JP2007212207A - Life estimation method of catalyst - Google Patents
Life estimation method of catalyst Download PDFInfo
- Publication number
- JP2007212207A JP2007212207A JP2006030594A JP2006030594A JP2007212207A JP 2007212207 A JP2007212207 A JP 2007212207A JP 2006030594 A JP2006030594 A JP 2006030594A JP 2006030594 A JP2006030594 A JP 2006030594A JP 2007212207 A JP2007212207 A JP 2007212207A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- life
- test
- chemical reaction
- filling rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、供給された原料との間で所定の化学反応を行う触媒の寿命推定方法に関し、特に、触媒の充填率を変化させた複数の試験体についてそれぞれ取得した各寿命データに基づき、該触媒の充填率が100%の時の推定寿命を取得する触媒の寿命推定方法に関する。 The present invention relates to a method for estimating the lifetime of a catalyst that performs a predetermined chemical reaction with a supplied raw material, and in particular, based on the respective lifetime data acquired for each of a plurality of test specimens having different catalyst filling rates. The present invention relates to a catalyst life estimation method for obtaining an estimated life when the catalyst filling rate is 100%.
燃料電池の改質器等の各種反応装置において、触媒層に供給された原料との間での化学反応を促進するため、触媒が広く使用されている。そして、この触媒は、使用時間が経過するに従って次第に劣化し、最終的には活性を失い、所定の機能を発揮しなくなる。したがって、触媒は、その活性を失う前に、再生や交換を行う必要があり、そのためには触媒の寿命を推定することが必要である。 In various reaction devices such as a reformer of a fuel cell, a catalyst is widely used to promote a chemical reaction with a raw material supplied to a catalyst layer. The catalyst gradually deteriorates as the usage time elapses, eventually loses its activity, and does not perform a predetermined function. Therefore, the catalyst needs to be regenerated or exchanged before it loses its activity. For this purpose, it is necessary to estimate the life of the catalyst.
従来、この触媒の寿命を推定する方法としては、例えば、触媒層に対する原料の入口と出口の間の複数点の温度を測定し、温度分布のピーク点が出口近傍に表れたことを検出することによって触媒全体が劣化したと推定する方法が知られている(例えば、特許文献1参照)。
しかしながら、上記した特許文献1に記載された方法により触媒の寿命を推定するためには、触媒全体が劣化するまで化学反応試験を継続して行う必要があった。そのため、触媒の寿命推定作業に非常に手間と時間が掛かり、極めて不経済であった。 However, in order to estimate the life of the catalyst by the method described in Patent Document 1, it is necessary to continue the chemical reaction test until the entire catalyst deteriorates. Therefore, the work for estimating the life of the catalyst is very laborious and time consuming, which is extremely uneconomical.
本発明は、上記した課題を解決すべくなされたものであり、短時間で確実に効率良く行うことができる触媒の寿命推定方法を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a catalyst life estimation method that can be carried out reliably and efficiently in a short time.
上記目的を達成するため、本発明は、触媒層に充填される触媒であって、前記触媒層に供給される原料との間で所定の化学反応を行う触媒の寿命推定方法において、(A)前記触媒層における触媒の充填率を変化させた複数の試験体に対して定常条件下でそれぞれ化学反応試験を行う工程と、(B)前記各試験体の化学反応試験の結果から該各試験体の寿命データをそれぞれ取得する工程と、(C)前記各試験体の触媒の充填率と該各試験体の寿命データとの相関を示す近似直線を取得する工程と、(D)該近似直線から前記触媒の充填率が100%の時の推定寿命を取得する工程とを備えていることを特徴とする。 In order to achieve the above object, the present invention provides a catalyst life estimation method for performing a predetermined chemical reaction with a raw material supplied to the catalyst layer, which is a catalyst charged in the catalyst layer. A step of performing a chemical reaction test on each of a plurality of test bodies in which the catalyst filling rate in the catalyst layer is changed under a steady condition, and (B) each of the test bodies based on a result of the chemical reaction test of each of the test bodies. Respectively, (C) obtaining an approximate line indicating a correlation between the catalyst filling rate of each test specimen and the life data of each test specimen, and (D) from the approximate straight line. And a step of obtaining an estimated life when the filling rate of the catalyst is 100%.
そして、前記(A)工程は、前記触媒層においてアルミナボールを前記触媒に混合し、該触媒の充填率を30〜60%の間で変化させることを含んでいてもよい。 Then, the step (A) may include mixing alumina balls with the catalyst in the catalyst layer and changing the filling rate of the catalyst between 30% and 60%.
また、前記触媒は、燃料電池用改質器の触媒層に充填されていてもよい。 The catalyst may be filled in a catalyst layer of a fuel cell reformer.
本発明によれば、触媒の充填率が低く、寿命の短い試験体に基づき、触媒全体の寿命を推定することができるため、触媒全体が劣化するまで化学反応試験を継続して行う必要がなく、短時間で確実に効率良く触媒の寿命を推定することができる等、種々の優れた効果を得ることができる。 According to the present invention, since the life of the entire catalyst can be estimated based on a test piece with a low catalyst filling rate and a short life, there is no need to continue the chemical reaction test until the entire catalyst deteriorates. In addition, various excellent effects can be obtained such that the lifetime of the catalyst can be estimated reliably and efficiently in a short time.
以下、図面を参照しつつ、本発明の実施の形態に係る触媒の寿命推定方法について説明する。なお、以下の説明では、本発明を、燃料電池用改質器の触媒層に充填される触媒に適用した場合について例示して説明する。 Hereinafter, a catalyst life estimation method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the case where the present invention is applied to a catalyst filled in a catalyst layer of a fuel cell reformer will be described as an example.
燃料電池は、改質ガス(水素)と酸化剤ガス(空気)を電気化学的に反応させて燃料の有する化学エネルギーを直接電気エネルギーに変換するものであり、天然ガス等、炭化水素を主成分とする原料を改質ガス(水素)に改質するため、改質器を備えている。この改質器には、触媒が充填される触媒層が設けられており、該触媒層に充填された触媒と前記原料との間で所定の化学反応が行われるようになっている。 A fuel cell is an electrochemical reaction between reformed gas (hydrogen) and oxidant gas (air) that converts the chemical energy of the fuel directly into electrical energy, and is mainly composed of hydrocarbons such as natural gas. In order to reform the raw material to be reformed gas (hydrogen), a reformer is provided. The reformer is provided with a catalyst layer filled with a catalyst, and a predetermined chemical reaction is performed between the catalyst filled in the catalyst layer and the raw material.
そして、本実施の形態に係る触媒の寿命推定方法によってこの触媒の寿命を推定する場合、先ず、前記触媒層に充填される触媒の充填量(100%)に対する割合(以下「充填率」と言う。)がそれぞれ、60%,50%,40%,30%のペレット触媒と、該ペレット触媒と同一形状のアルミナボールとを均一に混合して構成した試験体a,b,c,dを前記触媒層に充填する。 When estimating the catalyst life by the catalyst life estimation method according to the present embodiment, first, the ratio (hereinafter referred to as “filling rate”) with respect to the amount (100%) of the catalyst filled in the catalyst layer. )) Respectively, test specimens a, b, c and d comprising 60%, 50%, 40% and 30% pellet catalysts and alumina balls having the same shape as the pellet catalysts were mixed. Fill the catalyst layer.
このように各試験体a,b,c,dを前記触媒層にそれぞれ充填した状態で、ガス流量、スチーム・カーボン比、SV値等を同一に設定し、定常条件の下、前記各触媒層に前記原料を供給し、該原料と各試験体a,b,c,dとの間で化学反応試験を行わせる。この各化学反応試験の結果を、図1に示すように、x軸を試験時間(h)、y軸を水素(H2)濃度(mol%)にとり、各試験体a,b,c,d別に水素(H2)濃度の経時変化を表わす。そして、この図1より、充填率が60%の場合の近似直線1、y=−0.0002x+52.213、充填率が50%の場合の近似直線2、y=−0.0008x+51.405、充填率が40%の場合の近似直線3、y=−0.001x+51.863、充填率が30%の場合の近似直線3、y=−0.0031x+52.087をそれぞれ取得する。 In this manner, with the test specimens a, b, c, d filled in the catalyst layers, the gas flow rate, steam / carbon ratio, SV value, etc. are set to be the same, The raw material is supplied to a chemical reaction test between the raw material and each of the specimens a, b, c, and d. As shown in FIG. 1, the results of the chemical reaction tests are shown in FIG. 1, where the x-axis is the test time (h) and the y-axis is the hydrogen (H 2 ) concentration (mol%). Separately, it represents a change with time in the hydrogen (H 2 ) concentration. From FIG. 1, the approximate straight line 1 when the filling rate is 60%, y = −0.0002x + 52.213, the approximate straight line 2 when the filling rate is 50%, y = −0.0008x + 51.405, the filling rate An approximate straight line 3 when the rate is 40%, y = −0.001x + 51.863, an approximate straight line 3 when the filling rate is 30%, and y = −0.0031x + 52.087 are obtained.
このように各試験体a,b,c,dが前記原料と化学反応をする時、触媒が熱的に劣化し、活性が低下する、所謂シンタリングという現象は、使用時間の経過に従って、前記触媒層の原料の入口から出口に向かって移動する。前記図1において、前記触媒層の出口から流出する水素(H2)濃度(mol%)が、初期性能値の所定割合(X%)まで低下した時を、各試験体a,b,c,dの寿命とみなし、各試験体a,b,c,dの近似直線1,2,3,4に基づき、前記化学反応試験の開始から性能X%低下時までの試験時間(h)を各試験体a,b,c,dの寿命データとしてそれぞれ取得する。 Thus, when each test specimen a, b, c, d chemically reacts with the raw material, the catalyst is thermally deteriorated and the activity is lowered. The catalyst layer moves from the raw material inlet to the outlet. In FIG. 1, when the hydrogen (H 2 ) concentration (mol%) flowing out from the outlet of the catalyst layer decreases to a predetermined ratio (X%) of the initial performance value, each specimen a, b, c, d, the test time (h) from the start of the chemical reaction test to the time when the performance is reduced by X% based on the approximate straight lines 1, 2, 3, and 4 of the specimens a, b, c, and d. Acquired as life data of specimens a, b, c, and d, respectively.
次いで、図2に示すように、x軸を充填率(%)、y軸を性能X%低下時間(h)にとり、各試験体a,b,c,d別に前記各寿命データを表わす。そして、この図2により、各試験体a,b,c,dの触媒の充填率と各試験体a,b,c,dの寿命データとの間の相関を示す近似直線5を取得する。この時、触媒の充填率が低い試験体ほど、前記触媒層の原料の入口から出口へのシンタリングの移動が早くなるため、この近似直線5は、触媒の充填率が低い試験体ほど、性能X%低下時間が短くなり、比例直線となる。 Next, as shown in FIG. 2, the x-axis is the filling rate (%), the y-axis is the performance X% reduction time (h), and the respective life data are represented for each of the specimens a, b, c, and d. Then, an approximate straight line 5 indicating the correlation between the catalyst filling rate of each test specimen a, b, c, d and the life data of each test specimen a, b, c, d is obtained from FIG. At this time, the lower the packing rate of the catalyst, the faster the sintering moves from the inlet to the outlet of the raw material of the catalyst layer. X% decrease time is shortened and becomes a proportional straight line.
その後、この近似直線5を右斜め上方に延長し、前記触媒の充填率が100%の時の推定寿命を取得し、この推定寿命を前記触媒の寿命時間とする。これにより、この触媒の寿命時間が目標寿命時間(本実施の形態の場合には、図2に示すように、40,000時間)を達成するかどうかを評価することができる。 Thereafter, the approximate straight line 5 is extended obliquely upward to the right to obtain an estimated life when the filling rate of the catalyst is 100%, and this estimated life is taken as the life time of the catalyst. Thereby, it is possible to evaluate whether or not the lifetime of the catalyst achieves the target lifetime (in this embodiment, 40,000 hours as shown in FIG. 2).
このように、上記した実施の形態に係る触媒の寿命推定方法によれば、触媒の充填率が低く、寿命の短い試験体a,b,c,dに基づき、触媒全体の寿命を推定することができるため、触媒全体が劣化するまで化学反応試験を行う必要がなく、短時間で確実に効率良く触媒の寿命を推定することができる。 Thus, according to the catalyst lifetime estimation method according to the above-described embodiment, the lifetime of the entire catalyst is estimated based on the test specimens a, b, c, d having a low catalyst filling rate and a short lifetime. Therefore, it is not necessary to perform a chemical reaction test until the entire catalyst deteriorates, and the life of the catalyst can be estimated reliably and efficiently in a short time.
なお、上記した本発明の実施の形態においては、触媒の充填率を60%,50%,40%,30%に設定して試験を行っているが、これは単なる例示に過ぎず、触媒の充填率は、化学反応試験に必要な最小限の量の触媒を確保できれば、任意に設定可能である。 In the above-described embodiment of the present invention, the test is performed with the catalyst filling rate set to 60%, 50%, 40%, and 30%. The filling rate can be arbitrarily set as long as the minimum amount of catalyst necessary for the chemical reaction test can be secured.
また、その時の試験体の数は、上記した4個に限定されるものではなく、少なくとも2個以上あれば、任意に設定可能である。 The number of test specimens at that time is not limited to the above-described four pieces, and can be arbitrarily set as long as there are at least two specimens.
さらに、上記した実施の形態では、燃料電池用改質器の触媒層に充填される触媒の寿命を推定する場合について説明したが、これは単なる例示に過ぎず、本発明は、脱硝装置等、他の反応装置の触媒層に充填される触媒に対しても適用可能であることは言う迄もない。 Furthermore, in the above-described embodiment, the case where the lifetime of the catalyst charged in the catalyst layer of the fuel cell reformer is estimated has been described. However, this is merely an example, and the present invention includes a denitration device, etc. Needless to say, the present invention can also be applied to a catalyst filled in a catalyst layer of another reactor.
a 触媒の充填率が60%の試験体
b 触媒の充填率が50%の試験体
c 触媒の充填率が40%の試験体
d 触媒の充填率が30%の試験体
5 近似直線
a Specimen with a catalyst filling rate of 60% b Specimen with a catalyst filling rate of 50% c Specimen with a catalyst filling rate of 40% d Specimen with a catalyst filling rate of 30% 5 Approximate line
Claims (3)
(A)前記触媒層における触媒の充填率を変化させた複数の試験体に対して定常条件下でそれぞれ化学反応試験を行う工程と、
(B)前記各試験体の化学反応試験の結果から該各試験体の寿命データをそれぞれ取得する工程と、
(C)前記各試験体の触媒の充填率と該各試験体の寿命データとの相関を示す近似直線を取得する工程と、
(D)該近似直線から前記触媒の充填率が100%の時の推定寿命を取得する工程と、
を備えていることを特徴とする触媒の寿命推定方法。 In a catalyst life estimation method for filling a catalyst layer, and performing a predetermined chemical reaction with a raw material supplied to the catalyst layer,
(A) performing a chemical reaction test on each of a plurality of test bodies in which the packing ratio of the catalyst in the catalyst layer is changed under a steady condition;
(B) a step of obtaining lifetime data of each test specimen from the result of the chemical reaction test of each test specimen,
(C) obtaining an approximate line indicating the correlation between the catalyst filling rate of each test specimen and the life data of each test specimen;
(D) obtaining an estimated life when the packing rate of the catalyst is 100% from the approximate line;
A method for estimating the life of a catalyst, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030594A JP4754979B2 (en) | 2006-02-08 | 2006-02-08 | Method for estimating catalyst life |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006030594A JP4754979B2 (en) | 2006-02-08 | 2006-02-08 | Method for estimating catalyst life |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007212207A true JP2007212207A (en) | 2007-08-23 |
JP4754979B2 JP4754979B2 (en) | 2011-08-24 |
Family
ID=38490802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006030594A Expired - Fee Related JP4754979B2 (en) | 2006-02-08 | 2006-02-08 | Method for estimating catalyst life |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4754979B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2026517A1 (en) | 2007-08-16 | 2009-02-18 | NEC Corporation | Network monitoring method, network monitoring apparatus, line failure prevention system and computer program of network monitoring apparatus |
KR101153062B1 (en) | 2008-04-03 | 2012-06-04 | 주식회사 엘지화학 | Test electrode of fuel cell for measuring performance and Method of preparing the same and Membrane electrode assembly comprising the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60147226A (en) * | 1984-01-06 | 1985-08-03 | Mitsubishi Heavy Ind Ltd | Operation of catalyst packed tube type solid-gas catalytic reaction apparatus |
JPH09320624A (en) * | 1995-08-18 | 1997-12-12 | Matsushita Electric Ind Co Ltd | Catalyst for carbon monoxide removal, fuel cell apparatus provided therewith, and carbon monoxide removing method from reformed gas to be supplied to the fuel cell |
JP2000048846A (en) * | 1998-07-29 | 2000-02-18 | Aisin Seiki Co Ltd | Carbon monoxide removing device and fuel cell system |
JP2000214054A (en) * | 1999-01-27 | 2000-08-04 | Hitachi Zosen Corp | Particle sampler |
JP2003027069A (en) * | 2001-07-19 | 2003-01-29 | Japan Energy Corp | Method for simulation of hydrorefining and hydrorefining method by using the same |
JP2005116311A (en) * | 2003-10-07 | 2005-04-28 | Hitachi Ltd | Fuel cell system equipped with deterioration evaluation means of catalyst for carbon monoxide removal, and its operation method |
-
2006
- 2006-02-08 JP JP2006030594A patent/JP4754979B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60147226A (en) * | 1984-01-06 | 1985-08-03 | Mitsubishi Heavy Ind Ltd | Operation of catalyst packed tube type solid-gas catalytic reaction apparatus |
JPH09320624A (en) * | 1995-08-18 | 1997-12-12 | Matsushita Electric Ind Co Ltd | Catalyst for carbon monoxide removal, fuel cell apparatus provided therewith, and carbon monoxide removing method from reformed gas to be supplied to the fuel cell |
JP2000048846A (en) * | 1998-07-29 | 2000-02-18 | Aisin Seiki Co Ltd | Carbon monoxide removing device and fuel cell system |
JP2000214054A (en) * | 1999-01-27 | 2000-08-04 | Hitachi Zosen Corp | Particle sampler |
JP2003027069A (en) * | 2001-07-19 | 2003-01-29 | Japan Energy Corp | Method for simulation of hydrorefining and hydrorefining method by using the same |
JP2005116311A (en) * | 2003-10-07 | 2005-04-28 | Hitachi Ltd | Fuel cell system equipped with deterioration evaluation means of catalyst for carbon monoxide removal, and its operation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2026517A1 (en) | 2007-08-16 | 2009-02-18 | NEC Corporation | Network monitoring method, network monitoring apparatus, line failure prevention system and computer program of network monitoring apparatus |
KR101153062B1 (en) | 2008-04-03 | 2012-06-04 | 주식회사 엘지화학 | Test electrode of fuel cell for measuring performance and Method of preparing the same and Membrane electrode assembly comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP4754979B2 (en) | 2011-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Menon et al. | Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming | |
Soopee et al. | Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell | |
US11687688B2 (en) | Approach for aftertreatment system modeling and model identification | |
Hecht et al. | Methane reforming kinetics within a Ni–YSZ SOFC anode support | |
Dhanushkodi et al. | Carbon corrosion fingerprint development and de-convolution of performance loss according to degradation mechanism in PEM fuel cells | |
Han et al. | Heterogeneous modeling of chemical-looping combustion. Part 2: Particle model | |
JP2007308332A (en) | Hydrogen generating apparatus and fuel cell system | |
JP4754979B2 (en) | Method for estimating catalyst life | |
Schluckner et al. | CFD-simulation of effective carbon gasification strategies from high temperature SOFC Ni–YSZ cermet anodes | |
US10705067B2 (en) | Methods and systems for testing performance of a catalyst element | |
WO2012147317A1 (en) | Hydrogen generator, fuel cell system, and method of operating same | |
Yao et al. | Mechanistic insights into NO‒H2 reaction over Pt/boron-doped graphene catalyst | |
JP2012250876A (en) | Hydrogen generator and fuel cell system | |
CN103852222A (en) | Anode leak location detection | |
JP6290654B2 (en) | Ultrapure water production equipment | |
JP2015196610A (en) | Carbon monoxide removal method and solid polymer fuel cell system | |
Gu et al. | Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells–Local H 2 Starvation and Start–Stop Induced Carbon-Support Corrosion | |
JP2005116311A (en) | Fuel cell system equipped with deterioration evaluation means of catalyst for carbon monoxide removal, and its operation method | |
Machaj et al. | Impact of Thickness on Direct Ammonia Decomposition in Solid Oxide Fuel Cells, Numerical and Experimental Research | |
JP6284814B2 (en) | Method, apparatus and program for evaluating soundness of fuel gas flow path of solid oxide fuel cell | |
JP4190897B2 (en) | Catalyst degradation detection method | |
Leah et al. | Kinetics of internal methane reforming on the anodes of low temperature ceres power steel cell SOFCs | |
JP2006306665A (en) | Operation method of hydrogen manufacturing device | |
KR101906684B1 (en) | Fluid analysis apparatus and method thereof and fuel cell system having the same | |
Yoon et al. | Effective diffusional limitation modeling of a heterogeneous reaction system for computational fluid dynamics application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110526 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140603 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |