JP2007212335A - Rotary ingredient distribution measurement device - Google Patents

Rotary ingredient distribution measurement device Download PDF

Info

Publication number
JP2007212335A
JP2007212335A JP2006033698A JP2006033698A JP2007212335A JP 2007212335 A JP2007212335 A JP 2007212335A JP 2006033698 A JP2006033698 A JP 2006033698A JP 2006033698 A JP2006033698 A JP 2006033698A JP 2007212335 A JP2007212335 A JP 2007212335A
Authority
JP
Japan
Prior art keywords
inspection
detection
transmitted light
light
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006033698A
Other languages
Japanese (ja)
Other versions
JP4674763B2 (en
Inventor
Sakae Shibusawa
栄 澁澤
Takeshi Okayama
毅 岡山
Tsukasa Iino
師 飯野
Masahiro Oikawa
正廣 及川
Masakazu Kodaira
正和 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Nireco Corp
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Nireco Corp
Priority to JP2006033698A priority Critical patent/JP4674763B2/en
Publication of JP2007212335A publication Critical patent/JP2007212335A/en
Application granted granted Critical
Publication of JP4674763B2 publication Critical patent/JP4674763B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary ingredient distribution measurement device capable of 3-Dimensionally measuring distribution of effective ingredient contained in an inspecting object. <P>SOLUTION: The rotary ingredient distribution measuring device 1 moves the detection light irradiation device 3 and the transmission light detection device 4 respectively at the position facing to each inspection parts a to f set on the stick Ab of the Welsh onion A and rotates at the position to each prescribed angles respectively. Every inspection parts a to f, the inspection light B irradiated from the detection light irradiating device 3 to each of inspection parts a to f of the stick Ab continuously from each of a plurality of transmission light C... is detected by the transmission light detection device 4, respectively. Based on the detection information out putted from the transmission light inspection device 4, every inspection parts a to f, the contents of effective ingredients in the circular direction of the Welsh onion A are calculated by the distribution calculation device 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えばネギ、大根、人参などを含む野菜、蜜柑、林檎などを含む果物、穀物、畜産物等の被検査物に含まれる含有成分の分布を計測する作業に用いられる回転式成分分布計測装置に関する。   This invention is, for example, a rotary component distribution used for measuring the distribution of components contained in inspected objects such as vegetables including leeks, radishes, carrots, fruits including tangerines, apples, grains, and livestock products. It relates to a measuring device.

従来、上述の農産物に含まれる成分を計測する装置としては、例えば光源から投光される光の照射角度を有芯青果物に対して相対的に変化させ、有芯青果物に対して複数の各検査角度から光を照射するとともに、その照射と対応して複数の各検査角度に透過する各透過光を各センサで検出し、各センサから出力される検出信号に基づいて有芯青果物の内部品質を判別部で判別する特許文献1の有芯青果物の内部品質検査方法及び装置がある。しかし、光の照射位置を軸芯方向に変位させるという構成及び思想の開示がなく、有芯青果物の同一周面のみに光を照射するため、光が透過する部分の品質しか判定することができない。また、光が照射される部分の芯が大きいと、有芯青果物の内部品質を正確に判別することができない。   Conventionally, as an apparatus for measuring components contained in the above-mentioned agricultural products, for example, by changing the irradiation angle of light projected from a light source relative to cored fruits and vegetables, a plurality of inspections for cored fruits and vegetables In addition to irradiating light from an angle, each sensor detects each transmitted light that passes through each of the plurality of inspection angles corresponding to the irradiation, and the internal quality of the core fruit and vegetables is determined based on the detection signal output from each sensor. There is a method and an apparatus for inspecting the internal quality of cored fruits and vegetables disclosed in Patent Document 1 to be discriminated by the discriminating unit. However, there is no disclosure of the configuration and idea of displacing the light irradiation position in the axial direction, and only the same peripheral surface of the cored fruits and vegetables is irradiated with light, so only the quality of the portion through which the light is transmitted can be determined. . Moreover, if the core of the part irradiated with light is large, the internal quality of the cored fruits and vegetables cannot be accurately determined.

また、隣り合う各青果物載置部間に跨って載置された青果物を搬送方向に移動させながら、照射手段から投光される測定光を各青果物載置部の回転力により回転する青果物の同一周面に照射し、各青果物載置部間の隙間から青果物を透過した測定光を受光手段で受光し、その受光した測定光のスペクトルを品質判定手段により分析して品質を判定する特許文献2の青果物品質測定装置がある。しかし、各青果物載置部間の隙間に向けて透過する測定光だけしか受光することができず、測定光が透過する青果物の中央部分の品質しか判定できない。   Further, the same fruits and vegetables that are rotated by the rotational force of each fruit and vegetable placing portion while measuring the light projected from the irradiation means while moving the fruits and vegetables placed between adjacent fruit and vegetable placing portions in the transport direction. Patent Document 2 that irradiates the peripheral surface, receives measurement light transmitted through the fruits and vegetables from the gaps between the fruit and vegetable placement parts, and receives the measurement light, and analyzes the spectrum of the received measurement light by the quality determination means to determine the quality There is a fruit and vegetable quality measuring device. However, only the measurement light transmitted toward the gaps between the fruit and vegetable placement parts can be received, and only the quality of the central part of the fruit and vegetables through which the measurement light passes can be determined.

また、円筒状のセルを円の中心を軸として回転させ、近赤外線照射装置をセルの長さ方向及び高さ方向に移動させ、分散状態の生茶葉全体に対して近赤外線を螺旋状に照射して計測する特許文献3の茶葉成分分析方法並びにその装置がある。しかし、近赤外線が生茶葉のどの部分に照射されたか特定することが不可能であり、計測基準を定めることができないため、正確な計測結果が得られない。
特開2003−329583号公報 特開2005−9943号公報 特開平11−230902号公報
In addition, the cylindrical cell is rotated around the center of the circle, and the near infrared irradiation device is moved in the length and height directions of the cell to irradiate the whole raw tea leaf in a dispersed state in a spiral. Thus, there is a tea leaf component analysis method and apparatus of Patent Document 3 to be measured. However, it is impossible to specify which part of the raw tea leaves was irradiated with near infrared rays, and it is impossible to determine a measurement standard, so an accurate measurement result cannot be obtained.
JP 2003-329583 A Japanese Patent Laid-Open No. 2005-9943 Japanese Patent Laid-Open No. 11-230902

この発明は上記問題に鑑み、被検査物に含まれる含有成分の分布を三次元的に計測することができ、比較可能な計測結果が得られる回転式成分分布計測装置の提供を目的とする。   In view of the above problems, an object of the present invention is to provide a rotary component distribution measuring apparatus that can three-dimensionally measure the distribution of components contained in an object to be inspected and obtain comparable measurement results.

請求項1に記載した発明の回転式成分分布計測装置は、被検査物に含まれる特定の成分を検出するのに適した波長の検出光を、該被検査物に照射する検出光照射手段と、上記被検査物を透過した透過光を検出する透過光検出手段と、上記被検査物上に設定した検査基準位置を基点として、該被検査物上に所定等間隔に隔てて設定した複数の各検査部分と上記検出光照射手段及び透過光検出手段の少なくとも一方の手段とが互いに対向される位置に、該被検査物と検出光照射手段及び透過光検出手段の少なくとも一方の手段とを相対移動する移動手段と、上記被検査物の軸芯を中心として円周方向に対して所定等角度に隔てて設定した複数の各検査角度に、上記被検査物の検査部分と上記検出光照射手段及び透過光検出手段の少なくとも一方の手段とを互いに対向したまま、該被検査物と上記検出光照射手段及び透過光検出手段の少なくとも一方の手段とを相対回転する回転手段と、上記透過光検出手段から出力される各検査部分の検出情報に基づいて、上記被検査物の各検査部分に含まれる含有成分の分布を算出する分布算出手段とを備えたことを特徴とする。   According to a first aspect of the present invention, there is provided a rotational component distribution measuring apparatus according to the present invention, comprising: a detection light irradiating means for irradiating the inspection object with detection light having a wavelength suitable for detecting a specific component contained in the inspection object; A plurality of transmission light detecting means for detecting transmitted light that has passed through the inspection object, and a plurality of reference points set on the inspection object at predetermined equal intervals based on an inspection reference position set on the inspection object. The inspection object and at least one of the detection light irradiating means and the transmitted light detecting means are relative to each other at a position where each inspection portion and at least one of the detection light irradiating means and the transmitted light detecting means are opposed to each other. A moving means that moves, and an inspection portion of the inspection object and the detection light irradiation means at a plurality of inspection angles set at a predetermined equal angle with respect to a circumferential direction around the axis of the inspection object And at least one of the transmitted light detection means Rotating means for relatively rotating the object to be inspected and at least one of the detection light irradiation means and the transmitted light detection means with the steps facing each other, and each inspection portion output from the transmitted light detection means And a distribution calculating means for calculating a distribution of contained components contained in each inspection portion of the inspection object based on detection information.

この発明によると、被検査物上に設定した検査基準位置を基点として、被検査物上に設定した各検査部分と、検出光照射手段及び透過光検出手段の少なくとも一方の手段とが対向する位置に、被検査物と検出光照射手段及び透過光検出手段の少なくとも一方とを移動手段により相対移動する。被検査物の検査部分と、検出光照射手段及び透過光検出手段の少なくとも一方の手段とを互い対向させたとき、被検査物と検出光照射手段及び透過光検出手段の少なくとも一方の手段を、被検査物の軸芯を中心として円周方向に対して所定角度に隔てて設定した各検査角度に回転手段により相対回転する。被検査物上に設定した各検査部分毎に、検出光照射手段から投光される検出光を、被検査物の検査部分に対して複数の各検査角度から照射し、各検査角度毎に、被検査物の外方に向けて透過する透過光を透過光検出手段で検出する。透過光検出手段から出力される検出情報に基づいて、各検査部分毎に円周方向に含まれる含有成分の分布を分布算出手段で算出する。   According to the present invention, each inspection portion set on the inspection object is opposed to at least one of the detection light irradiation means and the transmitted light detection means with the inspection reference position set on the inspection object as a base point. Further, the object to be inspected and at least one of the detection light irradiation means and the transmitted light detection means are relatively moved by the movement means. When the inspection portion of the inspection object and at least one of the detection light irradiation means and the transmission light detection means are opposed to each other, at least one of the inspection object, the detection light irradiation means, and the transmission light detection means, Rotating means rotates relative to each inspection angle set at a predetermined angle with respect to the circumferential direction around the axis of the object to be inspected. For each inspection part set on the inspection object, the detection light projected from the detection light irradiation means is irradiated from a plurality of inspection angles to the inspection part of the inspection object, and for each inspection angle, Transmitted light detecting means detects transmitted light that passes toward the outside of the inspection object. Based on the detection information output from the transmitted light detection means, the distribution calculation means calculates the distribution of the contained components included in the circumferential direction for each inspection portion.

上記被検査物は、例えばネギ、大根、人参などを含む野菜、蜜柑、林檎などを含む果物、穀物、畜産物等の農産物で構成することができる。また、含有成分は、例えば糖、酸、硫化アリル、硫黄、ビタミン等で構成することができる。また、検出光照射手段は、例えばハロゲンランプ、発光ダイオード等の近赤外光を照射する照明装置で構成することができる。また、透過光検出手段は、例えば撮影カメラ(CCDカメラ)、受光素子等の透過光を検出する光学的検出装置で構成することができる。   The inspected object can be composed of agricultural products such as vegetables including leeks, radishes, carrots, etc., fruits including mandarin oranges, apples, etc., grains, and livestock products. Moreover, a content component can be comprised with sugar, an acid, allyl sulfide, sulfur, a vitamin, etc., for example. Further, the detection light irradiation means can be constituted by an illumination device that irradiates near infrared light such as a halogen lamp and a light emitting diode. Further, the transmitted light detection means can be constituted by an optical detection device that detects transmitted light such as a photographing camera (CCD camera), a light receiving element or the like.

また、移動手段は、例えば保持台、保持枠、レール、リニアモータ、或いは、チェーン、スプロケット、無端帯等で構成され、透過光検出手段を、被検査物上に設定した複数の各検査部分と対向する位置に相対移動するか、被検査物自体を、被検査物上に設定した各検査部分が透過光検出手段に対向される位置に相対移動する。また、回転手段は、例えば回転枠、レール、ギヤ、ラック、モータ、リニアモータ等で構成され、被検査物と透過光検出手段との少なくとも一方又は両方を、被検査物の軸芯を中心として円周方向に対して所定角度に隔てて設定した複数の各検査角度に相対回転する。また、分布算出手段は、例えばパーソナルコンピュータ、CPU、ROM、RAMを内蔵した制御装置等で構成することができる。   Further, the moving means is composed of, for example, a holding stand, a holding frame, a rail, a linear motor, a chain, a sprocket, an endless belt, or the like, and a plurality of inspection portions set on the inspection object with the transmitted light detection means Relatively move to an opposing position, or move the inspection object itself to a position where each inspection portion set on the inspection object faces the transmitted light detecting means. The rotating means is constituted by, for example, a rotating frame, a rail, a gear, a rack, a motor, a linear motor, and the like, and at least one or both of the inspection object and the transmitted light detection means are centered on the axis of the inspection object. Relative rotation is performed at a plurality of inspection angles set at a predetermined angle with respect to the circumferential direction. Further, the distribution calculation means can be constituted by, for example, a personal computer, a CPU, a ROM, a control device incorporating a RAM, or the like.

請求項2に記載した発明の回転式成分分布計測装置は、上記請求項1に記載の構成と併せて、上記被検査物と透過光検出手段を、該被検査物の軸芯を中心として相反する方向に同期して所定の検査角度に回転自在に設けたことを特徴とする。   According to a second aspect of the present invention, there is provided a rotary component distribution measuring apparatus having the configuration according to the first aspect, wherein the inspection object and the transmitted light detecting means are reciprocally centered on the axis of the inspection object. It is characterized in that it is provided so as to be rotatable at a predetermined inspection angle in synchronism with the direction of movement.

この発明によると、被検査物と透過光検出手段を、第1の検査部分と対向する位置で同期して所定の検査角度にそれぞれ回転させ、検出光照射手段から投光される検出光を第1の検査部分に対して照射し、被検査物の外方に向けて透過する透過光を透過光検出手段で検出する。次に、被検査物と透過光検出手段を上記角度に回転停止したまま第2の検査部分と対向する位置に移動した後、上記方向と逆方向に回転させ、検出光照射手段から投光される検出光を第2の検査部分に対して照射する。以下、上述と同様に、被検査物と透過光検出手段を、次の検査部分と対向する位置で相反する方向に同期して所定の検査角度に回転する。   According to the present invention, the object to be inspected and the transmitted light detection means are respectively rotated to a predetermined inspection angle in synchronization with the position facing the first inspection portion, and the detection light projected from the detection light irradiation means is the first. The transmitted light that irradiates one inspection portion and transmits toward the outside of the inspection object is detected by the transmitted light detection means. Next, the object to be inspected and the transmitted light detecting means are moved to a position facing the second inspection portion while stopping the rotation at the above angle, and then rotated in the opposite direction to the above-mentioned direction and projected from the detecting light irradiation means. The second inspection portion is irradiated with detection light. Thereafter, in the same manner as described above, the object to be inspected and the transmitted light detecting means are rotated to a predetermined inspection angle in synchronization with the opposite directions at the position facing the next inspection portion.

請求項3に記載した発明の回転式成分分布計測装置は、上記請求項1又は2に記載の構成と併せて、上記検出光照射手段及び透過光検出手段を、上記各検査角度と対応する角度に隔てて複数設けたことを特徴とする。   According to a third aspect of the present invention, there is provided a rotary component distribution measuring apparatus, wherein the detection light irradiating means and the transmitted light detecting means are arranged at angles corresponding to the inspection angles, in combination with the configuration according to the first or second aspect. It is characterized in that a plurality are provided apart from each other.

この発明によると、各検査角度と対向する角度に設けた各検出光照射手段から投光される検出光を、被検査物の検査部分に対して複数の各検査角度から照射し、検査部分を透過した複数の各透過光を、各検査角度と対応する角度に隔てて設けた各透過光検出手段でそれぞれ検出する。   According to this invention, the detection light projected from each detection light irradiation means provided at an angle opposite to each inspection angle is irradiated from a plurality of inspection angles to the inspection portion of the object to be inspected. Each of the transmitted plurality of transmitted lights is detected by each transmitted light detection means provided at an angle corresponding to each inspection angle.

請求項4に記載した発明の回転式成分分布計測装置は、上記請求項1乃至3のいずれか一つに記載の構成と併せて、上記検出光照射手段及び透過光検出手段を、上記各検査部分と対向する間隔に隔てて複数設けたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a rotary component distribution measuring apparatus including the detection light irradiating means and the transmitted light detecting means in combination with the configuration according to any one of the first to third aspects. It is characterized in that a plurality are provided at intervals facing the portion.

この発明によると、被検査物の各検査部分と対向する位置に設けた各検出光照射手段から投光される検出光を、被検査物の各検査部分に対してそれぞれ照射し、被検査物の各検査部分を透過した各透過光を、各検査部分と対向する位置に設けた各透過光検出手段でそれぞれ検出する。   According to this invention, each inspection part of the inspection object is irradiated with the detection light projected from each detection light irradiation means provided at a position facing each inspection part of the inspection object. Each transmitted light that has passed through each inspection portion is detected by each transmitted light detection means provided at a position facing each inspection portion.

請求項5に記載した発明の回転式成分分布計測装置は、上記請求項1乃至3のいずれか一つに記載の構成と併せて、上記検出光照射手段又は透過光検出手段の一方を、上記各検査部分と対向する間隔に隔てて複数設け、該検出光照射手段又は透過光検出手段の他方を、上記各検査部分と対向する位置に移動自在に設けたことを特徴とする。   According to a fifth aspect of the present invention, there is provided a rotary component distribution measuring apparatus, wherein one of the detection light irradiation means and the transmitted light detection means is combined with the configuration according to any one of the first to third aspects. A plurality of detectors are provided at intervals facing each inspection portion, and the other of the detection light irradiation means or the transmitted light detection means is provided movably at a position facing each of the inspection portions.

この発明によると、被検査物の各検査部分と対向する位置に配設した各検出光照射手段から投光される各検出光を、被検査物の各検査部分に対してそれぞれ照射し、各検査部分を透過した各透過光を、各検査部分と対向する位置に移動した透過光検出手段でそれぞれ検出する。或いは、被検査物の各検査部分と対向する位置に移動した検出光照射手段から投光される検出光を、被検査物の各検査部分に対してそれぞれ照射し、各検査部分を透過した各透過光を、各検査部分と対向する位置に配設した各透過光検出手段でそれぞれ検出する。   According to the present invention, each detection light projected from each detection light irradiation means disposed at a position facing each inspection portion of the inspection object is irradiated to each inspection portion of the inspection object, Each transmitted light that has passed through the inspection portion is detected by transmitted light detection means that has moved to a position facing each inspection portion. Alternatively, each of the inspection parts of the inspection object is irradiated with the detection light projected from the detection light irradiation means moved to a position facing each inspection part of the inspection object, and each inspection part is transmitted. The transmitted light is detected by each transmitted light detection means disposed at a position facing each inspection portion.

請求項6に記載した発明の回転式成分分布計測装置は、上記請求項1乃至5のいずれか一つに記載の構成と併せて、上記検出光を、上記含有成分を検出するのに適した波長の近赤外光で構成したことを特徴とする。   A rotary component distribution measuring apparatus according to a sixth aspect of the invention is suitable for detecting the contained component with the detection light in combination with the configuration according to any one of the first to fifth aspects. It is characterized by comprising near-infrared light having a wavelength.

この発明によると、例えば700nm〜980nmの波長を有する近赤外光を被検査物の検査部分に照射して、検査部分に含まれる糖の分布を検出するが、近赤外光の波長を、例えば700nm以下又は980nm以上の波長に変更してもよい。また、糖以外の成分を検出する場合、被検査物に含まれる含有成分の種類に応じて、該含有成分を検出するのに適した波長の検出光に変更してもよい。   According to the present invention, for example, near infrared light having a wavelength of 700 nm to 980 nm is irradiated to the inspection portion of the object to be detected, and the distribution of sugar contained in the inspection portion is detected. For example, the wavelength may be changed to 700 nm or less or 980 nm or more. In addition, when components other than sugar are detected, the detection light having a wavelength suitable for detecting the contained components may be changed according to the type of the contained components contained in the test object.

この発明によれば、被検査物と透過光検出手段とを、該被検査物上に設定した各検査部分と対向する位置で所定の検査角度にそれぞれ回転させ、各検査部分毎に円周方向に含まれる含有成分の分布を三次元的に計測するので、被検査物の含有成分の分布を比較するのに正確な計測結果が得られる。また、各検査部分毎に検出した円周方向の含有成分の計測値(例えば平均値、最低値、中間値、最高値等)を、各検査部分に含まれる含有成分の分布値とするので、例えば流通時、販売時、消費時等のどの場所で計測しても、同一の計測結果が得られ、比較時の誤差が小さく、例えば産地や品種等が同一であるか否かを正確に判別することができる。   According to this invention, the object to be inspected and the transmitted light detecting means are respectively rotated to a predetermined inspection angle at a position facing each inspection part set on the object to be inspected, and the circumferential direction is set for each inspection part. Since the distribution of the contained components contained in the three-dimensional measurement is measured three-dimensionally, an accurate measurement result can be obtained for comparing the distribution of the contained components of the inspection object. Moreover, since the measured value (for example, the average value, the lowest value, the intermediate value, the highest value, etc.) of the contained component in the circumferential direction detected for each examination part is the distribution value of the contained component contained in each examination part, For example, the same measurement results can be obtained regardless of the location at the time of distribution, sales, consumption, etc., and the error at the time of comparison is small. For example, it is accurately determined whether the production area, product type, etc. are the same. can do.

この発明は、被検査物に含まれる含有成分の分布を三次元的に計測することができ、比較可能な計測結果が得られるという目的を、被検査物と検出光照射手段及び透過光検出手段の少なくとも一方の手段とを、該被検査物上に設定した複数の各検査部分と対向する位置に相対移動させ、該各検査部分と対向する位置で所定の検査角度に相対回転することで達成した。   The object of the present invention is to be able to three-dimensionally measure the distribution of the components contained in the inspected object and obtain a comparable measurement result. The inspected object, the detection light irradiation means, and the transmitted light detection means This is achieved by relatively moving at least one of the means to a position facing each of the plurality of inspection portions set on the inspection object and relatively rotating to a predetermined inspection angle at a position facing each of the inspection portions. did.

この発明の一実施例を以下図面に基づいて詳述する。
図面は、被検査物の一例であるネギに含まれる含有成分の分布を計測する作業に用いられる第1実施例の回転式成分分布計測装置を示し、図1及び図2に於いて、この回転式成分分布計測装置1は、外光が遮光される検査室2内部に、ネギAに含まれる特定の含有成分(糖分)を検出するのに適した波長の検出光Bを、ネギAの茎部Ab外面に対して径方向に照射する検出光照射装置3と、茎部Abの外方に向けて透過する透過光Cを検出する透過光検出装置4と、ネギAの根部Aaを検査基準位置として、茎部Ab上に設定した第1〜第6の各検査部分a〜fと対向する位置に、検出光照射装置3と透過光検出装置4を茎部Abに沿って長さ方向に前後移動する移動装置5と、ネギAの軸芯を中心として円周方向に対して所定等角度に隔てて設定した複数の各検査角度に、検出光照射装置3と透過光検出装置4を茎部Ab外周面に沿って円周方向に回転移動する回転装置6とを設けている。また、検査室2外部に、透過光検出装置4から出力される各検査部分a〜fの検出情報に基づいて、ネギAの各検査部分a〜fに含まれる含有成分の分布を算出する分布算出装置7を配設している。
An embodiment of the present invention will be described in detail with reference to the drawings.
The drawing shows a rotary component distribution measuring apparatus according to a first embodiment used for the work of measuring the distribution of components contained in a leek, which is an example of an object to be inspected. In FIG. 1 and FIG. The expression component distribution measuring apparatus 1 uses a detection light B having a wavelength suitable for detecting a specific component (sugar) contained in the green onion A in the examination room 2 where external light is blocked. The inspection light irradiation device 3 that irradiates the outer surface of the part Ab in the radial direction, the transmitted light detection device 4 that detects the transmitted light C that transmits toward the outside of the stem Ab, and the root Aa of the green onion A As a position, the detection light irradiation device 3 and the transmitted light detection device 4 are arranged in the length direction along the stem Ab at positions facing the first to sixth inspection portions a to f set on the stem Ab. A moving device 5 that moves back and forth, and a predetermined equal angle with respect to the circumferential direction around the axis of the green onion A In each of a plurality of inspection angles set is provided with a rotating device 6 for rotational movement in the circumferential direction transmitted light detector 4 and the detection light irradiation device 3 along the stem Ab outer peripheral surface. Also, a distribution for calculating the distribution of the components contained in each of the inspection portions a to f of the leek A based on the detection information of each of the inspection portions a to f output from the transmitted light detection device 4 outside the inspection room 2. A calculation device 7 is provided.

検査室2の一側壁部には、後述する保持台8を搬入又は搬出する際に開放され、ネギAに含まれる含有成分の分布を計測する際に閉塞される出入口2aを設けている。   One side wall portion of the examination room 2 is provided with an entrance 2 a that is opened when carrying in or out a holding table 8 to be described later and is closed when measuring the distribution of components contained in the green onion A.

検出光照射装置3と透過光検出装置4は、後述する保持台8上の保持枠11に保持されたネギAの茎部Ab外周面と対向して、回転枠23の対向内周縁部に対して上下に相対向して取り付けている。   The detection light irradiation device 3 and the transmitted light detection device 4 face the outer peripheral surface of the stem portion Ab of the green onion A held by the holding frame 11 on the holding table 8 to be described later, with respect to the opposing inner peripheral edge of the rotating frame 23. Are attached opposite to each other.

検出光照射装置3が照射する検出光Bは、ネギAに含まれる糖分を検出するのに適した波長(例えば700nm〜980nmの範囲に含まれる特定の波長)の近赤外光で構成している。ネギAの茎部Abを透過する透過光Cの波長や透過率は、各検査部分a〜fに含まれる糖分の含有量に対応して変位するので、その変位を透過光検出装置4で検出すれば、各検査部分a〜fに含まれる糖分の含有量を算出することができる。   The detection light B irradiated by the detection light irradiation device 3 is composed of near-infrared light having a wavelength suitable for detecting sugar contained in the onion A (for example, a specific wavelength included in the range of 700 nm to 980 nm). Yes. Since the wavelength and transmittance of the transmitted light C transmitted through the stem Ab of the leek A are displaced according to the sugar content contained in each of the inspection portions a to f, the displacement is detected by the transmitted light detection device 4. Then, the sugar content contained in each of the test portions a to f can be calculated.

また、検出光Bの波長を、例えば700nm以下又は980nm以上の波長に変更してもよい。なお、ネギAに含まれる様々な含有成分を検出するのに適した波長の検出光Bに変更してもよい。   Further, the wavelength of the detection light B may be changed to, for example, a wavelength of 700 nm or less or 980 nm or more. In addition, you may change to the detection light B of the wavelength suitable for detecting the various containing components contained in leek A.

また、ネギAに含まれる含有成分の種類によって透過光Cの波長や透過率が異なるため、特定の含有成分を検出した波長の透過光Cのみが透過許容される光学フィルタを透過光検出装置4に用いれば、特定の含有成分のみを検出することができる。   Further, since the wavelength and transmittance of the transmitted light C are different depending on the type of the contained component included in the leek A, the transmitted light detection device 4 includes an optical filter that allows transmission of only the transmitted light C having the wavelength at which the specific contained component is detected. If it is used for, only a specific content component can be detected.

保持台8は、室内側と室外側とに連続して敷設したレール9に対して前後方向に走行移動自在に係合され、下部に配設した移動量検出機能付きリニアモータ10の駆動力により、後述する保持枠11で保持したネギA全長が検査室2内部に搬入される搬入位置と、検査室2外部に搬出される搬出位置とに前後方向に走行移動する。   The holding table 8 is engaged with a rail 9 continuously laid on the indoor side and the outdoor side so as to be movable in the front-rear direction, and is driven by the driving force of the linear motor 10 with a movement amount detection function disposed at the lower part. The entire length of the onion A held by the holding frame 11 to be described later travels in the front-rear direction to a carry-in position where the full length of the green onion A is carried into the examination room 2 and a carry-out position where it is carried out of the examination room 2.

保持枠11は、図3、図4にも示すように、長尺のネギAが水平に保持される大きさ及び形状に形成され、検出光Bの照射及び透過光Cの透過が許容されるように上下面を開口した形態に形成している。   As shown in FIGS. 3 and 4, the holding frame 11 is formed in a size and shape that allows the long onion A to be held horizontally, and allows the detection light B and the transmitted light C to pass therethrough. Thus, the upper and lower surfaces are formed in an open shape.

保持枠11の後端側両側部を保持台8前部に配設した受け部12の上端部に固定し、受け部12を、保持台8前部に設けた支持部8b内周面に沿って敷設したレール13に対して円周方向に回転移動自在に係合し、保持枠11の後端部を、保持台8後部に立設した支持部8aの上端部前面に対して正逆回転自在に軸受して、保持枠11全長を、後述する回転枠23の中心部に対して水平に挿入される高さ及び位置に支持している。   Both side portions on the rear end side of the holding frame 11 are fixed to the upper end portion of the receiving portion 12 disposed on the front portion of the holding table 8, and the receiving portion 12 is along the inner peripheral surface of the support portion 8 b provided on the front portion of the holding table 8. The rear end of the holding frame 11 is forwardly and reversely rotated with respect to the front surface of the upper end of the support portion 8a erected on the rear portion of the holding stand 8 with respect to the rail 13 that is laid and movably engaged in the circumferential direction. The bearing frame 11 is supported freely, and the entire length of the holding frame 11 is supported at a height and a position where the entire length of the holding frame 11 is inserted horizontally with respect to a center portion of the rotating frame 23 described later.

支持部8aの上端部後面に固定した回転量検出機能付きモータ14を保持枠11の後端部に直結して、モータ14の駆動力により、保持枠11を、ネギAの軸芯を中心として円周方向に対して所定等角度に隔てて設定した複数の各検査角度に回転する。   A motor 14 with a rotation amount detection function fixed to the rear surface of the upper end portion of the support portion 8a is directly connected to the rear end portion of the holding frame 11, and the holding frame 11 is centered on the axis of the leek A by the driving force of the motor 14. It rotates to each of a plurality of inspection angles set at a predetermined equal angle with respect to the circumferential direction.

保持枠11の前端部に、ネギAの根部Aaが軸方向に対して当接される規制部11aと、ネギAの根部Aaが保持される方向にバネで回動付勢した一対の各前部保持体15,15とを設け、保持枠11の後端部に、ネギAの茎部Abと葉部Acとの境界近傍が保持される方向にバネで回動付勢した一対の各後部保持体16,16を設けている。   A restricting portion 11a with which the root Aa of the green onion A abuts against the axial direction at the front end of the holding frame 11, and a pair of fronts that are urged by a spring in a direction in which the root Aa of the green onion A is held A pair of rear parts which are provided with part holding bodies 15 and 15 and are urged by a spring in a direction in which the vicinity of the boundary between the stem part Ab and the leaf part Ac of the green onion A is held at the rear end part of the holding frame 11. Holding bodies 16 and 16 are provided.

なお、各前部保持体15,15及び各後部保持体16,16を、例えばエアーシリンダ、ソレノイド、モータ等で開閉動作してもよい。また、各前部保持体15,15及び各後部保持体16,16の代わりに、例えば吸着子、チャック、クリップ等の挟持手段で挟持してもよい。   In addition, you may open / close each front holding body 15 and 15 and each rear holding body 16 and 16 with an air cylinder, a solenoid, a motor etc., for example. Further, instead of the front holders 15 and 15 and the rear holders 16 and 16, for example, they may be clamped by clamping means such as an adsorber, a chuck, and a clip.

また、レール9を敷設した敷設部の側面又は上面に目盛りを付設しておけば、ネギA上に設定した各検査部分a〜fのどの部分を検査しているか、目盛りを見れば即確認することができる。   Further, if a scale is attached to the side surface or the upper surface of the laying portion on which the rail 9 is laid, it is immediately confirmed by looking at the scale which part of the inspection portions a to f set on the leek A is being inspected. be able to.

移動装置5は、リング状を有する可動枠17の上下縁部を、上下に架設した一対の各レール18,18に対して前後方向に水平移動自在に係合し、前側上部に軸支したスプロケット19と、後側上部に軸支したスプロケット20との間に張架した無端帯21を、可動枠17の上端部に連結し、上部に配設した移動量検出機能付きモータ22を一方のスプロケット20に直結して、モータ22の駆動力により、可動枠17を、後述する回転枠23の中心部に挿入されたネギAの茎部Abに沿って長さ方向に前後移動させ、回転枠23に取り付けた検出光照射装置3と透過光検出装置4を、規制部11aに当接されたネギAの根部Aaを検査基準位置として、ネギAの根部Aaから葉部Acに至る茎部Ab上を長さ方向に対して所定等間隔に隔てて設定した第1〜第6の各検査部分a〜fと対向する位置に前後移動する。また、可動枠17をリニアモータの駆動力で前後移動してもよい。   The moving device 5 is a sprocket in which the upper and lower edges of a ring-shaped movable frame 17 are engaged with a pair of rails 18 and 18 installed vertically so as to be horizontally movable in the front-rear direction and are pivotally supported on the front upper portion. 19 and an endless belt 21 stretched between a sprocket 20 pivotally supported on the upper rear side are connected to the upper end of the movable frame 17, and a motor 22 with a movement detection function disposed on the upper part is connected to one sprocket. 20, the movable frame 17 is moved back and forth in the longitudinal direction along the stem Ab of the green onion A inserted in the center of the rotating frame 23 described later by the driving force of the motor 22, and the rotating frame 23 The detection light irradiation device 3 and the transmitted light detection device 4 mounted on the stem A on the stem Ab extending from the root Aa of the green onion A to the leaf Ac with the root Aa of the green onion A in contact with the regulating portion 11a as the inspection reference position At regular intervals in the length direction It moves back and forth in the first to the inspection part a~f a position facing the sixth set. Further, the movable frame 17 may be moved back and forth by the driving force of the linear motor.

第1〜第6の各検査部分a〜fは、規制部11aを検査基準位置として長さ方向に対して所定等間隔(5cm間隔)に隔てて設定され、後述する分布算出装置7の記憶部に予め記憶している。また、各検査部分a〜fの間隔を、例えば5cm以下又は以上の任意間隔に変更するか、検査箇所の位置を、例えば6箇所以下又は以上の任意箇所に変更してもよい。また、ネギAの茎部Abと葉部Acとの境界部分(白色部)を検査基準位置としてもよい。   The first to sixth inspection portions a to f are set at predetermined equal intervals (5 cm intervals) in the length direction with the restricting portion 11a as the inspection reference position, and are stored in a storage unit of the distribution calculation device 7 described later. Is stored in advance. Moreover, you may change the space | interval of each test | inspection part af to 5 cm or less, for example, or more arbitrary positions, or may change the position of a test location to 6 places or less, for example or more arbitrary locations. Moreover, it is good also considering the boundary part (white part) of the stem part Ab and leaf part Ac of leek A as an inspection reference position.

回転装置6は、検出光照射装置3と透過光検出装置4を、保持台8の保持枠11に保持されたネギAの軸芯を中心として、一部が開放又は全部が閉塞されたリング状を有する回転枠23の対向内周縁部に取り付け、回転枠23の外周縁部を、可動枠17の内周縁部に沿って架設したレール24に対して円周方向に回転移動自在に係合し、可動枠17の外周縁部に固定した回転量検出機能付きモータ25の駆動ギヤ26を、回転枠23の外周縁部に刻設したラック27に噛合して、モータ25の駆動力により、回転枠23を、該回転枠23の中心部に挿入したネギAの軸芯を中心として正逆回転させ、検出光照射装置3と透過光検出装置4とを、ネギAの茎部Ab上に設定したいずれか一つの各検査部分a〜fに対向したまま、ネギAの軸芯を中心として円周方向に対して所定等角度に隔てて設定した複数の各検査角度に正逆回転する。また、回転枠23をリニアモータの駆動力で回転してもよい。   The rotating device 6 includes a detection light irradiation device 3 and a transmitted light detection device 4 in a ring shape in which a part thereof is opened or partly closed around the axis of the green onion A held by the holding frame 11 of the holding table 8. The outer peripheral edge of the rotating frame 23 is engaged with the rail 24 installed along the inner peripheral edge of the movable frame 17 so as to be rotatable and movable in the circumferential direction. The drive gear 26 of the motor 25 with the rotation amount detection function fixed to the outer peripheral edge of the movable frame 17 is engaged with a rack 27 carved on the outer peripheral edge of the rotary frame 23, and is rotated by the driving force of the motor 25. The frame 23 is rotated forward and backward about the axis of the green onion A inserted into the center of the rotary frame 23, and the detection light irradiation device 3 and the transmitted light detection device 4 are set on the stem Ab of the green onion A. The axis of the green onion A is kept facing each of the inspection portions a to f. To rotate forward and backward in each of a plurality of inspection angles set apart a predetermined equal angle with respect to the circumferential direction as heart. Moreover, you may rotate the rotation frame 23 with the driving force of a linear motor.

分布算出装置7は、例えばCPU、ROM、RAM等を内蔵したパーソナルコンピュータで構成され、透過光検出装置4から出力される検出情報を検出情報記憶部(RAM)に記憶するとともに、その検出情報に基づいて、各検査部分a〜f毎に、円周方向に含まれる含有成分の分布を算出し、その算出結果を記憶する。また、検出光照射装置3と、透過光検出装置4と、移動装置5と、回転装置6は、分布算出装置7に内蔵した制御部に接続され、CPUは、ROM(又はPROM)に格納されたプログラムに沿って、検出光照射装置3と、透過光検出装置4と、移動装置5と、回転装置6との駆動及び停止を制御する。   The distribution calculation device 7 is composed of, for example, a personal computer with a built-in CPU, ROM, RAM, and the like, and stores detection information output from the transmitted light detection device 4 in a detection information storage unit (RAM). Based on this, the distribution of the contained components included in the circumferential direction is calculated for each inspection portion af, and the calculation result is stored. The detection light irradiation device 3, the transmitted light detection device 4, the moving device 5, and the rotation device 6 are connected to a control unit built in the distribution calculation device 7, and the CPU is stored in a ROM (or PROM). The driving and stopping of the detection light irradiation device 3, the transmitted light detection device 4, the moving device 5, and the rotation device 6 are controlled in accordance with the program.

図示実施例は上記の如く構成するものにして、以下、回転式成分分布計測装置1によるネギAの成分計測方法を説明する。   The illustrated embodiment is configured as described above, and hereinafter, a method for measuring the components of leek A by the rotary component distribution measuring apparatus 1 will be described.

先ず、図3、図4に示すように、切り揃えられたネギAの根部Aaを、保持台8の保持枠11前端に設けた規制部11aに当接し、ネギAの根部Aaを、保持枠11前端に設けた一対の各前部保持体15,15で保持し、ネギAの茎部Abと葉部Acとの境界近傍を、保持枠11後端に設けた一対の各後部保持体16,16で保持して、ネギA全長を根部Aaが先行する水平姿勢に保持する。   First, as shown in FIGS. 3 and 4, the root Aa of the cut leek A is brought into contact with a regulating portion 11 a provided at the front end of the holding frame 11 of the holding stand 8, and the root Aa of the leek A is moved to the holding frame. 11 A pair of front holders 15, 15 provided at the front end, and a pair of rear holders 16 provided at the rear end of the holding frame 11 near the boundary between the stem Ab and the leaf Ac of the green onion A. , 16 to hold the entire length of the onion A in a horizontal posture preceded by the root Aa.

次に、図1に示すように、移動装置5を前進駆動して、ネギAが保持された保持台8を搬入方向に前進移動させ、保持台8に保持されたネギA全長を、検査室2の出入口2aから室内に搬入する。   Next, as shown in FIG. 1, the moving device 5 is driven forward to move the holding table 8 holding the leeks A forward in the loading direction, and the entire length of the onion A held by the holding table 8 is changed to the examination room. 2 is carried into the room through the entrance 2a.

次に、図2、図5に示すように、保持枠11に保持されたネギAの根部Aaを、計測開始位置に待機する回転枠23の中心部に挿入し、ネギAの茎部Ab上に設定した第1の検査部分aを検出光照射装置3と透過光検出装置4との間に挿入するとともに、規制部11aに当接したネギAの根部Aaを検査基準位置として、ネギAの茎部Ab上に設定した各検査部分a〜fと対向する位置に、検出光照射装置3と透過光検出装置4を順に移動させる。   Next, as shown in FIGS. 2 and 5, the root Aa of the green onion A held by the holding frame 11 is inserted into the center of the rotating frame 23 waiting at the measurement start position, and on the stem Ab of the green onion A. Is inserted between the detection light irradiation device 3 and the transmitted light detection device 4, and the root Aa of the green onion A that is in contact with the restricting portion 11a is used as the inspection reference position. The detection light irradiation device 3 and the transmitted light detection device 4 are sequentially moved to positions facing the inspection portions a to f set on the stem Ab.

検出光照射装置3と透過光検出装置4を、茎部Ab上に設定した第1の検査部分aと対向する位置に移動又は停止したとき、回転装置6を回転駆動して、検出光照射装置3と透過光検出装置4を、ネギAの軸芯を中心として円周方向に対して所定等角度に隔てて設定した各検査角度に回転させる。   When the detection light irradiation device 3 and the transmitted light detection device 4 are moved or stopped to a position facing the first inspection portion a set on the stem Ab, the rotation device 6 is driven to rotate, and the detection light irradiation device 3 and the transmitted light detection device 4 are rotated to respective inspection angles set at a predetermined equal angle with respect to the circumferential direction around the axis of the green onion A.

検出光照射装置3から投光される検出光Bを、茎部Ab上に設定した検査部分aに対して複数の各検査角度から照射し、検査部分aの外方に向けて透過する複数の各透過光C…を透過光検出装置4で各検査角度毎に連続して検出するとともに、透過光検出装置4から出力される検出情報に基づいて、各検査角度毎に、検査部分aの円周方向に含まれる含有成分の含有量を分布算出装置7で算出する。   The detection light B projected from the detection light irradiation device 3 is irradiated from a plurality of inspection angles to the inspection portion a set on the stem Ab and transmitted to the outside of the inspection portion a. Each transmitted light C... Is continuously detected by the transmitted light detection device 4 for each inspection angle, and based on the detection information output from the transmitted light detection device 4, the circle of the inspection part a is detected for each inspection angle. The content of the component contained in the circumferential direction is calculated by the distribution calculation device 7.

上述と同様に、検出光照射装置3と透過光検出装置4を、ネギAの茎部Ab上に設定した第2〜第6の各検査部分b〜fと対向する位置に移動又は停止したとき、ネギAの軸芯を中心として円周方向に対して所定等角度に回転させながら、検出光照射装置3から投光される検出光Bを、各検査部分b〜fに対して複数の各検査角度からそれぞれ照射し、各検査部分b〜fの外方に向けて透過する複数の各透過光C…を透過光検出装置4で各検査角度毎に連続して検出するとともに、透過光検出装置4から出力される検出情報に基づいて、各検査角度毎に、各検査部分b〜fの円周方向に含まれる含有成分の含有量を分布算出装置7で算出する。   Similarly to the above, when the detection light irradiation device 3 and the transmitted light detection device 4 are moved or stopped to positions facing the second to sixth inspection portions b to f set on the stem Ab of the green onion A The detection light B projected from the detection light irradiation device 3 is rotated at a predetermined equal angle with respect to the circumferential direction around the axis of the green onion A, and a plurality of each of the inspection portions b to f is detected. A plurality of transmitted lights C irradiating from the inspection angles and transmitted toward the outside of the inspection portions b to f are continuously detected for each inspection angle by the transmitted light detection device 4 and transmitted light detection is performed. Based on the detection information output from the device 4, the distribution calculation device 7 calculates the content of the contained component included in the circumferential direction of each of the inspection portions b to f for each inspection angle.

且つ、各検査部分a〜f毎に円周方向の含有成分の平均値を算出し、その平均値を長さ方向の含有成分の計測値として記憶するので、比較時の誤差が小さくなり、比較可能な計測結果が得られる。また、例えば最低値、中間値、最高値等を各検査部分a〜fの円周方向の計測値としてもよい。   In addition, the average value of the content component in the circumferential direction is calculated for each inspection portion a to f, and the average value is stored as the measurement value of the content component in the length direction. Possible measurement results are obtained. Further, for example, the minimum value, the intermediate value, the maximum value, and the like may be measured values in the circumferential direction of the respective inspection portions a to f.

次に、成分計測が完了した後、移動装置5を後退駆動して、計測済みのネギAが保持された保持台8を搬出方向に後退移動させ、保持台8に保持されたネギA全長を、検査室2の出入口2aから室外に搬出した後、一対の各前部保持体15,15及び一対の各後部保持体16,16による保持を解除して、計測済みのネギAを回収すれば、1本のネギAの成分計測が完了する。以下、上述と同様にして、次の各ネギA…の成分計測を継続して行う。   Next, after the component measurement is completed, the moving device 5 is driven backward to move the holding base 8 holding the measured green onion A backward in the carry-out direction, and the entire length of the onion A held by the holding base 8 is obtained. Then, after carrying out from the entrance / exit 2a of the examination room 2 to the outside, the holding by the pair of front holding bodies 15, 15 and the pair of rear holding bodies 16, 16 is released, and the measured green onion A is recovered. One leek A component measurement is completed. Thereafter, in the same manner as described above, the component measurement of each of the following leeks A is continued.

また、図6に示すように、保持台8の保持枠11に保持されたネギAの茎部Ab上に設定した各検査部分a〜fを、検出光照射装置3及び透過光検出装置4と対向する位置に移動させて、各検査部分a〜f毎に、ネギAの円周方向に含まれる含有成分の含有量をそれぞれ計測してもよい。   In addition, as shown in FIG. 6, the inspection portions a to f set on the stem Ab of the leek A held by the holding frame 11 of the holding base 8 are connected to the detection light irradiation device 3 and the transmitted light detection device 4. You may move to the position which opposes, and you may measure content of the containing component contained in the circumferential direction of leek A for every test | inspection part af, respectively.

また、ネギA全体の長さ又は白色部の茎部Abの長さを基準とする所定割合の位置を計測することを、予め計算し、敷設部に付設した目盛りに合わせて、任意部分を計測してもよい。   In addition, it is pre-calculated to measure the position of a predetermined ratio based on the length of the whole leek A or the length of the stem portion Ab of the white portion, and an arbitrary portion is measured according to the scale attached to the laying portion. May be.

以上のように、検出光照射装置3と透過光検出装置4を、ネギAの茎部Ab上に設定した長さ方向の各検査部分a〜fと対向する位置で所定の各検査角度に回転させ、各検査部分a〜f毎に円周方向に含まれる含有成分の分布を三次元的に計測するので、ネギAに含まれる含有成分の分布を比較するのに正確な計測結果が得られる。また、各検査部分a〜f毎に検出した円周方向の含有成分の平均値を、各検査部分a〜fに含まれる含有成分の分布値とするので、例えば流通時、販売時、消費時等のどの場所で計測しても、同一の計測結果が得られ、比較時の誤差が小さく、例えば産地や品種等が同一であるか否かを正確に判別することができる。   As described above, the detection light irradiation device 3 and the transmitted light detection device 4 are rotated to predetermined inspection angles at positions facing the inspection portions a to f in the length direction set on the stem Ab of the leeks A. In addition, since the distribution of the contained components included in the circumferential direction is measured three-dimensionally for each inspection portion a to f, an accurate measurement result can be obtained for comparing the distribution of the contained components contained in the leek A. . Moreover, since the average value of the containing component of the circumferential direction detected for each test | inspection part af is made into the distribution value of the contained component contained in each test | inspection part af, for example at the time of distribution, at the time of sale, at the time of consumption The same measurement result is obtained no matter where the measurement is performed, and the comparison error is small. For example, it is possible to accurately determine whether the production area, the variety, or the like is the same.

下記の表1は、上記回転式成分分布計測装置1を用いて、ネギAの茎部Abに含まれる糖分の分布を計測した計測結果を示し、検出光照射装置3から投光される検出光B(例えば700nm〜980nmの範囲に含まれる波長の近赤外光)を、ネギAの茎部Ab上に設定した各検査部分a〜fに対して円周方向に設定した複数の各検査角度から照射し、各検査角度毎に、各検査部分a〜fの外方に向けて透過する透過光Cを透過光検出装置4で検出して、その検出情報に基づいて、各検査部分a〜fの円周方向に含まれる糖分の分布を分布算出装置7で算出し、各検査部分a〜fの円周方向の平均値を示す分布図である。縦軸は、Brix数値、横軸は、根元からの距離(cm)である。   Table 1 below shows the measurement results obtained by measuring the distribution of sugar contained in the stem Ab of the leeks A using the rotary component distribution measuring device 1, and the detection light projected from the detection light irradiation device 3 B (for example, near-infrared light having a wavelength included in the range of 700 nm to 980 nm), a plurality of inspection angles set in the circumferential direction with respect to the inspection portions a to f set on the stem Ab of the green onion A The transmitted light C is detected by the transmitted light detection device 4 for each inspection angle and transmitted toward the outside of each inspection portion af. Based on the detection information, the inspection portions a to f are detected. It is a distribution map which calculates the distribution of the sugar content contained in the circumference direction of f with the distribution calculation apparatus 7, and shows the average value of the circumference direction of each test | inspection part af. The vertical axis represents the Brix value, and the horizontal axis represents the distance (cm) from the root.

Figure 2007212335
つまり、上記表1に示すように、ネギAの茎部Ab上に設定した各検査部分a〜fに含まれる糖分の分布は、例えば産地や品種等によって異なるため、ネギAの長さ方向の含有成分の分布を比較すれば、同一であるか否かを正確に判別することができる。
Figure 2007212335
That is, as shown in Table 1 above, the distribution of sugar contained in each of the test portions a to f set on the stem Ab of the leek A varies depending on, for example, the production area and variety, so If the distributions of the contained components are compared, it can be accurately determined whether or not they are the same.

図7は、ネギAと透過光検出装置4を相反する方向に同期して所定の検査角度にそれぞれ回転する第2実施例の計測方法を示し、ネギAの茎部Ab上に設定した検査部分aと対向する位置で、(イ)に示すように、ネギAを時計方向に回転させ、透過光検出装置4を反時計方向に回転させ、検出光照射装置3から投光される検出光Bを検査部分aに対して複数の各検査角度から照射する。   FIG. 7 shows the measurement method of the second embodiment in which the onion A and the transmitted light detection device 4 are rotated to a predetermined inspection angle in synchronization with opposite directions, and the inspection portion set on the stem Ab of the green onion A At a position facing a, as shown in (a), the onion A is rotated clockwise, the transmitted light detection device 4 is rotated counterclockwise, and the detection light B projected from the detection light irradiation device 3 is detected. Is irradiated to the inspection portion a from a plurality of inspection angles.

ネギAと透過光検出装置4を反回転角度に回転停止したまま、次の検査部分bと対向する位置に移動した後、(ロ)に示すように、上述とは逆にネギAを反時計方向に回転させ、透過光検出装置4を時計方向に回転させ、検出光照射装置3から投光される検出光Bを検査部分bに対して複数の各検査角度から照射する。以下、上述と同様に、ネギAと透過光検出装置4を各検査部分c〜fと対向する位置で所定の検査角度に同期してそれぞれ反回転するので、ネギA又は透過光検出装置4のいずれか一方を回転するよりも回転量が少なくて済み、正逆回転に要する動作時間が短くなるため、計測能力の向上を図ることができる。また、各検査部分a〜fの外方に向けて透過する透過光Cは、検出光照射装置3と一体的に移動及び回転する透過光検出装置4で各角度毎に検出する。   After moving the onion A and the transmitted light detection device 4 to the position facing the next inspection portion b while stopping the rotation at the counter-rotation angle, the onion A is counterclockwise as shown in (b). The transmitted light detection device 4 is rotated clockwise, and the detection light B projected from the detection light irradiation device 3 is irradiated to the inspection portion b from a plurality of inspection angles. Hereinafter, similarly to the above, the onion A and the transmitted light detection device 4 are rotated counterclockwise in synchronism with a predetermined inspection angle at positions facing the inspection portions cf, so that the onion A or the transmitted light detection device 4 Since the amount of rotation is smaller than the rotation of either one and the operation time required for forward / reverse rotation is shortened, the measurement capability can be improved. Further, the transmitted light C transmitted toward the outside of the inspection portions a to f is detected at each angle by the transmitted light detection device 4 that moves and rotates integrally with the detection light irradiation device 3.

図8は、検出光照射装置3と透過光検出装置4とを一対として、ネギAの軸芯を中心として各検査角度と対応する角度に隔てて円周方向に複数配列した第3実施例の計測方法を示し、同一円周上に複数配列した各検出光照射装置3…と各透過光検出装置4…を、ネギAの茎部Ab上に設定した各検査部分a〜fと対向する位置に移動させ、各検出光照射装置3…から投光される各検出光B…を、茎部Ab上に設定した各検査部分a〜fに対して複数の各照射方向から照射するとともに、各検査部分a〜fの外方に向けて透過する各透過光C…を各透過光検出装置4…でそれぞれ検出するので、上記実施例と略同等の作用及び効果を奏することができる。また、検出光照射装置3と透過光検出装置4をネギAの軸芯を中心として回転するか、ネギA自体を回転する動作が省け、装置全体の構成及び動作を簡素化して、計測能力の向上を図ることができる。また、透過光検出装置4のみを各検査角度と対応する角度に隔てて複数設けてもよい。   FIG. 8 shows a third embodiment in which the detection light irradiation device 3 and the transmitted light detection device 4 are paired, and a plurality of them are arranged in the circumferential direction at an angle corresponding to each inspection angle around the axis of the leek A. The position which shows the measuring method, and each detection light irradiation apparatus 3 ... and each transmitted-light detection apparatus 4 ... which were arranged in multiple numbers on the same periphery oppose each test | inspection part af set on the stem Ab of the leek A Irradiating each detection light B ... projected from each detection light irradiating device 3 ... from each of a plurality of irradiation directions to each inspection portion af set on the stem Ab, Since each transmitted light C... That is transmitted toward the outside of the inspection portions a to f is detected by each transmitted light detection device 4..., Substantially the same operations and effects as the above embodiment can be achieved. Further, the detection light irradiation device 3 and the transmitted light detection device 4 can be rotated around the axis of the leek A, or the operation of rotating the leek A itself can be omitted. Improvements can be made. A plurality of transmitted light detection devices 4 may be provided at an angle corresponding to each inspection angle.

或いは、各検出光照射装置3…と各透過光検出装置4…をネギAの軸芯を中心として左右のいずれか一方に配列してもよく、各検出光照射装置3…と各透過光検出装置4…を他方に回転するだけで円周方向の含有成分の分布を検出することができ、各検出光照射装置3…及び各透過光検出装置4…の回転量が少なくて済むので、含有成分の計測が迅速に行える。   Alternatively, each of the detection light irradiation devices 3... And each of the transmission light detection devices 4... May be arranged on either the left or right with the axis of the leeks A as the center. The distribution of the components contained in the circumferential direction can be detected simply by rotating the device 4... To the other, and the amount of rotation of each detection light irradiation device 3... And each transmitted light detection device 4. Ingredients can be measured quickly.

図9は、検出光照射装置3と透過光検出装置4を、ネギAの茎部Ab上に設定した各検査部分a〜fと対向する間隔に隔てて長さ方向に複数配列した第4実施例の計測方法を示し、各検出光照射装置3…と各透過光検出装置4…を、各検査部分a〜fと対向する位置で所定の各検査角度に回転させ、各検出光照射装置3…から投光される各検出光B…を、各検査部分a〜fに対して複数の各検査角度から連続して照射するとともに、各検査部分a〜fの外方に向けて透過する各透過光C…を各透過光検出装置4…でそれぞれ検出するので、上記実施例と略同等の作用及び効果を奏することができる。また、検出光照射装置3と透過光検出装置4をネギAの茎部Abに沿って長さ方向に前後移動するか、ネギA自体を前後移動する機構及び動作が省け、装置全体の構成を簡素化して、計測能力の向上を図ることができる。   FIG. 9 shows a fourth embodiment in which a plurality of detection light irradiation devices 3 and transmitted light detection devices 4 are arranged in the length direction at intervals facing each of the inspection portions a to f set on the stem Ab of the green onion A. An example measurement method is shown, and each of the detection light irradiation devices 3... And each of the transmitted light detection devices 4... Is rotated to a predetermined inspection angle at a position facing each of the inspection portions a to f. Each of the detection lights B projected from ... is continuously irradiated from a plurality of inspection angles to the inspection portions a to f, and transmitted to the outside of the inspection portions a to f. Since the transmitted light C... Is detected by the transmitted light detection devices 4..., Substantially the same operations and effects as the above embodiment can be obtained. Moreover, the mechanism and operation | movement which moves the detection light irradiation apparatus 3 and the transmitted light detection apparatus 4 back and forth in the length direction along the stem Ab of the onion A, or the front and rear movement of the onion A itself can be omitted, and the configuration of the entire apparatus can be omitted. It can be simplified and the measurement capability can be improved.

図10の(ハ)は、一つの透過光検出装置4を、ネギAの茎部Ab上に設定した各検査部分a〜fと対向する位置に前後移動する第5実施例の計測方法を示し、茎部Ab上に設定した各検査部分a〜fに、各検査部分a〜fと対向する位置に配設した各検出光照射装置3…から投光される各検出光B…を照射するとともに、透過光検出装置4を各検査部分a〜fと対向する位置で所定の各検査角度に正逆回転させ、各検査部分a〜fの外方に向けて透過する各透過光C…を、各検査部分a〜fと対向する位置に前後移動した一つの透過光検出装置4でそれぞれ検出するので、上記実施例と略同等の作用及び効果を奏することができる。   (C) of FIG. 10 shows a measurement method of the fifth embodiment in which one transmitted light detection device 4 is moved back and forth to a position facing each of the inspection portions a to f set on the stem Ab of the leek A. In addition, each detection portion a to f set on the stem Ab is irradiated with each detection light B projected from each detection light irradiation device 3 disposed at a position facing each inspection portion a to f. At the same time, the transmitted light detecting device 4 is rotated forward and backward to each predetermined inspection angle at a position facing each inspection portion af, and each transmitted light C transmitted through the outside of each inspection portion af is transmitted. Since each detection is performed by one transmitted light detection device 4 that has moved back and forth to a position facing each of the inspection portions a to f, it is possible to achieve substantially the same operations and effects as in the above embodiment.

また、(ニ)に示すように、一つの検出光照射装置3を、各検査部分a〜fと対向する位置に移動させ、各検査部分a〜fの外方に向けて透過する各透過光C…を、各検査部分a〜fと対向する間隔に隔てて配列した複数の各透過光検出装置4…でそれぞれ検出してもよい。   Moreover, as shown to (d), each transmitted light which moves one detection light irradiation apparatus 3 to the position which opposes each test | inspection part af, and permeate | transmits outward of each test | inspection part af. C... May be detected by each of the plurality of transmitted light detection devices 4 arranged at intervals facing each of the inspection portions a to f.

図11は、透過光検出装置4を、ネギAの軸芯を中心として円周方向に回転する第6実施例の計測方法を示し、透過光検出装置4を、茎部Ab上に設定した各検査部分a〜fと対向する位置で所定の各検査角度に回転させ、検出光照射装置3から投光される検出光Bを、各検査部分a〜fに対して複数の各検査角度から照射するとともに、各検査部分a〜fの外方に向けて放射状に透過する各透過光C…を透過光検出装置4でそれぞれ検出するので、上記実施例と略同等の作用及び効果を奏することができる。   FIG. 11 shows the measurement method of the sixth embodiment in which the transmitted light detection device 4 is rotated in the circumferential direction about the axis of the leek A, and each of the transmitted light detection devices 4 set on the stem Ab. Rotate to predetermined inspection angles at positions facing the inspection portions a to f, and irradiate each inspection portion a to f with the detection light B projected from the detection light irradiation device 3 from a plurality of inspection angles. At the same time, the transmitted light detecting device 4 detects each transmitted light C... That is transmitted radially outward from each of the inspection portions a to f. it can.

図12は、垂直姿勢に保持されたネギAの含有成分を計測する第7実施例の計測方法を示し、ネギA全長を、根部Aaが下向きとなる垂直姿勢に保持台8の保持枠11で保持したまま下方に向けて垂直に降下移動させ、茎部Ab上に設定した各検査部分a〜fを検出光照射装置3と透過光検出装置4との間に挿入する。検出光照射装置3と透過光検出装置4を、茎部Ab上に設定した各検査部分a〜fと対向する位置で所定の各検査角度に水平回転させ、各検出光照射装置3…から投光される各検出光B…を、各検査部分a〜fに対して複数の各照射方向から照射するとともに、各検査部分a〜fの外方に向けて透過する各透過光C…を各透過光検出装置4…でそれぞれ検出するので、上記実施例と略同等の作用及び効果を奏することができる。なお、ネギA自体を上下移動及び水平回転させてもよい。また、根部Aaが上向きとなる姿勢に保持されたネギAの含有成分の分布を計測する作業にも用いることができる。   FIG. 12 shows the measurement method of the seventh embodiment for measuring the components contained in the onion A held in the vertical posture. The entire length of the onion A is measured by the holding frame 11 of the holding stand 8 in the vertical posture with the root Aa facing downward. While being held, it is moved downward downward vertically, and the inspection portions a to f set on the stem Ab are inserted between the detection light irradiation device 3 and the transmitted light detection device 4. The detection light irradiation device 3 and the transmitted light detection device 4 are horizontally rotated at predetermined inspection angles at positions opposed to the inspection portions a to f set on the stem Ab and projected from the detection light irradiation devices 3. Each of the detection lights B to be irradiated is irradiated from a plurality of irradiation directions to each of the inspection portions a to f, and each of the transmitted lights C that are transmitted toward the outside of the inspection portions a to f. Since each of the transmitted light detection devices 4 detects it, it is possible to achieve substantially the same operations and effects as the above embodiment. The onion A itself may be moved up and down and horizontally rotated. Moreover, it can be used also for the operation | work which measures distribution of the content component of leek A hold | maintained in the attitude | position with which root part Aa faces upwards.

この発明の構成と、上述の実施例との対応において、
この発明の被検査物は、実施例のネギAに対応し、
以下同様に、
検出光照射手段は、検出光照射装置3に対応し、
透過光検出手段は、透過光検出装置4に対応し、
移動手段は、移動装置5に対応し、
回転手段は、回転装置6に対応し、
分布算出手段は、分布算出装置7に対応するも、
この発明は、上述の実施例の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the above-described embodiment,
The inspected object of this invention corresponds to the onion A of the example,
Similarly,
The detection light irradiation means corresponds to the detection light irradiation device 3,
The transmitted light detection means corresponds to the transmitted light detection device 4,
The moving means corresponds to the moving device 5,
The rotating means corresponds to the rotating device 6,
The distribution calculation means corresponds to the distribution calculation device 7,
The present invention is not limited to the configuration of the above-described embodiment, but can be applied based on the technical idea shown in the claims, and many embodiments can be obtained.

上記保持枠11の代わりに、例えば検出光Bの照射及び透過光Cの透過が許容されるような材質又は構造に形成され、長尺のネギAが転動せず定位置に載置されるような板状や凹状、筒状の載置台を用いてもよい。   Instead of the holding frame 11, for example, it is formed in a material or a structure that allows irradiation of the detection light B and transmission of the transmitted light C, and the long green onion A is placed at a fixed position without rolling. Such a plate-like, concave, or cylindrical mounting table may be used.

また、コンベヤ上の載置台に載置されたネギAを、該載置台に載置したまま搬送方向と直交する方向に水平移動させて、コンベヤ側部に配設した回転式成分分布計測装置1に供給すれば、多数の各ネギA…に含まれる含有成分の分布を搬送しながら連続して計測することもできる。   In addition, the onion A placed on the placing table on the conveyor is horizontally moved in the direction orthogonal to the conveying direction while being placed on the placing table, and the rotary component distribution measuring device 1 disposed on the side of the conveyor is arranged. Can be continuously measured while conveying the distribution of the components contained in each of the leeks A ....

本発明の回転式成分分布計測装置は、例えば大根、人参などを含む野菜、蜜柑、林檎などを含む果物、穀物、畜産物等の農産物に含まれる含有成分の分布を計測する作業にも利用することができる。   The rotary component distribution measuring apparatus of the present invention is also used for measuring the distribution of components contained in agricultural products such as vegetables including radish and carrots, fruits including mandarin oranges and apples, grains, and livestock products. be able to.

回転式成分分布計測装置による長さ方向の計測動作を示す側面図。The side view which shows the measurement operation | movement of the length direction by a rotary type component distribution measuring apparatus. 回転式成分分布計測装置による円周方向の計測動作を示す正面図。The front view which shows the measurement operation | movement of the circumference direction by a rotary type component distribution measuring apparatus. 前後の各保持体によるネギの保持状態を示す平面図。The top view which shows the holding | maintenance state of the leek by each holding body before and behind. 一対の各後部保持体によるネギの保持状態を示す正面図。The front view which shows the holding | maintenance state of a leek by a pair of each rear holding body. ネギの長さ方向及び円周方向の計測動作を示す斜視図。The perspective view which shows the measurement operation | movement of the length direction and circumferential direction of a leek. ネギを長さ方向に前後移動する計測動作を示す側面図。The side view which shows the measurement operation | movement which moves a leek back and forth in the length direction. ネギと透過光検出装置とを正逆回動する計測動作を示す正面図。The front view which shows the measurement operation | movement which rotates a leek and a transmitted light detection apparatus forward and backward. 透過光検出装置を円周方向に複数配列した他の例を示す正面図。The front view which shows the other example which arranged the transmitted light detection apparatus in multiple numbers in the circumferential direction. 透過光検出装置を長さ方向に複数配列したその他の例を示す正面図。The front view which shows the other example which arranged the transmitted light detection apparatus in multiple numbers in the length direction. 透過光検出装置を長さ方向に移動するその他の例を示す側面図。The side view which shows the other example which moves the transmitted light detection apparatus to a length direction. 透過光検出装置を円周方向に回転するその他の例を示す正面図。The front view which shows the other example which rotates the transmitted light detection apparatus in the circumferential direction. 垂直に保持したネギの回転式成分分布計測装置を示す正面図。The front view which shows the rotary type component distribution measuring apparatus of the leek hold | maintained perpendicularly.

符号の説明Explanation of symbols

A…ネギ
B…検出光
C…透過光
a〜f…検査部分
1…回転式成分分布計測装置
2…検査室
3…検出光照射装置
4…透過光検出装置
5…移動装置
6…回転装置
7…分布算出装置
11…保持枠
15…前部保持体
16…後部保持体
17…可動枠
23…回転枠
DESCRIPTION OF SYMBOLS A ... Leek B ... Detection light C ... Transmission light af ... Inspection part 1 ... Rotary component distribution measuring device 2 ... Inspection room 3 ... Detection light irradiation device 4 ... Transmission light detection device 5 ... Moving device 6 ... Rotation device 7 ... Distribution calculation device 11 ... Holding frame 15 ... Front holding body 16 ... Rear holding body 17 ... Movable frame 23 ... Rotating frame

Claims (6)

被検査物に含まれる特定の成分を検出するのに適した波長の検出光を、該被検査物に照射する検出光照射手段と、
上記被検査物を透過した透過光を検出する透過光検出手段と、
上記被検査物上に設定した検査基準位置を基点として、該被検査物上に所定等間隔に隔てて設定した複数の各検査部分と上記検出光照射手段及び透過光検出手段の少なくとも一方の手段とが互いに対向される位置に、該被検査物と検出光照射手段及び透過光検出手段の少なくとも一方の手段とを相対移動する移動手段と、
上記被検査物の軸芯を中心として円周方向に対して所定等角度に隔てて設定した複数の各検査角度に、上記被検査物の検査部分と上記検出光照射手段及び透過光検出手段の少なくとも一方の手段とを互いに対向したまま、該被検査物と上記検出光照射手段及び透過光検出手段の少なくとも一方の手段とを相対回転する回転手段と、
上記透過光検出手段から出力される各検査部分の検出情報に基づいて、上記被検査物の各検査部分に含まれる含有成分の分布を算出する分布算出手段とを備えた
回転式成分分布計測装置。
Detection light irradiation means for irradiating the inspection object with detection light having a wavelength suitable for detecting a specific component contained in the inspection object;
Transmitted light detecting means for detecting transmitted light transmitted through the inspection object;
A plurality of inspection parts set on the inspection object at predetermined equal intervals, at least one of the detection light irradiation means and the transmitted light detection means, with the inspection reference position set on the inspection object as a base point Moving means for relatively moving the object to be inspected and at least one of the detection light irradiation means and the transmitted light detection means,
The inspection portion of the inspection object, the detection light irradiation means, and the transmitted light detection means are arranged at a plurality of inspection angles set at a predetermined equal angle with respect to the circumferential direction around the axis of the inspection object. Rotating means for relatively rotating the object to be inspected and at least one of the detection light irradiation means and the transmitted light detection means, with at least one means facing each other,
A rotary component distribution measuring apparatus comprising: distribution calculation means for calculating a distribution of contained components contained in each inspection part of the inspection object based on detection information of each inspection part output from the transmitted light detection means .
上記被検査物と透過光検出手段を、該被検査物の軸芯を中心として相反する方向に同期して所定角度に回転自在に設けた
請求項1に記載の回転式成分分布計測装置。
2. The rotary component distribution measuring apparatus according to claim 1, wherein the inspection object and the transmitted light detecting means are provided to be rotatable at a predetermined angle in synchronization with opposite directions about the axis of the inspection object.
上記検出光照射手段及び透過光検出手段を、上記各検査角度と対応する角度に隔てて複数設けた
請求項1又は2に記載の回転式成分分布計測装置。
The rotational component distribution measuring apparatus according to claim 1 or 2, wherein a plurality of the detection light irradiation means and the transmitted light detection means are provided at an angle corresponding to each of the inspection angles.
上記検出光照射手段及び透過光検出手段を、上記各検査部分と対向する間隔に隔てて複数設けた
請求項1乃至3のいずれか一つに記載の回転式成分分布計測装置。
The rotary component distribution measuring apparatus according to any one of claims 1 to 3, wherein a plurality of the detection light irradiation means and the transmitted light detection means are provided at intervals facing the inspection portions.
上記検出光照射手段又は透過光検出手段の一方を、上記各検査部分と対向する間隔に隔てて複数設け、該検出光照射手段又は透過光検出手段の他方を、上記各検査部分と対向する位置に移動自在に設けた
請求項1乃至3のいずれか一つに記載の回転式成分分布計測装置。
A position where one of the detection light irradiating means or the transmitted light detecting means is provided at an interval facing each of the inspection portions, and the other of the detection light irradiating means or the transmitted light detecting means is opposed to each of the inspection portions. The rotational component distribution measuring apparatus according to claim 1, wherein the rotational component distribution measuring apparatus is movably provided in the apparatus.
上記検出光を、近赤外光で構成した
請求項1乃至5のいずれか一つに記載の回転式成分分布計測装置。
The rotational component distribution measuring apparatus according to claim 1, wherein the detection light is composed of near infrared light.
JP2006033698A 2006-02-10 2006-02-10 Rotary component distribution measuring device Expired - Fee Related JP4674763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033698A JP4674763B2 (en) 2006-02-10 2006-02-10 Rotary component distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033698A JP4674763B2 (en) 2006-02-10 2006-02-10 Rotary component distribution measuring device

Publications (2)

Publication Number Publication Date
JP2007212335A true JP2007212335A (en) 2007-08-23
JP4674763B2 JP4674763B2 (en) 2011-04-20

Family

ID=38490913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033698A Expired - Fee Related JP4674763B2 (en) 2006-02-10 2006-02-10 Rotary component distribution measuring device

Country Status (1)

Country Link
JP (1) JP4674763B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
JP2021092461A (en) * 2019-12-11 2021-06-17 三井金属計測機工株式会社 Internal quality inspection device for fruits and vegetables

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503649A (en) * 1992-12-09 1995-04-20 カール−ツアイス−シュティフテュング・ハンデルンド・アルツ・カール・ツアイス Apparatus and method for optically and spatially resolving density distribution in biological tissue
JPH1082739A (en) * 1996-09-09 1998-03-31 Kishimoto Akira Method and apparatus for inspecting internal quality of vegetables and fruits or the like
JP2001091448A (en) * 1999-09-24 2001-04-06 Horiba Ltd Analyzer
JP2003329583A (en) * 2002-05-15 2003-11-19 Tokan Kogyo Co Ltd Method and apparatus for inspecting internal quality of fruit and vegetable
JP2004251777A (en) * 2003-02-20 2004-09-09 Yanmar Agricult Equip Co Ltd Agricultural product nondestructive quality determination apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503649A (en) * 1992-12-09 1995-04-20 カール−ツアイス−シュティフテュング・ハンデルンド・アルツ・カール・ツアイス Apparatus and method for optically and spatially resolving density distribution in biological tissue
JPH1082739A (en) * 1996-09-09 1998-03-31 Kishimoto Akira Method and apparatus for inspecting internal quality of vegetables and fruits or the like
JP2001091448A (en) * 1999-09-24 2001-04-06 Horiba Ltd Analyzer
JP2003329583A (en) * 2002-05-15 2003-11-19 Tokan Kogyo Co Ltd Method and apparatus for inspecting internal quality of fruit and vegetable
JP2004251777A (en) * 2003-02-20 2004-09-09 Yanmar Agricult Equip Co Ltd Agricultural product nondestructive quality determination apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
JP2021092461A (en) * 2019-12-11 2021-06-17 三井金属計測機工株式会社 Internal quality inspection device for fruits and vegetables
JP7375277B2 (en) 2019-12-11 2023-11-08 三井金属計測機工株式会社 Internal quality inspection equipment for fruits and vegetables

Also Published As

Publication number Publication date
JP4674763B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
AU2001245710B2 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
KR101936457B1 (en) Calibration of a dynamic digital imaging system for detecting defects in production stream
CN105157958B (en) The continuous illumination centering reducing angle test platform of illuminator
TR200903461T1 (en) System for automatic and selective separation of rotten citrus fruits.
US7294837B2 (en) Tablets press with integral NIR measuring device
WO2005108956A1 (en) On-line internal quality examining method and device
JP5325434B2 (en) Fruit and vegetable sorting device
JP2002286647A (en) Conveyance and treatment apparatus for farm product
JP4674763B2 (en) Rotary component distribution measuring device
JP6164603B2 (en) Nondestructive inspection equipment
CN114112507A (en) A quality short-term test device for apple sugar detects
Kondo et al. A double image acquisition system with visible and UV LEDs for citrus fruit
JP2015003284A (en) Selector
JP2012173174A (en) Device and method for detecting abnormality
CN115791739B (en) Device and method for identifying residual packaging plastic after raw tallow is unsealed
CN104374709B (en) Beef freshness rapid nondestructive detection device and detection method
JP5502437B2 (en) Non-destructive quality judgment device
JP7375277B2 (en) Internal quality inspection equipment for fruits and vegetables
CN211086077U (en) Real-time vegetable and fruit detecting and tracking system
CN104374707B (en) Beef freshness detection device and detection method
JP3653849B2 (en) Fruit and vegetable quality measuring device
CN109752320B (en) Multi-band rapid nondestructive strawberry freshness detection device
KR101221099B1 (en) Apparatus for testing led, and its method
JP2004219376A (en) Quality evaluation system for fruits and vegetables
JP2008002902A (en) Quality inspection device of vegetables and fruits and quality inspection method of vegetables and fruits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130819

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees