JP2007213953A - Negative electrode material for battery and secondary battery using it - Google Patents

Negative electrode material for battery and secondary battery using it Download PDF

Info

Publication number
JP2007213953A
JP2007213953A JP2006032042A JP2006032042A JP2007213953A JP 2007213953 A JP2007213953 A JP 2007213953A JP 2006032042 A JP2006032042 A JP 2006032042A JP 2006032042 A JP2006032042 A JP 2006032042A JP 2007213953 A JP2007213953 A JP 2007213953A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
electrode material
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032042A
Other languages
Japanese (ja)
Inventor
Yukihiro Ota
進啓 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006032042A priority Critical patent/JP2007213953A/en
Publication of JP2007213953A publication Critical patent/JP2007213953A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for lithium secondary battery having thermal resistance capable of enduring a reflow soldering, with little capacity deterioration at the time of repeated charge and discharge, and capable of using stably. <P>SOLUTION: The negative electrode material for lithium secondary battery contains a component which is bonded with lithium and has a melting temperature higher that of lithium (Li) in 1-30% in total quantity in atomic conversion in Li system matrix. As an example, the negative electrode material has the component which is at least one kind out of an element group made of B, Al, C, Si, P, S, Mg, Ca, Sr, N, O. The lithium secondary battery using this material for the negative electrode maintains a high capacity even after mounting by reflow soldering and can suppress for a long period to the minimum deterioration of capacity and adhesion with electrolyte interface even if charge and discharge are repeated. Thereby, it can be provided for practical use stably. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池用の負極材料およびそれを用いたリチウム二次電池に関する。   The present invention relates to a negative electrode material for a battery and a lithium secondary battery using the same.

有機質の電解液を使ったリチウム二次電池の負極材料には、円筒型の炭素系の他、小型のコイン型では、金属Li系のもの、およびLi−Al合金系、Li−Si合金系、Li−Sn合金系のものなどが挙げられている。この内の金属Li系の材料は、単位体積当たりの放電容量が最も大きいため、究極の素材とされている。しかしながら、純粋な金属Liは、充放電を繰り返す内に電解液と反応して針状結晶が析出し、それがセパレータを突き破り陽極に達して短絡を起こす可能性がある。このため、炭素とLi金属箔の積層された複合材料、ウッドメタルとの複合化等々、それを抑える工夫がなされて来た。このような有機質の電解液を使ったリチウム二次電池の負極材料の開発概要は、例えば、非特許文献1ないし3および特許文献1、2に紹介されている。これらの非特許文献の記述によれば、負極材料には主にリチウム−アルミニウム系材料が使われて来た。   The negative electrode material of the lithium secondary battery using an organic electrolyte includes a cylindrical carbon type, a small coin type, a metal Li type, a Li-Al alloy type, a Li-Si alloy type, Examples include Li-Sn alloy-based ones. Among these, a metal Li-based material has the largest discharge capacity per unit volume, and is therefore the ultimate material. However, pure metal Li reacts with the electrolytic solution during repeated charging and discharging, and acicular crystals are deposited, which may break through the separator and reach the anode to cause a short circuit. For this reason, contrivances have been made to suppress this, such as composite materials in which carbon and Li metal foil are laminated, and composites with wood metal. For example, Non-Patent Documents 1 to 3 and Patent Documents 1 and 2 introduce an outline of development of a negative electrode material for a lithium secondary battery using such an organic electrolyte. According to the descriptions in these non-patent documents, lithium-aluminum-based materials have been mainly used as negative electrode materials.

一方有機質の電解液を使わず、全て固体状の電解質のみにて構成される全固体型の電池すなわち固体電解質型の二次電池が、特許文献4、5に提案されている。これらの文献は、リチウム金属や金属Li粒子が炭素系材料中に埋設された複合材料などを負極材料として紹介している。
;1990年、丸善(株)発行の電池便覧、第328ないし329頁 ;1996年、朝倉書店発行の最新電池ハンドブック、第651ないし656頁 ;1999年発行のElectrochimica Acta、第31ないし50頁 ;特開2005−079077号公報 ;特開2005−050585号公報 ;特開2005−071683号公報 ;特開2004−179158号公報 ;特開2004−127743号公報
On the other hand, Patent Documents 4 and 5 propose an all-solid-state battery, that is, a solid-electrolyte-type secondary battery that is composed of only a solid electrolyte without using an organic electrolyte solution. These documents introduce as a negative electrode material a composite material in which lithium metal or metallic Li particles are embedded in a carbon-based material.
; Battery manual issued by Maruzen Co., Ltd., 1990, pp. 328 to 329 The latest battery handbook published by Asakura Shoten in 1996, pages 651 to 656 ; Electrochimica Acta, 1999, pp. 31-50 Japanese Patent Application Laid-Open No. 2005-079077 ; JP-A-2005-0505585 ; JP-A-2005-071683 ; JP-A-2004-179158 Japanese Patent Application Laid-Open No. 2004-127743

コイン型リチウム二次電池の電気回路への実装は、通常リフロー半田付けで行われる。その際電池は、300℃近い温度下に置かれる。このため、有機電解質(上記の有機質の電解液)の耐熱性向上および主成分が低融点(180℃)の上記したLi金属またはLi合金系を負極材に用いる場合の耐熱性向上は、リチウム二次電池の実用化への重要な課題である。この課題を解消するために、例えば、有機質の電解液を使ったものでは、特許文献3に記載のように、電解液にスルホランやテトラグライムなどの特定成分を添加したものが提案されている。これによって、実装時の有機電解質の熱分解は緩和される。しかしながら、使用時の添加成分による劣化の問題が残る。また負極材料がリチウム−アルミニウム合金の場合、融点が高いため耐熱性はあるものの、放電容量を上げると材料自体が微粉末化して劣化が早くなる。   The coin-type lithium secondary battery is usually mounted on the electric circuit by reflow soldering. In this case, the battery is placed at a temperature close to 300 ° C. For this reason, the improvement in heat resistance of the organic electrolyte (the above organic electrolyte solution) and the improvement in heat resistance when the above-described Li metal or Li alloy system whose main component is a low melting point (180 ° C.) are used for the negative electrode material are as follows. This is an important issue for the practical application of secondary batteries. In order to solve this problem, for example, in the case of using an organic electrolytic solution, as described in Patent Document 3, a solution in which a specific component such as sulfolane or tetraglyme is added to the electrolytic solution has been proposed. As a result, thermal decomposition of the organic electrolyte during mounting is alleviated. However, the problem of deterioration due to added components during use remains. In addition, when the negative electrode material is a lithium-aluminum alloy, the melting point is high, so that it has heat resistance. However, when the discharge capacity is increased, the material itself becomes fine powder and deterioration is accelerated.

一方前述のように、有機電解質を使わず、それと同程度のリチウムイオン伝導性を有する固体電解質(固体状の電解質)を用いた固体電解質型の電池がある。例えば、硫化物系の固体電解質は、−20℃以下から300℃以上の広い温度範囲で十分に安定している。したがって、電解質自身は、リフロー半田付けに十分耐えられる。しかしながら、負極材料にリチウム系金属を用いた場合には、前述のように、それがリフロー半田付けの際に溶融する恐れがある。またリチウム−アルミニウム合金を用いたとしても、前述のように、充放電時には、それ自身の微粉末化が起こり易い。またそれ自身の3次元の膨張収縮による固体電解質との界面剥離が生じ易く、双方の電気的な接続が断たれる可能性がある。   On the other hand, as described above, there is a solid electrolyte type battery that does not use an organic electrolyte but uses a solid electrolyte (solid electrolyte) having the same degree of lithium ion conductivity. For example, a sulfide-based solid electrolyte is sufficiently stable over a wide temperature range from −20 ° C. to 300 ° C. Therefore, the electrolyte itself can sufficiently withstand reflow soldering. However, when a lithium-based metal is used as the negative electrode material, as described above, it may be melted during reflow soldering. Even if a lithium-aluminum alloy is used, as described above, the powder itself tends to be pulverized during charging and discharging. Moreover, interface peeling from the solid electrolyte is likely to occur due to its own three-dimensional expansion and contraction, and there is a possibility that the electrical connection between the two is broken.

本発明は、以上述べてきたようなリチウム二次電池に用いる負極の耐熱性と実用時の安定性を改善するためになされたものである。なお本発明の材料は、有機電解質を用いた二次電池でも有効に使えるが、特に固体電解質を用いた二次電池に使う場合の方が、電解質自体が耐熱性に優れているため、その耐熱性低下の影響を受けることが無く、より有利に使うことができる。すなわち本発明は、リチウムと結合し、その溶融温度が、リチウム(Li)のそれよりも高い成分が、Li系マトリックス(Liを主成分としたLiおよびLi化合物を含むマトリックス)中に、原子換算の合計量で1ないし30%含まれるリチウム二次電池用負極材料である。また本発明には、その一例として、前記成分が、B、Al、C、Si、P、S、Mg、Ca、Sr、N、Oからなる元素群の少なくとも1種が特定されたリチウム二次電池用負極材料が含まれる。また本発明には、以上の材料を用いたリチウム二次電池も含まれる。   The present invention has been made to improve the heat resistance and stability in practical use of the negative electrode used in the lithium secondary battery as described above. The material of the present invention can also be used effectively in a secondary battery using an organic electrolyte, but especially when used in a secondary battery using a solid electrolyte, the electrolyte itself is superior in heat resistance. It can be used more advantageously without being affected by deterioration of the properties. That is, in the present invention, a component that binds to lithium and has a melting temperature higher than that of lithium (Li) is converted into an atom in a Li-based matrix (a matrix containing Li and a Li compound containing Li as a main component). Is a negative electrode material for a lithium secondary battery containing 1 to 30% in total. In the present invention, as an example, the secondary component is a lithium secondary in which at least one element group consisting of B, Al, C, Si, P, S, Mg, Ca, Sr, N, and O is specified. Battery negative electrode materials are included. The present invention also includes a lithium secondary battery using the above materials.

本発明の材料は、十分な耐熱性を有する。このため、本発明の材料を負極に用いたリチウム二次電池は、リフロー半田実装後も高い容量を維持し、充放電を繰り返しても、容量や電解質界面との密着性の低下が長期間に渡り小さく抑えられる。このため、安定して実用に供することができる。   The material of the present invention has sufficient heat resistance. For this reason, the lithium secondary battery using the material of the present invention for the negative electrode maintains a high capacity even after reflow solder mounting, and even after repeated charging and discharging, the decrease in the capacity and adhesion with the electrolyte interface is prolonged. It can be kept small. For this reason, it can be stably put to practical use.

本発明は、リチウムと結合し、その溶融温度が、リチウム(Li)のそれよりも高い成分が、Li系マトリックス中に、原子換算の合計量で1ないし30%含まれるリチウム二次電池用負極材料である。上記成分を原子換算の合計量で1ないし30%とする理由は、下限未満では、例えば、リフロー半田付け時のように、300℃近くに温度が上がると溶融するため形状が保てないからであり、上限を超えると、充放電時の微粉化が進み易くなり初期の容量の低下が早くなるからである。合計量は、5ないし20原子%が好ましく、より好ましくは7ないし15原子%である。本発明の負極材料は、リチウムが主成分であり、しかもそれより溶融温度の高い成分とリチウムが結合した状態で上記の合計量範囲で、均一に分布しているため、リフロー半田付けで300℃近くに温度が上がっても溶融することは無い。また溶融温度の高い成分の合計量を上記範囲内に制御することによって、充放電時の膨張収縮は、平面方向が抑えられ、厚み方向の二次元面内だけで生じ、三次元方向での膨張収縮が生じない。このため、特に電解質が固体状の場合、それとの電気的な接触が断たれることなく、安定した充放電を繰り返すことができる。さらに、電解質とのイオン伝導性障壁の低い界面を形成することができ、安定して充放電時の電流密度を大きく採ることができる。   The present invention relates to a negative electrode for a lithium secondary battery that is bonded to lithium and has a melting temperature higher than that of lithium (Li) in a Li-based matrix in an amount of 1 to 30% in terms of atoms. Material. The reason why the total amount of the above components is 1 to 30% in terms of atoms is that if the temperature is lower than the lower limit, the shape cannot be maintained because it melts when the temperature rises near 300 ° C., for example, during reflow soldering. If the upper limit is exceeded, pulverization at the time of charge / discharge is likely to proceed, and the initial capacity reduction is accelerated. The total amount is preferably 5 to 20 atomic%, more preferably 7 to 15 atomic%. Since the negative electrode material of the present invention is mainly composed of lithium and is uniformly distributed in the above total amount range in a state where a component having a higher melting temperature and lithium are combined with each other, it is 300 ° C. by reflow soldering. Even if the temperature rises nearby, it does not melt. In addition, by controlling the total amount of components having a high melting temperature within the above range, expansion / contraction during charging / discharging is suppressed in the plane direction, occurs only in the two-dimensional plane in the thickness direction, and expands in the three-dimensional direction. No contraction occurs. For this reason, when the electrolyte is in a solid state, stable charge and discharge can be repeated without disconnecting electrical contact therewith. Furthermore, an interface with a low ion conductivity barrier with the electrolyte can be formed, and the current density during charging and discharging can be stably increased.

また本発明には、その一例として、前記成分が、B、Al、C、Si、P、S、Mg、Ca、Sr、N、Oからなる元素群の少なくとも1種に特定されたリチウム二次電池用の負極材料が含まれる。その場合、群内の複数種の元素が、Liと結合した形態で含まれていても良い。またその内の複数種の元素が、それらだけで化合物を形成していても良い。この場合の化合物は、例えば、Al、B、Si、Mgの酸化物、窒化物、酸窒化物などがある。   In the present invention, as an example, the secondary component is a lithium secondary material specified as at least one element group consisting of B, Al, C, Si, P, S, Mg, Ca, Sr, N, and O. A negative electrode material for a battery is included. In that case, a plurality of types of elements in the group may be included in a form combined with Li. In addition, a plurality of kinds of elements may form a compound by themselves. Examples of the compound in this case include oxides, nitrides, and oxynitrides of Al, B, Si, and Mg.

以下実施例により本発明の形態の一例を説明するが、本発明は、これらに限定されるものではない。   Hereinafter, an example of the form of the present invention will be described with reference to examples, but the present invention is not limited thereto.

本発明の負極材料のリフロー半田実装での耐熱性を確かめるため、負極材料を変えた二次電池の試料を作製し、リフロー半田実装温度に匹敵する300℃まで加熱した場合と加熱しない場合の繰り返し充放電後の容量低下率を比較した。先ず正極および固体電解質の積層体を準備した。積層体は、直径16mm、厚み20μmの純アルミニウム(Al)または純銅(Cu)製の箔の上に、KrFエキシマレーザアブレーション法で、厚み5μmのLiCoO系の正極活物質層が形成された正極を用意し、その上に厚み10μmのLiS−P系の固体電解質層が形成されたものである。 In order to confirm the heat resistance in reflow solder mounting of the negative electrode material of the present invention, a sample of a secondary battery in which the negative electrode material is changed is prepared, and repeated when heated to 300 ° C. comparable to the reflow solder mounting temperature and when not heated The capacity reduction rate after charge / discharge was compared. First, a laminate of a positive electrode and a solid electrolyte was prepared. The laminate is a positive electrode in which a LiCoO 2 -based positive electrode active material layer having a thickness of 5 μm is formed on a pure aluminum (Al) or pure copper (Cu) foil having a diameter of 16 mm and a thickness of 20 μm by a KrF excimer laser ablation method. And a Li 2 S—P 2 S 5 based solid electrolyte layer having a thickness of 10 μm is formed thereon.

積層体の具体的な準備手順は、以下の通りである、先ず直径15mmの穴を開けたステンレス鋼製の薄板でマスキングされた純アルミニウムまたは純銅製の箔からなる基材が固定された支持体を用意する。基板温度を700℃に制御し、酸素圧30Paの容器内に正極ターゲット(市販の粉末状のLiCoOとLiOを用意し、露点管理されたグローブボックス内で、前者が90モル%、後者が10モル%の割合で粉砕混合し、この混合物を金型によって加圧成形されたもの)を置き、これを5rpmで自転させながら、10Hzのパルス状エキシマレーザを照射して正極の層を形成する。なお本実施例では、この時点で得られた正極膜をX線回折により解析し、LiCoO単相になっている事を確認した。 The specific preparation procedure of the laminated body is as follows. First, a support body on which a base material made of pure aluminum or pure copper foil masked with a stainless steel thin plate having a hole having a diameter of 15 mm is fixed. Prepare. The substrate temperature was controlled at 700 ° C., and a positive electrode target (commercially available powdered LiCoO 2 and Li 2 O were prepared in a container with an oxygen pressure of 30 Pa. Is mixed by pulverization at a ratio of 10 mol%, and this mixture is pressure-molded by a mold). While rotating this at 5 rpm, a 10 nm pulsed excimer laser is irradiated to form a positive electrode layer. To do. In this example, the positive electrode film obtained at this point was analyzed by X-ray diffraction, and it was confirmed that it was a LiCoO 2 single phase.

次いで、いずれも市販の粉末状のLiS、Pを用意し、上記と同様の手順で、80モル%のLiSと20モル%のPの化学組成の混合物を作製する。これらの混合物を、直径20mm、厚み5mmに成形し、固体電解質のターゲットとする。他方前記手順で調製された直径15mmの正極層が形成された純アルミニウムまたは純銅製の箔で作られた基材を支持体に固定する。次に固体電解質のターゲットと基材を載せた支持体を、ともに密閉容器に入れてレーザ成膜室に送り込み、所定位置に配置して10−2Paのアルゴン(Ar)ガス雰囲気下でエキシマレーザを照射して固体電解質の層を基材の正極層の上に形成する。なお膜の厚みは、水晶発振式膜厚計によってモニタリングする。成膜試料は、密閉容器に収め、露点管理されたグローボックスに送り、マスキングを外し保管する。 Next, commercially available powdery Li 2 S and P 2 S 5 were prepared for each, and a mixture of 80 mol% Li 2 S and 20 mol% P 2 S 5 chemical composition was prepared in the same procedure as described above. Make it. These mixtures are molded into a diameter of 20 mm and a thickness of 5 mm to obtain a solid electrolyte target. On the other hand, a substrate made of a pure aluminum or pure copper foil on which a positive electrode layer having a diameter of 15 mm prepared in the above procedure is formed is fixed to a support. Next, the solid electrolyte target and the support on which the substrate is placed are both put into a sealed container, sent to the laser film forming chamber, placed at a predetermined position, and an excimer laser in an argon (Ar) gas atmosphere of 10 −2 Pa. To form a solid electrolyte layer on the positive electrode layer of the substrate. The thickness of the film is monitored by a quartz oscillation type film thickness meter. The film formation sample is stored in a sealed container, sent to a glow box with dew point control, masked and stored.

その後上記基材の固体電解質層上に以下の手順で、表1の化学組成の負極材を真空蒸着した。先ず基材に直径14mmの穴明きマスクを貼って基板に固定する。これを密閉容器に入れて真空装置内に送り、冷却機構付きの支持台に固定する。次いで原料のリチウム金属およびこれと結合してリチウムより高い溶融点物質を形成する成分とを含む蒸着源成分を電子ビーム加熱容器に収めた後、蒸着装置内を10−4Paまで真空引きする。この状態で、それぞれの原料を電子ビーム加熱して蒸発させ、基材上に蒸着させる。これによって、基材の固体電解質上にリチウムと結合した成分がリチウム系マトリックス中に分散された厚み5μmの層を形成する。 Thereafter, a negative electrode material having the chemical composition shown in Table 1 was vacuum-deposited on the solid electrolyte layer of the substrate according to the following procedure. First, a perforated mask having a diameter of 14 mm is attached to the base material and fixed to the substrate. This is put in a sealed container and sent into a vacuum apparatus, and fixed to a support base with a cooling mechanism. Next, after depositing a vapor deposition source component including a raw material lithium metal and a component that forms a melting point substance higher than lithium by combining with the raw material in an electron beam heating vessel, the inside of the vapor deposition apparatus is evacuated to 10 −4 Pa. In this state, each raw material is evaporated by heating with an electron beam, and is deposited on a substrate. As a result, a layer having a thickness of 5 μm in which a component bonded to lithium is dispersed in the lithium matrix on the solid electrolyte of the base material is formed.

なお蒸着の際、例えば、N、Oなどの気相から供給できる元素は、雰囲気ガスとして用いて採り込ませる。これによって上記リチウムと結合した成分の酸化や窒化等も同時に行うことができる。勿論この際にガス圧力を制御すれば、材料中の酸素(O)や窒素(N)などの雰囲気ガスからの採り込み量も制御することができる。またリチウムと結合させる成分が金属であれば、負極層の化学組成は、加熱容器への投入電力によって制御することもできる。なお試料によっては、その一部の複数種の元素が、リチウム金属とは結合せずに、リチウム系マトリックス内にそれらだけで結合した状態で分散しているものもある(表1の試料34ないし39)。なお膜の厚みは、前記同様水晶発振式膜厚計によってモニタリングする。成膜試料は、密閉容器に収め、露点管理されたグローボックスに送り保管する。   At the time of vapor deposition, for example, an element that can be supplied from a gas phase such as N or O is used as an atmospheric gas. As a result, oxidation or nitridation of the component bonded to lithium can be performed at the same time. Of course, if the gas pressure is controlled at this time, it is possible to control the intake amount from the atmospheric gas such as oxygen (O) or nitrogen (N) in the material. If the component to be combined with lithium is a metal, the chemical composition of the negative electrode layer can be controlled by the input power to the heating container. Depending on the sample, some of the plural types of elements are not bonded to the lithium metal, but are dispersed in the lithium matrix in a state of being bonded only by them (sample 34 to sample 1 in Table 1). 39). The film thickness is monitored by a quartz oscillation type film thickness meter as described above. The film formation sample is stored in an airtight container and sent to a glow box with dew point control.

以上の手順で、表1に記載の各種組成の成分を含む負極材の層を調製した。なお調製されたその化学組成は、別途蒸着層内に配置さ蒸着源成分をポリエチレン基材上に成膜させたモニター用試片を使って、金属元素は、誘導結合プラズマ発光分析法(ICP)によって、また酸素や窒素などの非金属元素は、X線電子分光法(XPS)によって定量した。   Through the above procedure, a negative electrode material layer containing components having various compositions shown in Table 1 was prepared. The chemical composition was prepared by using an inductively coupled plasma atomic emission spectrometry (ICP) metal element using a monitor specimen separately deposited in a vapor deposition layer and depositing a vapor deposition source component on a polyethylene substrate. And nonmetallic elements such as oxygen and nitrogen were quantified by X-ray electron spectroscopy (XPS).

これらの負極材を変えた各電池要素を用い、以下の手順でコイン型電池を作製した。Alまたは銅製の箔からなる基材面を下にして全固体型薄膜電池をコイン型電池のステンレス製容器内に耐熱性ガスケットと共に置き、その上に外径17mm、内径12mmの真空中で乾燥したドーナツ状のポリイミドフィルムをかぶせる。さらに、中心部に直径10mm、厚さ0.2mmのステンレス製円板を置いて、コイン型電池の蓋をかぶせて、カシメ機によりかしめる。   Using each battery element in which these negative electrode materials were changed, a coin-type battery was produced by the following procedure. The all-solid-state thin film battery was placed in a stainless steel container of a coin-type battery with a heat-resistant gasket with the base material surface made of Al or copper foil facing down, and dried in a vacuum with an outer diameter of 17 mm and an inner diameter of 12 mm. Cover with a donut-shaped polyimide film. Further, a stainless steel disk having a diameter of 10 mm and a thickness of 0.2 mm is placed at the center, and a coin-type battery cover is placed on the center, and caulking is performed using a caulking machine.

これらの電池試料を使って、リフロー半田実装時程度の300℃で10秒間の加熱を行ったものと行っていないものを用意し、繰り返し充放電負荷した後の両者の電池容量の低下率を比較した。具体的には、以下の手順により実施した。加熱したものとしないものを、それぞれ30個ずつに分けて、上限電位4.2V、下限電位3.0V、電流値0.1mAの条件下で500サイクルの充放電を繰り返し、第一サイクル目の放電容量(A)と500サイクル目の放電容量(A500)を確認する。これらのデータから容量低下率(A−A500)/Aを算定した。その結果を表1に示す。 Using these battery samples, prepare those with and without heating at 300 ° C for about 10 seconds at the time of reflow solder mounting, and compare the reduction rate of the battery capacity after repeated charging and discharging loads did. Specifically, the procedure was as follows. The heated and non-heated ones were divided into 30 pieces, and 500 cycles of charge / discharge were repeated under the conditions of an upper limit potential of 4.2 V, a lower limit potential of 3.0 V, and a current value of 0.1 mA. The discharge capacity (A 1 ) and the discharge capacity at the 500th cycle (A 500 ) are confirmed. The capacity decrease rate (A 1 -A 500 ) / A 1 was calculated from these data. The results are shown in Table 1.

なお表1の表示は、以下の通りである。正極の基材欄の「Al」および「Cu」は、それぞれ純アルミニウムと純銅を、活物質の欄の「LCO−LO」は、90モル%のLiCoOと10モル%のLiOの組成物を、固体電解質層の欄の「LS−PS」は、80モル%のLiSと20モル%のPの化学組成物を、それぞれ示す。Li負極の従成分元素の欄(ここで、従成分元素とは、Liと結合し、その溶融温度がLiより高い成分を構成する元素を言う。)は、それぞれの試料の従成分元素の種類(種)とそれらのLi系マトリックスからなる負極材料中の原子%(原子換算の含有率)を示す。充放電サイクル後の電池容量低下率(%)の欄は、上記の条件で評価された充放電サイクル電池容量の低下率を示す。なお「未加熱」および「加熱後」の区分は、それぞれ300℃の加熱前と後の試料の低下率である。さらに備考欄は、表の小区分された試料群の確認項目を示す。 The display of Table 1 is as follows. “Al” and “Cu” in the base material column of the positive electrode are respectively pure aluminum and pure copper, and “LCO-LO” in the active material column is a composition of 90 mol% LiCoO 2 and 10 mol% Li 2 O, respectively. “LS-PS” in the column of the solid electrolyte layer represents the chemical composition of 80 mol% Li 2 S and 20 mol% P 2 S 5 , respectively. The column of the secondary component element of the Li negative electrode (here, the secondary component element refers to an element that combines with Li and constitutes a component whose melting temperature is higher than that of Li) is the type of the secondary component element of each sample. (Species) and the atomic% (content in terms of atoms) in the negative electrode material comprising the Li-based matrix are shown. The column of the battery capacity decrease rate (%) after the charge / discharge cycle indicates the decrease rate of the charge / discharge cycle battery capacity evaluated under the above conditions. The “unheated” and “after heating” categories are the rate of decrease of the sample before and after heating at 300 ° C., respectively. Furthermore, the remarks column shows the confirmation items of the sample group subdivided in the table.

なお各試料のLi負極に含まれる従成分元素の構成とそれらの存在形態は、以下の通りである。試料1ないし23、40ないし42の従成分元素は、その殆どが、Liマトリックス中のLiと結合し金属間化合物や合金などを形成し、マトリックス自身の溶融温度を高めている。なお試料22と23は、前者が、Si8原子%とC7原子%を、後者が、Al8原子%とMg7原子%をそれぞれ含む。試料24ないし31の従成分元素は、Liの酸化物、試料32のそれはLiの窒化物、試料33のそれはLiの酸窒化物の形態で、それぞれ存在する。   In addition, the structure of the secondary component element contained in Li negative electrode of each sample, and those presence forms are as follows. Most of the secondary component elements of Samples 1 to 23 and 40 to 42 are combined with Li in the Li matrix to form an intermetallic compound, an alloy, etc., and raise the melting temperature of the matrix itself. In the samples 22 and 23, the former contains Si 8 atom% and C7 atom%, and the latter contains Al 8 atom% and Mg 7 atom%, respectively. The secondary component elements of Samples 24 to 31 exist in the form of Li oxide, Sample 32 in the form of Li nitride, and Sample 33 in the form of Li oxynitride.

試料34ないし39は、それぞれの従成分元素の殆どがLiと結合し金属間化合物や合金などを形成しているが、「Li化合物外の成分」の欄に記載のような少量の化合物を作っている部分もある。これらの化合物は、主にLi系マトリックス中の粒界に窒化物や酸化物の形態で含まれる。試料34ないし39に含まれる少量の化合物は、「Li化合物外の成分」欄に記載のように、順にそれぞれ窒化アルミニウム(AlN)、スピネル(MgAl)、酸化硼素(B)、もしくは硼酸リチウム(Li等)、窒化硼素(BN)および酸化カルシウム(CaO)および硫化燐(P)等の形態で含まれる。例えば、試料34の負極材中には、Alが7原子%、Nが7原子%、合計14原子%が含まれており、その内の1原子%以下のAlとNが、粒径1μm未満のAlN粒子を形成してLi系マトリックス内に均一に分布したものである。他の試料もほぼ類似した形態の組織である。これらの化合物も、いずれもその溶融温度がLiとのそれよりも高いため、Li系マトリックスの溶融温度を高めている。 In the samples 34 to 39, most of the subordinate component elements are combined with Li to form an intermetallic compound, an alloy, etc., but a small amount of compound as described in the “Components outside Li compound” column is formed. There is also a part. These compounds are mainly contained in the form of nitrides and oxides at the grain boundaries in the Li-based matrix. A small amount of compounds contained in Samples 34 to 39 are aluminum nitride (AlN), spinel (MgAl 2 O 4 ), and boron oxide (B 2 O 3 ), respectively, as described in the “Components outside Li compound” column. Or lithium borate (Li 2 B 4 O 7 or the like), boron nitride (BN), calcium oxide (CaO), phosphorus sulfide (P 2 O 5 ), or the like. For example, the negative electrode material of Sample 34 contains 7 atomic% of Al and 7 atomic% of N, and a total of 14 atomic%, and 1 atomic% or less of Al and N are less than 1 μm in particle size. The AlN particles are uniformly distributed in the Li-based matrix. The other samples are almost similar forms of tissue. Since these compounds all have a melting temperature higher than that of Li, the melting temperature of the Li-based matrix is increased.

Figure 2007213953
Figure 2007213953

なお別途、試料1および6と同じ正極と負極で、溶質がリチウムビスイミド系、電解液がポリエチレングリコールジアルキルエーテル系の構成の有機電解質を用いた同型の電池試料1′と6′を作製した。これらの電池試料を加熱温度270℃および300℃でそれぞれ10秒加熱したものと未加熱のものとを用意して、上記と同じ条件の充放電サイクルを行い、その容量低下率を確認した。その結果、試料1′と6′とも未加熱試料と270℃加熱試料では、それぞれ試料1および6とほぼ同じ結果が得られた。300℃で加熱された試料では、試料1′では45%、試料6′では7%の容量低下が確認された。   Separately, battery samples 1 'and 6' of the same type using the same positive electrode and negative electrode as samples 1 and 6 and using an organic electrolyte having a solute of lithium bisimide and an electrolyte of polyethylene glycol dialkyl ether were prepared. A battery sample heated at 270 ° C. and 300 ° C. for 10 seconds and an unheated battery sample were prepared and subjected to charge / discharge cycles under the same conditions as described above, and the capacity reduction rate was confirmed. As a result, both the samples 1 'and 6' were almost the same as the samples 1 and 6 in the unheated sample and the 270 ° C heated sample, respectively. In the sample heated at 300 ° C., a capacity drop of 45% was confirmed for sample 1 ′ and 7% for sample 6 ′.

以上の結果から、Li系マトリックス中に、Liと結合してLiより溶融温度の高い成分を1ないし30原子%の範囲内の量含ませることによって、耐熱性に優れた負極材料が得られる。この負極材料を用いた二次電池要素を二次電池に組み込むことによって、リフロー半田実装時程度の300℃の高温下でも溶融せず形状維持可能であり、充放電を繰り返しても変質せず容量低下の少ない従来に無い優れた二次電池が提供できる。


From the above results, a negative electrode material excellent in heat resistance can be obtained by including, in the Li-based matrix, a component having a melting temperature higher than that of Li and bonded to Li in a range of 1 to 30 atomic%. By incorporating the secondary battery element using this negative electrode material into the secondary battery, the shape can be maintained without melting even at a high temperature of about 300 ° C., which is the same as when reflow soldering is mounted, and the capacity remains unchanged even after repeated charge and discharge. It is possible to provide an excellent secondary battery that has not been lowered and is not found in the past.


Claims (3)

リチウム系マトリックス中に、リチウムと結合し、その溶融温度がリチウム(Li)のそれよりも高い成分が、原子換算で1ないし30%含まれているリチウム二次電池用負極材料。   A negative electrode material for a lithium secondary battery, wherein a lithium-based matrix contains 1 to 30% in terms of atoms of a component that is bonded to lithium and whose melting temperature is higher than that of lithium (Li). 前記成分は、B、Al、C、Si、P、S、Mg、Ca、Sr、N、Oからなる元素群から選ばれた少なくとも1種であることを特徴とする請求項1に記載のリチウム二次電池用負極材料。   2. The lithium according to claim 1, wherein the component is at least one selected from an element group consisting of B, Al, C, Si, P, S, Mg, Ca, Sr, N, and O. 3. Negative electrode material for secondary batteries. 請求項1または2に記載の材料を用いたリチウム二次電池。
A lithium secondary battery using the material according to claim 1.
JP2006032042A 2006-02-09 2006-02-09 Negative electrode material for battery and secondary battery using it Pending JP2007213953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032042A JP2007213953A (en) 2006-02-09 2006-02-09 Negative electrode material for battery and secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032042A JP2007213953A (en) 2006-02-09 2006-02-09 Negative electrode material for battery and secondary battery using it

Publications (1)

Publication Number Publication Date
JP2007213953A true JP2007213953A (en) 2007-08-23

Family

ID=38492196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032042A Pending JP2007213953A (en) 2006-02-09 2006-02-09 Negative electrode material for battery and secondary battery using it

Country Status (1)

Country Link
JP (1) JP2007213953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527737A (en) * 2009-05-20 2012-11-08 インフィニット パワー ソリューションズ, インコーポレイテッド Method for integrating an electrochemical device in and on a fixture
WO2020080900A1 (en) * 2018-10-19 2020-04-23 주식회사 엘지화학 Anode active material, anode including anode active material, secondary battery including anode, and method for preparing anode active material
JP2021131966A (en) * 2020-02-19 2021-09-09 日産自動車株式会社 All-solid lithium ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241653A (en) * 1984-05-15 1985-11-30 Matsushita Electric Ind Co Ltd Lithium cell
JPS63294666A (en) * 1987-03-04 1988-12-01 ザ ニュー ブランズウィック テレフォン カンパニー リミテッド Lithium-lithium nitride anode
JPH0644493B2 (en) * 1984-07-25 1994-06-08 日本電信電話株式会社 Lithium secondary battery
JPH07302588A (en) * 1994-05-10 1995-11-14 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery and its manufacture
JPH07307152A (en) * 1994-05-12 1995-11-21 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery and manufacture thereof
JP2004220906A (en) * 2003-01-15 2004-08-05 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode member and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241653A (en) * 1984-05-15 1985-11-30 Matsushita Electric Ind Co Ltd Lithium cell
JPH0644493B2 (en) * 1984-07-25 1994-06-08 日本電信電話株式会社 Lithium secondary battery
JPS63294666A (en) * 1987-03-04 1988-12-01 ザ ニュー ブランズウィック テレフォン カンパニー リミテッド Lithium-lithium nitride anode
JPH07302588A (en) * 1994-05-10 1995-11-14 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery and its manufacture
JPH07307152A (en) * 1994-05-12 1995-11-21 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery and manufacture thereof
JP2004220906A (en) * 2003-01-15 2004-08-05 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode member and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527737A (en) * 2009-05-20 2012-11-08 インフィニット パワー ソリューションズ, インコーポレイテッド Method for integrating an electrochemical device in and on a fixture
JP2016197595A (en) * 2009-05-20 2016-11-24 インフィニット パワー ソリューションズ, インコーポレイテッド Method for integrating electrochemical device in and on fixture
WO2020080900A1 (en) * 2018-10-19 2020-04-23 주식회사 엘지화학 Anode active material, anode including anode active material, secondary battery including anode, and method for preparing anode active material
JP2021131966A (en) * 2020-02-19 2021-09-09 日産自動車株式会社 All-solid lithium ion secondary battery
JP7407014B2 (en) 2020-02-19 2023-12-28 日産自動車株式会社 All-solid-state lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
Cangaz et al. Enabling high‐energy solid‐state batteries with stable anode interphase by the use of columnar silicon anodes
Yang et al. Pushing Lithium Cobalt Oxides to 4.7 V by Lattice‐Matched Interfacial Engineering
Paolella et al. Discovering the influence of lithium loss on garnet Li7La3Zr2O12 electrolyte phase stability
KR101496533B1 (en) Solid electrolyte material and lithium battery
CN101728537B (en) Anode current collector, anode, and secondary battery
JP2020002009A (en) Solid-state batteries, separators, electrodes, and methods of fabrication
US6794086B2 (en) Thermally protective salt material for thermal spraying of electrode materials
JP6374678B2 (en) Negative electrode materials for electricity storage devices
JP2008091328A (en) Lithium secondary cell and its manufacturing method
Hillel et al. Copper vanadate as promising high voltage cathodes for Li thermal batteries
WO1996017392A1 (en) Secondary lithium cell
CN1823439A (en) Current collecting structure and electrode structure
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2008152925A (en) Battery structure and lithium secondary battery using the same
JP6076772B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
KR20170057235A (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
JP2009009905A (en) Thin film lithium secondary battery and manufacturing method therefor
JP2007213953A (en) Negative electrode material for battery and secondary battery using it
JP3999175B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, film forming material used for forming the negative electrode, and method for producing the negative electrode
US8771872B2 (en) Negative-electrode material and lithium secondary battery using same
JP2011079724A (en) METHOD FOR PRODUCING SiOx (x&lt;1)
KR101171555B1 (en) Positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
Nakano et al. Tailoring the Void Space of a Silicon Anode for High‐Capacity and Low‐Expansion Lithium Storage
CN108011093A (en) Lithium occlusion releasable material, electrode, the manufacture method of lithium rechargeable battery and lithium occlusion releasable material
JP2009038033A (en) Electrode for lithium cell and manufacturing method of electrode for lithium cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110