JP2007214410A - Stress managing method of self standing thin film and stencil-mask manufacturing method - Google Patents

Stress managing method of self standing thin film and stencil-mask manufacturing method Download PDF

Info

Publication number
JP2007214410A
JP2007214410A JP2006033427A JP2006033427A JP2007214410A JP 2007214410 A JP2007214410 A JP 2007214410A JP 2006033427 A JP2006033427 A JP 2006033427A JP 2006033427 A JP2006033427 A JP 2006033427A JP 2007214410 A JP2007214410 A JP 2007214410A
Authority
JP
Japan
Prior art keywords
thin film
film layer
single crystal
stress
crystal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033427A
Other languages
Japanese (ja)
Inventor
Hideyuki Eguchi
秀幸 江口
Toshiaki Kurosu
敏明 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006033427A priority Critical patent/JP2007214410A/en
Publication of JP2007214410A publication Critical patent/JP2007214410A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stress managing method of a self standing thin film for a stencil mask capable of maintaining a high pattern-position accuracy, and to provide a manufacturing method of the stencil mask. <P>SOLUTION: In the stress managing method of a self standing thin film for a stencil mask, an SOI substrate 30 is prepared comprising an Si single-crystal supporting substrate 11, an intermediate oxide-film layer 21, and an Si single-crystal thin-film layer 31. Further, impurities (P (phosphorus), B (boron), etc.) for adjusting the stresses of thin films are introduced into the Si single-crystal thin-film layer 31 of the SOI substrate 30. Moreover, the SOI substrate 30a is created having the Si single-crystal thin-film layer 31a having the introduced impurities for adjusting the stresses. Subsequently, a resistance measuring device 210 and a four-probe measurement head 211 of a stress measuring apparatus 200 are so used as to measure the resistance value of the Si single-crystal thin-film layer 31a having the introduced impurities for adjusting the stresses. Furthermore, the measured resistance values are taken into an operational processor 220 to indicate the stresses of the Si single-crystal thin-film layer 31a by converting the resistance values into the stresses. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子線投影露光法に用いられるステンシルマスクの自立薄膜の応力管理方法及びステンシルマスクの製造方法に関する。   The present invention relates to a stress management method for a self-supporting thin film of a stencil mask used in an electron beam projection exposure method and a method for manufacturing a stencil mask.

近年、半導体集積回路の微細化に伴い、その製造技術として電子線リソグラフィー等の研究開発が盛んにおこなわれている。ステンシルマスクは自立薄膜に転写ステンシルパターンを形成した構造をしており、これらリソグラフィー技術のマスクとして使われる。   In recent years, with the miniaturization of semiconductor integrated circuits, research and development such as electron beam lithography has been actively performed as a manufacturing technique thereof. The stencil mask has a structure in which a transfer stencil pattern is formed on a free-standing thin film, and is used as a mask for these lithography techniques.

詳しくは、かかるリソグラフィー技術の中でも半導体の微細化に対応する方法として、電子線を用いたセルプロジェクション露光法やブロック露光法と呼ばれる方法、さらにLEEPL(Low Energy Electron Projection Lithography)やEPL(Electron Projection Lithography)法と呼ばれる電子線投影露光法が開発されている。またこの他にも、ステンシルパターンの微細化の要求からセルプロジェクション方式、イービーム方式等においても、同程度の自立薄膜を有するマスクブランクスが使われている。   Specifically, among the lithography techniques, as a method corresponding to miniaturization of semiconductors, a method called cell projection exposure method using electron beam or block exposure method, LEEPL (Low Energy Electron Projection Lithography), EPL (Electron Projection Lithography) ) The electron beam projection exposure method called the method has been developed. In addition to this, mask blanks having the same level of free-standing thin film are also used in the cell projection method, e-beam method, etc. due to the demand for miniaturization of the stencil pattern.

EPL法やLEEPL法では、図6に示すように、ステンシルマスク320を用いて回路パターンをレジスト層331が形成された感応基板330に転写する。
ステンシルマスク320では、電子線を散乱もしくは吸収する厚さを有する自立メンブレン321内に、回路パターンを形成するためのステンシル(開口部)322が設けてあり、電子線がステンシル(開口部)322を透過し、回路パターンを感応基板330に転写するための電子線投影露光を行う。
In the EPL method or the LEEPL method, as shown in FIG. 6, the circuit pattern is transferred to the sensitive substrate 330 on which the resist layer 331 is formed using a stencil mask 320.
In the stencil mask 320, a stencil (opening) 322 for forming a circuit pattern is provided in a self-supporting membrane 321 having a thickness that scatters or absorbs an electron beam, and the electron beam passes through the stencil (opening) 322. Electron beam projection exposure for transmitting the circuit pattern onto the sensitive substrate 330 is performed.

EPL法やLEEPL法で用いられるステンシルマスク310では、図5に示すように、自立薄膜312の剛性を強めるために、自立薄膜312を梁(ストラット)311もしくはバルク部により一辺が1〜5mm程度の矩形薄膜を用いることが多い。
自立薄膜312の材料は均一かつ欠陥の少ない材料をとして単結晶シリコンが使用される。自立薄膜312の厚みは5〜20μmの場合もあるが、ステンシルパターン313の微細化に伴う高アスペクトパターンの加工性の劣化を考慮して約3μm以下である場合が多い。
In the stencil mask 310 used in the EPL method or the LEEPL method, as shown in FIG. 5, in order to increase the rigidity of the free standing thin film 312, the free standing thin film 312 has a side of about 1 to 5 mm by a beam (strut) 311 or a bulk portion. A rectangular thin film is often used.
As the material of the self-supporting thin film 312, single crystal silicon is used as a material that is uniform and has few defects. Although the thickness of the free-standing thin film 312 may be 5 to 20 μm, it is often about 3 μm or less in consideration of deterioration of workability of the high aspect pattern accompanying the miniaturization of the stencil pattern 313.

このような自立薄膜を有するステンシルマスクの作製ではSOI基板(silicon on insulator)が用いられる。SOI基板は薄膜層に単結晶シリコンを用いているため欠陥の少ない薄膜を形成することができ、支持基板もしくは単結晶シリコン薄膜層のエッチングの際には中間酸化膜層をエッチングストッパー層として使用することができる。
さらに、Smart-Cut法やELTRAN法を用いた場合、薄膜層の膜厚バラツキを5%以下に抑えたSOI基板を得ることができるため、ステンシルパターンの高精度の寸法制御が可能となる。
An SOI substrate (silicon on insulator) is used for manufacturing a stencil mask having such a free-standing thin film. Since the SOI substrate uses single crystal silicon for the thin film layer, a thin film with few defects can be formed, and the intermediate oxide film layer is used as an etching stopper layer when etching the support substrate or the single crystal silicon thin film layer. be able to.
Furthermore, when the Smart-Cut method or the ELTRAN method is used, an SOI substrate with a thin film layer having a thickness variation of 5% or less can be obtained, so that highly accurate stencil pattern dimension control is possible.

SOI基板の中間酸化膜層は熱酸化法により形成されるため300MPa程度の圧縮応力を有している。このため自立薄膜を形成すると、中間酸化膜層と単結晶シリコン薄膜層の厚みに依存するが自立薄膜の応力は圧縮応力となってしまい撓んでしまう。
したがって、自立薄膜が引っ張り応力を有するように、さらには自立薄膜が張るように歪を与えるような応力制御を行う必要がある。この単結晶シリコン薄膜層の応力制御には、シリコンより原子径の小さいリンやボロンなどの不純物を導入する方法が用いられ、単結晶シリコン薄膜層内のリン濃度を制御することにより、ステンシルパターンの反りやパタ
ーン変形を容易に抑制することができる転写マスクブランクス及び転写マスクが提案されている(例えば、特許文献1参照)。
Since the intermediate oxide film layer of the SOI substrate is formed by a thermal oxidation method, it has a compressive stress of about 300 MPa. Therefore, when a self-supporting thin film is formed, the stress of the self-supporting thin film becomes a compressive stress and bends depending on the thickness of the intermediate oxide film layer and the single crystal silicon thin film layer.
Therefore, it is necessary to perform stress control so as to give a strain so that the self-supporting thin film has a tensile stress and further so that the self-supporting thin film is stretched. For the stress control of this single crystal silicon thin film layer, a method of introducing impurities such as phosphorus and boron having an atomic diameter smaller than that of silicon is used. By controlling the phosphorus concentration in the single crystal silicon thin film layer, the stencil pattern A transfer mask blank and a transfer mask that can easily suppress warpage and pattern deformation have been proposed (see, for example, Patent Document 1).

しかしながら、過剰な不純物濃度は強い引っ張り応力を引き起こしステンシルパターンの位置精度の劣化を生じるため、1mm×1mm程度の自立薄膜内のステンシルパターンを10nm以下の位置精度に抑えるためには0〜10MPa程度の引っ張り応力が必要とされる。ここで位置精度とは、任意領域、例えば自立薄膜内における設計座標と実際の測定座標との差分のバラツキ3σである。
メンブレン内のパターン密度に偏りがあり、ライン系のパターンの場合、内部応力が10MPa以下で応力起因の位置ズレをおよそ10nmに抑えることができる。
また、ホール系パターンでは応力起因の位置ズレを4nm程度に抑えることができる。
However, excessive impurity concentration causes strong tensile stress and deteriorates the positional accuracy of the stencil pattern. Therefore, in order to suppress the stencil pattern in a free standing thin film of about 1 mm × 1 mm to a positional accuracy of 10 nm or less, it is about 0 to 10 MPa. Tensile stress is required. Here, the position accuracy is a variation 3σ of a difference between a design coordinate and an actual measurement coordinate in an arbitrary region, for example, a self-supporting thin film.
The pattern density in the membrane is uneven, and in the case of a line pattern, the internal stress is 10 MPa or less, and the positional deviation caused by the stress can be suppressed to about 10 nm.
Further, in the hole pattern, the positional deviation due to stress can be suppressed to about 4 nm.

単結晶シリコン薄膜層に導入する不純物濃度と内部応力の関係は、不純物の種類、単結晶シリコン薄膜層と中間酸化膜層の厚さ、単結晶シリコン薄膜層やSOI基板の作製条件等の基板条件に依存するため、基板条件毎に不純物濃度と内部応力との関係を調べ、必要な自立薄膜の内部応力に対応した最適な不純物濃度を決定する必要がある。   The relationship between the concentration of impurities introduced into the single crystal silicon thin film layer and the internal stress depends on the substrate conditions such as the type of impurity, the thickness of the single crystal silicon thin film layer and the intermediate oxide film layer, and the manufacturing conditions of the single crystal silicon thin film layer and the SOI substrate. Therefore, it is necessary to investigate the relationship between the impurity concentration and the internal stress for each substrate condition and determine the optimum impurity concentration corresponding to the necessary internal stress of the free-standing thin film.

また、単結晶シリコン薄膜層の内部応力測定は、単結晶シリコン薄膜層形成後に単結晶シリコン薄膜層への加圧とその変形量の関係より内部応力を測定するバルジ法や、単結晶シリコン薄膜層に振動を与えその共振周波数より内部応力を測定する共振周波数測定法や、単結晶シリコン薄膜層内におけるステンシルパターン位置座標の応力による変位量を5nm程度の測定精度を有する位置座標測定機により測定し、その変位量と有限要素法による解析結果と照らし合わせることにより内部応力を決定する位置座標測定法などがある。   In addition, the internal stress of the single crystal silicon thin film layer can be measured by the bulge method for measuring the internal stress from the relationship between the pressure applied to the single crystal silicon thin film layer and the amount of deformation after the single crystal silicon thin film layer is formed. Measure the amount of displacement due to the stress of the stencil pattern position coordinates in the single crystal silicon thin film layer with a position coordinate measuring instrument with a measurement accuracy of about 5 nm. Further, there is a position coordinate measurement method for determining the internal stress by comparing the displacement amount with the analysis result by the finite element method.

上記のような方法により、各々の基板条件に対して任意の内部応力を有する単結晶シリコン薄膜層を形成し、ステンシルマスクを作製することができる。   By the above method, a stencil mask can be manufactured by forming a single crystal silicon thin film layer having an arbitrary internal stress for each substrate condition.

ステンシルマスクの転写精度を維持するためには、自立薄膜の応力管理をおこなうことが必要であり薄膜応力の測定が必要である。
しかしながら、バルジ法による応力測定では、薄膜の応力調整をおこなった後にSOI基板を加工して自立薄膜を形成し、SOI基板を機械的に保持して、圧力を与える必要があるため自立薄膜のパティークル汚染やさらには亀裂等の損傷が発生するという課題を有している。
また、共振周波数測定法においても自立薄膜形成後のSOI基板を機械的に保持して、自立薄膜へ振動を与える必要があるためSOI基板や自立薄膜が損傷するという問題を有している。
In order to maintain the transfer accuracy of the stencil mask, it is necessary to manage the stress of the self-supporting thin film and to measure the thin film stress.
However, in the stress measurement by the bulge method, after adjusting the stress of the thin film, the SOI substrate is processed to form a self-supporting thin film, and the SOI substrate must be mechanically held to apply pressure. There is a problem in that damage such as cracking or cracking occurs.
Further, the resonance frequency measurement method also has a problem that the SOI substrate and the free-standing thin film are damaged because it is necessary to mechanically hold the SOI substrate after the free-standing thin film is formed and apply vibration to the free-standing thin film.

また、応力調整の工程に不具合があり、不純物濃度が低く引っ張り応力が低い場合、自立薄膜に不純物を追加導入することが困難であるという問題もある。   In addition, there is a problem in the stress adjustment process, and when the impurity concentration is low and the tensile stress is low, there is a problem that it is difficult to additionally introduce impurities into the self-supporting thin film.

また、位置座標測定方法もあるが、自立薄膜形成後に、応力確認用のステンシルパターンを形成する必要があり、工程が増えるだけでなく、不純物濃度が低く、引っ張り応力が低い場合、自立薄膜に不純物を追加導入ができないという問題がある。
特開2002−261003号公報
There is also a position coordinate measurement method, but it is necessary to form a stencil pattern for stress confirmation after forming a self-supporting thin film, which not only increases the number of processes, but also has a low impurity concentration and low tensile stress. There is a problem that additional installation cannot be performed.
JP 2002-261003 A

本発明は上記問題点に鑑み考案されたもので、高精度のパターン位置精度が維持できるステンシルマスクの自立薄膜の応力管理方法及びステンシルマスクの製造方法を提供する
ことを目的とする。
The present invention has been devised in view of the above problems, and an object of the present invention is to provide a stress management method for a stencil mask free-standing thin film and a method for manufacturing a stencil mask that can maintain high-precision pattern position accuracy.

本発明に於いて上記課題を達成するために、まず請求項1においては、Si単結晶支持基板と中間酸化膜層とSi単結晶薄膜層とを有するSOI基板の前記Si単結晶薄膜層に応力調整用不純物を導入した後、Si単結晶薄膜層の抵抗値を測定することにより、自立薄膜の応力を管理することを特徴とする自立薄膜の応力管理方法としたものである。   In order to achieve the above object in the present invention, first, in claim 1, stress is applied to the Si single crystal thin film layer of the SOI substrate having the Si single crystal support substrate, the intermediate oxide film layer, and the Si single crystal thin film layer. This is a self-supporting thin film stress management method characterized by managing the stress of the self-supporting thin film by measuring the resistance value of the Si single crystal thin film layer after introducing the adjusting impurities.

また、請求項2においては、少なくとも以下の工程を具備することを特徴とするステンシルマスクの製造方法としたものである。
(a)Si単結晶支持基板と、中間酸化膜層と、Si単結晶薄膜層とを有するSOI基板を準備する工程。
(b)Si単結晶薄膜層に応力調整用不純物を導入する工程。
(c)応力調整用不純物が注入されたSi単結晶薄膜層の抵抗を測定し、応力調整されたSi単結晶薄膜層を有するSOI基板を作製する工程。
(d)応力調整されたSOI基板のSi単結晶薄膜層をパターニングする工程。
(e)SOI基板のSi単結晶支持基板をパターニング処理して支持枠及び梁を形成する工程。
According to a second aspect of the present invention, there is provided a method for manufacturing a stencil mask, comprising at least the following steps.
(A) A step of preparing an SOI substrate having a Si single crystal supporting substrate, an intermediate oxide film layer, and a Si single crystal thin film layer.
(B) A step of introducing impurities for stress adjustment into the Si single crystal thin film layer.
(C) A step of measuring the resistance of the Si single crystal thin film layer into which the stress adjusting impurity is implanted, and manufacturing an SOI substrate having the stress adjusted Si single crystal thin film layer.
(D) A step of patterning the Si single crystal thin film layer of the SOI substrate whose stress is adjusted.
(E) A step of patterning the Si single crystal support substrate of the SOI substrate to form a support frame and a beam.

本発明の自立薄膜の応力管理方法によれば、Si単結晶薄膜層の抵抗を測定することにより、自立薄膜の内部応力が測定できるため、自立薄膜の汚染や亀裂等の損傷を与えることなく歩留まりの良いステンシルマスクを提供できる。
また、機械的な保持も必要としないのでSOI基板への損傷もない。
また、ダミー測定用の自立薄膜を作る必要もなく、加工直前に自立薄膜の内部応力の評価ができるので、投入する基板の枚数を必要最小限に設定でき、材料費の節減に寄与できる。
According to the stress management method of the self-supporting thin film of the present invention, since the internal stress of the self-supporting thin film can be measured by measuring the resistance of the Si single crystal thin film layer, the yield is obtained without causing damage such as contamination or cracking of the self-supporting thin film. A good stencil mask can be provided.
Further, since no mechanical holding is required, there is no damage to the SOI substrate.
In addition, since it is not necessary to make a self-supporting thin film for dummy measurement and the internal stress of the self-supporting thin film can be evaluated immediately before processing, the number of substrates to be input can be set to the minimum necessary, which can contribute to the reduction of material costs.

以下、本発明の実施の形態につき説明する。
請求項1に係る発明は、Si単結晶支持基板と中間酸化膜層とSi単結晶薄膜層とを有するSOI基板の前記Si単結晶薄膜層に応力調整用不純物を導入した後、Si単結晶薄膜層の抵抗値を測定することにより、自立薄膜の応力を管理するようにした自立薄膜の応力管理方法である。
図1は、応力調整用不純物が導入されたSi単結晶薄膜層31aの抵抗値を測定し、演算装置220にて応力に変換処理して、Si単結晶薄膜層31aの応力測定を行う測定装置の一例を示す模式構成図である。
Hereinafter, embodiments of the present invention will be described.
According to the first aspect of the present invention, an impurity for stress adjustment is introduced into the Si single crystal thin film layer of the SOI substrate having the Si single crystal support substrate, the intermediate oxide film layer, and the Si single crystal thin film layer, and then the Si single crystal thin film is introduced. This is a stress management method for a self-supporting thin film in which the stress of the self-supporting thin film is managed by measuring the resistance value of the layer.
FIG. 1 shows a measuring device that measures the resistance value of a Si single crystal thin film layer 31a into which a stress adjusting impurity is introduced, converts the resistance value into stress by an arithmetic device 220, and measures the stress of the Si single crystal thin film layer 31a. It is a schematic block diagram which shows an example.

図1に示す応力測定装置200を用いて自立薄膜の応力を管理する方法について説明する。
まず、Si単結晶支持基板11と中間酸化膜層21とSi単結晶薄膜層31とからなるSOI基板30を準備する(図2(a)参照)。
A method for managing the stress of the self-supporting thin film using the stress measuring apparatus 200 shown in FIG. 1 will be described.
First, an SOI substrate 30 including a Si single crystal support substrate 11, an intermediate oxide film layer 21, and a Si single crystal thin film layer 31 is prepared (see FIG. 2A).

次に、SOI基板30のSi単結晶薄膜層31に薄膜応力調整用不純物を導入し、応力調整用不純物が導入されたSi単結晶薄膜層31aを有するSOI基板30aを作製する(図2(b)参照)。
不純物としては、P(リン)、B(ボロン)等が使用でき、熱拡散法やイオン注入法を用いて導入できるが、膜厚方向への不純物濃度分布を抑えるために十分なアニール処理をすることが望ましい。
Next, an impurity for thin film stress adjustment is introduced into the Si single crystal thin film layer 31 of the SOI substrate 30 to produce an SOI substrate 30a having the Si single crystal thin film layer 31a into which the stress adjustment impurity is introduced (FIG. 2B). )reference).
As impurities, P (phosphorus), B (boron), etc. can be used, and they can be introduced using a thermal diffusion method or ion implantation method, but sufficient annealing is performed to suppress the impurity concentration distribution in the film thickness direction. It is desirable.

次に、図1に示す応力測定装置200の抵抗測定器210及び4端針測定ヘッド211を用いて、応力調整用不純物が導入されたSi単結晶薄膜層31aの抵抗値を測定する。測定箇所は4端針測定ヘッド211の接触による傷等の損傷の可能性を考慮して、後に自立薄膜とならない箇所を抽出し、SOI基板内の複数箇所について測定することが望ましい。
抵抗測定器210で測定された抵抗値は演算処理装置220に取り込まれ、応力に変換されてSi単結晶薄膜層31aの応力が表示される。
Next, the resistance value of the Si single crystal thin film layer 31a into which the stress adjusting impurity is introduced is measured using the resistance measuring device 210 and the four-end needle measuring head 211 of the stress measuring apparatus 200 shown in FIG. In consideration of the possibility of damage such as scratches due to contact with the four-end needle measuring head 211, it is desirable to extract a portion that does not become a self-supporting thin film and measure a plurality of locations in the SOI substrate.
The resistance value measured by the resistance measuring device 210 is taken into the arithmetic processing unit 220, converted into stress, and the stress of the Si single crystal thin film layer 31a is displayed.

ここで、Si単結晶薄膜層31aのシート抵抗と内部応力の関係は、事前に不純物濃度の異なるSi単結晶薄膜層についてバルジ法や共振周波数測定法等を用いて実験的に調べておき、演算処理装置220に登録しておく。
そのため、4端針抵抗測定機によりSi単結晶薄膜層31aのシート抵抗を測定することにより、演算処理装置220にて容易に内部応力を得ることができる。
Here, the relationship between the sheet resistance of the Si single crystal thin film layer 31a and the internal stress is experimentally investigated in advance by using a bulge method, a resonance frequency measurement method, or the like for Si single crystal thin film layers having different impurity concentrations. It is registered in the processing device 220 in advance.
Therefore, the internal stress can be easily obtained by the arithmetic processing unit 220 by measuring the sheet resistance of the Si single crystal thin film layer 31a with a four-end needle resistance measuring machine.

例えば、725μm厚のSi単結晶支持基板11と、1.0μm厚の中間酸化膜層21と、2.0μm厚のSi単結晶薄膜層31とからなるSOI基板30に不純物としてP(リン)を導入したSi単結晶薄膜層31aのシート抵抗と内部応力の関係の一例を図3に示す。
図3より15MPa以下の自立薄膜を得るためには、シート抵抗値は約4〜7Ω/□の範囲にあることが必要である。
For example, P (phosphorus) is used as an impurity in an SOI substrate 30 composed of a 725 μm thick Si single crystal support substrate 11, a 1.0 μm thick intermediate oxide film layer 21, and a 2.0 μm thick Si single crystal thin film layer 31. An example of the relationship between the sheet resistance and the internal stress of the introduced Si single crystal thin film layer 31a is shown in FIG.
From FIG. 3, in order to obtain a free-standing thin film of 15 MPa or less, the sheet resistance value needs to be in the range of about 4-7 Ω / □.

ここで、不純物濃度を導入したSi単結晶薄膜層31aのシート抵抗と内部応力については、必ずしも1回の作業で所望の値が得られるとは限らない。
シート抵抗が7Ω/□以上の場合は不純物濃度が不十分であり、不純物濃度を追加する必要があると判定し、再度、不純物導入工程をおこなう。
シート抵抗が4Ω/□以下の場合は、不純物濃度が高すぎるために内部応力が15MPaより高くなると判定し、高応力の自立薄膜として別用途のマスクに使用する。
Here, as for the sheet resistance and internal stress of the Si single crystal thin film layer 31a into which the impurity concentration is introduced, desired values are not always obtained in one operation.
If the sheet resistance is 7Ω / □ or more, it is determined that the impurity concentration is insufficient and the impurity concentration needs to be added, and the impurity introduction step is performed again.
When the sheet resistance is 4 Ω / □ or less, it is determined that the internal stress is higher than 15 MPa because the impurity concentration is too high, and it is used as a high-stress free-standing thin film for a mask for other purposes.

また、725μm厚のSi単結晶支持基板11と、1.0μm厚の中間酸化膜層21と、2.0μm厚のSi単結晶薄膜層31とからなるSOI基板30に不純物としてB(ボロン)を導入したSi単結晶薄膜層31aのシート抵抗と内部応力の関係の一例を図4に示す。
図4より0〜15MPaの自立薄膜を得るためには、シート抵抗値は約30〜60Ω/□の範囲にあることが必要である。
ここで作製するマスクパターンはホール系であり、応力起因の位置ズレは10nm以下に押さえることが必要である。メンブレンの内部応力は15MPaにおいて6nm程度と予想されるので、15MPa以下の自立薄膜にしておくことにより、応力起因の位置ズレを10nm以下にすることができる。
Further, B (boron) is added as an impurity to the SOI substrate 30 composed of the 725 μm-thick Si single crystal support substrate 11, the 1.0 μm-thick intermediate oxide film layer 21, and the 2.0 μm-thick Si single crystal thin film layer 31. An example of the relationship between the sheet resistance and the internal stress of the introduced Si single crystal thin film layer 31a is shown in FIG.
From FIG. 4, in order to obtain a free-standing thin film of 0 to 15 MPa, the sheet resistance value needs to be in the range of about 30 to 60 Ω / □.
The mask pattern produced here is a hole system, and the positional deviation due to stress must be suppressed to 10 nm or less. Since the internal stress of the membrane is expected to be about 6 nm at 15 MPa, the misalignment caused by the stress can be made 10 nm or less by using a self-supporting thin film of 15 MPa or less.

上記の0〜15MPaの適性内部応力範囲の設定事例はあくまでも一例であって、要求される自立薄膜の内部応力は作製するマスクの仕様に依存し、詳しくはパターン密度の自立薄膜内における粗密分布や位置精度の仕様に依存する。   The setting example of the appropriate internal stress range of 0 to 15 MPa is merely an example, and the required internal stress of the free standing thin film depends on the specifications of the mask to be manufactured. Depends on position accuracy specifications.

以下、応力調整済みi単結晶薄膜層31aを有するSOI基板30aを用いたステンシルマスクの製造方法について説明する。
まず、応力調整済みSi単結晶薄膜層31a上にレジスト層を形成し、パターン露光、現像等の一連のパターニング処理を行って、レジストパターン41を形成する(図2(c)参照)。
Hereinafter, a method for manufacturing a stencil mask using the SOI substrate 30a having the stress-adjusted i single crystal thin film layer 31a will be described.
First, a resist layer is formed on the stress-adjusted Si single crystal thin film layer 31a, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 41 (see FIG. 2C).

次に、SF6ガス等を用いたドライエッチングにより、レジストパターン41をマスク
にしてSi単結晶薄膜層31aをエッチングし、さらに、酸素プラズマ等による灰化処理を行って、Si単結晶薄膜層31aの所定位置にステンシル32を形成する(図2(d)参照)。
Next, by dry etching using SF 6 gas or the like, the Si single crystal thin film layer 31a is etched using the resist pattern 41 as a mask, and further ashing treatment is performed using oxygen plasma or the like, so that the Si single crystal thin film layer 31a The stencil 32 is formed at a predetermined position (see FIG. 2D).

次に、Si単結晶支持基板11上に数十μm厚のレジスト層を形成し、パターン露光、現像等の一連のパターニング処理を行って、ウインドウ用レジストパターン42を形成する(図2(e)参照)。   Next, a resist layer having a thickness of several tens of μm is formed on the Si single crystal support substrate 11, and a series of patterning processes such as pattern exposure and development are performed to form a window resist pattern 42 (FIG. 2E). reference).

次に、ウインドウ用レジストパターン42をマスクにして、ドライエッチングによりSi単結晶支持基板11をエッチングする。
ここで、Si単結晶支持基板11のエッチング加工は、フッ素系ガスによるエッチングとフロロカーボン系ガスによる保護膜堆積ステップを組み合わせたプロセスを使用すると高アスペクト比(エッチング深さ/開口寸法)エッチングをおこなうことができる。
Next, the Si single crystal support substrate 11 is etched by dry etching using the window resist pattern 42 as a mask.
Here, the etching process of the Si single crystal support substrate 11 is performed by performing etching with a high aspect ratio (etching depth / opening dimension) when a process combining etching with a fluorine-based gas and a protective film deposition step with a fluorocarbon-based gas is used. Can do.

次に、ウインドウ用レジストパターン42を酸素プラズマ等による灰化処理により除去した後、さらに、中間酸化膜層21の一部をHF溶液でエッチングし、アンモニア過水やバッファードフッ酸による洗浄をおこない、梁11aを作製し、応力調整された自立薄膜31aを有するステンシルマスク100を得ることができる。(図2(e)参照)。   Next, after the window resist pattern 42 is removed by an ashing process using oxygen plasma or the like, a part of the intermediate oxide film layer 21 is etched with an HF solution, and then washed with ammonia overwater or buffered hydrofluoric acid. The beam 11a is produced, and the stencil mask 100 having the self-supporting thin film 31a whose stress is adjusted can be obtained. (See FIG. 2 (e)).

なお、EPLマスクのような隣接する自立薄膜同士の距離が短い場合はドライエッチによるSi単結晶支持基板11のエッチングが必要であるが、セルプロジェクション用マスクのように自立薄膜間の距離が十分に許される場合は、KOH等のウエットエッチを用いてもよい。
ウエットエッチングの場合、窒化膜等で薄膜ウインドウ用パターンマスクを形成した後、30wt%のKOHを80℃に加熱し、ウエットエッチングによりSi単結晶支持基板11の一部を中間酸化膜層まで除去したのち、さらに中間酸化膜層の一部を5wt%のバファードHF溶液でエッチングし、アンモニア過水やバッファードフッ酸による洗浄をおこない、ステンシルマスクを得ることができる。
In addition, when the distance between adjacent free-standing thin films such as an EPL mask is short, it is necessary to etch the Si single crystal support substrate 11 by dry etching. However, the distance between the free-standing thin films is sufficiently large as in a cell projection mask. If permitted, a wet etch such as KOH may be used.
In the case of wet etching, after forming a pattern mask for a thin film window with a nitride film or the like, 30 wt% KOH is heated to 80 ° C., and a part of the Si single crystal support substrate 11 is removed to the intermediate oxide film layer by wet etching. After that, a part of the intermediate oxide film layer is further etched with a 5 wt% buffered HF solution, and washed with ammonia overwater or buffered hydrofluoric acid to obtain a stencil mask.

まず、725μm厚のSi単結晶支持基板11と1μm厚の中間酸化膜層21と2.0μm厚のSi単結晶薄膜層31とからなる直径200mmのSOI基板30を準備した(図2(a)参照)。   First, an SOI substrate 30 having a diameter of 200 mm comprising a 725 μm thick Si single crystal support substrate 11, a 1 μm thick intermediate oxide film layer 21 and a 2.0 μm thick Si single crystal thin film layer 31 was prepared (FIG. 2A). reference).

次に、SOI基板30のSi単結晶薄膜層31にP(リン)からなる薄膜応力調整用不純物をイオン注入法にて導入し、応力調整用不純物が導入されたSi単結晶薄膜層31aを有するSOI基板30aを作製した(図2(b)参照)。   Next, a thin-film stress adjusting impurity made of P (phosphorus) is introduced into the Si single crystal thin film layer 31 of the SOI substrate 30 by an ion implantation method, and the Si single crystal thin film layer 31a into which the stress adjusting impurity is introduced is provided. An SOI substrate 30a was manufactured (see FIG. 2B).

次に、図1に示す応力測定装置200の抵抗測定器210及び4端針測定ヘッド211を用いて、応力調整用不純物が導入されたSi単結晶薄膜層31aの抵抗値を測定した。抵抗値は4.2Ω/□であり、測定された抵抗値は演算処理装置220に取り込まれ、応力に変換されて、予想されるメンブレン形成後のSi単結晶薄膜層31aの応力は11MPaであった。   Next, the resistance value of the Si single crystal thin film layer 31a into which the stress adjusting impurity was introduced was measured using the resistance measuring device 210 and the four-end needle measuring head 211 of the stress measuring apparatus 200 shown in FIG. The resistance value is 4.2Ω / □, and the measured resistance value is taken into the arithmetic processing unit 220 and converted into stress. The expected stress of the Si single crystal thin film layer 31a after the formation of the membrane is 11 MPa. It was.

次に、応力調整済みSi単結晶薄膜層31a上に電子線感応性レジスト(PMMA(ポリメチルメタアクリレ−ト系)ポジレジスト)を塗布して500nm厚のレジスト層を形成し、120μC/cm2の電子線照射量で電子線露光し、現像等の一連のパターニング処理を行って、レジストパターン41を形成した(図2(c)参照)。 Next, an electron beam sensitive resist (PMMA (polymethylmethacrylate based positive resist)) is applied on the stress-adjusted Si single crystal thin film layer 31a to form a 500 nm thick resist layer, and 120 μC / cm The resist pattern 41 was formed by performing electron beam exposure with an electron beam dose of 2 and performing a series of patterning processes such as development (see FIG. 2C).

次に、フロロカーボン系ガスを用いたドライエッチングにより、レジストパターン41
をマスクにしてSi単結晶薄膜層31aをエッチングし、さらに、酸素プラズマによる灰化処理を行って、Si単結晶薄膜層31aの所定位置にステンシル32を形成した(図2(d)参照)。
Next, a resist pattern 41 is formed by dry etching using a fluorocarbon-based gas.
As a mask, the Si single crystal thin film layer 31a was etched and further subjected to ashing with oxygen plasma to form a stencil 32 at a predetermined position of the Si single crystal thin film layer 31a (see FIG. 2D).

次に、Si単結晶支持基板11上に50μm厚のレジスト層を形成し、パターン露光、現像等の一連のパターニング処理を行って、ウインドウ用レジストパターン42を形成した(図2(e)参照)。   Next, a resist layer having a thickness of 50 μm was formed on the Si single crystal support substrate 11, and a series of patterning processes such as pattern exposure and development were performed to form a window resist pattern 42 (see FIG. 2E). .

次に、ウインドウ用レジストパターン42をマスクにして、フロロカーボン系ガスを用いたドライエッチングによりSi単結晶支持基板11をエッチングした。
さらに、30wt%のKOHを80℃に加熱したエッチング液によりSi単結晶支持基板11の一部を中間酸化膜層21まで除去した。
Next, using the window resist pattern 42 as a mask, the Si single crystal support substrate 11 was etched by dry etching using a fluorocarbon-based gas.
Further, a part of the Si single crystal support substrate 11 was removed up to the intermediate oxide film layer 21 with an etching solution in which 30 wt% KOH was heated to 80 ° C.

さらに、中間酸化膜層21の一部を5wt%のバファードHF溶液でエッチングし、アンモニア過水やバッファードフッ酸による洗浄を行って、11MPaに応力調整された自立薄膜31aを有するEPL法に用いられる梁付きステンシルマスク100aを得た。(図2(e)参照)。   Further, a part of the intermediate oxide film layer 21 is etched with a 5 wt% buffered HF solution, washed with ammonia-hydrogen peroxide or buffered hydrofluoric acid, and used for the EPL method having the self-supporting thin film 31a whose stress is adjusted to 11 MPa. A beamed stencil mask 100a was obtained. (See FIG. 2 (e)).

まず、725μm厚のSi単結晶支持基板11と0.2μm厚の中間酸化膜層21と2.0μm厚のSi単結晶薄膜層31とからなる直径200mmのSOI基板30を準備した(図2(a)参照)。   First, an SOI substrate 30 having a diameter of 200 mm comprising a 725 μm thick Si single crystal support substrate 11, a 0.2 μm thick intermediate oxide film layer 21, and a 2.0 μm thick Si single crystal thin film layer 31 was prepared (FIG. 2 ( a)).

次に、SOI基板30のSi単結晶薄膜層31にB(ボロン)からなる薄膜応力調整用不純物をイオン注入法にて導入し、応力調整用不純物が導入されたSi単結晶薄膜層31aを有するSOI基板30aを作製した(図2(b)参照)。   Next, a thin film stress adjusting impurity made of B (boron) is introduced into the Si single crystal thin film layer 31 of the SOI substrate 30 by an ion implantation method, and the Si single crystal thin film layer 31a into which the stress adjusting impurity is introduced is provided. An SOI substrate 30a was manufactured (see FIG. 2B).

次に、図1に示す応力測定装置200の抵抗測定器210及び4端針測定ヘッド211を用いて、応力調整用不純物が導入されたSi単結晶薄膜層31aの抵抗値を測定した。抵抗値は64Ω/□であり、測定された抵抗値は演算処理装置220に取り込まれ、応力に変換されて、Si単結晶薄膜層31aの予想される応力は約8MPaであった。   Next, the resistance value of the Si single crystal thin film layer 31a into which the stress adjusting impurity was introduced was measured using the resistance measuring device 210 and the four-end needle measuring head 211 of the stress measuring apparatus 200 shown in FIG. The resistance value was 64Ω / □, and the measured resistance value was taken into the arithmetic processing unit 220 and converted into stress. The expected stress of the Si single crystal thin film layer 31a was about 8 MPa.

次に、応力調整済みSi単結晶薄膜層31a上に電子線感応性レジスト(PMMA(ポリメチルメタアクリレ−ト系)ポジレジスト)を塗布して500nm厚のレジスト層を形成し、120μC/cm2の電子線照射量で電子線露光し、現像等の一連のパターニング処理を行って、レジストパターン41を形成した(図2(c)参照)。 Next, an electron beam sensitive resist (PMMA (polymethylmethacrylate based positive resist)) is applied on the stress-adjusted Si single crystal thin film layer 31a to form a 500 nm thick resist layer, and 120 μC / cm The resist pattern 41 was formed by performing electron beam exposure with an electron beam dose of 2 and performing a series of patterning processes such as development (see FIG. 2C).

次に、フロロカーボン系ガスを用いたドライエッチングにより、レジストパターン41をマスクにしてSi単結晶薄膜層31aをエッチングし、さらに、酸素プラズマによる灰化処理を行って、Si単結晶薄膜層31aの所定位置にステンシル32を形成した(図2(d)参照)。   Next, by dry etching using a fluorocarbon-based gas, the Si single crystal thin film layer 31a is etched using the resist pattern 41 as a mask, and further, an ashing process using oxygen plasma is performed, so that a predetermined Si single crystal thin film layer 31a is formed. A stencil 32 was formed at the position (see FIG. 2D).

次に、Si単結晶支持基板11上に50μm厚のレジスト層を形成し、パターン露光、現像等の一連のパターニング処理を行って、ウインドウ用レジストパターン42を形成した(図2(e)参照)。   Next, a resist layer having a thickness of 50 μm was formed on the Si single crystal support substrate 11, and a series of patterning processes such as pattern exposure and development were performed to form a window resist pattern 42 (see FIG. 2E). .

次に、ウインドウ用レジストパターン42をマスクにして、フロロカーボン系ガスを用いたドライエッチングによりSi単結晶支持基板11をエッチングした。
さらに、30wt%のKOHを80℃に加熱したエッチング液によりSi単結晶支持基板11の一部を中間酸化膜層21まで除去した。
Next, using the window resist pattern 42 as a mask, the Si single crystal support substrate 11 was etched by dry etching using a fluorocarbon-based gas.
Further, a part of the Si single crystal support substrate 11 was removed up to the intermediate oxide film layer 21 with an etching solution in which 30 wt% KOH was heated to 80 ° C.

さらに、中間酸化膜層21の一部を5wt%のバファードHF溶液でエッチングし、アンモニア過水やバッファードフッ酸による洗浄を行って、9.1MPaに応力調整された自立薄膜31aを有するEPL法に用いられる梁付きステンシルマスク100bを得た。(図2(e)参照)。   Further, an EPL method having a self-supporting thin film 31a whose stress is adjusted to 9.1 MPa by etching a part of the intermediate oxide film layer 21 with a 5 wt% buffered HF solution, cleaning with ammonia overwater or buffered hydrofluoric acid. The stencil mask with beam 100b used for the above was obtained. (See FIG. 2 (e)).

自立薄膜の応力測定装置の一例を示す模式構成図である。It is a schematic block diagram which shows an example of the stress measuring apparatus of a self-supporting thin film. (a)〜(e)は、本発明のステンシルマスクの製造方法の一実施例を工程順に示す模式構成断面図である。(A)-(e) is typical structure sectional drawing which shows one Example of the manufacturing method of the stencil mask of this invention to process order. 応力調整用不純物としてP(リン)を導入したSi単結晶薄膜層のシート抵抗と応力の関係を示す説明図である。It is explanatory drawing which shows the relationship between the sheet resistance and stress of the Si single crystal thin film layer which introduce | transduced P (phosphorus) as an impurity for stress adjustment. 応力調整用不純物としてB(ボロン)を導入したSi単結晶薄膜層のシート抵抗と応力の関係を示す説明図である。It is explanatory drawing which shows the relationship between the sheet resistance and stress of the Si single crystal thin film layer which introduce | transduced B (boron) as an impurity for stress adjustment. (a)は、EPL法やLEEPL法で用いられるステンシル転写マスクの一例を示す模式平面図である。(b)は、(a)をA−A’線で切断した模式構成断面図である。(c)は、(b)のB部を拡大した模式構成断面図である。(A) is a schematic plan view which shows an example of the stencil transfer mask used by EPL method or LEEPL method. (B) is a schematic cross-sectional view taken along line A-A ′ of (a). (C) is the schematic structure sectional drawing which expanded the B section of (b). 転写マスクを使って感応基板へパターン転写している状態を示す説明図である。It is explanatory drawing which shows the state which is pattern-transferring to the sensitive board | substrate using a transfer mask.

符号の説明Explanation of symbols

11……Si単結晶支持基板
11a……梁
21……中間酸化膜層
30、30a……SOI基板
31……Si単結晶薄膜層
31a……応力調整用不純物が導入されたSi単結晶薄膜層(自立薄膜)
32……ステンシル
41……レジストパターン
42……ウインドウ用レジストパターン
100、100a、100b……ステンシルマスク
200……応力測定装置
210……抵抗測定器
211……4探針測定ヘッド
220……演算処理装置
DESCRIPTION OF SYMBOLS 11 ... Si single crystal support substrate 11a ... Beam 21 ... Intermediate oxide film layer 30, 30a ... SOI substrate 31 ... Si single crystal thin film layer 31a ... Si single crystal thin film layer in which impurities for stress adjustment are introduced (Self-supporting thin film)
32 ... Stencil 41 ... Resist pattern 42 ... Window resist pattern 100, 100a, 100b ... Stencil mask 200 ... Stress measuring device 210 ... Resistance measuring device 211 ... 4 Probe measuring head 220 ... Arithmetic processing apparatus

Claims (2)

Si単結晶支持基板と中間酸化膜層とSi単結晶薄膜層とを有するSOI基板の前記Si単結晶薄膜層に応力調整用不純物を導入した後、Si単結晶薄膜層の抵抗値を測定することにより、自立薄膜の応力を管理することを特徴とする自立薄膜の応力管理方法。   After introducing an impurity for stress adjustment into the Si single crystal thin film layer of the SOI substrate having the Si single crystal support substrate, the intermediate oxide film layer, and the Si single crystal thin film layer, the resistance value of the Si single crystal thin film layer is measured. A method for managing stress in a free-standing thin film, characterized by managing stress in the free-standing thin film. 少なくとも以下の工程を具備することを特徴とするステンシルマスクの製造方法。
(a)Si単結晶支持基板と、中間酸化膜層と、Si単結晶薄膜層とを有するSOI基板を準備する工程。
(b)Si単結晶薄膜層に応力調整用不純物を導入する工程。
(c)応力調整用不純物が注入されたSi単結晶薄膜層の抵抗を測定し、応力調整されたSi単結晶薄膜層を有するSOI基板を作製する工程。
(d)応力調整されたSOI基板のSi単結晶薄膜層をパターニングする工程。
(e)SOI基板のSi単結晶支持基板をパターニング処理して支持枠及び梁を形成する工程。
The manufacturing method of the stencil mask characterized by comprising the following processes at least.
(A) A step of preparing an SOI substrate having a Si single crystal supporting substrate, an intermediate oxide film layer, and a Si single crystal thin film layer.
(B) A step of introducing impurities for stress adjustment into the Si single crystal thin film layer.
(C) A step of measuring the resistance of the Si single crystal thin film layer into which the stress adjusting impurity is implanted, and manufacturing an SOI substrate having the stress adjusted Si single crystal thin film layer.
(D) A step of patterning the Si single crystal thin film layer of the SOI substrate whose stress is adjusted.
(E) A step of patterning the Si single crystal support substrate of the SOI substrate to form a support frame and a beam.
JP2006033427A 2006-02-10 2006-02-10 Stress managing method of self standing thin film and stencil-mask manufacturing method Pending JP2007214410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033427A JP2007214410A (en) 2006-02-10 2006-02-10 Stress managing method of self standing thin film and stencil-mask manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033427A JP2007214410A (en) 2006-02-10 2006-02-10 Stress managing method of self standing thin film and stencil-mask manufacturing method

Publications (1)

Publication Number Publication Date
JP2007214410A true JP2007214410A (en) 2007-08-23

Family

ID=38492562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033427A Pending JP2007214410A (en) 2006-02-10 2006-02-10 Stress managing method of self standing thin film and stencil-mask manufacturing method

Country Status (1)

Country Link
JP (1) JP2007214410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188247A (en) * 2008-02-07 2009-08-20 Toppan Printing Co Ltd Soi substrate for stencil mask, stencil mask blanks, stencil mask, method of manufacturing stencil mask, and pattern exposure method using stencil mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188247A (en) * 2008-02-07 2009-08-20 Toppan Printing Co Ltd Soi substrate for stencil mask, stencil mask blanks, stencil mask, method of manufacturing stencil mask, and pattern exposure method using stencil mask

Similar Documents

Publication Publication Date Title
US7494830B2 (en) Method and device for wafer backside alignment overlay accuracy
TWI249803B (en) System for controlling manufacturing process, method for controlling manufacturing process and method for manufacturing a semiconductor device
US8062810B2 (en) Method of correcting a mask pattern and method of manufacturing a semiconductor device
JP4220229B2 (en) Mask blank for charged particle beam exposure and method for manufacturing mask for charged particle beam exposure
TW201037474A (en) System and method for implementing multi-resolution advanced process control
CN112949236B (en) Method and system for calculating etching deviation
JP4648134B2 (en) SOI substrate, charged particle beam exposure mask blank, and charged particle beam exposure mask
CN110364449B (en) Monitoring method for gate oxide nitrogen-doped annealing temperature
JP2013165238A (en) Method for manufacturing stencil mask and stencil mask
JP2001312045A (en) Method for forming mask
JP2007214410A (en) Stress managing method of self standing thin film and stencil-mask manufacturing method
JP5011774B2 (en) Transfer mask blank, transfer mask, and pattern exposure method
US20220359317A1 (en) Stress measuring structure and stress measuring method
JP5332246B2 (en) Method for manufacturing stencil mask for ion implantation
CN109065465B (en) Method for measuring height stability of shallow trench isolation step
JP4333107B2 (en) Transfer mask and exposure method
JP2008103386A (en) Manufacturing method of stencile mask for ion implantation
TWI647774B (en) Dislocation predicting method and device manufacturing method
JP5515564B2 (en) Method for manufacturing stencil mask for ion implantation
JP2004235295A (en) Soi substrate and method of manufacturing the same, mask blank using the same, transfer mask, and method of exposing the same
TWI833455B (en) Method of manufacturing semiconductor device for reducing defect in array region
JP5332776B2 (en) Method for manufacturing transfer mask
Dixson et al. Process optimization for lattice-selective wet etching of crystalline silicon structures
JP4788258B2 (en) Charged particle transfer mask, manufacturing method thereof, and transfer method using charged particle transfer mask
JP2007012753A (en) Stencil mask and its manufacturing method