JP2007213581A - 特徴量分析を使用してデジタル画像データ内のオブジェクト・パーツの位置を推定する方法および装置 - Google Patents

特徴量分析を使用してデジタル画像データ内のオブジェクト・パーツの位置を推定する方法および装置 Download PDF

Info

Publication number
JP2007213581A
JP2007213581A JP2007028454A JP2007028454A JP2007213581A JP 2007213581 A JP2007213581 A JP 2007213581A JP 2007028454 A JP2007028454 A JP 2007028454A JP 2007028454 A JP2007028454 A JP 2007028454A JP 2007213581 A JP2007213581 A JP 2007213581A
Authority
JP
Japan
Prior art keywords
feature
unit
object part
image
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007028454A
Other languages
English (en)
Inventor
Sergey Ioffe
イオッフェ セルゲイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2007213581A publication Critical patent/JP2007213581A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/165Detection; Localisation; Normalisation using facial parts and geometric relationships

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

【課題】特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法および装置を提供すること。
【解決手段】一実施形態に係る方法は、デジタル画像のオブジェクト・パーツを含む領域を表すデジタル画像データにアクセスし、所定の領域内の前記オブジェクト・パーツの所定の位置に関するクラスのクラス・データと、前記クラスを識別する特徴とを含む基準データにアクセスし、前記領域の範囲内のピクセル値を使用して前記領域内の前記特徴に関する特徴量を計算し、前記特徴量と前記基準データとを使用して前記オブジェクト・パーツの位置推定値を判定する。
【選択図】図1

Description

この本出願は、本願と同時に出願された「Method and Apparatus for Localizing an Object Part in Digital Image Data」と題する同時係属本出願の関連出願であり、当該本出願は参照によりその内容全体が本明細書に組み込まれる。
本発明は、デジタル画像処理技法に関し、より詳細には、デジタル画像内のオブジェクトを位置決めする方法および装置に関する。
顔認識は、人間の顔の研究および処理に関するデジタル画像処理技法において重要な役割を担っている。顔認識システムは、人々の同一性の識別に使用されるセキュリティ・システム内に含まれることもあり、例えば、顔などを含む写真などの媒体を編成するのに役立つ可能性がある。
知られている顔認識システムは、人々とオブジェクトを含む画像が提示されたときに、人々の顔が画像内のどこに位置しているかを特定するものである。次いで、顔認識システムは、画像内の人々の顔だけを処理するように選択する。顔以外の領域およびオブジェクトが画像内に存在する故に、また、画像内の人々の顔の姿勢、明るさ、表情などが様々である故に、顔の識別作業は複雑となる。画像内の人間の顔を局在化させる技法は、顔認識システムがある画像の関連する領域を特定するのに役立つ可能性がある。さらに、画像内の人間の顔を局在化させる技法は、顔以外の他の多くのタイプのオブジェクトを識別する用途にも適合され得る。例えば、かかる技法は、建造物、樹木、車などを識別するのに使用することもできる。
いくつかの刊行物では、デジタル画像内のオブジェクトの識別について研究がなされている。1つのかかる技法は、「Apparatus and Method for Extracting Object Based on Feature Matching Between Segmented Regions in Images」と題する米国特許出願第2002/0136449(A1)号(特許文献1)に記載されている。当該出願明細書に記載の方法は、オブジェクト抽出の目標画像(target image)と、オブジェクトの基準画像である問合せ画像(query image)との間のピクセル・ベースの特徴マッチングを使用して、オブジェクト抽出の目標画像からオブジェクトを抽出するものである。問合せ画像および目標画像は、色およびテクスチャを含めた特徴に基づいてセグメント化されマッチングされる。しかしながら、この方法は、オブジェクトの参照画像の存在に依存しており、また、かかる参照画像が使用可能でない場合が多い。
デジタル画像内のオブジェクトの識別に関する別の技法は、「Target Object Detecting Method,Apparatus,and Program」と題する米国特許出願第2005/0190963(A1)号(特許文献2)に記載されている。当該出願明細書に記載の方法は、それ自体の存在は知られていても、他の標準的な目標オブジェクト検出処理によっては検出されることがなかったオブジェクトを検出するものである。目標オブジェクトを検出するために、それぞれ目標オブジェクトに関する所定の固有特性に対応する複数の特性目標オブジェクト検出処理が、実施される。しかしながら、この方法は、目標オブジェクトの所定の特性を使用しており、このため、可変特性のオブジェクトまたは所定の特性を示さないオブジェクトが提示されたときは検出処理が制限され、問題が生じる恐れがある。
米国特許出願第2002/0136449(A1)号明細書 米国特許出願第2005/0190963(A1)号明細書
本願に開示される一実施形態は、デジタル画像内のオブジェクトの一部の位置を推定する方法および装置を利用することによって、上記および他の問題に対処する。この方法および装置は、特徴量分析を使用してオブジェクト・パーツの位置推定値を判定し洗練化(refine)する。
本発明は、特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法および装置を対象とする。本発明の第1の態様によれば、特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法は、デジタル画像のオブジェクト・パーツを含む領域を表すデジタル画像データにアクセスするステップと、所定の領域内の前記オブジェクト・パーツの所定の位置に関するクラスのクラス・データと、前記クラスを識別する特徴とを含む基準データにアクセスするステップと、前記領域の範囲内のピクセル値を使用して前記領域内の前記特徴に関する特徴量を計算するステップと、前記特徴量と前記基準データとを使用して前記オブジェクト・パーツの位置推定値を判定するステップとを含む。
本発明の第2の態様によれば、特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する装置は、デジタル画像のオブジェクト・パーツを含む領域を表すデジタル画像データを提供する画像データ・ユニットと、所定の領域内の前記オブジェクト・パーツの所定の位置に関するクラスのクラス・データと、前記クラスを識別する特徴とを含む基準データを記憶する基準データ・ユニットと、前記領域内の前記オブジェクト・パーツの位置を推定する特徴分析ユニットであって、前記領域の範囲内のピクセル値を使用して前記領域内の前記特徴に関する特徴量を計算することと、前記基準データ・ユニットからの前記特徴量と前記基準データとを使用して、前記オブジェクト・パーツの位置推定値を判定することとによって、前記オブジェクト・パーツの位置を推定する特徴分析ユニットとを備える。
本発明のさらなる態様および利点は、以下の詳細な説明を添付の図面と合わせて読めば明らかとなるであろう。
以下の説明では、添付の図面を参照しながら本発明の諸態様をより具体的に記載する。図1は、本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットを含むシステムの概略ブロック図である。図1に示されるシステム98は、次の構成要素、すなわち、画像入力ユニット108と、画像処理ユニット128と、ディスプレイ163と、画像出力ユニット153と、ユーザ入力ユニット173と、印刷ユニット143とを含む。図1のシステム98の動作は、以下の論述を読めば明らかとなるであろう。
画像入力ユニット108は、デジタル画像データを提供する。デジタル画像データは、人々、顔、構造物など様々なオブジェクトを含む画像である。画像入力ユニット108は、フィルム上に記録された白黒またはカラー画像を走査するスキャナ、デジタル・カメラ、例えばCD−R、フロッピー・ディスク、USBドライブなどの記録媒体、画像を記憶するデータベース・システム、ネットワーク接続、画像を処理するコンピュータ・アプリケーションなどデジタル・データを出力する画像処理システムなどのデジタル画像データを提供する1または複数のデバイスとすることができる。
画像処理ユニット128は、画像入力ユニット108からデジタル画像データを受け取り、後段で詳細に論じる様式で特徴量分析を使用してオブジェクト・パーツの位置を推定する。ユーザ、例えば顔認識システムを使用するセキュリティ施設のオペレータは、ディスプレイ163を介して、オブジェクト・パーツの位置の推定の中間結果を含む画像処理ユニット128の出力を閲覧することができ、ユーザ入力ユニット173を介して、画像処理ユニット128に対するコマンドを入力することができる。図1に示される実施形態では、ユーザ入力ユニット173は、キーボード176と、マウス177とを含んでいる。本発明の諸実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置を推定することに加え、画像処理ユニット128は、ユーザ入力ユニット173から受け取ったコマンドに従って、画像の補正機能や圧縮など、追加的な画像処理機能を実施することもできる。
印刷ユニット143は、画像処理ユニット128の出力を受け取り、処理済みの画像データのハード・コピーを生成する。印刷ユニット143は、画像処理ユニット128からの画像データ出力に従って感光材料を露光させて、その感光材料に画像を記録することができる。印刷ユニット143は、レーザ・プリンタなど他の形をとることもできる。画像処理ユニット128の出力のハード・コピーを生成することに加えてまたはその代わりに、例えば携帯型記録媒体やネットワーク(図示せず)を介して処理済みの画像データを画像ファイルとして出力することもできる。画像処理ユニット128の出力は、画像データに対するさらなる処理を様々な目的で実施する画像出力ユニット153にも送ることができる。
図2は、本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128のブロック図である。図2に示されるように、この実施形態に係る画像処理ユニット128は、画像データ検索および前処理ユニット(image data retrieval and preprocessing unit)173と、任意選択のサブ画像抽出器ユニット(sub−image extractor unit)179と、特徴分析ユニット183と、基準データ・ユニット213とを含む。図2の様々な構成要素は離散的な要素として示されているが、かかる表現は説明を分かりやすくするためのものであり、様々な構成要素のある種の動作は、同じ物理デバイスによって、例えば1つまたは複数のマイクロプロセッサによって実施されてもよいことが理解されるべきである。一般に、図2に示される画像処理ユニット128の各要素からなる構成は、デジタル画像データを検索し、デジタル画像データに対する前処理操作を実施し、特徴量分析と基準データとを使用してオブジェクト・パーツの位置を推定する。画像データ検索および前処理ユニット173は、画像入力ユニット108からデジタル画像データを受け取り、そのデジタル画像データに対する前処理操作を実施する。デジタル画像データは、人々、顔、建造物など様々なオブジェクトを含む生(raw)画像であることもある。デジタル画像データに対する前処理操作としては、サイズ変更、切り取り(cropping)、画像登録などを挙げることができる。
デジタル画像データに含まれる画像は、顔や構造物などのオブジェクトを含む可能性がある。オブジェクト・パーツは、オブジェクトの一部を含む画像区画である。一例を挙げると、オブジェクトとして顔を含む画像では、オブジェクト・パーツは、その顔の目であることもある。画像のサブ画像は、オブジェクト・パーツの位置をまたがって拡大することによって、またはその位置を取り囲むように拡大することによってオブジェクト・パーツに連結される領域である。一例を挙げると、オブジェクトとして顔を含み、オブジェクト・パーツとして目を含む画像では、サブ画像は、目または目の一部を含む領域またはウィンドウとすることができる。
画像データ検索および前処理ユニット173は、前処理済みのデジタル画像データを特徴分析ユニット183に送る。特徴分析ユニット183は、オブジェクト・パーツを有する領域に関する特徴量を計算し、計算した特徴量を基準データ・ユニット213からの基準データと比較することによって、デジタル画像データ内のオブジェクト・パーツの位置を推定する。特徴分析ユニット183は、サブ画像抽出器ユニット179が存在する場合は、オブジェクト・パーツの位置の分析結果をサブ画像抽出器ユニット179に伝達する。次いで、サブ画像抽出器ユニット179は、オブジェクト・パーツのサブ画像の選択を実施する。特徴分析ユニット183は、同じオブジェクト・パーツについてオブジェクト・パーツの位置の推定を複数回実施することもできる。特徴分析ユニット183の出力は、デジタル画像内の1つまたは複数のオブジェクト・パーツの位置に関する位置推定値である。特徴分析ユニット183は、デジタル画像データを1つまたは複数のオブジェクト・パーツの位置に関する位置推定値と共に出力する。位置推定値を伴うかかるデジタル画像データは、画像出力ユニット153、印刷ユニット143、および/またはディスプレイ163に出力される可能性がある。画像データ検索および前処理ユニット173は、サブ画像抽出器ユニット179と直接通信することもできる。
次に、図2に示される画像処理ユニット128内に含まれる各構成要素の処理を、図3を参照しながら説明する。画像データ検索および前処理ユニット173、サブ画像抽出器ユニット179、特徴分析ユニット183、および基準データ・ユニット213は、ソフトウェア・システム/アプリケーションである。
図3は、図2に示される本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128によって実施される処理を示すフローチャートである。画像データ検索および前処理ユニット173は、オブジェクト・パーツを収容する領域を含む画像の入力および前処理を行う(S280)。画像に対する前処理操作としては、画像の切り取り、回転、登録などを挙げることができる。特徴分析ユニット183は、オブジェクト・パーツの領域を受け取り、オブジェクト・パーツの領域の範囲内に位置するピクセルに基づいて特徴量を計算する(S284)。次いで、特徴分析ユニット183は、計算済みの特徴量を基準データ・ユニット213からの基準データと比較し(S288)、オブジェクト・パーツに関する位置推定値を確定する(S292)。基準データ・ユニット213は、基準テーブル、基準値、または分析対象のオブジェクト・パーツに関連する他のタイプのデータを含むことができる。次いで、特徴分析ユニット183は、確定したオブジェクト・パーツの位置推定値を出力する(S296)。かかる位置結果は、画像出力ユニット153、印刷ユニット143、および/またはディスプレイ163に出力される可能性がある。
特徴分析ユニット183は、オブジェクト・パーツに関する位置推定値をサブ画像抽出器ユニット179に送ることもでき、サブ画像抽出器ユニット179は、受信した位置推定値に基づいて、更新されたオブジェクト・パーツの領域を抽出する(S294)。サブ画像抽出器ユニット179は、更新されたオブジェクト・パーツの領域を特徴分析ユニット183に送り、次いで、特徴分析ユニット183は、更新されたオブジェクト・パーツの領域の範囲内に位置するピクセルに基づいて、特徴量を計算する(S284)。その後、特徴分析ユニット183は、計算した特徴量を基準データ・ユニット213からの基準データと比較し(S288)、更新されたオブジェクト・パーツの位置推定値を確定する(S292)。ステップS284、S288、S292、およびS294は、オブジェクト・パーツに関する位置推定値を洗練化するために反復的に繰り返されてもよい。この反復は、位置推定値が十分に良好になった時点で終了する。反復数は、トレーニングによって予め定められる。一実施形態では、6回の反復が使用される。3回目の反復後に改善度が限界であると判定された場合は、その後反復数は3に減少される。最後の反復が行われた後に、特徴分析ユニット183は、オブジェクト・パーツの洗練化された位置推定値を出力する(S296)。かかる位置結果は、画像出力ユニット153、印刷ユニット143、および/またはディスプレイ163に出力される可能性がある。
図4は、本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128Aの各構成要素を示すブロック図である。図4に示されるように、画像処理ユニット128Aは、次の構成要素、すなわち、画像データ検索および前処理ユニット173Aと、任意選択のサブ画像抽出器ユニット179Aと、特徴分析ユニット183Aと、基準データ・ユニット213Aと、トレーニング画像処理ユニット(training images processing unit)320と、パーツ位置トレーニングユニット(part location training unit)330とを含む。画像データ検索および前処理ユニット173A、任意選択のサブ画像抽出器ユニット179A、特徴分析ユニット183A、および基準データ・ユニット213Aは、処理システム303内に含まれる。トレーニング画像処理ユニット320およびパーツ位置トレーニングユニット330は、トレーニングシステム310内に含まれる。この本発明の第2の実施形態によれば、画像データ検索および前処理ユニット173A、任意選択のサブ画像抽出器ユニット179A、特徴分析ユニット183A、および基準データ・ユニット213Aは、第1の実施形態の対応する各要素と同様の働きをすることができる。図4に示されるこの第2の実施形態によれば、トレーニング画像処理ユニット320およびパーツ位置トレーニングユニット330は、あるオブジェクトの典型的なパーツの位置を推定するトレーニングを受ける。トレーニングシステム310によるトレーニングを通じて蓄積される知識は、基準データ・ユニット213Aに送られる。画像処理ユニット128Aの通常動作中に、基準データ・ユニット213Aは、オブジェクト・パーツの位置を推定するために基準データのトレーニング知識(training knowledge)を特徴分析ユニット183Aに供給する。
図5は、図4に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128A内に含まれるトレーニングシステム310のブロック図である。図5に示されるように、トレーニングシステム310は、トレーニング画像処理ユニット320と、量子化器ユニット403と、分類器ユニット405と、特徴抽出ユニット409と、特徴空間分析トレーニングユニット411とを含む。量子化器ユニット403、分類器ユニット405、特徴抽出ユニット409、および特徴空間分析トレーニングユニット411は、パーツ位置トレーニングユニット330内に含まれる。トレーニングシステム310内に含まれる各ユニットは、あるタイプのオブジェクトに含まれるオブジェクト・パーツの位置の推定を行うためのトレーニングを実施するアルゴリズムを実行する。トレーニング画像処理ユニット320は、トレーニングサブ画像(training sub−image)を生成し処理する。トレーニングサブ画像は、トレーニングシステム310がトレーニングを行うオブジェクトの典型的なオブジェクト・パーツを含む。一例として、トレーニングシステム310が顔オブジェクトの位置推定のトレーニングを行う場合は、典型的なオブジェクト・パーツとしては、目の両端、鼻の両端、口の両端などが挙げられる。したがって、トレーニング画像処理ユニット320は、顔の画像を受け取り、目の両端、鼻の両端、口の両端などを含むウィンドウすなわちサブ画像を抽出する。トレーニング画像処理ユニット320は各サブ画像に関して、そのサブ画像内のオブジェクト・パーツの正しい(x,y)位置を抽出する。各座標(x,y)は、サブ画像を参照する座標系内にある。トレーニング画像処理ユニット320は、トレーニングサブ画像を分類器ユニット405に送り、トレーニングサブ画像内において抽出されたオブジェクト・パーツの(x,y)位置を量子化器ユニット403に送る。一般に、量子化器ユニット403は、オブジェクト・パーツの(x,y)位置を量子化し、分類器ユニット405は、トレーニングサブ画像をクラスに分類し、特徴抽出ユニット409は、サブ画像のクラスを識別する特徴を抽出し、特徴空間分析トレーニングユニット411は、特徴とサブ画像のピクセルとの関係を抽出する。基準データ・ユニット213Aは、分類器ユニット405からのトレーニング結果と、特徴空間分析トレーニングユニット411からのトレーニング結果とを受け取る。トレーニング画像処理ユニット320およびパーツ位置トレーニングユニット330は、画像処理とパーツ位置トレーニングとをサブ・ピクセル精度で実施する。
図6は、図5に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128A内に含まれるトレーニングシステム310によって実施される処理を示すフローチャートである。トレーニング画像処理ユニット320は、オブジェクトの画像を入力し、トレーニングオブジェクト・パーツのサブ画像と、トレーニングサブ画像内のオブジェクト・パーツの位置(x,y)とを抽出する(S501)。トレーニング画像処理ユニット320は、トレーニングサブ画像内のオブジェクト・パーツの位置(x,y)を量子化器ユニット403に送る(S502)。オブジェクト・パーツのサブ画像内の座標(x,y)は、サブ画像を参照する座標系内にあることから、座標(x,y)は、オブジェクト・パーツのサブ画像の中心からの変位(dx、dy)として見ることもできる。トレーニング画像処理ユニット320は、トレーニングサブ画像を分類器ユニット405にも送る(S503)。量子化器ユニット403は、受信したパーツ位置(x,y)をN個のビン(bin)に量子化する(S504)。この量子化は、x座標毎およびy座標毎に別々に行われる。x座標は、1〜Nの整数値に量子化され、y座標は、1〜Nの整数値に量子化される。x座標に関するN個の量子化値が可能であり、y座標に関するN個の量子化値が可能であることから、パーツ位置の座標(x,y)に関しては、N個の量子化値が可能である。量子化器ユニット403は、量子化された全てのパーツ位置を対象とする1〜N個の整数索引を生成する(S505)。各サブ画像が対応する(x,y)パーツ位置を有することから、各サブ画像もまた、それ自体の量子化されたパーツ位置(x,y)から取得される1〜N個の索引に対応する。分類器ユニット405は、トレーニング画像処理ユニット320からトレーニングサブ画像を受け取ると、それらのサブ画像をそれぞれの整数索引に基づいてN個のクラスc1、c2、...、cNにグループ化する(S507)。回帰トレーニングの問題は、多クラスの分類上問題となる。分類器ユニット405は、クラスc1、c2、...、cN内の平均パーツ位置(x,y)を抽出する(S511)。次いで、分類器ユニット405は、クラスc1、c2、...、cN内の平均パーツ位置(x,y)を基準データ・ユニット213Aに送る(S512)。分類器ユニット405はまた、サブ画像と共にそれらのクラスc1、c2、...、cNの割当てを特徴抽出ユニット409に送る(S509)。
次いで、特徴抽出ユニット409は、クラスc1、c2、...、cNを最もよく識別する特徴を抽出する(S513)。ステップS513では、線形判別分析(Linear discriminant analysis:LDA)が使用されてもよい。また、他の方法が使用されてもよい。次いで、特徴抽出ユニット409は、抽出した特徴の再スケール設定を行って、各特徴毎の平均クラス内分散(average within−class variance)が1となり、共分散が同じになるようにする(S515)。平均クラス内分散を1とする抽出した特徴のスケール変更は、任意選択である。
したがって、各特徴は、サブ画像の各ピクセルの線形結合として表現される。特徴空間分析トレーニングユニット411は、各特徴に寄与するピクセルの重みを判定し記憶する(S517)。40個の特徴が使用される1つの例示的な場合では、画像内の各ピクセルには、40個の各特徴に対応する40個の重みが関連付けられる。次いで、特徴空間分析トレーニングユニット411は、各特徴に寄与するピクセルの重みを基準データ・ユニット213Aに送る(S521)。特徴空間分析トレーニングユニット411は、特徴空間内のクラスc1、c2、...、cNの中心も判定し記憶する(S519)。次いで、特徴空間分析トレーニングユニット411は、特徴空間内のクラスc1、c2、...、cNの中心を基準データ・ユニット213Aに送る(S523)。したがって、トレーニングシステム310は、サブ画像内のオブジェクト・パーツに関する量子化された変位を推定するためのトレーニングデータを基準データ・ユニット213Aに供給する。
図7は、図6に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128A内に含まれる、トレーニングシステム310内のサブ画像のクラスを生成する処理の諸態様を示す。トレーニングサブ画像を基に生成される7つの例示的なクラスC1、C2、C3、C4、C5、C6、およびC7が示されている。トレーニングサブ画像内のオブジェクト・パーツは、目P568である。各クラスは、サブ画像ウィンドウS567内の目P568の位置に対応する。したがって、クラスC1は、サブ画像の右上端に位置する目を有し、クラスC2は、サブ画像の中央左の領域に位置する目を有する。分類器ユニット405は、図6のフローチャートのステップS511で、各サブ画像内の目に関する平均位置を抽出する。特徴抽出ユニット409は、線形判別分析を使用してサブ画像の分類のトレーニングを受ける。このため、特徴抽出ユニット409は、距離は近くともクラスC1、C2、C3、C4、C5、C6、およびC7で分類される位置が異なる目P568を識別するのに最適な特徴または基底ベクトルを学習する。
図8は、図5に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128Aのトレーニングシステム310内に含まれるトレーニング画像処理ユニット320における、オブジェクト・パーツを選択する処理の諸態様を示す。トレーニング画像処理ユニット320は、顔オブジェクトなどのオブジェクトの画像を受け取る。トレーニング画像処理ユニット320は、オブジェクト内のオブジェクト・パーツを指定する。かかるオブジェクト・パーツとしては、右目外端(REO)、右目中央(REC)、右目内端(REI)、左目外端(LEO)、左目中央(LEC)、左目内端(LEI)、鼻の先端(TON)、鼻の中央(CON)、口右端(MRC)、口左端(MLC)、および口中央先端(MCT)が挙げられる。これらのオブジェクト・パーツには、図8に示されるようなトレーニング用ラベルが付される。
図9A、9B、9C、および9Dはそれぞれ、図6に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128A内に含まれるトレーニングシステム310による線形判別分析(LDA)で使用される、例示的な右目、左目、鼻、および口のオブジェクト・パーツの基底画像を示す。図9Aは、図8に示されるREO、REC、およびREIの目オブジェクト・パーツに関するLDA基底画像を示す。10個のLDA基底画像は、該当する各オブジェクト・パーツについて使用される。例えば、右目中央(REC)は、基底画像REC_1、REC_2、REC_3、REC_4、REC_5、REC_6、REC_7、REC_8、REC_9、REC_10によって記述される。図9Bは、LEO、LEC、およびLEIの目オブジェクト・パーツに関するLDA基底画像を示す。図9Cは、TONおよびCONの鼻オブジェクト・パーツに関するLDA基底画像を示す。図9Dは、MRC、MLC、およびMCTの口オブジェクト・パーツに関するLDA基底画像を示す。
図10は、図4に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128Aの追加的な諸態様を示すブロック図である。図10に示されるように、画像処理ユニット128Aは、次の構成要素、すなわち、トレーニング画像処理ユニット320と、量子化器ユニット403と、分類器ユニット405と、特徴抽出ユニット409と、特徴空間分析トレーニングユニット411と、画像データ検索および前処理ユニット173Aと、任意選択のサブ画像抽出器ユニット179Aと、特徴空間メトリクス・ユニット625と、位置推定器ユニット645と、基準データ・ユニット213Aとを含む。トレーニング画像処理ユニット320、量子化器ユニット403、分類器ユニット405、特徴抽出ユニット409、および特徴空間分析トレーニングユニット411は、トレーニングシステム310内に含まれる。画像データ検索および前処理ユニット173A、サブ画像抽出器ユニット179A、特徴空間メトリクス・ユニット625、位置推定器ユニット645、および基準データ・ユニット213Aは、処理システム303内に含まれる。特徴空間メトリクス・ユニット625および位置推定器ユニット645は、特徴分析ユニット183Aの構成要素である。
特徴空間メトリクス・ユニット625および位置推定器ユニット645は、基準データ・ユニット213Aと通信して位置推定および特徴量分析のトレーニング結果を検索する。特徴空間メトリクス・ユニット625は、特徴空間分析トレーニングユニット411から受け取った特徴分析トレーニングデータを使用する。位置推定器ユニット645は、基準データ・ユニット213Aからのパーツ位置のトレーニング結果を使用する。パーツ位置のトレーニング結果は、分類器ユニット405から受け取る。位置推定器ユニット645は、サブ画像抽出器ユニット179Aに対する反復を実施して、オブジェクト・パーツの位置に関する位置推定値を洗練化することができる。
画像処理ユニット128Aの処理は一般に、(1)トレーニングと、(2)オブジェクト・パーツの位置の推定に関する処理との2つの段階に分けることができる。トレーニング段階に関する原理は、既に図6のフローチャートで説明した。以下では、オブジェクト・パーツの位置の推定に関する処理段階に関する原理を説明する。
図11は、図10に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置を推定する画像処理ユニット128Aによって実施される処理を示すフローチャートである。図11のフローチャートは、オブジェクト・パーツの位置を推定する処理中に実施される各ステップを示す。特徴量分析には、例示的な数として40個の特徴が使用され、例示的な数として121個のサブ画像のトレーニングクラスが使用される。画像データ検索および前処理ユニット173Aは、オブジェクト・パーツの領域(サブ画像)を含む画像の入力および前処理を行う(S702)。一実施形態では、入力されるオブジェクト・パーツのサブ画像は、そのタイプのオブジェクト・パーツのトレーニングの際に使用されるトレーニング用オブジェクト・パーツのサブ画像と同じサイズを有する。前処理操作としては、画像の切り取り、回転、登録などを挙げることができる。
特徴空間メトリクス・ユニット625が、サブ画像を受け取る。特徴空間メトリクス・ユニット625は、基準データ・ユニット213Aから、特徴f1、f2、...、f40に対するピクセルの寄与度に関するトレーニングで判定されたピクセルの重みを検索する(S704)。次いで、特徴空間メトリクス・ユニット625は、基準データ・ユニット213Aからピクセルの重みを検索しながらサブ画像内のピクセルの線形結合を使用して、40個の特徴f1、f2、...、f40の各値を判定する(S706)。特徴空間メトリクス・ユニット625は、基準データ・ユニット213Aから40次元の特徴空間のクラスc1、c2、...、c121の中心も検索する(S708)。次いで、特徴空間メトリクス・ユニット625は、サブ画像の特徴セットf1、f2、...、f40と、40次元の特徴空間のクラスc1、c2、...、c121の中心との間の距離d1、d2、...、d121を判定する(S710)。特徴空間メトリクス・ユニット625は、距離d1、d2、...、d121を使用して、クラスc1、c2、...、c121がサブ画像に寄与する条件付き確率、すなわち、P(c1|S)、P(c2|S)、...、P(c121|S)を判定し、この場合のSは、サブ画像である(S712)。確率分布は、ガウス型と仮定する。条件付き確率P(c1|S)、P(c2|S)、...、P(c121|S)は、公式
P(ci|S)=MP(ci)exp(−di/2) (1)
を使用して計算され、この場合のMは、
P(c1|S)+P(c2|S)+...+P(c121|S)=1 (2)
となるような定数である。各特徴の平均クラス内分散が1に正規化されていない場合は、この確率は、exp(−di/(2variance))という形式の指数関数の分散項を含むことになる。ステップS706およびS710は、サブ・ピクセル精度で実施される。位置推定器ユニット645は、条件付き確率P(c1|S)、P(c2|S)、...、P(c121|S)を受け取り、基準データ・ユニット213Aからクラスc1、c2、...、c121内の平均パーツ位置(x1,y1)、(x2,y2)、...、(x121,y121)を検索する(S714)。次いで、位置推定器ユニット645は、オブジェクト・パーツの位置推定値を判定する(S716)。ステップS716も、サブ・ピクセル精度で実施される。更新されたオブジェクト・パーツの位置推定値は、位置の確率を(x,y)座標に変換する次の公式(3)を使用して判定される。
位置推定値=(x1,y1)P(c1|S)+(x2,y2)P(c2|S)+...+(x121,y121)P(c121|S) (3)
位置推定器ユニット645は、方程式(3)から得られたオブジェクト・パーツの位置推定値を出力する(S720)。かかる位置推定値は、画像出力ユニット153、印刷ユニット143、および/またはディスプレイ163に出力される可能性がある。
位置推定器ユニット645は任意選択で、オブジェクト・パーツの位置推定値をサブ画像抽出器ユニット179Aに送ることもでき、サブ画像抽出器ユニット179Aは、受け取った位置推定値に基づいて、更新されたオブジェクト・パーツのサブ画像を抽出することができる(S718)。サブ画像抽出器ユニット179Aは、更新されたオブジェクト・パーツの領域を特徴空間メトリクス・ユニット625に送る。ステップS706、S710、S712、S716、S718は、オブジェクト・パーツの位置推定値を洗練化するために反復的に繰り返される。オブジェクト・パーツの位置推定値の洗練化は、サブ・ピクセル精度で実施される。基準データ・ユニット213Aから一度検索された基準データは、所与のオブジェクト・パーツに関して再度使用され得ることから、ステップS708およびS714は、反復の際に省略されることもある。反復が終了したときは、位置推定器ユニット645は、オブジェクト・パーツの位置に関して取得された洗練化後の位置推定値を出力する(S720)。かかる位置結果は、画像出力ユニット153、印刷ユニット143、および/またはディスプレイ163に出力される可能性がある。
図12A、12B、および12Cは、図2に示される本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置を推定する画像処理ユニット128内に含まれる画像データ検索および前処理ユニット173における、デジタル画像データの前処理操作の諸態様を示す。図12Aに示される写真は、4人の人物P810、P820、P830、およびP840を含んでおり、画像入力ユニット108から画像データ検索および前処理ユニット173によって受け取られる。画像データ検索および前処理ユニット173は、人物P810、P820、P830、およびP840の顔を検出し、それらの顔を切り取って図12Bの切り取り画像F811、F821、F831、およびF841を取得する。次に、画像データ検索および前処理ユニット173は、これらの切り取り画像の背景をマスキングし、照明を正規化し、その結果図12Cの顔画像F812、F822、F832、およびF842を取得する。これらの顔F812、F822、F832、およびF842はその後、図2に示される特徴分析ユニット183に送られる。
図13は、本発明の第3の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128を含む、顔認識を実施するシステム129のブロック図である。システム129は、特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット128と、画像登録ユニット901と、幾何正規化ユニット903と、顔認識ユニット905とを含む。本発明のこの第3の実施形態によれば、画像処理ユニット128内に含まれる画像データ検索および前処理ユニット173、任意選択のサブ画像抽出器ユニット179、特徴分析ユニット183、および基準データ・ユニット213は、第1または第2の実施形態の対応する各要素と同様の働きをすることができる。図13に示されるこの第3の実施形態によれば、画像入力ユニット108は、顔を含むデジタル画像データを画像処理ユニット128に送り、画像処理ユニット128は、特徴量分析を使用してオブジェクト・パーツの位置を推定する。顔画像内の関連するオブジェクト・パーツとしては、目の両端、口の両端、鼻の両端などが挙げられる。個々の顔画像は、画像処理ユニット128によってオブジェクト・パーツの位置推定値と共に出力され、画像登録ユニット901に送られ、画像登録ユニット901は、適当な回転、平行移動、およびスケーリングを各顔画像に適用することによって顔認識を実施する。幾何正規化ユニット903は、登録された画像を受け取り、局在化された顔の特徴(オブジェクト・パーツ)間の距離を使用して、それらの画像のサイズを正規化する。次いで、幾何正規化された画像は、オブジェクト・パーツの位置推定値と共に、幾何正規化ユニット903から顔認識ユニット905に送られる。顔認識ユニット905は、画像内の顔の分類を含む顔認識を実施する。顔認識ユニット905は、顔画像と共に顔の識別および/または分類を出力する。かかる顔認識結果は、画像出力ユニット153、ディスプレイ163、および/または印刷ユニット143に出力される可能性がある。
図14は、図13に示される本発明の第3の実施形態に係る顔認識を行うシステム129内に含まれる画像登録ユニット901によって実施される顔登録操作の諸態様を示す。画像処理ユニット128から出力された局在化オブジェクト・パーツを伴う画像I950が、テンプレート画像T960と比較される。このため、オブジェクト・パーツP951、P952、P953、およびP954(目および口の両端)の各位置が、テンプレート画像T960の目および口の両端P961、P962、P963、およびP964の各位置と比較される。テンプレート画像T960と向き、サイズ、および回転位置が同じ変換画像I970を取得するために、回転、変形、およびスケーリングを含めた変換が適用される。変換画像I970のように適切に登録された顔は、より良い顔認識結果をもたらす。
上述の諸実施形態は、様々な技術において、特徴量分析を使用してオブジェクト・パーツの位置を推定するのに使用することができる。本明細書に記載の諸実施形態が使用され得る技術の例は、顔認識、および車両認識などの地上オブジェクト認識である。
本発明の詳細な諸実施形態および諸実装形態について上述してきたが、本発明の趣旨および範囲から逸脱することない様々な修正が可能であることが明らかとなるはずである。
本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットを含むシステムの全体的なブロック図である。 本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットのブロック図である。 図2に示される本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットによって実施される処理を示すフローチャートである。 本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットの各構成要素を示すブロック図である。 図4に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット内に含まれるトレーニングシステムのブロック図である。 図5に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット内に含まれるトレーニングシステムによって実施される処理を示すブロック図である。 図6に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット内に含まれるトレーニングシステムにおける、サブ画像のクラスを生成する処理の諸態様を示す図である。 図5に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットのトレーニングシステム内に含まれるトレーニング画像処理ユニットにおける、オブジェクト・パーツを選択する処理の諸態様を示す図である。 図6に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット内に含まれるトレーニングシステムによる線形判別分析で使用される、例示的な右目のオブジェクト・パーツの基底画像を示す図である。 図6に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット内に含まれるトレーニングシステムによる線形判別分析で使用される、例示的な左目のオブジェクト・パーツの基底画像を示す図である。 図6に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット内に含まれるトレーニングシステムによる線形判別分析で使用される、例示的な鼻のオブジェクト・パーツの基底画像を示す図である。 図6に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニット内に含まれるトレーニングシステムによる線形判別分析で使用される、例示的な口のオブジェクト・パーツの基底画像を示す図である。 図4に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットの追加的な諸態様を示すブロック図である。 図10に示される本発明の第2の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置を推定する画像処理ユニットによって実施される処理を示すフローチャートである。 図2に示される本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置を推定する画像処理ユニット内に含まれる画像データ検索および前処理ユニットにおける、デジタル画像データの前処理操作の一態様を示す図である。 図2に示される本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置を推定する画像処理ユニット内に含まれる画像データ検索および前処理ユニットにおける、デジタル画像データの前処理操作の一態様を示す図である。 図2に示される本発明の一実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置を推定する画像処理ユニット内に含まれる画像データ検索および前処理ユニットにおける、デジタル画像データの前処理操作の一態様を示す図である。 本発明の第3の実施形態に係る特徴量分析を使用してオブジェクト・パーツの位置の推定を行う画像処理ユニットを含む、顔認識を実施するシステムのブロック図である。 図13に示される本発明の第3の実施形態に係る顔認識を行うシステム内に含まれる画像登録ユニットによって実施される顔登録操作の諸態様を示す図である。
符号の説明
98 システム
108 画像入力ユニット
128 画像処理ユニット
143 印刷ユニット
153 画像出力ユニット
163 ディスプレイ
173、173A 画像データ検索および前処理ユニット
176 キーボード
177 マウス
179、179A サブ画像抽出器ユニット
183、183A 特徴分析ユニット
213、213A 基準データ・ユニット
303 処理システム
310 トレーニングシステム
320 トレーニング画像処理ユニット
330 パーツ位置トレーニングユニット
403 量子化器ユニット
405 分類器ユニット
409 特徴抽出ユニット
411 特徴空間分析トレーニングユニット
625 特徴空間メトリクス・ユニット
645 位置推定器ユニット
901 画像登録ユニット
903 幾何正規化ユニット
905 顔認識ユニット

Claims (20)

  1. 特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    デジタル画像のオブジェクト・パーツを含む領域を表すデジタル画像データにアクセスするステップと、
    所定の領域内の前記オブジェクト・パーツの所定の位置に関するクラスのクラス・データと、前記クラスを識別する特徴とを含む基準データにアクセスするステップと、
    前記領域の範囲内のピクセル値を使用して前記領域内の前記特徴に関する特徴量を計算するステップと、
    前記特徴量と前記基準データとを使用して前記オブジェクト・パーツの位置推定値を判定するステップと
    を含む方法。
  2. 請求項1に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記オブジェクト・パーツの前記位置推定値周囲の更新領域を抽出するステップと、
    前記計算するステップと、前記判定するステップとを前記更新領域に関して実施することによって、前記オブジェクト・パーツの前記位置推定値を反復的に更新するステップと
    をさらに含む方法。
  3. 請求項1に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記判定するステップの後に前記オブジェクト・パーツの前記位置推定値を使用して、前記デジタル画像データの幾何正規化を実施するステップをさらに含む方法。
  4. 請求項3に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記デジタル画像が顔を含み、前記オブジェクト・パーツが前記顔内に含まれている場合に、幾何正規化を実施するステップの後に顔認識を実施するステップをさらに含む方法。
  5. 請求項1に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記領域内の前記特徴に関する特徴量を計算するステップの前に、前記オブジェクト・パーツを含む前記領域のサイズおよび向きを調整するステップをさらに含む方法。
  6. 請求項1に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記基準データを取得するために、トレーニング画像を使用してオブジェクト・パーツの位置を推定するトレーニングを受けるステップをさらに含む方法。
  7. 請求項6に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記トレーニングを受けるステップは、
    前記トレーニング画像から、前記所定の位置の前記オブジェクト・パーツを含むトレーニングサブ画像を抽出するステップと、
    前記オブジェクト・パーツの前記トレーニングサブ画像内の座標を量子化するステップと、
    量子化された前記座標に基づいて前記トレーニングサブ画像を前記クラスに分類するステップと、
    前記クラス内の前記オブジェクト・パーツの平均位置を判定するステップと、
    前記トレーニングサブ画像のピクセルに関する特徴の重みを計算し、前記特徴の重みを使用して、前記特徴を前記トレーニングサブ画像の前記ピクセルの線形結合として表現することによって、前記クラスを識別する前記特徴を抽出するステップと、
    前記特徴を使用して前記クラスの中心を判定するステップと
    を含む方法。
  8. 請求項7に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、前記クラスを識別する前記特徴を抽出する前記サブ・ステップは、線形判別分析を使用する方法。
  9. 請求項7に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記領域内の前記特徴に関する特徴量を計算するステップは、前記領域の範囲内のピクセルに関する前記特徴の重みを使用して特徴量を計算し、
    前記オブジェクト・パーツの位置推定値を判定するステップは、前記領域が前記クラスと、前記クラス内の前記オブジェクト・パーツの前記平均位置とに属する確率を使用する方法。
  10. 請求項9に記載の特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する方法であって、
    前記オブジェクト・パーツの位置推定値を判定するステップは、前記確率を前記位置推定値に変換する方法。
  11. 特徴量分析を使用してデジタル画像内のオブジェクト・パーツの位置を推定する装置であって、
    デジタル画像のオブジェクト・パーツを含む領域を表すデジタル画像データを提供する画像データ・ユニットと、
    所定の領域内の前記オブジェクト・パーツの所定の位置に関するクラスのクラス・データと、前記クラスを識別する特徴とを含む基準データを記憶する基準データ・ユニットと、
    前記領域内の前記オブジェクト・パーツの位置を推定する特徴分析ユニットであって、前記領域の範囲内のピクセル値を使用して前記領域内の前記特徴に関する特徴量を計算することと、前記基準データ・ユニットからの前記特徴量と前記基準データとを使用して、前記オブジェクト・パーツの位置推定値を判定することとによって、前記オブジェクト・パーツの位置を推定する特徴分析ユニットと
    を備える装置。
  12. 前記オブジェクト・パーツの前記位置推定値周囲の更新領域を抽出するサブ画像抽出器ユニットをさらに備える請求項11に記載の装置。
  13. 前記サブ画像抽出器ユニットは、前記更新領域を前記特徴分析ユニットに送り、
    前記特徴分析ユニットは、前記更新領域の範囲内のピクセル値を使用して前記更新領域内の前記特徴に関して更新された特徴量を計算することと、前記基準データ・ユニットからの前記更新された特徴量と前記基準データとを使用して、前記オブジェクト・パーツの更新された位置推定値を判定することとによって、前記オブジェクト・パーツの前記位置推定値を更新する請求項12に記載の装置。
  14. 幾何正規化された画像を取得するために、前記オブジェクト・パーツの前記位置推定値を使用して前記デジタル画像の幾何正規化を実施する幾何正規化ユニットと、
    前記幾何正規化された画像が顔を含み、前記オブジェクト・パーツが前記顔内に含まれている場合に、前記幾何正規化された画像の顔認識を実施する顔認識ユニットと
    をさらに備える請求項11に記載の装置。
  15. 前記領域が前記特徴分析ユニットによってアクセスされる前に、前記オブジェクト・パーツを含む前記領域のサイズおよび向きを調整する画像処理ユニットをさらに備える請求項11に記載の装置。
  16. 前記基準データ・ユニット内に記憶されている前記基準データを取得するために、トレーニング画像を使用してオブジェクト・パーツの位置を推定するトレーニングを受けるトレーニングユニットをさらに備える請求項11に記載の装置。
  17. 前記トレーニングユニットは、
    前記トレーニング画像から、前記所定の位置の前記オブジェクト・パーツを含むトレーニングサブ画像を抽出するトレーニング画像ユニットと、
    前記オブジェクト・パーツの前記トレーニングサブ画像内の座標を量子化する量子化器ユニットと、
    量子化された前記座標に基づいて前記トレーニングサブ画像を前記クラスに分類し、前記クラス内の前記オブジェクト・パーツの平均位置を判定する分類器ユニットと、
    前記トレーニングサブ画像のピクセルに関する特徴の重みを計算し、前記特徴の重みを使用して、前記特徴を前記トレーニングサブ画像の前記ピクセルの線形結合として表現することによって、前記クラスを識別する前記特徴を抽出する特徴トレーニングユニットと
    を備える請求項16に記載の装置。
  18. 前記特徴トレーニングユニットは、線形判別分析を使用して前記クラスを識別する特徴を抽出する請求項17に記載の装置。
  19. 前記基準データ・ユニットは、前記クラスと、前記ピクセルに関する特徴の重みと、前記クラス内の前記オブジェクト・パーツの前記平均位置とを記憶し、
    前記特徴分析ユニットは、前記領域の範囲内の前記ピクセルに関する特徴の重みを使用して、前記領域内の前記特徴に関する特徴量を計算し、前記領域が前記クラスに属する確率を計算する請求項17に記載の装置。
  20. 前記特徴分析ユニットは、前記確率を前記オブジェクト・パーツの前記位置推定値に変換する請求項19に記載の装置。
JP2007028454A 2006-02-08 2007-02-07 特徴量分析を使用してデジタル画像データ内のオブジェクト・パーツの位置を推定する方法および装置 Pending JP2007213581A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/349,202 US7684594B2 (en) 2006-02-08 2006-02-08 Method and apparatus for estimating object part location in digital image data using feature value analysis

Publications (1)

Publication Number Publication Date
JP2007213581A true JP2007213581A (ja) 2007-08-23

Family

ID=38334130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028454A Pending JP2007213581A (ja) 2006-02-08 2007-02-07 特徴量分析を使用してデジタル画像データ内のオブジェクト・パーツの位置を推定する方法および装置

Country Status (2)

Country Link
US (1) US7684594B2 (ja)
JP (1) JP2007213581A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178857A (ja) * 2013-03-14 2014-09-25 Denso It Laboratory Inc 画像検索システム及び画像検索方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064291A1 (en) * 2009-11-26 2011-06-03 Oce-Technologies B.V. Method for generating print data and a colour printer system
EP2385484A1 (en) * 2010-05-06 2011-11-09 STMicroelectronics (Grenoble 2) SAS Object detection in an image
US9122915B2 (en) * 2011-09-16 2015-09-01 Arinc Incorporated Method and apparatus for facial recognition based queue time tracking
US20170323149A1 (en) * 2016-05-05 2017-11-09 International Business Machines Corporation Rotation invariant object detection
US10535158B2 (en) * 2016-08-24 2020-01-14 The Johns Hopkins University Point source image blur mitigation
CN108319894A (zh) * 2017-12-28 2018-07-24 杭州乔戈里科技有限公司 基于深度学习的水果识别方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549569B2 (ja) * 1993-04-27 2004-08-04 ソニー エレクトロニクス インコーポレイテッド 映像内の目標パターン探知方法
US6647139B1 (en) * 1999-02-18 2003-11-11 Matsushita Electric Industrial Co., Ltd. Method of object recognition, apparatus of the same and recording medium therefor
KR100450793B1 (ko) 2001-01-20 2004-10-01 삼성전자주식회사 영역 분할된 영상의 영역 특징치 정합에 기초한객체추출장치 및 그 방법
CN100342399C (zh) * 2002-10-15 2007-10-10 三星电子株式会社 提取用作面貌识别和重现的特征向量的方法和装置
US7596247B2 (en) 2003-11-14 2009-09-29 Fujifilm Corporation Method and apparatus for object recognition using probability models
US7551755B1 (en) * 2004-01-22 2009-06-23 Fotonation Vision Limited Classification and organization of consumer digital images using workflow, and face detection and recognition
US7564994B1 (en) * 2004-01-22 2009-07-21 Fotonation Vision Limited Classification system for consumer digital images using automatic workflow and face detection and recognition
JP2005242640A (ja) 2004-02-26 2005-09-08 Fuji Photo Film Co Ltd 対象物検出方法および装置並びにプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178857A (ja) * 2013-03-14 2014-09-25 Denso It Laboratory Inc 画像検索システム及び画像検索方法

Also Published As

Publication number Publication date
US20070183686A1 (en) 2007-08-09
US7684594B2 (en) 2010-03-23

Similar Documents

Publication Publication Date Title
US7092554B2 (en) Method for detecting eye and mouth positions in a digital image
JP4903854B2 (ja) デジタル画像におけるオブジェクト検出方法
US8897504B2 (en) Classification and organization of consumer digital images using workflow, and face detection and recognition
US7564994B1 (en) Classification system for consumer digital images using automatic workflow and face detection and recognition
US7555148B1 (en) Classification system for consumer digital images using workflow, face detection, normalization, and face recognition
US7587068B1 (en) Classification database for consumer digital images
US7551755B1 (en) Classification and organization of consumer digital images using workflow, and face detection and recognition
US7058209B2 (en) Method and computer program product for locating facial features
JP4739355B2 (ja) 統計的テンプレートマッチングによる高速な物体検出方法
US7864989B2 (en) Method and apparatus for adaptive context-aided human classification
JP5424819B2 (ja) 画像処理装置、画像処理方法
CN109508700A (zh) 一种人脸识别方法、系统及存储介质
US8160880B2 (en) Generalized object recognition for portable reading machine
JP2007272897A (ja) 文脈支援型人間識別のためのデジタル画像処理方法および装置
US20060110021A1 (en) Method for recognizing projection views of radiographs
JP2007213581A (ja) 特徴量分析を使用してデジタル画像データ内のオブジェクト・パーツの位置を推定する方法および装置
JP2017506379A (ja) 無制約の媒体内の顔を識別するシステムおよび方法
JP2004265407A (ja) デジタル画像におけるカラーオブジェクトの検出方法
JP2872776B2 (ja) 顔画像照合装置
CN114359553B (zh) 一种基于物联网的签章定位方法、系统及存储介质
US11315358B1 (en) Method and system for detection of altered fingerprints
US11462040B2 (en) Distractor classifier
US7957555B2 (en) Method and apparatus for localizing an object part in digital image data by updating an initial position estimate based on a displacement of the object part
Pflug Ear recognition: Biometric identification using 2-and 3-dimensional images of human ears
JP2008520396A (ja) 放射線写真の射影図を認識する方法