JP2007214443A - Enclosure and electronics - Google Patents

Enclosure and electronics Download PDF

Info

Publication number
JP2007214443A
JP2007214443A JP2006033843A JP2006033843A JP2007214443A JP 2007214443 A JP2007214443 A JP 2007214443A JP 2006033843 A JP2006033843 A JP 2006033843A JP 2006033843 A JP2006033843 A JP 2006033843A JP 2007214443 A JP2007214443 A JP 2007214443A
Authority
JP
Japan
Prior art keywords
partition plate
housing
opening
surrounding member
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033843A
Other languages
Japanese (ja)
Inventor
Shigeki Hoshino
茂樹 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2006033843A priority Critical patent/JP2007214443A/en
Publication of JP2007214443A publication Critical patent/JP2007214443A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the amplification of electromagnetic waves generated inside an enclosure due to a cavity resonance phenomenon. <P>SOLUTION: The enclosure 1 includes a paralellepipedic exterior enclosure member 2 having conductive inner side faces; and conductive partitions 5 extending from a partition mounting face 3 of one of the inner side faces, to a point before an inner side face 4 opposite to the partition mounting face 3 through the inside of the exterior enclosure member 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子部品を収納するための筐体と、筐体に電子部品が収納された電子機器に関し、特に、電子部品からの不要な電磁波放射を抑制する筐体に関する。   The present invention relates to a housing for storing electronic components and an electronic device in which the electronic components are stored in the housing, and more particularly to a housing that suppresses unnecessary electromagnetic radiation from the electronic components.

一般に、回路基板や電源回路その他のユニットからは、種々の周波数成分の電磁波が発生している。これらの電子部品は筐体に収納されているが、電磁波が筐体の外部に漏れると、テレビ、ラジオ等の他の電子機器に影響を及ぼす可能性がある。このような現象はEMI(Electro Magnetic Interface)と呼ばれ、現在、民間自主規制の対象とされている。また、高性能な電子部品では、電子部品自体が受ける電磁波の影響を小さくすることも重要である。そのため、これらの電子部品を収納する筐体は、一般に、導電性(金属)材料で形成されるか、または、プラスチック等でできた筐体の内側表面に導電性材料の薄膜を被覆して形成されている。   In general, electromagnetic waves having various frequency components are generated from circuit boards, power supply circuits, and other units. These electronic components are housed in a housing. However, if electromagnetic waves leak outside the housing, other electronic devices such as a television and a radio may be affected. Such a phenomenon is called EMI (Electro Magnetic Interface) and is currently subject to private voluntary regulations. In high-performance electronic components, it is also important to reduce the influence of electromagnetic waves on the electronic components themselves. Therefore, the housing for storing these electronic components is generally formed of a conductive (metal) material, or formed by coating a thin film of a conductive material on the inner surface of the housing made of plastic or the like. Has been.

電子部品を収納する筐体には、通常、内部冷却・放熱用の開口、あるいは、ケーブルコネクタなど、ユニット周囲に設けられた接続用の開口が設けられている。これらの開口は、孔状、スリット状などの形状を有している。このような開口は、その性質上設置の必要性が高く、高性能なパソコンやルータのように高速に動作する電子機器では、開口面積も増加する傾向にある。また、さまざまなユニットを後から追加するための開口が設けられることも多い。これらの開口も、孔状、スリット状などの形状を有している。開口は、筐体を構成するパネル間のかみ合わせの不完全性によっても生じる。内部で発生した電磁波は、これらの開口からも放射される。そのため、EMI対策として、筐体の開口からの電磁波放射を抑制する技術が多数開示されている。   A housing for storing an electronic component is usually provided with an opening for internal cooling and heat dissipation, or an opening for connection provided around the unit, such as a cable connector. These openings have shapes such as holes and slits. Due to the nature of such openings, there is a high need for installation, and electronic devices that operate at high speed, such as high-performance personal computers and routers, tend to increase the opening area. Also, an opening for adding various units later is often provided. These openings also have shapes such as holes and slits. The opening is also generated due to imperfect engagement between the panels constituting the casing. Electromagnetic waves generated inside are also radiated from these openings. Therefore, many techniques for suppressing electromagnetic radiation from the opening of the housing are disclosed as measures against EMI.

特許文献1には、開口周辺の筐体内側面に電磁波を吸収する材料を設ける技術が開示されている。特許文献2には、筐体の内側面全域に電磁波を吸収するシートを設ける技術が開示されている。特許文献3には、筐体に設けられた複数の開口の縁に沿って、開口面に垂直に、帯状の導電性構造物を設ける技術が開示されている。筐体の開口には正負の電荷がたまりやすく、それが新たな電磁波発生源となる(スロットアンテナ)。しかし、このような構成によれば、電流は導電性構造物を流れ、電荷が開口に蓄積しないため、アンテナ効果による電磁波の放射が抑制される。   Patent Document 1 discloses a technique in which a material that absorbs electromagnetic waves is provided on an inner surface of a casing around an opening. Patent Document 2 discloses a technique of providing a sheet that absorbs electromagnetic waves over the entire inner surface of a housing. Patent Document 3 discloses a technique of providing a strip-like conductive structure perpendicular to the opening surface along the edges of a plurality of openings provided in the housing. Positive and negative charges are likely to accumulate in the opening of the housing, which becomes a new electromagnetic wave generation source (slot antenna). However, according to such a configuration, current flows through the conductive structure, and charges are not accumulated in the opening, so that radiation of electromagnetic waves due to the antenna effect is suppressed.

また、筐体を構成するパネル間のかみ合わせの不完全性によるスリット状開口からの不要電磁波の漏れを抑えるため、それらの隙間に金属製のガスケットを設置することも多い。これによって、筐体を構成するパネル間の電気的接続が保たれ、電磁波の漏れが抑えられる。   In addition, in order to suppress leakage of unnecessary electromagnetic waves from the slit-like opening due to imperfect engagement between the panels constituting the casing, a metal gasket is often installed in the gap between them. As a result, the electrical connection between the panels constituting the housing is maintained, and leakage of electromagnetic waves is suppressed.

一方、電磁波の放射を抑制するためには、電磁波の発生自体を抑制することも効果的である。この点で問題となるのが空洞共振現象である。すなわち、筐体内部に電磁波の発生源がある場合、内側面が金属性材料で形成された直方体形状の筐体には空洞共振現象が生じ、共振周波数成分の電磁波が筐体内部で増幅する。空洞共振現象が生じる周波数(空洞共振周波数)は、筐体のサイズで決まる。筐体は直方体形状であることが多いため、多くの筐体でこの空洞共振現象が問題となる。   On the other hand, in order to suppress the emission of electromagnetic waves, it is also effective to suppress the generation of electromagnetic waves themselves. A problem in this regard is the cavity resonance phenomenon. That is, when there is an electromagnetic wave generation source inside the casing, a cavity resonance phenomenon occurs in a rectangular parallelepiped casing whose inner surface is formed of a metallic material, and an electromagnetic wave having a resonance frequency component is amplified inside the casing. The frequency at which the cavity resonance phenomenon occurs (cavity resonance frequency) is determined by the size of the casing. Since the casing is often in the shape of a rectangular parallelepiped, the cavity resonance phenomenon becomes a problem in many casings.

空洞共振現象は、筐体内部の空間のサイズに応じて発生し、開口を有していても発生する。開口を有している場合には、筐体内部で増幅した共振周波数の電磁波は、その開口から放射される。筐体が完全に密閉されていれば、外部に対して十分なシールド効果が得られ、電磁波は外部に放射されないが、実際には、上述のとおり、開口を完全になくすことは困難である。したがって、どのような筐体を用いても、空洞共振現象によって電磁波が外部に放射される可能性がある。また、空洞共振現象によって筐体内部で電磁波が増幅されると、それによって、内部の基板やユニットに対する電磁波の干渉が生じる。   The cavity resonance phenomenon occurs according to the size of the space inside the housing, and occurs even when the opening is provided. In the case of having an opening, the electromagnetic wave having the resonance frequency amplified inside the housing is radiated from the opening. If the casing is completely sealed, a sufficient shielding effect can be obtained with respect to the outside, and electromagnetic waves are not radiated to the outside. However, in practice, it is difficult to completely eliminate the opening as described above. Therefore, no matter what case is used, electromagnetic waves may be radiated to the outside due to the cavity resonance phenomenon. Further, when electromagnetic waves are amplified inside the housing by the cavity resonance phenomenon, electromagnetic waves interfere with internal substrates and units.

このような空洞共振現象を抑制する技術として、特許文献4には、導電性材料で形成された仕切板を筐体内部に設ける技術が開示されている。筐体内部の空間は、仕切板によって完全に分割される。上述のように、空洞共振現象が生じる周波数は筐体のサイズに依存するため、これによって、空洞共振の共振周波数を調整し、筐体内部の電磁波発生源から生じる電磁波の空洞共振現象を抑制することができる。
特開平9−8490号公報 特開平11−177273号公報 特開平8−316679号公報 特開平5−129790号公報
As a technique for suppressing such a cavity resonance phenomenon, Patent Document 4 discloses a technique in which a partition plate made of a conductive material is provided inside a casing. The space inside the housing is completely divided by the partition plate. As described above, since the frequency at which the cavity resonance phenomenon occurs depends on the size of the housing, this adjusts the resonance frequency of the cavity resonance and suppresses the cavity resonance phenomenon of the electromagnetic wave generated from the electromagnetic wave generation source inside the housing. be able to.
Japanese Patent Laid-Open No. 9-8490 Japanese Patent Laid-Open No. 11-177273 JP-A-8-316679 JP-A-5-129790

このように、電子部品を収納する筐体において、内部で発生した電磁波の外部への放射を抑制するためには、筐体内部での電磁波の増幅を抑制することが効果的である。電磁波の増幅を抑制するには、筐体自身が持つ空洞共振周波数を、筐体内部の電子部品から発生する電磁波の周波数とずらすことが望ましい。   As described above, in the housing that houses the electronic components, it is effective to suppress the amplification of the electromagnetic waves inside the housing in order to suppress the radiation of the electromagnetic waves generated inside to the outside. In order to suppress the amplification of electromagnetic waves, it is desirable to shift the cavity resonance frequency of the casing itself from the frequency of electromagnetic waves generated from electronic components inside the casing.

特許文献1,2に記載の技術は、筐体の空洞共振周波数を変える効果は期待できない。空洞共振が生じる周波数領域では、筐体の壁面近傍を流れる電流は小さいため、電磁波吸収材を壁面に設けても、その効果は小さい。また、電磁波吸収材を空洞共振周波数の電磁波を有効に吸収するだけの厚みで設置することも困難である。以上より、空洞共振現象の抑制効果は小さい。   The techniques described in Patent Documents 1 and 2 cannot be expected to change the cavity resonance frequency of the casing. In the frequency region where the cavity resonance occurs, since the current flowing in the vicinity of the wall surface of the housing is small, the effect is small even if the electromagnetic wave absorbing material is provided on the wall surface. It is also difficult to install the electromagnetic wave absorbing material with a thickness sufficient to effectively absorb the electromagnetic wave having the cavity resonance frequency. From the above, the effect of suppressing the cavity resonance phenomenon is small.

特許文献3に記載の技術は、開口に流れる電流によるアンテナ効果を抑制するものであり、筐体内部に発生する空洞共振現象を抑えることはできない。空洞共振周波数は開口のサイズとは関連性がないため、空洞共振周波数を制御することもできない。また、開口のサイズごとに、開口に設ける導電性構造物の変更が必要である。   The technique described in Patent Document 3 suppresses the antenna effect caused by the current flowing through the opening, and cannot suppress the cavity resonance phenomenon that occurs inside the housing. Since the cavity resonance frequency is not related to the size of the opening, the cavity resonance frequency cannot be controlled. In addition, it is necessary to change the conductive structure provided in the opening for each size of the opening.

特許文献4に記載の技術は、筐体内部を完全に仕切るものであるため、プリント配線基板の実装等に大きな制約が生じる他、筐体内部の冷却性能にも影響が及ぶ可能性がある。   Since the technique described in Patent Document 4 completely partitions the inside of the housing, there is a great restriction on the mounting of the printed wiring board and the like, and the cooling performance inside the housing may be affected.

パネル間にガスケット等を配置して、隙間からの電磁波の漏れを抑制する方法は、放熱等のために設けられた開口には原理的に適用できない。   The method of arranging a gasket or the like between the panels and suppressing leakage of electromagnetic waves from the gap cannot be applied in principle to the opening provided for heat dissipation or the like.

本発明の目的は、電子部品を収納する筐体であって、筐体内部に生じる電磁波の空洞共振現象による電磁波の増幅を抑制することのできる筐体を提供することにある。また、本発明は、かかる筐体を備えた電子機器を提供することを目的とする。   An object of the present invention is to provide a housing for storing electronic components, which can suppress amplification of electromagnetic waves due to a phenomenon of cavity resonance of electromagnetic waves generated inside the housing. Moreover, an object of this invention is to provide the electronic device provided with this housing | casing.

本発明の筐体は、導電性の内側面を有する直方体の外囲部材と、外囲部材の内部を、内側面の一つである仕切板取付面から、仕切板取付面と対向する内側面の手前まで延びる導電性の仕切板とを有している。   The housing of the present invention includes a rectangular parallelepiped outer enclosure member having a conductive inner face, and an inner face that faces the partition plate attachment face from the partition plate attachment face that is one of the inner faces. And a conductive partition plate extending to the front.

このため、外囲部材の内部空間構造が変化し、外囲部材の内空寸法に依存する空洞共振現象が部分的に乱される。すなわち、空洞共振現象は、仕切板で仕切られた各領域のサイズに依存して発生し、空洞共振周波数は、仕切板が設置されていない場合と比べて高い領域にシフトされる。そして、空洞共振周波数は、仕切板の個数、設置間隔等を適宜に設定することによって自由に調整できるので、外囲部材の内部に設けられた電磁波発生源から放出された電磁波の空洞共振現象による増幅を抑えることができる。   For this reason, the internal space structure of the surrounding member changes, and the cavity resonance phenomenon that depends on the inner space size of the surrounding member is partially disturbed. That is, the cavity resonance phenomenon occurs depending on the size of each region partitioned by the partition plate, and the cavity resonance frequency is shifted to a higher region than when no partition plate is installed. Since the cavity resonance frequency can be freely adjusted by appropriately setting the number of partition plates, the installation interval, etc., the cavity resonance frequency depends on the cavity resonance phenomenon of the electromagnetic wave emitted from the electromagnetic wave generation source provided inside the surrounding member. Amplification can be suppressed.

仕切板の仕切板取付面からの高さは、仕切板取付面と、仕切板取付面と対向する内側面との間隔の1/8以上であることが望ましい。   The height of the partition plate from the partition plate mounting surface is preferably 1/8 or more of the interval between the partition plate mounting surface and the inner surface facing the partition plate mounting surface.

仕切板取付面は、外囲部材の最長の辺である第1の辺と、2番目に長い辺である第2の辺とで決まる面とするのが望ましい。   It is desirable that the partition plate mounting surface be a surface determined by a first side that is the longest side of the surrounding member and a second side that is the second longest side.

仕切板は、外囲部材の内部を、第1の辺と平行に延びる第1の仕切板と、外囲部材の内部を、第1の仕切板と交差して、第2の辺と平行に延びる第2の仕切板とを有することができる。   The partition plate includes a first partition plate extending in parallel with the first side inside the outer member and a first partition plate extending in parallel with the first side and parallel to the second side through the first partition plate. And a second partition plate extending.

その際、第1および第2の仕切板によって分割された仕切板取付面の各領域の、第1の辺と平行な辺の長さをAi(mm)(iは2以上の自然数)、第2の辺と平行な辺の長さをBj(mm)(jは2以上の自然数)、M,Nを同時に0とならない任意の自然数としたときに、任意のAiとBjの組合せに対して、   At that time, the length of the side parallel to the first side of each region of the partition plate mounting surface divided by the first and second partition plates is Ai (mm) (i is a natural number of 2 or more), the first For any combination of Ai and Bj where the length of the side parallel to the side of 2 is Bj (mm) (j is a natural number of 2 or more), and M and N are arbitrary natural numbers that are not 0 simultaneously. ,

Figure 2007214443
Figure 2007214443

で計算される値Fが1000以上となるようにしてもよい。 The value F calculated in (1) may be 1000 or more.

仕切板取付面の一つの領域に矩形の開口が設けられていてもよく、その場合、矩形の開口が設けられた領域の各辺の長さは、開口の長辺の長さの1〜3倍の範囲内にあることが望ましい。   A rectangular opening may be provided in one region of the partition plate mounting surface, and in this case, the length of each side of the region in which the rectangular opening is provided is 1 to 3 of the length of the long side of the opening. It is desirable to be within the double range.

仕切板は金属材料で構成することができる。   The partition plate can be made of a metal material.

仕切板は、仕切板の表面と裏面とを連通する連通開口を備えていてもよい。   The partition plate may include a communication opening that communicates the front surface and the back surface of the partition plate.

その際、連通開口は、仕切板に形成された複数の孔とすることができる。連通開口は、メッシュ状に編み上げられた導電性ワイヤによって形成してもよい。   In this case, the communication opening can be a plurality of holes formed in the partition plate. The communication opening may be formed by a conductive wire knitted into a mesh shape.

仕切板は電波吸収体で覆われていてもよい。   The partition plate may be covered with a radio wave absorber.

本発明の電子機器は、上述の筐体と、筐体に収納された電子部品とを有している。   An electronic device of the present invention includes the above-described casing and an electronic component housed in the casing.

以上説明したように、本発明によれば、筐体内部に生じる電磁波の、空洞共振現象による増幅を抑制することのできる筐体を提供することができる。また、本発明は、かかる筐体を備えた電子機器を提供することができる。   As described above, according to the present invention, it is possible to provide a housing that can suppress amplification of electromagnetic waves generated inside the housing due to a cavity resonance phenomenon. In addition, the present invention can provide an electronic device including such a housing.

(第1の実施形態)本発明の実施形態について図面を参照して詳細に説明する。   (First Embodiment) An embodiment of the present invention will be described in detail with reference to the drawings.

図1を参照すると、筐体1は直方体の外囲部材2と、その内部に設けられた仕切板5とを備えている。外囲部材2は、導電性金属で形成されているが、プラスチック製の基材の内側面に導電性の薄膜を形成したものなど、導電性の内側面を有する構造であればよい。外囲部材2は、辺長A(mm)の第1の辺6A、辺長B(mm)の第2の辺6B、および辺長C(mm)の第3の辺6Cを有している。辺長A,B,CはA≧B≧Cの関係を満たしている。筐体1は、厳密な直方体である必要はない。隅部が丸められていても、全体として直方体に近似する構造であればよい。外囲部材2の内部には、プリント配線基板(以下、PCBという。)や各種部品ユニット等の電子部品(図示せず)が収納されている。   Referring to FIG. 1, the housing 1 includes a rectangular parallelepiped surrounding member 2 and a partition plate 5 provided therein. The surrounding member 2 is formed of a conductive metal, but may be a structure having a conductive inner surface such as a conductive thin film formed on the inner surface of a plastic substrate. The surrounding member 2 has a first side 6A having a side length A (mm), a second side 6B having a side length B (mm), and a third side 6C having a side length C (mm). . The side lengths A, B, and C satisfy the relationship of A ≧ B ≧ C. The housing 1 does not have to be a strict rectangular parallelepiped. Even if the corners are rounded, the structure may be approximate to a rectangular parallelepiped as a whole. An electronic component (not shown) such as a printed wiring board (hereinafter referred to as PCB) and various component units is accommodated in the outer member 2.

外囲部材2の空洞共振周波数Fres(MHz)は、数式2で求めることができる。ここで、L0=150、(M,N,L)は同時に0とならない任意の自然数の組である。空洞共振現象が生じると、外囲部材2に設けられた孔やスリットなどの開口から、空洞共振周波数の成分を多く含んだ電磁波が外部に放射される。 The cavity resonance frequency Fres (MHz) of the surrounding member 2 can be obtained by Expression 2. Here, L 0 = 150, (M, N, L) is a set of arbitrary natural numbers that do not simultaneously become zero. When the cavity resonance phenomenon occurs, an electromagnetic wave containing a lot of components of the cavity resonance frequency is radiated to the outside from an opening such as a hole or a slit provided in the surrounding member 2.

Figure 2007214443
Figure 2007214443

外囲部材2は、第1の辺6Aと第2の辺6Bとで形成される内側面と、第2の辺6Bと第3の辺6Cとで形成される内側面と、第3の辺6Cと第1の辺6Aとで形成される内側面の、計3種類の内側面を持っている。本明細書では、このうち、第1の辺6Aと第2の辺6Bとで形成される内側面の一方を仕切板取付面3という。外囲部材2の内部には、仕切板取付面3から、仕切板取付面3と対向する対向面4の手前まで、すなわち、対向面4との間に間隙を有して、仕切板取付面3から垂直に延びる仕切板5が形成されている。したがって、外囲部材2の内部空間は、仕切板5によって複数の空間に完全に分割されるわけでなく、一体空間として維持される。仕切板5は、金属材料などの導電性材料で構成されており、導電性材料からなる外囲部材2と電気的に接続されている。仕切板5の仕切板取付面3からの高さh、すなわち第3の辺6Cと平行な方向の長さは、仕切板取付面3と、対向面4との間隔(辺長C)の1/8以上であることが望ましい。その理由については後述する。なお、仕切板5は、仕切板取付面3から厳密に垂直に延びている必要はなく、仕切板取付面3に対して多少傾いていても構わない。   The surrounding member 2 includes an inner side surface formed by the first side 6A and the second side 6B, an inner side surface formed by the second side 6B and the third side 6C, and a third side. There are a total of three types of inner surfaces, the inner surface formed by 6C and the first side 6A. In the present specification, one of the inner side surfaces formed by the first side 6A and the second side 6B is referred to as a partition plate mounting surface 3 among them. Inside the surrounding member 2, there is a gap between the partition plate mounting surface 3 and the front surface 4 facing the partition plate mounting surface 3. A partition plate 5 extending vertically from 3 is formed. Therefore, the internal space of the surrounding member 2 is not completely divided into a plurality of spaces by the partition plate 5 but is maintained as an integral space. The partition plate 5 is made of a conductive material such as a metal material, and is electrically connected to the surrounding member 2 made of the conductive material. The height h of the partition plate 5 from the partition plate mounting surface 3, that is, the length in the direction parallel to the third side 6C, is 1 of the interval (side length C) between the partition plate mounting surface 3 and the opposing surface 4. It is desirable to be / 8 or more. The reason will be described later. The partition plate 5 does not need to extend strictly vertically from the partition plate mounting surface 3, and may be slightly inclined with respect to the partition plate mounting surface 3.

仕切板5は、外囲部材2の内部を、仕切板取付面3の第1の辺6Aと平行に延びる第1の仕切板5Aと、第1の仕切板5Aと交差して、仕切板取付面3の第2の辺6Bと平行に延びる第2の仕切板5Bとからなっている。第1の仕切板5Aおよび第2の仕切板5Bは、各々複数枚が設けられているが、1枚のみでもよい。第1の仕切板5Aまたは第2の仕切板5Bのいずれか一方のみが設けられていてもよい。本実施形態では、第1の仕切板5Aは、不均等な間隔A1,A2,A3で設けられているが、均等な間隔で設けられていてもよい。第2の仕切板5Bも同様に、不均等な間隔B1,B2,B3で設けられているが、均等な間隔で設けられていてもよい。   The partition plate 5 crosses the inside of the surrounding member 2 with the first partition plate 5A extending in parallel with the first side 6A of the partition plate mounting surface 3 and the first partition plate 5A. The second partition plate 5 </ b> B extends in parallel with the second side 6 </ b> B of the surface 3. A plurality of first partition plates 5A and second partition plates 5B are provided, but only one sheet may be provided. Only one of the first partition plate 5A and the second partition plate 5B may be provided. In the present embodiment, the first partition plate 5A is provided at unequal intervals A1, A2, A3, but may be provided at equal intervals. Similarly, the second partition plate 5B is also provided at unequal intervals B1, B2, B3, but may be provided at equal intervals.

仕切板取付面3は、第1の仕切板5Aおよび第2の仕切板5Bによって領域71〜79に分割されている。各領域71〜79は、間隔A1,A2,A3のいずれかと、間隔B1,B2,B3のいずれかとによって決まる平面寸法を有している。放熱や通風用の開口8が中央の領域75に形成されている。開口8は正方形の形状を有しているが、長方形、円形、スリット状など任意の形状とすることができ、複数の孔やスリットで構成されていてもよい。なお、市販のパーソナルコンピュータ等の筐体では、小さな孔を複数個設けた開口が多く用いられ、その開口の内側には、冷却のためのファン等が配置されている。   The partition plate mounting surface 3 is divided into regions 71 to 79 by the first partition plate 5A and the second partition plate 5B. Each of the regions 71 to 79 has a planar dimension determined by any one of the intervals A1, A2, and A3 and any one of the intervals B1, B2, and B3. An opening 8 for heat dissipation and ventilation is formed in the central region 75. The opening 8 has a square shape, but may have an arbitrary shape such as a rectangle, a circle, or a slit, and may be composed of a plurality of holes or slits. Note that a housing of a commercially available personal computer or the like often uses an opening provided with a plurality of small holes, and a cooling fan or the like is disposed inside the opening.

第1の仕切板5Aおよび第2の仕切板5Bの設置間隔を一般的にAi,Bj(ただし、i,jは自然数で、少なくとも一方は1より大きい。)とし、M,Nを同時に0とならない任意の自然数としたときに、分割された各領域の空洞共振周波数は、数式3で計算される値F(単位はMHz)によって与えられる。   The installation interval between the first partition plate 5A and the second partition plate 5B is generally Ai, Bj (where i and j are natural numbers, at least one is greater than 1), and M and N are simultaneously set to 0. The cavity resonance frequency of each divided region is given by a value F (unit: MHz) calculated by Equation 3 when an arbitrary natural number that does not have to be used.

Figure 2007214443
Figure 2007214443

外囲部材2の内部に、外囲部材2と電気的に接続された仕切板5を設置することによって、外囲部材2の内部空間構造が変化し、外囲部材2の内空寸法に依存する空洞共振現象が部分的に乱される。すなわち、空洞共振現象は、仕切板5で仕切られた領域71〜79のサイズに依存して発生し、空洞共振周波数は、数式2で決定される周波数より高い領域にシフトされる。外囲部材2の内部に収納された電子部品から放出される電磁波の電界強度は、フラットな周波数特性を持っていることは少ないため、空洞共振周波数が電界強度の高い周波数領域と重ならないように仕切板5を配置すれば、空洞共振現象を抑えることができる。このため、外部への電磁波の放出が有効に抑制されるだけでなく、内部の電子部品への電磁的干渉も低減する。   By installing the partition plate 5 electrically connected to the surrounding member 2 inside the surrounding member 2, the internal space structure of the surrounding member 2 changes and depends on the inner space size of the surrounding member 2. The cavity resonance phenomenon is partially disturbed. That is, the cavity resonance phenomenon occurs depending on the size of the regions 71 to 79 partitioned by the partition plate 5, and the cavity resonance frequency is shifted to a region higher than the frequency determined by Equation 2. Since the electric field strength of the electromagnetic wave emitted from the electronic component housed in the surrounding member 2 has few flat frequency characteristics, the cavity resonance frequency should not overlap with the frequency region where the electric field strength is high. If the partition plate 5 is disposed, the cavity resonance phenomenon can be suppressed. For this reason, not only the electromagnetic wave emission to the outside is effectively suppressed, but also the electromagnetic interference to the internal electronic components is reduced.

値Fを1000以上、すなわち、すべての領域71〜79の空洞共振周波数が1GHz以上となるようにすれば、現行の民間自主規制への対応も容易である。本実施形態では、このように、一定周波数以下の電磁波の放出を抑制するニーズに対しても有効である。   If the value F is set to 1000 or more, that is, the cavity resonance frequency of all the regions 71 to 79 is set to 1 GHz or more, it is easy to comply with the current private voluntary regulations. In this embodiment, it is also effective for the need to suppress the emission of electromagnetic waves having a certain frequency or less.

図2は、本実施形態の変形例を示す概念図である。外囲部材102の仕切板取付面103の中央付近に放熱用の開口108が設けられている。開口108は正方形、長方形、円形、スリット状など、任意の形状とすることができる。仕切板105は開口108を取り囲むように部分的に設けられており、仕切板取付面103の外周部まで達していない。仕切板105は、外囲部材102と電気的に接続されている。開口を有する筐体の場合、内部で発生した電磁波は開口から放出しやすいため、このように開口周囲に仕切板を設置するだけでも、開口付近での電磁波の増幅を抑えることができる。   FIG. 2 is a conceptual diagram showing a modification of the present embodiment. A heat dissipation opening 108 is provided in the vicinity of the center of the partition plate mounting surface 103 of the surrounding member 102. The opening 108 can have any shape such as a square, a rectangle, a circle, or a slit. The partition plate 105 is partially provided so as to surround the opening 108, and does not reach the outer peripheral portion of the partition plate mounting surface 103. The partition plate 105 is electrically connected to the surrounding member 102. In the case of a housing having an opening, electromagnetic waves generated inside are likely to be emitted from the opening. Therefore, the amplification of the electromagnetic wave in the vicinity of the opening can be suppressed by simply installing the partition plate around the opening.

(第2の実施形態)
図3は本発明の第2の実施形態に係る筐体の構成図である。導電性の仕切板205が、第1の実施形態と同様に外囲部材202の内部に設置されている。第1の実施形態と異なるのは、仕切板205が連通開口209を備えている点にある。連通開口209は、1枚の仕切板205の全域、あるいは各仕切板205の一部または全域に設けられていてもよい。連通開口209は、仕切板205に形成された、仕切板205の表面と裏面とを連通する複数の孔である。孔の形状は、円形、スリット状など、任意である。連通開口209は、その孔の最大サイズが、外囲部材202の内部に生じる共振周波数に対応した電磁波の波長の1/10〜1/20以下となるように設けられている。一般に、電磁波は、その波長の1/10〜1/20以下のサイズの開口を透過できないため、そのような開口は、当該電磁波にとっては存在しないのと同様である。したがって、小さな連通開口が設けられた仕切板を用いても、第1の実施形態と同じ効果が得られる。本実施形態によれば、仕切板に連通開口が存在するため、筐体内部の空気の流れがより促進され、内部の冷却・放熱効果が高められるというメリットがある。
(Second Embodiment)
FIG. 3 is a configuration diagram of a housing according to the second embodiment of the present invention. A conductive partition plate 205 is installed inside the enclosure member 202 as in the first embodiment. The difference from the first embodiment is that the partition plate 205 includes a communication opening 209. The communication opening 209 may be provided in the entire region of one partition plate 205 or in a part or the entire region of each partition plate 205. The communication opening 209 is a plurality of holes that are formed in the partition plate 205 and communicate with the front surface and the back surface of the partition plate 205. The shape of the hole is arbitrary such as a circle or a slit. The communication opening 209 is provided so that the maximum size of the hole is 1/10 to 1/20 or less of the wavelength of the electromagnetic wave corresponding to the resonance frequency generated inside the outer member 202. In general, an electromagnetic wave cannot pass through an opening having a size of 1/10 to 1/20 or less of the wavelength, and therefore, such an opening is the same as not existing for the electromagnetic wave. Therefore, even if a partition plate provided with a small communication opening is used, the same effect as that of the first embodiment can be obtained. According to this embodiment, since there is a communication opening in the partition plate, there is a merit that the flow of air inside the housing is further promoted, and the internal cooling and heat dissipation effect is enhanced.

(第3の実施形態)
図4は、本発明の第3の実施形態に係る筐体の構成図である。導電性の仕切板305が、第1の実施形態と同様に外囲部材302の内部に設置されている。本実施形態の場合も、第2の実施と同様、仕切板305は連通開口309を備えているが、連通開口309は、メッシュ状に編み上げられた導電性ワイヤによって形成されている。連通開口309は、1枚の仕切板305の全域、あるいは各仕切板305の一部または全域に設けられていてもよい。メッシュ間隔は、第2の実施と同様、注目する電磁波の波長の1/10〜1/20以下であることが望ましい。この場合も、第2の実施形態と同じ理由から、同様の効果が得られる。また、仕切板部がメッシュ構造であるため、第2の実施形態よりもさらに筐体内部の空気の流れが促進される。
(Third embodiment)
FIG. 4 is a configuration diagram of a housing according to the third embodiment of the present invention. A conductive partition plate 305 is installed inside the enclosure member 302 as in the first embodiment. Also in this embodiment, the partition plate 305 includes a communication opening 309 as in the second embodiment, but the communication opening 309 is formed of a conductive wire knitted in a mesh shape. The communication opening 309 may be provided in the entire region of one partition plate 305 or in a part or the entire region of each partition plate 305. As in the second embodiment, the mesh interval is desirably 1/10 to 1/20 or less of the wavelength of the electromagnetic wave of interest. In this case, the same effect can be obtained for the same reason as in the second embodiment. Moreover, since the partition plate part has a mesh structure, the air flow inside the housing is further promoted than in the second embodiment.

(第4の実施形態)
図5は、本発明の第4の実施形態に係る筐体の構成図である。導電性の仕切板405が、第1の実施形態と同様に外囲部材402の内部に設置されている。仕切板405の両面は電波吸収体410で覆われている。電波吸収体410は、注目する周波数の電磁波を吸収する物質を塗布したり、電波吸収シートを貼り付けたりすることによって形成される。電波吸収体410を設けることによって、外囲部材402の内部に生じる共振現象に寄与する電磁波を、外囲部材402の内部空間の変化だけではなく、仕切板405の表面材料の効果によっても抑えることができるため、外部への電磁波放射が一層効果的に抑制される。また、共振現象によって増幅される電磁波は、外囲部材402の内側壁面よりも、外囲部材402の空間部(中央部)でより強く現れる。本実施形態では、電波吸収体410を、電界強度の比較的大きな位置に容易に設けることができるので、電磁波吸収効果が一層高められる。
(Fourth embodiment)
FIG. 5 is a configuration diagram of a housing according to the fourth embodiment of the present invention. A conductive partition plate 405 is installed inside the enclosure member 402 as in the first embodiment. Both surfaces of the partition plate 405 are covered with a radio wave absorber 410. The radio wave absorber 410 is formed by applying a substance that absorbs an electromagnetic wave having a frequency of interest or attaching a radio wave absorption sheet. By providing the radio wave absorber 410, the electromagnetic wave contributing to the resonance phenomenon generated inside the surrounding member 402 is suppressed not only by the change in the internal space of the surrounding member 402 but also by the effect of the surface material of the partition plate 405. Therefore, electromagnetic wave radiation to the outside can be more effectively suppressed. In addition, the electromagnetic wave amplified by the resonance phenomenon appears more strongly in the space portion (center portion) of the surrounding member 402 than in the inner wall surface of the surrounding member 402. In the present embodiment, the radio wave absorber 410 can be easily provided at a position where the electric field strength is relatively large, so that the electromagnetic wave absorption effect is further enhanced.

なお、本実施形態における電波吸収体と、第2,第3の実施形態における仕切板の構造とを組合せることによって、電磁波抑制効果と放熱効果とを同時に改善することが期待できる。また、電磁吸収体と組合される仕切板は、本実施形態の例に限られるものではない。   In addition, it can be expected that the electromagnetic wave suppression effect and the heat dissipation effect can be improved at the same time by combining the radio wave absorber in the present embodiment and the structure of the partition plate in the second and third embodiments. Moreover, the partition plate combined with an electromagnetic absorber is not restricted to the example of this embodiment.

次に、以上説明した各実施形態に対応する実施例を述べる。実施例1〜4は各々第1〜第4の実施形態と対応している。   Next, examples corresponding to the embodiments described above will be described. Examples 1 to 4 correspond to the first to fourth embodiments, respectively.

(実施例1)
厚さ1.5mmで、辺長Aが500mm、辺長Bが350mm、辺長Cが200mmのアルミ製の外囲部材を作製した。次に、厚さ1.5mmで、平面寸法が500mm×50mmおよび350mm×50mmのアルミ板をそれぞれ2枚、計4枚準備した。次に、4枚のアルミ板を、仕切板として、外囲部材の仕切板取付面に対して垂直に、50mmの高さとなるように格子状に組み上げ、導電性テープや導電性塗料を用いて、外囲部材の仕切板取付面と電気的に接続するように取り付けた。仕切板で区切られた仕切板取付面の中央領域に開口を設けた。次に、仕切板が取り付けられた仕切板取付面と対向する面に、PCBを模擬した導(Cu)板を、絶縁体等を用いて、外囲部材と電気的に接続しないように取り付けた。次に、10mm程度のCuワイヤを、SMAコネクタを介してPCBに接続し、30MHzから1GHzまでの信号を入力して、電波暗室内で3mでの放射電界強度を計測した。なお、比較例として、仕切板を設けない筐体も用意した。
Example 1
An aluminum surrounding member having a thickness of 1.5 mm, a side length A of 500 mm, a side length B of 350 mm, and a side length C of 200 mm was produced. Next, two aluminum plates each having a thickness of 1.5 mm and plane dimensions of 500 mm × 50 mm and 350 mm × 50 mm were prepared, for a total of four. Next, four aluminum plates are assembled as a partition plate in a lattice shape so as to be 50 mm in height perpendicular to the partition plate mounting surface of the surrounding member, and using conductive tape or conductive paint And it attached so that it might electrically connect with the partition plate attachment surface of an outer enclosure member. The opening was provided in the center area | region of the partition plate attachment surface divided by the partition plate. Next, a conductive (Cu) plate simulating PCB is attached to the surface facing the partition plate mounting surface to which the partition plate is mounted, using an insulator or the like so as not to be electrically connected to the surrounding member. . Next, a Cu wire of about 10 mm was connected to the PCB via the SMA connector, and a signal from 30 MHz to 1 GHz was input to measure the radiated electric field intensity at 3 m in the anechoic chamber. As a comparative example, a case without a partition plate was also prepared.

外囲部材内部に仕切板を設けない場合、数式2で計算される周波数のうちのいくつかの周波数で、放射電界強度が増加することが観測された。一方、仕切板を設けた場合、その周波数における放射電界強度は、特に基本モード(最も低い周波数のモード)において、ほぼ20dB以上低減することが確認できた。外囲部材および仕切板を厚み1mmの鋼板で製作した場合についても、同様の効果が得られた。   When no partition plate was provided inside the outer member, it was observed that the radiation electric field intensity increased at some of the frequencies calculated by Equation 2. On the other hand, when the partition plate was provided, it was confirmed that the radiated electric field intensity at that frequency was reduced by approximately 20 dB or more, particularly in the fundamental mode (the lowest frequency mode). The same effect was obtained when the surrounding member and the partition plate were made of a steel plate having a thickness of 1 mm.

次に、以上説明した筐体と同様の構成の筐体モデルを対象に、FDTD法を用いて3次元電磁界解析を行なった。解析に用いた外囲部材の構造モデルは、辺長Aが500mm、辺長Bが350mm、辺長Cが200mmの直方体とした。数式2で計算した共振周波数は、低いほうから、300、428、523、737、857、899、907、996、・・・MHzとなる。次に、遠方放射電界強度を計算するために、筐体モデルの一面に50mm×50mmの正方形の開口を設け、内部の電磁波が外部に漏れる構造にして、FDTD法による3次元電磁界シミュレーションをおこなった。筐体内部に、ケーブルが接続されたグラウンド板を配置し、数GHz程度までの周波数範囲で一定の電磁波強度レベルを保持する信号源をケーブルとPCBとの間に配置した。電磁波発生要因としては、PCBに流れるコモンモードノイズや、PCBがアンテナとして動作する場合を想定した。   Next, a three-dimensional electromagnetic field analysis was performed using the FDTD method for a case model having the same configuration as the case described above. The structural model of the surrounding member used for the analysis was a rectangular parallelepiped having a side length A of 500 mm, a side length B of 350 mm, and a side length C of 200 mm. The resonance frequency calculated by Expression 2 is 300, 428, 523, 737, 857, 899, 907, 996,. Next, in order to calculate the far-field electric field strength, a three-dimensional electromagnetic field simulation by the FDTD method was performed with a structure in which a square opening of 50 mm × 50 mm was provided on one surface of the housing model and internal electromagnetic waves leaked to the outside. It was. A ground plate to which a cable is connected is disposed inside the housing, and a signal source that maintains a constant electromagnetic wave intensity level in a frequency range up to several GHz is disposed between the cable and the PCB. As an electromagnetic wave generation factor, common mode noise flowing in the PCB and a case where the PCB operates as an antenna were assumed.

まず、仕切板を設けない場合について、3m位置での遠方放射電界強度の計算を行った。図6に、計算の結果得られた放射電界強度スペクトルを示す。放射電界強度は、445MHz付近と890MHz付近で鋭く増加しており、数式2により得られる共振周波数のうち、特定の周波数で放射電界強度が大きくなることがシミュレーションによって再現された。共振周波数のピークの数が計算値より少ないのは、信号源の位置による対称性やPCBから放射される電磁界のモードなどが影響しているためと考えられる。本解析によって、筐体内部で、図6で示すピーク周波数での共振現象が生じ、開口からその成分の電磁波が放射されることが確認された。なお、開口を図1に示した仕切板取付面と直交する面に設置した場合も検討したが、図6と同様の放射電界強度スペクトルが得られた。   First, in the case where no partition plate was provided, the far-field radiation electric field strength at the 3 m position was calculated. FIG. 6 shows a radiation electric field intensity spectrum obtained as a result of the calculation. The radiated electric field strength sharply increased near 445 MHz and 890 MHz, and it was reproduced by simulation that the radiated electric field strength increased at a specific frequency among the resonance frequencies obtained by Equation 2. The reason why the number of resonance frequency peaks is smaller than the calculated value is considered to be due to the influence of the symmetry due to the position of the signal source, the mode of the electromagnetic field radiated from the PCB, and the like. Through this analysis, it was confirmed that the resonance phenomenon at the peak frequency shown in FIG. 6 occurred inside the housing, and the electromagnetic wave of the component was radiated from the opening. In addition, although the case where opening was installed in the surface orthogonal to the partition plate attachment surface shown in FIG. 1 was also examined, the radiation electric field strength spectrum similar to FIG. 6 was obtained.

次に、仕切板を設けた場合について、3m位置での遠方放射電界強度の計算をおこなった。具体的には、上記試作例と同様の仕切板を、仕切板取付面と垂直に、かつ外囲部材の各辺と平行に複数枚配置し、外囲部材と電気的に接続させた。仕切板はアルミ製の板とし、開口は中央領域に設定した。図7には、仕切板の高さをパラメータとしておこなった解析結果を示す。仕切板がない場合と比べて、放射電界強度が低減することが確認された。10dB以上の低減効果を得るには、仕切板の高さを辺長Cの1/8以上確保すればよい。なお、仕切板の高さは、辺長Cの1/2を越えると効果は飽和する傾向にあり、電子部品の実装上の制約も大きくなるので、あまり大きくすることは好ましくない。仕切板の高さが外囲部材の辺長Cに等しい場合は、細かい筐体を別々に作ることと同じであり、本発明の技術思想とは異なる構成となる。   Next, in the case where the partition plate was provided, the far radiation electric field strength at the 3 m position was calculated. Specifically, a plurality of partition plates similar to those of the above-described prototype example are arranged perpendicular to the partition plate mounting surface and in parallel with each side of the surrounding member, and are electrically connected to the surrounding member. The partition plate was an aluminum plate and the opening was set in the central region. In FIG. 7, the analysis result performed using the height of the partition plate as a parameter is shown. It was confirmed that the radiated electric field intensity was reduced as compared with the case without the partition plate. In order to obtain a reduction effect of 10 dB or more, the height of the partition plate may be secured by 1/8 or more of the side length C. If the height of the partition plate exceeds 1/2 of the side length C, the effect tends to saturate, and restrictions on mounting of electronic components also increase, so it is not preferable to make it too large. When the height of the partition plate is equal to the side length C of the surrounding member, it is the same as making a fine casing separately, and is different from the technical idea of the present invention.

次に、仕切板で仕切られた中央領域に辺長D(mm)の正方形の開口を設け、仕切板の設置間隔をパラメータとして、3m位置での遠方放射電界強度の計算をおこなった。図8に、放射電界強度の計算結果を示す。設置間隔が4Dの場合、空洞共振の1次ピーク成分の低減は、仕切板のない場合に対して10dB以下にとどまる。設置間隔が小さくなるにつれて低減効果は増加していく。開口を一つの領域内に収めることを前提にすると、正方形の開口が設けられた領域の各辺の長さを、開口の辺長の1〜3倍の範囲内にすれば、10dB以上の低減効果が得られる。開口は、より一般的には矩形でもよく、長方形の場合は、長辺をDとすればよい。ただし、所定の周波数(たとえば1GHz)以下の電磁波の放射を抑制したい場合、数式3で計算される空洞共振周波数が当該所定の周波数以下となるようにする必要がある。   Next, a square opening having a side length D (mm) was provided in the central region partitioned by the partition plate, and the far field electric field intensity was calculated at a position of 3 m using the partition plate installation interval as a parameter. FIG. 8 shows the calculation result of the radiation electric field intensity. When the installation interval is 4D, the reduction of the primary peak component of the cavity resonance is 10 dB or less compared to the case where there is no partition plate. The reduction effect increases as the installation interval decreases. Assuming that the opening is accommodated in one area, if the length of each side of the area provided with the square opening is within a range of 1 to 3 times the side length of the opening, the reduction is 10 dB or more. An effect is obtained. The opening may be generally rectangular, and in the case of a rectangle, the long side may be D. However, when it is desired to suppress the emission of electromagnetic waves below a predetermined frequency (for example, 1 GHz), it is necessary to make the cavity resonance frequency calculated by Equation 3 equal to or lower than the predetermined frequency.

なお、上記の計算では、開口を外囲部材の仕切板取付面の中央領域に配置したが、仕切板取付面の周辺部に近い領域に設けても同様の計算結果が得られる。   In the above calculation, the opening is disposed in the central region of the partition plate mounting surface of the surrounding member. However, the same calculation result can be obtained even if the opening is provided in a region near the periphery of the partition plate mounting surface.

(実施例2)
実施例1と同一材料、同一サイズの筐体、および、実施例1と同一サイズのアルミ板からなる仕切板を製作した。仕切板には直径3mm程度の孔を10mmピッチであけた。その他の構造は実施例1と同様とした。次に、仕切板を、実施例1と同様にして外囲部材との電気的接続をとりながら、外囲部材内部に取り付けた。このようにして製作した筐体を用いて3m位置での遠方放射電界強度を測定した。その結果、実施例1と同程度の放射低減効果が得られることが確認できた。
(Example 2)
The same material and the same size housing as in Example 1 and a partition plate made of an aluminum plate of the same size as in Example 1 were manufactured. In the partition plate, holes having a diameter of about 3 mm were formed at a pitch of 10 mm. Other structures were the same as in Example 1. Next, the partition plate was attached to the inside of the surrounding member while being electrically connected to the surrounding member in the same manner as in Example 1. Using the casing thus produced, the far field intensity at 3 m was measured. As a result, it was confirmed that the same radiation reduction effect as in Example 1 was obtained.

(実施例3)
実施例1と同一材料、同一サイズの筐体、および、実施例1と同一サイズのアルミ板からなる仕切板を製作した。仕切板には、0.5mm径のCuワイヤで間隔2mm程度で編み上げられたメッシュ部を設けた。その他の構造は実施例1と同様とした。次に、仕切板を、実施例1と同様にして、外囲部材内部に取り付けた。このようにして製作した筐体を用いて3m位置での遠方放射電界強度を測定した。その結果、実施例1と同程度の放射低減効果が得られることが確認できた。
(Example 3)
The same material and the same size housing as in Example 1 and a partition plate made of an aluminum plate of the same size as in Example 1 were manufactured. The partition plate was provided with a mesh portion knitted with a 0.5 mm diameter Cu wire at an interval of about 2 mm. Other structures were the same as in Example 1. Next, the partition plate was attached to the inside of the surrounding member in the same manner as in Example 1. Using the casing thus produced, the far field intensity at 3 m was measured. As a result, it was confirmed that the same radiation reduction effect as in Example 1 was obtained.

(実施例4)
次に、実施例1と同一材料、同一サイズの筐体、および、実施例1と同一サイズのアルミ板からなる仕切板を製作した。仕切板の両面の全域に厚さ1mm〜2mmのフェライトシートを貼り付けた。その他の構造は実施例1と同様とした。次に、仕切板を、実施例1と同様にして、外囲部材内部に取り付けた。このようにして製作した筐体を用いて3m位置での遠方放射電界強度を測定した。その結果、実施例1の場合よりもさらに2〜5dBの放射電界強度の低減効果が得られることが確認できた。
Example 4
Next, a casing made of the same material and the same size as in Example 1 and an aluminum plate having the same size as in Example 1 were manufactured. A ferrite sheet having a thickness of 1 mm to 2 mm was attached to the entire area of both sides of the partition plate. Other structures were the same as in Example 1. Next, the partition plate was attached to the inside of the surrounding member in the same manner as in Example 1. Using the casing thus produced, the far field intensity at 3 m was measured. As a result, it was confirmed that the radiation field intensity reduction effect of 2 to 5 dB was further obtained than in the case of Example 1.

本発明の第1の実施形態による筐体の内部を示す概略斜視図である。It is a schematic perspective view which shows the inside of the housing | casing by the 1st Embodiment of this invention. 第1の実施形態による筐体の変形例を示す概略斜視図である。It is a schematic perspective view which shows the modification of the housing | casing by 1st Embodiment. 本発明の第2の実施形態による筐体の内部を示す概略斜視図である。It is a schematic perspective view which shows the inside of the housing | casing by the 2nd Embodiment of this invention. 本発明の第3の実施形態による筐体の内部を示す概略斜視図である。It is a schematic perspective view which shows the inside of the housing | casing by the 3rd Embodiment of this invention. 本発明の第4の実施形態による筐体の内部を示す概略斜視図である。It is a schematic perspective view which shows the inside of the housing | casing by the 4th Embodiment of this invention. 仕切板が設置されていないときの筐体の放射電界強度スペクトルである。It is a radiation electric field strength spectrum of a housing | casing when the partition plate is not installed. 仕切板の高さをパラメータとした、筐体の放射電界強度のグラフである。It is a graph of the radiation electric field strength of a housing | casing which made the height of the partition plate the parameter. 仕切板の設置間隔をパラメータとした、筐体の放射電界強度のグラフである。It is a graph of the radiation electric field strength of a housing | casing which made the installation space | interval of a partition plate a parameter.

符号の説明Explanation of symbols

1 筐体
2,102,202,302,402 外囲部材
3,103,203,303,403 仕切板取付面
4 対向面
5,105,205,305,405 仕切板
5A 第1の仕切板
5B 第2の仕切板
A,B,C 辺長
6A 第1の辺
6B 第2の辺
6C 第3の辺
8,108,208,308,408 開口
71〜79 領域
209,309 連通開口
410 電波吸収体
DESCRIPTION OF SYMBOLS 1 Housing | casing 2,102,202,302,402 Outer member 3,103,203,303,403 Partition plate attachment surface 4 Opposite surface 5,105,205,305,405 Partition plate 5A 1st partition plate 5B 1st 2 partition plates A, B, C Side length 6A First side 6B Second side 6C Third side 8, 108, 208, 308, 408 Opening 71-79 Area 209, 309 Communication opening 410 Wave absorber

Claims (12)

導電性の内側面を有する直方体の外囲部材と、
前記外囲部材の内部を、前記内側面の一つである仕切板取付面から、該仕切板取付面と対向する内側面の手前まで延びる導電性の仕切板と、
を有する筐体。
A rectangular parallelepiped enclosure member having a conductive inner surface;
A conductive partition plate extending from the partition plate mounting surface which is one of the inner side surfaces to the front of the inner side surface facing the partition plate mounting surface, inside the outer member;
A housing having
前記仕切板の前記仕切板取付面からの高さは、前記仕切板取付面と、該仕切板取付面と対向する内側面との間隔の1/8以上である、請求項1に記載の筐体。   The height of the said partition plate from the said partition plate attachment surface is 1/8 or more of the space | interval of the said partition plate attachment surface and the inner surface facing this partition plate attachment surface. body. 前記仕切板取付面は、前記外囲部材の最長の辺である第1の辺と、2番目に長い辺である第2の辺とで決まる面である、請求項1または2に記載の筐体。   The housing according to claim 1 or 2, wherein the partition plate mounting surface is a surface determined by a first side that is the longest side of the surrounding member and a second side that is the second longest side. body. 前記仕切板は、
前記外囲部材の内部を、前記第1の辺と平行に延びる第1の仕切板と、
前記外囲部材の内部を、前記第1の仕切板と交差して、前記第2の辺と平行に延びる第2の仕切板と、
を有する、請求項3に記載の筐体。
The partition plate is
A first partition plate extending in parallel with the first side inside the surrounding member;
A second partition plate extending in parallel with the second side, intersecting the first partition plate, and the inside of the surrounding member;
The housing according to claim 3, comprising:
前記第1および第2の仕切板によって分割された前記仕切板取付面の各領域の、前記第1の辺と平行な辺の長さをAi(mm)(iは2以上の自然数)、前記第2の辺と平行な辺の長さをBj(mm) (jは2以上の自然数)、M,Nを同時に0とならない任意の自然数としたときに、任意のAiとBjの組合せに対して、
Figure 2007214443
で計算される値Fが1000以上となる、請求項4に記載の筐体。
Ai (mm) (i is a natural number of 2 or more), the length of the side parallel to the first side of each region of the partition plate mounting surface divided by the first and second partition plates, When the length of the side parallel to the second side is Bj (mm) (j is a natural number of 2 or more), and M and N are arbitrary natural numbers that are not 0 simultaneously, for any combination of Ai and Bj And
Figure 2007214443
The housing | casing of Claim 4 from which the value F calculated by is 1000 or more.
前記仕切板取付面の一つの前記領域に矩形の開口が設けられ、
前記矩形の開口が設けられた前記領域の各辺の長さは、該開口の長辺の長さの1〜3倍の範囲内にある、請求項5に記載の筐体。
A rectangular opening is provided in one area of the partition plate mounting surface,
The case according to claim 5, wherein the length of each side of the region in which the rectangular opening is provided is in a range of 1 to 3 times the length of the long side of the opening.
前記仕切板は金属材料で構成されている、請求項1から6のいずれか1項に記載の筐体。   The housing according to any one of claims 1 to 6, wherein the partition plate is made of a metal material. 前記仕切板は該仕切板の表面と裏面とを連通する連通開口を備えている、請求項1から7のいずれか1項に記載の筐体。   The casing according to any one of claims 1 to 7, wherein the partition plate includes a communication opening that communicates a front surface and a back surface of the partition plate. 前記連通開口は、前記仕切板に形成された複数の孔である、請求項8に記載の筐体。   The housing according to claim 8, wherein the communication opening is a plurality of holes formed in the partition plate. 前記連通開口は、メッシュ状に編み上げられた導電性ワイヤによって形成されている、請求項8に記載の筐体。   The casing according to claim 8, wherein the communication opening is formed by a conductive wire knitted in a mesh shape. 前記仕切板は電波吸収体で覆われている、請求項1から10のいずれか1項に記載の筐体。   The housing according to claim 1, wherein the partition plate is covered with a radio wave absorber. 請求項1から10のいずれか1項に記載の筐体と、
前記筐体に収納された電子部品と、
を有する電子機器。
A housing according to any one of claims 1 to 10,
Electronic components housed in the housing;
Electronic equipment having
JP2006033843A 2006-02-10 2006-02-10 Enclosure and electronics Pending JP2007214443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033843A JP2007214443A (en) 2006-02-10 2006-02-10 Enclosure and electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033843A JP2007214443A (en) 2006-02-10 2006-02-10 Enclosure and electronics

Publications (1)

Publication Number Publication Date
JP2007214443A true JP2007214443A (en) 2007-08-23

Family

ID=38492591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033843A Pending JP2007214443A (en) 2006-02-10 2006-02-10 Enclosure and electronics

Country Status (1)

Country Link
JP (1) JP2007214443A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164308A (en) * 2007-12-28 2009-07-23 Opnext Japan Inc Optical transmission/reception module
JP2010093322A (en) * 2008-10-03 2010-04-22 Fujitsu Ten Ltd Circuit device and radar apparatus
JPWO2010137492A1 (en) * 2009-05-29 2012-11-15 原田工業株式会社 Automotive noise filter
JP5553951B1 (en) * 2013-10-03 2014-07-23 エヌ・ティ・ティレゾナント・テクノロジー株式会社 Anechoic chamber box for storing electronic equipment
US20170046453A1 (en) * 2015-08-12 2017-02-16 Fujitsu Limited Resonance frequency check method and resonance frequency check apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228350A (en) * 1988-06-10 1990-01-30 Nec Yamagata Ltd High frequency semiconductor device
JPH0310401A (en) * 1989-06-07 1991-01-18 Fujitsu Ltd Structure for preventing resonance of case

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228350A (en) * 1988-06-10 1990-01-30 Nec Yamagata Ltd High frequency semiconductor device
JPH0310401A (en) * 1989-06-07 1991-01-18 Fujitsu Ltd Structure for preventing resonance of case

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164308A (en) * 2007-12-28 2009-07-23 Opnext Japan Inc Optical transmission/reception module
JP4698666B2 (en) * 2007-12-28 2011-06-08 日本オプネクスト株式会社 Optical transceiver module
JP2010093322A (en) * 2008-10-03 2010-04-22 Fujitsu Ten Ltd Circuit device and radar apparatus
JPWO2010137492A1 (en) * 2009-05-29 2012-11-15 原田工業株式会社 Automotive noise filter
JP5553951B1 (en) * 2013-10-03 2014-07-23 エヌ・ティ・ティレゾナント・テクノロジー株式会社 Anechoic chamber box for storing electronic equipment
WO2015049760A1 (en) * 2013-10-03 2015-04-09 エヌ・ティ・ティレゾナント・テクノロジー株式会社 Anechoic chamber box for electronic apparatus housing
US9433136B2 (en) 2013-10-03 2016-08-30 Ntt Resonant Technology Inc. Anechoic chamber box for storing electronic apparatus
US20170046453A1 (en) * 2015-08-12 2017-02-16 Fujitsu Limited Resonance frequency check method and resonance frequency check apparatus
US10509866B2 (en) * 2015-08-12 2019-12-17 Fujitsu Limited Resonance frequency check method and resonance frequency check apparatus

Similar Documents

Publication Publication Date Title
TWI672092B (en) Electronic device, method of arranging an electromagnetic interference suppressor and communication device
US8085554B2 (en) Air inlet diffuser
EP0843512A2 (en) High frequency emi shield with air flow for electronic device enclosure
JP5170232B2 (en) Electromagnetic shield structure, radio apparatus using the same, and method for manufacturing electromagnetic shield
US20040233654A1 (en) EMI-attenuating air ventilation panel
US7064265B2 (en) Reduced-gasket EMI-shielding solutions for hard disk drives and other computer components
US7532473B2 (en) Cooling apparatus with electromagnetic interference shielding function
JP2616239B2 (en) Integrated EMI filter and heat sink
US20170071063A1 (en) Electronic equipment housings with integrated electronic card guides, electromagnetic interference (emi) shielding, and thermal cooling
JP2007214443A (en) Enclosure and electronics
US20080006444A1 (en) Method for Providing Electromagnetic Interference Shielding in Electronics Enclosures by Forming Tubular Patterns in Conductive Polymer
WO2011099083A1 (en) Wireless apparatus
KR20110111425A (en) Apparatus for reducing radiation quantity
CN112739183A (en) Electromagnetic interference thin plate attenuator
US11089712B2 (en) Ventilated shield can
Chiappe A comparison of relative shielding provided by stitching vias and edge plating
CN214281997U (en) Electromagnetic thunder wave shielding protective cover
JP4655156B2 (en) Radiation reduction device
US20220264763A1 (en) Metamaterial heat spreader
JP6779630B2 (en) Electronics
JP2015192076A (en) Circuit board and electronic apparatus
JP4938705B2 (en) Electronic equipment housing
JPH0629690A (en) Electromagnetic noise and static discharge preventive shielding plate
JP2001085887A (en) Electronic device
JPH0946084A (en) Multiple shield structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Effective date: 20110121

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110713