolant temperature, an accelerator opening signal, and the like, and executes operation control of the engine 3 based on these signals. In response to a command from the ECU 28, the valve mode switching unit 29 operates the lost motion mechanism to keep the oxygen enriching valve 22 closed when the engine operating state is normal operation. In order to execute the air generation operation, the lost motion mechanism is released and the oxygen-enriched valve 22 is opened / closed.

次に、本実施形態の動作を説明する。
エンジン3の通常運転時では、バルブモード切替部29によりロストモーション機構を動作させて酸素富化用バルブ22を閉弁状態に保持する。この状態において、図4に示すようなバルブタイミングで吸気バルブ18と排気バルブ19が動作する。これにより、吸気行程において吸気バルブ18の開弁により吸気ポート2から燃焼室17に混合気が導入され、圧縮行程において燃焼室17内の混合気が高温高圧状態となり、点火プラグ25により混合気を点火燃焼し、排気行程において排気バルブ19の開弁により排気が排気ポート5から排気される。
Next, the operation of this embodiment will be described.
During normal operation of the engine 3, the lost motion mechanism is operated by the valve mode switching unit 29 to keep the oxygen enriching valve 22 in a closed state. In this state, the intake valve 18 and the exhaust valve 19 operate at the valve timing as shown in FIG. As a result, the air-fuel mixture is introduced from the intake port 2 into the combustion chamber 17 by the opening of the intake valve 18 in the intake stroke, and the air-fuel mixture in the combustion chamber 17 becomes a high-temperature and high-pressure state in the compression stroke. Ignition combustion is performed, and exhaust is exhausted from the exhaust port 5 by opening the exhaust valve 19 in the exhaust stroke.

一方、コースト時では、バルブモード切替部29によりロストモーション機構を解除して酸素富化用バルブ22を開閉駆動可能な状態にする。この状態において、図5に示すようなバルブタイミングで吸気バルブ18、排気バルブ19及び酸素富化用バルブ22が動作する。即ち、吸気行程において吸気バルブ18の開弁により吸気ポート2から燃焼室17に吸入空気が導入される。圧縮行程において酸素富化用バルブ22が開弁し、燃焼室17内の空気が連通路23を介して窒素吸着剤24へ導かれる。空気が窒素吸着剤24を通過する際、酸素は窒素吸着剤24を通過するのに対し窒素は窒素吸着剤24でトラップされる。このため、窒素吸着剤24通過後の空気は、吸入空気に比べて酸素濃度の高い酸素富化空気となる。この酸素富化空気は、チェック弁25を通って酸素富化空気タンク11に蓄えられる。次の膨張行程においては、酸素富化用バルブ22以外は閉じているため燃焼室17内の圧力は低下し、窒素吸着剤24に吸着された窒素が脱離して燃焼室17内は窒素富化空気で満たされる。この窒素富化空気は、排気行程で排気バルブ19が開弁することにより排気ポート5から排気される。   On the other hand, during the coasting, the lost motion mechanism is released by the valve mode switching unit 29 so that the oxygen enrichment valve 22 can be opened and closed. In this state, the intake valve 18, the exhaust valve 19 and the oxygen enrichment valve 22 are operated at the valve timings as shown in FIG. That is, intake air is introduced from the intake port 2 into the combustion chamber 17 by opening the intake valve 18 in the intake stroke. In the compression stroke, the oxygen enrichment valve 22 is opened, and the air in the combustion chamber 17 is guided to the nitrogen adsorbent 24 through the communication passage 23. As air passes through the nitrogen adsorbent 24, oxygen passes through the nitrogen adsorbent 24 while nitrogen is trapped by the nitrogen adsorbent 24. For this reason, the air after passing through the nitrogen adsorbent 24 becomes oxygen-enriched air having a higher oxygen concentration than the intake air. This oxygen-enriched air is stored in the oxygen-enriched air tank 11 through the check valve 25. In the next expansion stroke, since the valves other than the oxygen enrichment valve 22 are closed, the pressure in the combustion chamber 17 decreases, the nitrogen adsorbed by the nitrogen adsorbent 24 is desorbed, and the combustion chamber 17 is enriched with nitrogen. Filled with air. The nitrogen-enriched air is exhausted from the exhaust port 5 by opening the exhaust valve 19 in the exhaust stroke.

酸素富化空気タンク11内に蓄えられた酸素富化空気は、エンジン低負荷時にECU28により制御されるガス噴射弁13から吸気ポート2に噴射供給し、図6に示すように、エンジン負荷が高くなるにつれて少なくするように噴射供給する。これにより、リーン燃焼限界が拡大しエンジン効率を大幅に向上可能となる。
かかる本実施形態の構成によれば、ピストン16の往復動によるシリンダ4内の圧力変化を利用して窒素吸着剤24における窒素の吸着・脱離を制御して酸素富化空気を得ることができるので、レシプロ式内燃機関に多少の構成を付加するだけで、十分な酸素富化空気を生成できる。特に、レシプロ式内燃機関に搭載する場合、燃焼用シリンダやクランク軸或いはカム軸等を共用することでコンパクト且つ低コストな気体富化装置とすることができる。また、エンジン3の燃焼用シリンダ4を共用するので、高速で酸素富化空気を生成できると共に、コースト時に通常仕事を行っていないシリンダを利用して富化空気を生成するので、機関効率を悪化させることがない。更に、生成した酸素富化空気をタンク11に貯蔵するので、任意のタイミングで酸素富化空気を供給することができる。更にまた、酸素富化空気タンク11の残量を監視してタンク11内の気体量が過剰にならないように制御しているので、酸素富化空気タンク11や周辺部品の破損を回避できる。
Oxygen-enriched air stored in the oxygen-enriched air tank 11 is injected and supplied from the gas injection valve 13 controlled by the ECU 28 to the intake port 2 when the engine is under low load. As shown in FIG. The injection is supplied so as to decrease as it becomes. As a result, the lean combustion limit is expanded and the engine efficiency can be greatly improved.
According to the configuration of this embodiment, oxygen-enriched air can be obtained by controlling the adsorption / desorption of nitrogen in the nitrogen adsorbent 24 using the pressure change in the cylinder 4 due to the reciprocating motion of the piston 16. Therefore, sufficient oxygen-enriched air can be generated only by adding some configuration to the reciprocating internal combustion engine. In particular, when mounted on a reciprocating internal combustion engine, a compact and low-cost gas enrichment device can be obtained by sharing a combustion cylinder, a crankshaft, a camshaft, or the like. In addition, since the combustion cylinder 4 of the engine 3 is shared, oxygen-enriched air can be generated at high speed, and enriched air is generated using a cylinder that does not perform normal work during coasting, thus deteriorating engine efficiency. I will not let you. Furthermore, since the produced oxygen-enriched air is stored in the tank 11, the oxygen-enriched air can be supplied at an arbitrary timing. Furthermore, since the remaining amount of the oxygen-enriched air tank 11 is monitored and controlled so that the amount of gas in the tank 11 does not become excessive, damage to the oxygen-enriched air tank 11 and peripheral parts can be avoided.

次に、本発明の第2実施形態について説明する。
図7は、レシプロ式内燃機関に適用した第2実施形態の概略構成図、図8は本実施形態のエンジンの詳細図、図9は上方から見た場合のエンジンの詳細図である。尚、第1実施形態と同一要素には同一符号を付して説明を省略する。
図7〜図9において、本実施形態は、副室式内燃機関に適用したものであり、燃焼室(主燃焼室)17の上方に、当該主燃焼室17と噴孔31を介して連通する副燃焼室32が形成されている。この副燃焼室32には、点火プラグ21、副燃焼室32に燃料を噴射供給する副室用燃料噴射弁33及び酸素富化空気と窒素富化空気を切替え噴射供給可能なガス噴射弁13が配置されている。ガス噴射弁13は、図7に示すように、ガス配管12に介装した切替え弁34により酸素富化空気タンク11と窒素富化空気タンク35にそれぞれ切替え接続可能である。
Next, a second embodiment of the present invention will be described.
FIG. 7 is a schematic configuration diagram of a second embodiment applied to a reciprocating internal combustion engine, FIG. 8 is a detailed diagram of the engine of the present embodiment, and FIG. 9 is a detailed diagram of the engine when viewed from above. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment, and description is abbreviate | omitted.
7 to 9, the present embodiment is applied to a sub-chamber internal combustion engine, and communicates with the main combustion chamber 17 and the injection hole 31 above the combustion chamber (main combustion chamber) 17. A secondary combustion chamber 32 is formed. The sub-combustion chamber 32 includes a spark plug 21, a sub-chamber fuel injection valve 33 that injects and supplies fuel to the sub-combustion chamber 32, and a gas injection valve 13 that can switch and supply oxygen-enriched air and nitrogen-enriched air. Has been placed. As shown in FIG. 7, the gas injection valve 13 can be switched and connected to the oxygen-enriched air tank 11 and the nitrogen-enriched air tank 35 by a switching valve 34 interposed in the gas pipe 12.

また、主燃焼室17に、排気バルブ19及び酸素富化用バルブ22とカム軸を共用するカム機構により開閉制御される吐出バルブとして窒素富化用バルブ36が形成されている。この窒素富化用バルブ36を介してシリンダ4の主燃焼室17と連通可能な連通路37がシリンダヘッド14に形成され、当該連通路37は、チェック弁38を介して富化空気貯蔵タンクである前記窒素富化空気タンク35に接続している。   Further, a nitrogen enrichment valve 36 is formed in the main combustion chamber 17 as a discharge valve that is controlled to be opened and closed by a cam mechanism that shares the camshaft with the exhaust valve 19 and the oxygen enrichment valve 22. A communication passage 37 that can communicate with the main combustion chamber 17 of the cylinder 4 is formed in the cylinder head 14 through the nitrogen enriching valve 36, and the communication passage 37 is a rich air storage tank through a check valve 38. It is connected to a certain nitrogen-enriched air tank 35.

前記窒素富化空気タンク35には、窒素富化空気の残量をモニタリングする残量検知手段として圧力センサ40と、窒素富化空気タンク35の窒素富化空気を大気に開放する大気開放手段としての開放バルブ41とが備えられ、酸素富化空気タンク11と同様にして、圧力センサ40により窒素富化空気残量を監視し、窒素富化空気タンク35内が所定圧力を超えた場合には、ECU28からの制御により開放バルブ41を開弁させて一部の窒素富化空気が大気開放できるようになっている。   The nitrogen-enriched air tank 35 has a pressure sensor 40 as remaining amount detecting means for monitoring the remaining amount of nitrogen-enriched air, and atmospheric release means for releasing the nitrogen-enriched air in the nitrogen-enriched air tank 35 to the atmosphere. In the same manner as the oxygen-enriched air tank 11, the remaining amount of nitrogen-enriched air is monitored by the pressure sensor 40, and when the inside of the nitrogen-enriched air tank 35 exceeds a predetermined pressure, The release valve 41 is opened under the control of the ECU 28 so that a part of the nitrogen-enriched air can be opened to the atmosphere.

また、本実施形態のバルブモード切替部29は、ECU28からの指令により、エンジン運転状態が通常運転の場合は、ロストモーション機構を動作させて酸素富化用バルブ22及び窒素富化用バルブ36を閉弁状態に保持し、コースト時は酸素及び窒素の各富化空気生成動作を実行すべく、ロストモーション機構を解除して酸素富化用バルブ22及び窒素富化用バルブ36をそれぞれ開閉動作させると同時に排気バルブ19をロストモーション機構により閉弁状態に保持する。   Further, according to a command from the ECU 28, the valve mode switching unit 29 according to the present embodiment operates the lost motion mechanism to operate the oxygen enrichment valve 22 and the nitrogen enrichment valve 36 when the engine operating state is a normal operation. In the coasting state, the lost motion mechanism is released and the oxygen enrichment valve 22 and the nitrogen enrichment valve 36 are opened and closed to execute oxygen and nitrogen enriched air generation operations during coasting. At the same time, the exhaust valve 19 is held closed by the lost motion mechanism.

次に、第2実施形態の動作を説明する。
エンジン3の通常運転時では、バルブモード切替部29によりロストモーション機構を動作させて酸素富化用バルブ22及び窒素富化用バルブ36を閉弁状態に保持し、この状態で、第1実施形態と同様に図4に示すバルブタイミングで吸気バルブ18と排気バルブ19が動作する。吸気行程において吸気バルブ18の開弁により吸気ポート2から主燃焼室17に混合気が導入され、圧縮行程において主燃焼室17内の混合気は、噴孔31を介して副燃焼室32へ導入され、点火プラグ25により点火燃焼される。副燃焼室32で燃焼した火炎は、噴孔31から主燃焼室17へと放射され、主燃焼室17内の混合気を着火、燃焼させる。その後、排気行程において排気バルブ19の開弁により排気が排気ポート5から排気される。
Next, the operation of the second embodiment will be described.
During normal operation of the engine 3, the lost motion mechanism is operated by the valve mode switching unit 29 to hold the oxygen enrichment valve 22 and the nitrogen enrichment valve 36 in the closed state. In this state, the first embodiment Similarly, the intake valve 18 and the exhaust valve 19 operate at the valve timing shown in FIG. In the intake stroke, the air-fuel mixture is introduced from the intake port 2 into the main combustion chamber 17 by opening the intake valve 18, and in the compression stroke, the air-fuel mixture in the main combustion chamber 17 is introduced into the sub-combustion chamber 32 through the injection holes 31. The ignition plug 25 ignites and burns. The flame burned in the auxiliary combustion chamber 32 is radiated from the nozzle hole 31 to the main combustion chamber 17 to ignite and burn the air-fuel mixture in the main combustion chamber 17. Thereafter, exhaust is exhausted from the exhaust port 5 by opening the exhaust valve 19 in the exhaust stroke.

一方、コースト時では、バルブモード切替部29によりロストモーション機構を解除して酸素富化用バルブ22及び窒素富化用バルブ36を開閉駆動可能な状態にすると同時に、排気バルブ19をロストモーション機構により閉弁状態とする。この状態において、図10に示すようなバルブタイミングで吸気バルブ18、酸素富化用バルブ22及び窒素富化用バルブ36を動作させる。これにより、吸気行程において吸気バルブ18の開弁により吸気ポート2から主燃焼室17に吸入空気が導入され、圧縮行程において酸素富化用バルブ22が開弁して主燃焼室17内の空気が窒素吸着剤24へ導かれ、第1実施形態と同様にして酸素富化空気タンク11に蓄えられる。次の膨張行程においては、酸素富化用バルブ22以外は閉じているため主燃焼室17内の圧力は低下し、窒素吸着剤24に吸着された窒素が脱離して主燃焼室17内は窒素富化空気で満たされる。そして、この窒素富化空気は、排気行程で窒素富化バルブ36の開弁により連通路37に導入され、窒素富化空気タンク35内に蓄えられる。   On the other hand, at the coast, the lost motion mechanism is released by the valve mode switching unit 29 so that the oxygen enrichment valve 22 and the nitrogen enrichment valve 36 can be opened and closed, and at the same time, the exhaust valve 19 is operated by the lost motion mechanism. The valve is closed. In this state, the intake valve 18, the oxygen enrichment valve 22, and the nitrogen enrichment valve 36 are operated at the valve timings as shown in FIG. As a result, intake air is introduced from the intake port 2 to the main combustion chamber 17 by opening the intake valve 18 in the intake stroke, and the oxygen enrichment valve 22 is opened in the compression stroke, so that the air in the main combustion chamber 17 is changed. It is guided to the nitrogen adsorbent 24 and stored in the oxygen-enriched air tank 11 in the same manner as in the first embodiment. In the next expansion stroke, since the valves other than the oxygen enrichment valve 22 are closed, the pressure in the main combustion chamber 17 decreases, the nitrogen adsorbed by the nitrogen adsorbent 24 is desorbed, and the inside of the main combustion chamber 17 is nitrogen. Filled with enriched air. The nitrogen-enriched air is introduced into the communication passage 37 by opening the nitrogen-enriched valve 36 during the exhaust stroke, and is stored in the nitrogen-enriched air tank 35.

酸素富化空気と窒素富化空気の供給は、エンジン低負荷時ではガス噴射弁13が酸素富化空気タンク11側に接続するよう、ECU28により切替え弁34を切替え制御し、酸素富化空気をガス噴射弁13から副燃焼室32内に噴射供給する。そして、第1実施形態と同様に図6のように、エンジン負荷が高くなるにつれて少なくするように噴射供給する。これにより、リーン燃焼限界が拡大しエンジン効率を大幅に向上可能となる。即ち、副燃焼室32の噴孔31から噴出されるトーチ火炎が強力となり、主燃焼室17内の混合気を燃焼することができる。また、負荷の増大に伴って酸素富化空気量を減量することにより、酸素富化空気の消費を抑制できる。   The oxygen-enriched air and the nitrogen-enriched air are supplied by controlling the switching valve 34 by the ECU 28 so that the gas injection valve 13 is connected to the oxygen-enriched air tank 11 when the engine is under low load. The gas is injected from the gas injection valve 13 into the auxiliary combustion chamber 32. Then, as in the first embodiment, as shown in FIG. 6, injection is supplied so as to decrease as the engine load increases. As a result, the lean combustion limit is expanded and the engine efficiency can be greatly improved. That is, the torch flame ejected from the nozzle hole 31 of the auxiliary combustion chamber 32 becomes stronger, and the air-fuel mixture in the main combustion chamber 17 can be combusted. Moreover, consumption of oxygen-enriched air can be suppressed by reducing the amount of oxygen-enriched air as the load increases.

エンジン高負荷時ではガス噴射弁13が窒素富化空気タンク35側に接続するよう、ECU28により切替え弁34を切替え制御し、窒素富化空気をガス噴射弁13から副燃焼室32内に噴射供給する。この場合、図11に示すように、エンジン負荷が低くなるにつれて少なくするように噴射供給する。副室燃焼において、高負荷時は燃焼速度が速すぎるため燃焼振動が問題となっているが、本実施形態のように窒素富化空気を供給することで燃焼速度が低下し、燃焼振動問題が解決できる。即ち、副燃焼室32の噴孔31から噴出されるトーチ火炎が弱まることにより、主燃焼室17の燃焼速度がそれほど速くならず、振動問題が解決できる。   The ECU 28 switches and controls the switching valve 34 so that the gas injection valve 13 is connected to the nitrogen-enriched air tank 35 side at the time of high engine load, and the nitrogen-enriched air is injected and supplied from the gas injection valve 13 into the auxiliary combustion chamber 32. To do. In this case, as shown in FIG. 11, injection is supplied so as to decrease as the engine load decreases. In sub-chamber combustion, combustion vibration is a problem because the combustion speed is too high at high loads, but the combustion speed is reduced by supplying nitrogen-enriched air as in this embodiment, and the combustion vibration problem is can be solved. That is, since the torch flame ejected from the nozzle hole 31 of the sub-combustion chamber 32 is weakened, the combustion speed of the main combustion chamber 17 is not so high, and the vibration problem can be solved.

かかる第2実施形態の構成によれば、燃焼安定性が必要である副室式内燃機関で安定した燃焼を得ることができる。また、窒素富化空気を生成することで、吸着剤24で吸着した気体を無駄にすることなく使用できる。
次に、図12及び図13に本発明に係る気体富化装置の第3実施形態を示す。
この第3実施形態は、酸素富化空気及び窒素富化空気の生成装置を、レシプロ式内燃機関のエンジンとは別に設ける構成である。
According to the configuration of the second embodiment, stable combustion can be obtained in the sub-chamber internal combustion engine that requires combustion stability. Further, by generating nitrogen-enriched air, the gas adsorbed by the adsorbent 24 can be used without being wasted.
Next, FIG.12 and FIG.13 shows 3rd Embodiment of the gas enrichment apparatus based on this invention.
In the third embodiment, a device for generating oxygen-enriched air and nitrogen-enriched air is provided separately from the engine of the reciprocating internal combustion engine.

図において、気体富化装置60を、エンジン50とは別に設けられている。前記気体富化装置60のシリンダ61には、吸入空気を取り入れるための吸気バルブ62、酸素富化用バルブ63、窒素富化用バルブ64が設けられる。前記吸気バルブ62、酸素富化用バルブ63及び窒素富化用バルブ64は、エンジン50のカム軸51を共用する構成である。また、気体富化装置60のシリンダ61内のピストン65も、エンジン50の各シリンダ52内のピストン53とクランク軸54を共用する構成である。図中、55は吸気バルブを示し、56は排気バルブを示す。   In the figure, the gas enrichment device 60 is provided separately from the engine 50. The cylinder 61 of the gas enrichment device 60 is provided with an intake valve 62 for taking in intake air, an oxygen enrichment valve 63, and a nitrogen enrichment valve 64. The intake valve 62, the oxygen enrichment valve 63, and the nitrogen enrichment valve 64 are configured to share the camshaft 51 of the engine 50. The piston 65 in the cylinder 61 of the gas enrichment device 60 is also configured to share the piston 53 and the crankshaft 54 in each cylinder 52 of the engine 50. In the figure, 55 indicates an intake valve, and 56 indicates an exhaust valve.

尚、図示しないが、気体富化装置60は、第2実施形態と同様に、シリンダ61に酸素富化用バルブ63及び窒素富化用バルブ64を介して各連通路23,37が接続し、酸素富化空気タンク11及び窒素富化空気タンク35にそれぞれ酸素富化空気及び窒素富化空気が貯蔵できる構成となっている。
かかる第3実施形態によれば、エンジン50の運転状態とは関係なく、コースト時だけでなく常に富化空気の生成が可能となり、多くの酸素富化空気及び窒素富化空気を生成できる。また、エンジン50のカム軸51やクランク軸54を共用することで、コストの増大を抑制できる。
Although not shown, in the gas enrichment device 60, as in the second embodiment, the communication passages 23 and 37 are connected to the cylinder 61 via the oxygen enrichment valve 63 and the nitrogen enrichment valve 64, respectively. The oxygen-enriched air tank 11 and the nitrogen-enriched air tank 35 can store oxygen-enriched air and nitrogen-enriched air, respectively.
According to the third embodiment, it is possible to always generate enriched air, not only during coasting, regardless of the operating state of the engine 50, and it is possible to generate a large amount of oxygen-enriched air and nitrogen-enriched air. Further, by sharing the camshaft 51 and the crankshaft 54 of the engine 50, an increase in cost can be suppressed.

尚、第3実施形態では、酸素富化空気と窒素富化空気の両方を生成する構成であるが、窒素富化用バルブに代えて排気バルブを設けて酸素富化空気だけを生成する構成としてもよいことは言うまでもない。
また、上記第1実施形態において、窒素吸着剤に代えて酸素吸着剤を利用して同様の原理で、窒素富化空気のみ或いは窒素富化空気と酸素富化空気の両方を得るような構成としてもよい。
In addition, in 3rd Embodiment, although it is the structure which produces | generates both oxygen-enriched air and nitrogen-enriched air, it replaces with the valve for nitrogen enrichment, and is provided with an exhaust valve as a structure which produces | generates only oxygen-enriched air. Needless to say.
In the first embodiment, the nitrogen adsorbent is used instead of the nitrogen adsorbent, and the same principle is used to obtain only nitrogen-enriched air or both nitrogen-enriched air and oxygen-enriched air. Also good.

本発明に係る気体富化装置の第1実施形態の概略構成図The schematic block diagram of 1st Embodiment of the gas enrichment apparatus which concerns on this invention. 図1のエンジンの詳細図Detailed view of the engine of FIG. 上方から見た場合の図1のエンジンの詳細図Detailed view of the engine of FIG. 1 as viewed from above 通常運転時のバルブタイミングを示す図Diagram showing valve timing during normal operation コースト時のバルブタイミングを示す図Diagram showing valve timing during coasting 第1実施形態のエンジン運転状態と酸素富化空気供給量との関係を示す図The figure which shows the relationship between the engine operating state of 1st Embodiment, and oxygen-enriched air supply amount. 本発明に係る気体富化装置の第2実施形態の概略構成図The schematic block diagram of 2nd Embodiment of the gas enrichment apparatus which concerns on this invention. 図7のエンジンの詳細図Detailed view of the engine of FIG. 上方から見た場合の図7のエンジンの詳細図Detailed view of the engine of FIG. 7 when viewed from above 第2実施形態のコースト時のバルブタイミングを示す図The figure which shows the valve timing at the time of the coast of 2nd Embodiment. 第2実施形態のエンジン運転状態と窒素富化空気供給量との関係を示す図The figure which shows the relationship between the engine operating state of 2nd Embodiment, and nitrogen-rich air supply amount. 本発明に係る気体富化装置の第3実施形態の上方から見た概略構成図The schematic block diagram seen from upper direction of 3rd Embodiment of the gas enrichment apparatus which concerns on this invention 第3実施形態の側面から見た場合の概略構成図Schematic configuration diagram when viewed from the side of the third embodiment

符号の説明Explanation of symbols

3,50 エンジン
4,61 シリンダ
9 ガス配管
11 酸素富化空気タンク
13 ガス噴射弁
16,65 ピストン
17 燃焼室(主燃焼室)
18,62 吸気バルブ
19 排気バルブ(吐出バルブ)
20,51 カム軸
22,63 酸素富化用バルブ
23,37 連通路
24 窒素吸着剤
25,38 チェック弁
26,40 圧力センサ
27,41 開放バルブ
28 エンジンコントロールユニット(ECU)
29 バルブモード切替部
31 噴孔
32 副燃焼室
34 切替え弁
35 窒素富化空気タンク
36,64 窒素富化用バルブ
54 クランク軸
3, 50 Engine 4, 61 Cylinder 9 Gas piping 11 Oxygen-enriched air tank 13 Gas injection valve 16, 65 Piston 17 Combustion chamber (main combustion chamber)
18, 62 Intake valve 19 Exhaust valve (discharge valve)
20, 51 Camshaft 22, 63 Oxygen-enriched valve 23, 37 Communication path 24 Nitrogen adsorbent 25, 38 Check valve 26, 40 Pressure sensor 27, 41 Release valve 28 Engine control unit (ECU)
29 Valve mode switching unit 31 Injection hole 32 Subcombustion chamber 34 Switching valve 35 Nitrogen-enriched air tank 36, 64 Nitrogen-enriched valve 54 Crankshaft

Claims (22)

空気中の酸素及び窒素のいずれか一方の気体を吸着・脱離可能な吸着剤と、
空気の吸入吐出動作を行う富化空気生成用シリンダ内のピストン往復動による圧力変化に基づいて、前記シリンダと連通可能な連通路に介装した前記吸着剤に前記シリンダ内の正圧を作用させて前記一方の気体を吸着させ、前記吸着剤に前記シリンダ内の負圧を作用させて吸着気体を脱離させる圧力調整手段とを備え、
前記圧力調整手段により、前記吸着剤の吸着・脱離を制御して、吸入空気に比べて吸着気体濃度が異なる空気を生成して所望の富化空気を得る構成としたことを特徴とする内燃機関の気体富化装置。
An adsorbent capable of adsorbing and desorbing either oxygen or nitrogen gas in the air;
Based on the pressure change caused by the reciprocating motion of the piston in the enriched air generating cylinder that performs the air suction / discharge operation, positive pressure in the cylinder is applied to the adsorbent interposed in the communication path that can communicate with the cylinder. Pressure adjusting means for adsorbing the one gas and desorbing the adsorbed gas by applying a negative pressure in the cylinder to the adsorbent,
An internal combustion engine characterized in that the pressure adjusting means controls the adsorption / desorption of the adsorbent to generate air having a different adsorbed gas concentration compared to intake air to obtain desired enriched air. Engine gas enrichment device.
前記圧力調整手段は、吸気バルブ、吐出バルブ及びピストンを備え富化空気生成のための空気を吸入する前記富化生成用シリンダと、前記連通路に設けられて前記シリンダ内の吸入空気の前記吸着剤への導入を制御する制御バルブとを備え、該制御バルブを前記ピストンの圧縮・膨張行程で開弁して前記一方の気体の吸着・脱離を行う構成としたことを特徴とする請求項1に記載の内燃機関の気体富化装置。   The pressure adjusting means includes an intake valve, a discharge valve, and a piston, and the enrichment generating cylinder that sucks in air for generating enriched air; and the adsorption of intake air in the cylinder provided in the communication path And a control valve for controlling introduction into the agent, wherein the control valve is opened during a compression / expansion stroke of the piston to adsorb / desorb the one gas. The gas enrichment device for an internal combustion engine according to claim 1. 前記富化空気生成用シリンダは、レシプロ式内燃機関の燃焼に用いるシリンダとは別に設ける構成としたことを特徴とする請求項1又は2に記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to claim 1 or 2, wherein the enriched air generation cylinder is provided separately from a cylinder used for combustion of a reciprocating internal combustion engine. 前記富化空気生成用シリンダのピストン機構は、前記レシプロ式内燃機関のクランク軸を共用する構成としたことを特徴とする請求項3に記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to claim 3, wherein the piston mechanism of the enriched air generation cylinder is configured to share a crankshaft of the reciprocating internal combustion engine. 前記富化空気生成用シリンダのカム機構は、前記レシプロ式内燃機関のカム軸を共用する構成としたことを特徴とする請求項3又は4に記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to claim 3 or 4, wherein the cam mechanism of the enriched air generation cylinder shares a cam shaft of the reciprocating internal combustion engine. 前記富化空気生成用シリンダは、前記レシプロ式内燃機関の燃焼に用いるシリンダを共用する構成としたことを特徴とする請求項1又は2に記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to claim 1 or 2, wherein the enriched air generation cylinder is configured to share a cylinder used for combustion of the reciprocating internal combustion engine. コースト時に、前記圧力調整手段を動作させて前記富化空気を生成する構成としたことを特徴とする請求項6に記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to claim 6, wherein the enriched air is generated by operating the pressure adjusting means during coasting. 前記富化空気を貯蔵する富化空気貯蔵タンクを備える構成としたことを特徴とする請求項1〜7のいずれか1つに記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to any one of claims 1 to 7, wherein the enrichment air storage tank for storing the enriched air is provided. 前記富化空気貯蔵タンクは、当該富化空気貯蔵タンク内の富化空気残量を検知する残量検知手段と、前記富化空気貯蔵タンク内の富化空気を大気に放出する大気放出手段とを備え、前記残量検知手段により富化空気残量が所定値を越えたことが検知された時に、前記大気放出手段により前記富化空気貯蔵タンク内の富化空気の一部を大気へ放出する構成としたことを特徴とする請求項8に記載の内燃機関の気体富化装置。   The enriched air storage tank includes a remaining amount detecting means for detecting the remaining amount of the enriched air in the enriched air storage tank, and an atmospheric discharge means for releasing the enriched air in the enriched air storage tank to the atmosphere. A part of the enriched air in the enriched air storage tank is released to the atmosphere by the atmospheric discharge means when it is detected by the remaining amount detection means that the remaining amount of enriched air exceeds a predetermined value. The gas enrichment device for an internal combustion engine according to claim 8, characterized in that: 前記富化空気が、酸素富化空気であることを特徴とする請求項1〜9のいずれか1つに記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to any one of claims 1 to 9, wherein the enriched air is oxygen enriched air. 前記吸着剤が窒素を吸着・脱離する構成であるとき、前記吸着剤に前記正圧を作用させたときに得られる吸着剤通過気体を前記酸素富化空気として得ると共に、前記吸着剤に前記負圧を作用したときに得られる前記富化空気生成用シリンダ内の空気を前記吐出バルブを開弁して排出する構成としたことを特徴とする請求項10に記載の内燃機関の気体富化装置。   When the adsorbent is configured to adsorb and desorb nitrogen, the adsorbent passing gas obtained when the positive pressure is applied to the adsorbent is obtained as the oxygen-enriched air, and 11. The gas enrichment of an internal combustion engine according to claim 10, wherein the air in the enriched air generation cylinder obtained when a negative pressure is applied is discharged by opening the discharge valve. apparatus. 前記富化空気生成用シリンダがレシプロ式内燃機関の燃焼に用いるシリンダであるとき、該燃焼用シリンダの排気バルブを前記吐出バルブとして用いる構成としたことを特徴とする請求項11に記載の内燃機関の気体富化装置。   The internal combustion engine according to claim 11, wherein when the enriched air generating cylinder is a cylinder used for combustion of a reciprocating internal combustion engine, an exhaust valve of the combustion cylinder is used as the discharge valve. Gas enrichment equipment. 前記富化空気が、酸素富化空気と窒素富化空気である請求項1〜9のいずれか1つに記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to any one of claims 1 to 9, wherein the enriched air is oxygen enriched air and nitrogen enriched air. 前記富化空気生成用シリンダがレシプロ式内燃機関の燃焼に用いるシリンダと別であって、前記吸着剤が窒素を吸着・脱離する構成であるとき、前記吸着剤に前記正圧を作用させたときに得られる吸着剤通過気体を前記酸素富化空気として得ると共に、前記吸着剤に前記負圧を作用したときに得られる前記富化空気生成用シリンダ内の空気を前記吐出バルブを開弁して前記窒素富化空気として得る構成としたことを特徴とする請求項13に記載の内燃機関の気体富化装置。   When the enriched air generating cylinder is separate from a cylinder used for combustion of a reciprocating internal combustion engine, and the adsorbent is configured to adsorb and desorb nitrogen, the positive pressure is applied to the adsorbent. The adsorbent passage gas obtained sometimes is obtained as the oxygen-enriched air, and the discharge valve is opened for the air in the enriched air generating cylinder obtained when the negative pressure is applied to the adsorbent. The gas enrichment device for an internal combustion engine according to claim 13, wherein the nitrogen enriched air is obtained. 前記富化空気生成用シリンダがレシプロ式内燃機関の燃焼に用いるシリンダであって、前記吸着剤が窒素を吸着・脱離する構成であるとき、前記燃焼用シリンダに前記吐出バルブを設け、前記吸着剤に前記正圧を作用させたときに得られる吸着剤通過気体を前記酸素富化空気として得ると共に、前記吸着剤に前記負圧を作用したときに得られる前記燃焼用シリンダ内の空気を前記吐出バルブを開弁して前記窒素富化空気として得る構成としたことを特徴とする請求項13に記載の内燃機関の気体富化装置。   When the enriched air generating cylinder is a cylinder used for combustion of a reciprocating internal combustion engine, and the adsorbent is configured to adsorb and desorb nitrogen, the combustion cylinder is provided with the discharge valve, and the adsorption The adsorbent passing gas obtained when the positive pressure is applied to the adsorbent is obtained as the oxygen-enriched air, and the air in the combustion cylinder obtained when the negative pressure is applied to the adsorbent is The gas enrichment device for an internal combustion engine according to claim 13, wherein a discharge valve is opened to obtain the nitrogen-enriched air. 前記ピストンの圧縮・膨張行程で前記制御バルブを開弁し、前記ピストンの排気行程で前記吐出バルブを開弁する構成としたことを特徴とする請求項15に記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to claim 15, wherein the control valve is opened during a compression / expansion stroke of the piston, and the discharge valve is opened during an exhaust stroke of the piston. . 富化空気生成時は、前記排気バルブを閉弁状態とする構成としたことを特徴とするを請求項16に記載の内燃機関の気体富化装置。   17. The gas enrichment device for an internal combustion engine according to claim 16, wherein the exhaust valve is closed when the enriched air is generated. 主燃焼室と、該主燃焼室の上方に当該主燃焼室と噴孔を介して連通する副燃焼室とを有し、該副燃焼室内に点火手段を配置し、該点火手段で副燃焼室内の燃料に点火して前記噴孔から燃料トーチを噴出し主燃焼室内の混合気を燃焼させる副室式内燃機関の前記副燃焼室内に、生成した前記富化空気を供給する構成としたことを特徴とする請求項1〜17のいずれか1つに記載の内燃機関の気体富化装置。   A main combustion chamber, and a sub-combustion chamber communicating with the main combustion chamber via the nozzle hole above the main combustion chamber, and an ignition unit is disposed in the sub-combustion chamber, and the ignition unit is configured to The generated enriched air is supplied to the sub-combustion chamber of the sub-chamber internal combustion engine that ignites the fuel and ejects a fuel torch from the nozzle hole and burns the air-fuel mixture in the main combustion chamber. 18. The gas enrichment device for an internal combustion engine according to claim 1, wherein the gas enrichment device is an internal combustion engine. 前記副燃焼室内に供給可能な富化空気が、酸素富化空気であるとき、機関低負荷時に前記酸素富化空気を前記副燃焼室内に供給する構成としたことを特徴とする請求項18に記載の内燃機関の気体富化装置。   The configuration according to claim 18, wherein when the enriched air that can be supplied into the auxiliary combustion chamber is oxygen-enriched air, the oxygen-enriched air is supplied into the auxiliary combustion chamber at a low engine load. A gas enrichment device for an internal combustion engine as described. 前記副燃焼室内に供給可能な富化空気が、酸素富化空気と窒素富化空気であるとき、機関負荷状態に応じて前記副燃焼室内へ供給する富化空気を切替え、機関低負荷時に前記酸素富化空気を前記副燃焼室内に供給し、機関高負荷時に前記窒素富化空気を前記副燃焼室内に供給する構成としたことを特徴とする請求項18に記載の内燃機関の気体富化装置。   When the enriched air that can be supplied into the auxiliary combustion chamber is oxygen-enriched air and nitrogen-enriched air, the enriched air supplied into the auxiliary combustion chamber is switched according to the engine load state, and the engine 19. The gas enrichment of an internal combustion engine according to claim 18, wherein oxygen enriched air is supplied into the auxiliary combustion chamber and the nitrogen enriched air is supplied into the auxiliary combustion chamber when the engine is heavily loaded. apparatus. 前記酸素富化空気の供給量を、機関負荷が高くなるにつれて少なくする構成としたことを特徴とする請求項19又は20に記載の内燃機関の気体富化装置。   The gas enrichment device for an internal combustion engine according to claim 19 or 20, wherein the supply amount of the oxygen-enriched air is reduced as the engine load increases. 前記窒素富化空気の供給量を、機関負荷が低くなるにつれて少なくする構成としたことを特徴とする請求項20に記載の内燃機関の気体富化装置。   21. The gas enrichment device for an internal combustion engine according to claim 20, wherein the supply amount of the nitrogen-enriched air is reduced as the engine load decreases.
JP2006036101A 2006-02-14 2006-02-14 Gas enrichment device for internal combustion engine Pending JP2007218093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036101A JP2007218093A (en) 2006-02-14 2006-02-14 Gas enrichment device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036101A JP2007218093A (en) 2006-02-14 2006-02-14 Gas enrichment device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007218093A true JP2007218093A (en) 2007-08-30

Family

ID=38495666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036101A Pending JP2007218093A (en) 2006-02-14 2006-02-14 Gas enrichment device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007218093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257317A (en) * 2008-04-12 2009-11-05 Man Diesel Se Internal combustion engine
JP2015113738A (en) * 2013-12-10 2015-06-22 いすゞ自動車株式会社 Supercharger system for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257317A (en) * 2008-04-12 2009-11-05 Man Diesel Se Internal combustion engine
JP2015113738A (en) * 2013-12-10 2015-06-22 いすゞ自動車株式会社 Supercharger system for engine

Similar Documents

Publication Publication Date Title
WO2000068554A1 (en) Exhaust emission control device of internal combustion engine
JP4344953B2 (en) Exhaust gas purification device for internal combustion engine
JP2008038680A (en) Control device of gas fuel internal combustion engine
JP2007218093A (en) Gas enrichment device for internal combustion engine
JP2007056700A (en) Control device for hydrogen fueled engine
JP2006336613A (en) Exhaust emission control device of internal combustion engine
JP4404003B2 (en) Exhaust gas purification device for hydrogen-utilized internal combustion engine
JP4380465B2 (en) Control device for hydrogen fuel engine
JP3873537B2 (en) Exhaust gas purification device for internal combustion engine
JP2010007637A (en) Torque shock inhibition control device for engine
JP2008038704A (en) Exhaust control device for internal combustion engine
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP4492414B2 (en) Control device for internal combustion engine
JP2007224803A (en) Internal combustion engine
JP4424217B2 (en) Evaporative fuel processing device for internal combustion engine
JP4289389B2 (en) Exhaust gas purification device for lean combustion internal combustion engine
JP5884621B2 (en) Waste gate valve controller
JP7243112B2 (en) gas engine system
JP2011106352A (en) Fuel injection control device of internal combustion engine
JP4742911B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007177770A (en) Variable compression ratio internal combustion engine
JP2013164041A (en) Evaporated fuel supply device
JP4321274B2 (en) Internal combustion engine
JP2000265867A (en) Premixed compressed self ignition engine and controlling method therefor
JP2017002864A (en) Cng engine combustion control method and device