JP2007212184A - 移動ロボットの位置計測方法及び位置計測システム - Google Patents

移動ロボットの位置計測方法及び位置計測システム Download PDF

Info

Publication number
JP2007212184A
JP2007212184A JP2006029940A JP2006029940A JP2007212184A JP 2007212184 A JP2007212184 A JP 2007212184A JP 2006029940 A JP2006029940 A JP 2006029940A JP 2006029940 A JP2006029940 A JP 2006029940A JP 2007212184 A JP2007212184 A JP 2007212184A
Authority
JP
Japan
Prior art keywords
optical signal
mobile robot
signal transmitter
measuring
position measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006029940A
Other languages
English (en)
Inventor
Toshihiko Tsukada
敏彦 塚田
Masaaki Yamaoka
正明 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006029940A priority Critical patent/JP2007212184A/ja
Publication of JP2007212184A publication Critical patent/JP2007212184A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】光信号発信機に異常が発生しても適切に位置計測しながら移動することか可能な移動ロボットの位置計測方法及び位置計測システムを提供すること。
【解決手段】複数の光信号発信機から位置計測用の光信号が発信され、移動ロボットがその光信号を受信して自己の位置を計測しながら移動するものであって、複数の光信号発信機から発信された光信号を所定の固定位置で受信し、所定数の光信号発信機の組み合わせを変更しながら各組み合わせの光信号に基づいて当該固定位置の位置計測を行い、その位置計測によって得られた各組み合わせによる固定位置の位置座標を予め記憶された当該固定位置の原座標と比較して移動ロボットの位置計測に利用する光信号発信機を選択し、その選択された光信号発信機から発信された光信号を利用して移動ロボットが自己の位置計測を行うようにした移動ロボットの位置計測方法。
【選択図】図8

Description

本発明は、2足歩行ロボットや台車ロボット等の自律移動ロボットが、複数設けられた光信号発信機からの光信号を受信して自己の位置を計測しつつ適切に移動するための移動ロボットの位置計測方法及び位置計測システムに関し、特に、光信号発信機に位置ずれや故障などの異常が発生した場合にでも適切に自己の位置を計測しながら移動することが可能な移動ロボットの位置計測方法及び位置計測システムに関するものである。
従来より、あらかじめ与えられた経路を無人で自動的に移動する自律移動ロボットがある。ロボットの本体には、移動のための各種の駆動装置や時系列的に経路を記憶する記憶装置等が備えられ、記憶装置に記憶されている経路に従って移動するように各種の駆動装置が制御される。このようなロボットでは、その指示された経路をできるだけ正確にたどるためには、そのときの自己の位置を正しく認識する必要がある。
例えば、特許文献1に記載の無人搬送車では、レーザ光の投光器および受光器を有している。そして、壁面などに設けられた配置が既知である反射体に向けてレーザ光を投光し、その反射光を受光することによりその反射体までの距離と方向を得ることができる。これにより、複数の反射体を利用して三角計量を行い、その結果から自己の位置を把握するとされている。
特開平8−110817号公報
しかしながら、前記した従来の技術では、次のような問題点があった。投光器と受光器とが同一の移動体上に搭載されているため、特に移動しつつ測定する場合には反射光を安定して受光することが難しい。地形の凹凸や移動体の傾斜等によって投光方向が変化していると、反射体に正確に投光できないおそれがあり、同一領域内で複数の移動体を移動させる場合には、それらの間で投光源を区別する必要がある。
本発明は、異常が発生した場合にでも適切に自己の位置を計測しながら移動することが可能な移動ロボットの位置計測方法及び位置計測システムを提供することを目的とする。
本発明に係る移動ロボットの位置計測方法は、異なる箇所に設置された複数の光信号発信機から位置計測用の光信号が発信され、移動ロボットがその光信号を受信して自己の位置を計測しながら移動する際の位置計測方法であって、前記複数の光信号発信機から発信された光信号を所定の固定位置で受信し、所定数の光信号発信機の組み合わせを変更しながら各組み合わせの光信号に基づいて当該固定位置の位置計測を行い、その位置計測によって得られた各組み合わせによる固定位置の位置座標を予め記憶された当該固定位置の原座標と比較して前記移動ロボットの位置計測に利用する光信号発信機を選択し、その選択された光信号発信機から発信された光信号を利用して前記移動ロボットが自己の位置計測を行うようにしたことを特徴とする。
また、本発明に係る移動ロボットの位置計測方法は、前記固定位置の位置座標を三次元位置の信頼度の目安となるメトリック値として出力することが好ましい。
また、本発明に係る移動ロボットの位置計測方法は、前記光信号発信機の組み合わせは、全ての光信号発信機から順番に異なる光信号発信機を1台ずつ除いた残る光信号発信機の組み合わせであることが好ましい。
また、本発明に係る移動ロボットの位置計測方法は、固定位置の位置座標と原座標との比較によって選択された光信号発信機を駆動させ、それ以外の光信号発信機の駆動を停止させることが好ましい。
また、本発明に係る移動ロボットの位置計測方法は、前記移動ロボットが、受信した前記光信号発信機からの光信号のうち、固定位置の位置座標と原座標との比較によって選択された光信号発信機からの光信号に基づいて自己の位置計測を行うことが好ましい。
一方、本発明に係る移動ロボットの位置計測システムは、異なる箇所に設置され位置計測用の光信号を発信する複数の光信号発信機と、その光信号を受信して自己の位置を計測しながら移動する移動ロボットと、前記複数の光信号発信機から発信された光信号を所定の固定位置で受信して当該固定位置の位置計測を行う異常検出機とを有し、前記異常検出機は、所定数の光信号発信機の組み合わせを変更しながら各組み合わせの光信号に基づいて当該固定位置の位置計測を行い、その位置計測によって得られた各組み合わせによる固定位置の位置座標を予め記憶された当該固定位置の原座標と比較して前記移動ロボットの位置計測に利用する光信号発信機を選択するものであり、前記移動ロボットは、その選択された光信号発信機からの光信号を利用して自己の位置計測を行うようにしたものであることを特徴とする。
また、本発明に係る移動ロボットの位置計測システムは、前記異常検出機が、光信号発信機からの光信号を受信する光センサと、その光センサの出力値を増幅するアンプ装置と、増幅された出力信号をデジタル処理するデジタル処理回路と、デジタル処理回路の出力から自己の三次元位置を算出する三次元位置算出装置とを有するものであることが好ましい。
また、本発明に係る移動ロボットの位置計測システムは、前記異常検出機には、前記光信号発信機や移動ロボットとの無線通信が可能な通信装置が接続され、前記光信号発信機又は移動ロボットに対し、前記移動ロボットが、選択された光信号発信機からの光信号を利用して自己の位置計測を行うための信号を送信するようにしたものであることが好ましい。
また、本発明に係る移動ロボットの位置計測システムは、複数ある光信号発信機のうち移動ロボットの位置計測のためのものとして選択されなかった光信号発信機が、前記異常検出機側からの信号を受信して光信号の発信を停止するようにしたものであることが好ましい。
また、本発明に係る移動ロボットの位置計測システムは、前記移動ロボットが、前記異常検出機側からの信号を受信し、選択された光信号発信機からの光信号のみを利用して自己の位置計測を行うようにしたものであることが好ましい。
よって、本発明によれば、光信号発信機に位置ずれなどの異常が発生しても、正常な光信号発信機を選択することで、その状態のまま台車ロボットの位置計測を行うことができ、異常発生の都度キャリブレーションを行う必要がなくなる。そして、光信号発信機に位置ずれや故障などの異常は発生した場合でも、そうした光信号発信機の影響を受けることなく台車ロボットが適切に自己の位置を計測しながら移動することか可能になる。また、通信手段を用いることで、台車ロボットが移動している場合でも正常な光信号発信機の光信号に基づいて位置計測を行うように修正することができる。
次に、本発明に係る移動ロボットの位置計測方法及び位置計測システムについて、その一実施形態を図面を参照しながら以下に説明する。本実施形態の位置計測方法及び位置計測システムは、台車とその上に支持された本体とを有する自律移動型の台車ロボットが会場のステージ内を移動する際の位置計測に関するものである。図1は、そうした台車ロボットを示した概略側面図である。
台車ロボット10は、図1に示すように、車輪11とその上に支持される本体12とが一体なって構成されている。図中奥側にも車輪11と同様の車輪があり、こうした左右2つの車輪をそれぞれ回転制御することによって前後あるいは左右と、所定の方向へ移動できるようになっている。そして、この台車ロボット10は、本体12の左右側面に腕13が設けられている。
台車ロボット10は、その本体12が、腕13が設けられた胴部22と、その上に取り付けられ頭部21とを有し、人をイメージするような形をしている。頭部21は、軸部材である首部23を介して胴部22に取り付けられ、頭を横に振るようにその首部23によって水平面内方向に所定角度範囲で回転可能になっている。そうした頭部21には、頭頂に受信センサ24が設けられ、更にその近傍に周囲の環境照度を計測する照度計測装置25も備えている。ただし、この照度計測装置25は必須の構成ではない。一方、胴部22には、受信センサ24の信号を受けてロボット自身の三次元位置を算出するための位置算出部26と、この台車ロボット10の移動を制御するための移動制御部27が設けられている。
頭部21の頭頂に設けられた受信センサ24は、垂直方向に基軸をとって0°とした場合、その基軸から約60°の 傾斜角度の範囲内で入ってきた光信号を受信することができる。また、この受信センサ24は、後で述べるように主に近赤外波長光を受信するためのものであるので、ここでは波長選択性の光学フィルタを備えたものが使用されている。一方、照度計測装置25は、受信センサ24にとってノイズとなる周囲の照度を計測するものであり、そこで算出された値が胴部22の位置算出部26に入力されるようになっている。更に胴部22に設けられた移動制御部27は、ステージ内の移動ルートが目標軌道として記憶されており、その目標軌道に基づいて車輪11を駆動して台車ロボット10の移動方向や速度が制御される。
次に、図2は、台車ロボット10の位置算出部26を示したブロック図である。位置算出部26は、図示するようにアンプ31、デジタル処理回路32、三次元位置算出装置33を有して構成されている。アンプ31は、受信センサ24から受けた信号を増幅する増幅器であり、デジタル処理回路32は、アンプ31から受けた出力信号を適切なしきい値を用いてデジタル信号に変換する変換機である。このデジタル化する際のノイズ除去のためのしきい値は、照度計測装置25の結果から得た周囲環境の明るさに基づいて算定される。これによって周囲の環境変化に強い安定した測定を行うことができるからである。更に、三次元位置算出装置33は、デジタル処理回路32によってデジタル化された信号を基に、自己の三次元位置を算出するものである。
次に、この台車ロボット10が移動する範囲であるステージが設けられる会場について説明する。図3は、会場内に設置された移動ロボットの位置計測システムの一部構成について示した概念図である。
会場100は、中央に長径が約25m、短径が20mの楕円形をした台車ロボット10が移動するステージ101が設けられている。そして、その周りにはすり鉢状に傾斜した観客スペース102があり、更にその周りを囲むように立った筒状の壁103及び天井104が設けられている。
こうした会場100には、ステージ101を取り囲む壁103に沿って複数個の光信号発信機40が設置されている。本実施形態では、等間隔に6台の光信号発信機40が設置されている。光信号発信機40は、台車ロボット10の頭頂に設けられた受信センサ24が前記受光範囲内で光信号を受信できるように所定の高さに設置されている。こうして光信号発信機40を高い位置に設置することで、台車ロボット10の台数が多くなっても受信センサ24の受信可能範囲が広く、また台車ロボット10の姿勢が変化しても位置の測定が可能である。そして、全ての台車ロボット10には、こうした光信号発信機40のそれぞれの位置が予め記憶されている。
図4は、光信号発信機40を示した外観斜視図である。光信号発信機40は、所定の時間間隔で発光するストロボ光源41と、複数個のスリットが設けられた回転シリンダ43とが設けられている。回転シリンダ43にはスリット状のレーザ光源42が2個設置され、このレーザ光源42はそれぞれスリットが回転軸に対して傾きを持って形成されている。それぞれの発光タイミングは異なっており、ストロボ光源41は、回転シリンダ43の回転に同期して2回転する間に1回点灯し、スリット状のレーザ光源42は常時点灯するようになっている。
よって、ストロボ光源41からのストロボ光と、レーザ光源42からのレーザ光との受信タイミングの間隔により、台車ロボット10では受信センサ24と光信号発信機40との水平方向の相対角度関係を知ることができる。また、回転シリンダ43の回転速度、すなわち、このストロボ光源41の発光タイミングは、各光信号発信機40ごとに異なるものとなっている。従って、ストロボ光の受信タイミング間隔によって、その光がどの位置に設置された光信号発信機40からの光であるかが判断できるようになっている。
従って、受信側である台車ロボット10は、受信のタイミングを解析することにより光信号発信機40から見た自己の位置が算出できるようになっている。台車ロボット10では、前述したように光信号発信機40の三次元位置が記憶されている。そのため、2台以上の光信号発信機40から発信された光信号を受信し、その方位を算出することによって三角測量の原理から三次元位置が計測できる。
ここでは、光信号発信機40の光波長としては人の目に対するちらつきなどの不快感を低減するために、可視光源ではなく近赤外線波長などの不可視光が用いられている。また、これらの光を受信する台車ロボット10の受信センサ24は、上記のように波長選択性の光学フィルタが備えられている。この光学フィルタは、光信号発信機40の発する波長の光を透過し、ノイズとなる環境光を反射するので、スポットライトを浴びて台車ロボット10が移動する場合でもノイズの影響は小さく抑えられる。なお、この光信号発信機40としては、度量衡学用の室内GPSとして知られているものが利用できる。
続いて、この台車ロボット10が会場100内を自律移動する場合の位置制御方法について説明する。
会場100内には複数の台車ロボット10が同時に移動する。そうした台車ロボット10には、所定の経時的な移動経路である目標軌道が予めそれぞれに与えられ、それが本体12内の記憶装置に記憶されている。移動時には移動制御部27によって記憶された目標軌道が順次読み出され、目標位置をたどって移動するように各部の制御が行われる。しかし、場合によっては床面との間で滑ったりするなど、何らかの影響等によって所定の経路から多少ずれが生じるようなことがある。そのため、台車ロボット10では、自己の位置計測が適宜行われ、その計測値に基づいて経路を補正しながら移動する位置制御が行われている。
台車ロボット10の移動位置を測定する場合、ステージ101上では受信センサ24にさまざま光が入ってくるが、そうした光から光信号発信機40によって発信されたストロボ光が見分けられる。そして、ストロボ光の受信タイミングの間隔から、そのストロボ光がどの位置に設置された光信号発信機40から発信されたものであるかが確認できる。
台車ロボット10の受信センサ24では、そうしたストロボ光とそれに続くレーザ光を受信し、位置算出部26によって所定の光信号発信機40における方位角が算出される。少なくとも2台の光信号発信機40から発信される光信号において同様に行われ、既知の2点からの方位角が求められるため、三角計量によってこれらの方向の交点から自己の位置が求められる。
理論上は、2個の光信号発信機40があれば方位角の交点から台車ロボット10の移動位置を求めることは可能である。しかし、台車ロボット10の移動位置を正確に求めるにはそれ以上であることが望ましい。そこで、本実施形態では3個以上の光信号発信機40を用いることによって、より正確を期すこととしている。
これ以外では、台車ロボット10と光信号発信機40との距離(求められた交点と光信号発信機40の位置との距離)を求め、その測定の信頼度を判定するようにしてもよい。また、台車ロボット10は鉛直方向に積極的には移動しないので、求められた交点の鉛直方向の位置によってその測定の信頼度を判定するようにしても良い。
台車ロボット10は、このようにして求められた自己の三次元位置の水平面内成分が、期待されている経路からある程度以上はずれている場合は移動経路の修正が行われる。このとき、上記の信頼度やずれの大きさによって修正のゲインを変えるとよい。また、進行方向のずれと進行方向に交差する方向のずれとでは、修正ゲインを変えるとよい。例えば、進行方向のずれは高いゲインで修正し、交差方向のずれは低いゲインで修正するのである。このようにすれば、違和感のない軌道修正を行うことができる。
よって、台車ロボット10および会場100の位置計測システムによれば、各台車ロボット10に設けられた受信センサ24及び位置算出部26や、会場100に設けられた複数の光信号発信機40により、各台車ロボット10は、光信号発信機40からの光信号を受信し、自己との相対的な角度位置を算出することで、複数の光信号発信機40を利用した三角形量から自己の三次元位置を把握することができる。そして、各光信号発信機40が高い位置に配置されているので、複数の台車ロボット10がステージ101上を移動していても互いに干渉することはなく、受信センサ24の受信可能範囲が広いので、台車ロボット10の姿勢が変化しても位置測定は可能である。
ところで、本実施形態の位置計測システムでは、光信号発信機40の位置ずれが位置計測の誤差を増大させる要因となるため、その位置ずれを検出することが安定的な位置計測にとって重要な課題となっている。光信号発信機40が位置ずれを起こす原因としては、外から力が加えられて位置そのものが変化してしまう他、発信機自身の故障などが考えられる。従って、会場100には6台の光信号発信機40が設けられているが、これら全てが同時に位置ずれを起こすとは考え難く、通常は特定の光信号発信機40、或いは一部の光信号発信機40に位置ずれが発生することになる。
位置ずれが生じている光信号発信機40の位置情報を含んだまま位置計測を行った場合、誤差が生じて正確な位置確認を行うことができなくなってしまい、台車ロボット10の移動位置にずれが生じてしまう。こうした事態を防ぐためには、位置ずれを起こしている光信号発信機40を特定して位置ずれを修正するキャリブレーションが必要になる。そこで、この会場100には、光信号発信機40の故障あるいは位置ずれ等の異常を検出するため、図3に示すように異常検出機50が設置されている。
光信号発信機40は、会場100の壁103に沿って高い位置に設置されている。そのため、異常検出機50を壁沿いやすり鉢状をした観客スペース102に設置したのでは、角度が急になって近い位置にある光信号発信機40からのレーザ光などを受信できない。複数の異常検出機50を設けてキャリブレーションを行う場合であれば壁103に沿って設置することができるが、それでは異常検出機50の台数が増えてしまい、異常が生じた光信号発信機40を特定するための処理も複雑になる。そこで、本実施形態では、異常検出機50が1台で済むように、全ての光信号発信機40から発信された光信号を受信可能な位置に設置されている。具体的には、ステージ101内のほぼ中央に設置されている。
ここで、図5は、この異常検出機50の構造を示したブロック図である。異常検出機50は、図示するように受信センサ51、アンプ52、デジタル処理回路53そして、三次元位置算出装置54を有して構成されている。その受信センサ51は、主に近赤外波長光を受信するためのものであって波長選択性の光学フィルタを備えた受信センサである。また、アンプ52は、受信センサ51から受けた信号を増幅する増幅器であり、デジタル処理回路53は、アンプ52から受けた出力信号を適切なしきい値を用いてデジタル信号に変換する変換機である。そして、三次元位置算出装置54は、デジタル処理回路53によってデジタル化された信号に基づいて自己の三次元位置を算出するものである。
異常検出機50は、故障あるいは位置ずれ等を起こした光信号発信機40を検出するためのものである。そこで、その三次元位置算出装置54には、図7及び図8のフローチャートで示す異常検出処理を行うための異常検出処理プログラムが格納されている。また、その三次元位置算出装置54には、会場100内に設けられた複数の光信号発信機40や異常検出機50自身の位置が三次元座標で予め記憶されている。
なお、異常検出機50には、受信センサ24にとってノイズとなる周囲の照度を計測する照度計測装置55が設けられ、そこで算出された値がデジタル処理回路53に入力されるようになっている。ただし、この照度計測装置55は必須の構成ではない。そして、このデジタル処理回路53でデジタル化する際のノイズ除去のためのしきい値は、照度計測装置55の結果から得られた周囲環境の明るさに基づいて算定される。これによって周囲の環境変化に強い安定した計測を行うことが可能になるからである。
そして、この異常検出機50は、ステージ101外に設けられたコントロールルーム110に、光信号発信機40の位置ずれなどによる異常信号が送信されるようになっている。図6は、コントロールシステムについて示した図である。そのコントロールルーム110には、異常検出機50の検出結果が表示できるディスプレイをもったコントローラ61が設置され、そのディスプレイから管理者による監視ができるようになっている。また、コントローラ61には無線通信装置62が接続され、無線通信装置を備えた台車ロボット10や光信号発信機40との間でデータの送受信ができるようになっている。
異常検出機50を使用した光信号発信機40の異常検出は、例えば台車ロボット10がステージ101上を移動してパフォーマンスを行うその日の開場前に行われる。それには先ず、光信号発信機40からストロボ光やレーザ光の光信号が発信される。各々の光信号発信機40から発信された光信号は異常検出機50で受信され、この異常検出機50において相対角度位置が算出される。
光信号発信機40や異常検出機50は会場100の決められた位置に固定されている。そのため、光信号発信機40との相対角度位置は一定の値になるはずであるが、故障や位置ズレなど、光信号発信機40に何らかの不具合が発生している場合はこの結果が変化してしまう。
異常検出では、は図9に示すように、光信号発信機40と異常検出機50との関係を平面に置き換え、矢印で示すような光信号発信機40から方位角方向に伸ばした仮想直線を考える。この場合、位置ずれした光信号発信機40からの仮想直線は、光信号発信機40自身のずれ量は微少であっても、遠くでその光を受ける異常検出機50の位置では大きなずれになってしまう。このことは、光信号発信機40からの光信号を受けるステージ101上の台車ロボット10でも同じであり、移動の位置ずれを生じさせる。
会場100に6台設置された光信号発信機40からの仮想直線は、位置ずれや故障などが無ければ異常検出機50の位置で1点に交わるはずである。しかし、位置ずれした光信号発信機40があると、そこから発信された光信号の受信タイミングがずれてしまい、仮想直線は図9に示すように外れてしまう。そこで、本実施形態の位置計測システムでは、図7及び図8に示すフローチャートに従って異常検出処理が実行される。
異常検出機50は、光信号発信機40から発信される光信号を受信し(S101)、該当する光信号発信機40の位置座標が測定される。その際、ステージ101上では受信センサ51にさまざま光が入ってくるが、そうした光から光信号発信機40によって発信されたストロボ光を見分ける光信号解析が行われる(S102)。そして、ストロボ光の受信タイミングの間隔から、そのストロボ光がどの位置に設置された光信号発信機40から発信されたものであるかが確認される(S103)。こうして、会場100内に設置された6台の光信号発信機40について、それぞれの方位情報が検出される。そして、6台全ての光信号発信機40についてその方位情報が検出された後は、6台から任意に選択した光信号発信機40の方位情報に基づいて異常検出機50の位置座標が、三次元位置の信頼度の目安となるメトリック値を用いた演算によって算出される(S104)。
具体的には、図8に示すフローチャートに従って行われる。すなわち、6台ある光信号発信機40から番号N(N=1〜6)の一台を除き、残る5台の光信号発信機40の方位情報に基づいて位置座標が算出される。そこで、先ず、番号N=1から開始される(S201)。異常検出機50には、6台分の光信号発信機40について、その番号Nに対応して算出された方位情報が記憶されている。そのため、番号N=1の場合には、当該番号の光信号発信機40の方位情報を除いた方位情報、すなわち、N=2〜6の光信号発信機40に関する方位情報が選択される(S202)。そして、その方位情報から三角計量によりこれらの方向の交点からメトリック値を用いた演算によって異常検出機50の位置座標が求められる(S203)。
こうして算出された位置座標は、光信号発信機40がN=2〜6の組み合わせによるものとして記憶される(S204)。そして、N=1の光信号発信機40を除いた組み合わせの位置座標を求めた後は、次の組み合わせについて位置座標が求められる。そのため、N=1に1が加算され、N=2の光信号発信機40が特定される(S205)。そして、Nの値が光信号発信機40の設置台数「6」を超えているか否かが確認され(S206)、超えていなければ(S206:NO)S202〜S05の工程が繰り返される。
例えばN=2の場合には、記憶された方位情報からN=1,3〜5の光信号発信機40に関するものが選択され(S202)、演算によって位置座標が求められた後(S203)、その位置座標が当該組み合わせによるものとして記憶される(S204)。そして、その後もNの値が1ずつ繰り上げられ、1台の光信号発信機40を除いた組み合わせの方位情報によって位置座標が算出されて記憶される(S202〜S206)。そうして、Nの値が6を超えた時点で(S206:YES)、各組み合わせによる記憶された6パターンの位置座標が出力される(S207)。
図7に戻って、S104で出力された各パターンの位置座標は、予め記憶されている異常検出機50の現実の位置座標(原座標)との差が比較され(S105)、その比較結果から光信号発信機40の異常判定が行われる(S106)。すなわち、位置ずれを起こした光信号発信機40を含む組み合わせで算出された値は、それを除いた光信号発信機40の組み合わせで算出した値よりも大きくなる。従って、算出された各パターンの値を比較することにより、位置ずれを起こしているものがある場合、その光信号発信機40の番号Nが特定される。
この異常検出機50による判定結果は、図6に示すように、ステージ101外に設けられたコントロールルーム110に異常信号として送信され、コントローラ61のディスプレイに表示される。そして、その結果に基づきステージ101上を移動する台車ロボット10の位置計測精度を安定させるための措置がとられる。すなわち、位置ずれを起こした光信号発信機40が特定されると、コントローラ61から無線通信装置62を介して該当する光信号発信機40に対してレーザ光などの発信を止めるための停止信号が送られる。従って、台車ロボット10がステージ101上を移動する場合、該当する光信号発信機40は光信号の発信を停止し、台車ロボット10は、それ以外の光信号発信機40から受信する光信号に基づいて自己の位置を求めながら移動することになる。
このように位置ずれを起こした光信号発信機40の信号発信を停止させても、会場100内には6台もの光信号発信機40が設けられているため、ステージ101上を移動する台車ロボット10の位置計測への影響はない。逆に、位置ずれを起こした方位情報を含めて位置計測を行えば計測精度が悪化する結果になることからも、該当する光信号発信機40を除いて位置計測を行うことが好ましい。
よって、本実施形態によれば、光信号発信機40に位置ずれなどの異常が発生しても、該当する光信号発信機40の信号発信を停止させることによって、その状態のまま台車ロボット10の位置計測を行うことができ、異常発生の都度キャリブレーションを行う必要がなくなった。
そして、光信号発信機40に位置ずれや故障などの異常は発生した場合でも、そうした光信号発信機40の影響を受けることなく台車ロボット10が適切に自己の位置を計測しながら移動することか可能になった。これは、台車ロボット10がステージ101上を移動している場合でも行うことができ、台車ロボット10は、常に正常な光信号発信機40の光信号に基づいて位置計測を行うことができるようになった。
ところで、台車ロボット10の位置計測は、原理的には2台の光信号発信機40があれば可能である。本実施形態では6台の光信号発信機40が会場100に設置されているため、そこから2台以上を選択することによって台車ロボット10の位置計測に利用させるようにしてもよい。従って、コントローラ61では、例えばS105で得られた位置座標の比較結果から、所定の基準を満たさない光信号発信機40の信号発信を停止させ、残る2台以上の光信号発信機40を台車ロボット10の位置計測に利用させるようにしてもよい。
また、こうして異常のある光信号発信機40を特定して除く他、逆にコントローラ61がS105で得られた位置座標の比較結果から最も条件の良い2台或いは3台と、所定台数の光信号発信機40を選択することにより、位置ずれなどを起こした光信号発信機40を除いて台車ロボット10の位置計測に利用させるようにしてもよい。
こうした判定により、多くの光信号発信機40に位置ずれなどの異常が発生した場合に、台車ロボット10がより正確な位置計測を行いながら移動することが可能になる。そして、該当する光信号発信機40の信号発信を停止させることにより、キャリブレーションを行うことなく台車ロボット10の位置計測を行うことができる。
一方、コントローラ61によって位置ずれなどを起こした光信号発信機40が判定された場合、光信号発信機40の信号発信を停止させるのではなく、台車ロボット10にそのことを認識させるようにしてもよい。それには、コントローラ61から無線通信装置62を介し、該当する光信号発信機40を特定するために信号が台車ロボット10に送信される。その信号を受けた台車ロボット10は、光信号発信機40を認識可能な情報が記憶されているため、異常と判断されたものを除いた光信号発信機40からの光信号に従い自己の位置を求めながら移動する。この場合、前述したように、台車ロボット10の位置計測は、原理的には2台の光信号発信機40があれば可能である。従って、位置座標の比較結果から所定の基準を満たさない光信号発信機40を複数台除いたり、最も条件の良い所定台数の光信号発信機40を選択するようにして台車ロボット10に選択信号を送信するようにしてもよい。
よって、台車ロボット10は、複数ある光信号発信機40から異常のないものを選択し、その光信号に基づいて位置計測を行うようにしたので、光信号発信機40に位置ずれなどの異常が発生した場合でも、そうした光信号発信機40の影響を受けることなく台車ロボット10が適切に自己の位置を計測しながら移動することか可能になる。これは、台車ロボット10がステージ101上を移動している場合でも行うことができ、台車ロボット10は、常に正常な光信号発信機40の光信号に基づいて位置計測を行うことができるようになる。そして、光信号発信機40のいずれかに異常が生じていても台車ロボット10の位置計測への影響を防止することができ、異常発生の都度に光信号発信機40のキャリブレーションを行う必要がなくなった。
以上、本発明の一実施形態について説明したが、本発明はこれに限定されることなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
前記実施形態では、コントローラ71から移動ロボット10や光信号発信機40へ信号を送ってそれぞれをコントロールすることにより、選択した光信号発信機40による光信号に基づいて移動ロボット10の位置計測を行うようにしたが、コントローラ71のディスプレイに表示された結果から、管理者が移動ロボット10や光信号発信機40に対して直接、移動ロボット10における光信号発信機40の選択設定や、該当する光信号発信機40の信号発信を停止させるようにしてもよい。
また、前記実施形態では、S106の異常判定を異常検出機50によって行っていたが、S104で出力された各パターンの位置座標をコントローラ71に送信し、そこで予め記憶されている異常検出機50の原座標との差を比較し(S105)、その比較結果から光信号発信機40の異常判定(S106)を行うようにしてもよい。
前記実施形態の説明では移動体として台車ロボットを用いた例を示したが、本発明はこれに限るものではなく、一般的な車輪走行の移動体、または脚式移動を行うロボットなど、どのような移動手段を備えたものであってもよい。
一実施形態のロボットの概略構成を示す側面図である。 位置算出部を示すブロック図である。 会場の設備を示す説明図である。 光信号発信機の外観を示す説明図である。 異常検出機の構造を示したブロック図である。 コントロールシステムについて示した図である。 異常検出処理のフローチャートを示した図である。 異常検出処理のフローチャートを示した図である。 光信号発信機と異常検出機との関係を平面に置き換え、光信号発信機から方位角方向に伸ばした仮想直線を示した図である。
符号の説明
10 台車ロボット
24 受信センサ
25 照度計測装置
26 位置算出部
27 移動制御部
33 三次元位置算出装置
40 光信号発信機
41 ストロボ光源
42 レーザ光源
50 異常検出機
51 受信センサ
52 アンプ
53 デジタル処理回路
54 三次元位置算出装置
61 コントローラ
62 無線通信装置

Claims (10)

  1. 異なる箇所に設置された複数の光信号発信機から位置計測用の光信号が発信され、移動ロボットがその光信号を受信して自己の位置を計測しながら移動する移動ロボットの位置計測方法において、
    前記複数の光信号発信機から発信された光信号を所定の固定位置で受信し、所定数の光信号発信機の組み合わせを変更しながら各組み合わせの光信号に基づいて当該固定位置の位置計測を行い、
    その位置計測によって得られた各組み合わせによる固定位置の位置座標を予め記憶された当該固定位置の原座標と比較して前記移動ロボットの位置計測に利用する光信号発信機を選択し、
    その選択された光信号発信機から発信された光信号を利用して前記移動ロボットが自己の位置計測を行うようにしたことを特徴とする移動ロボットの位置計測方法。
  2. 請求項1に記載する移動ロボットの位置計測方法において、
    前記固定位置の位置座標を三次元位置の信頼度の目安となるメトリック値として出力することを特徴とする移動ロボットの位置計測方法。
  3. 請求項1又は請求項2に記載する移動ロボットの位置計測方法において、
    前記光信号発信機の組み合わせは、全ての光信号発信機から順番に異なる光信号発信機を1台ずつ除いた残る光信号発信機の組み合わせであることを特徴とする移動ロボットの位置計測方法。
  4. 請求項1乃至請求項3のいずれかに記載する移動ロボットの位置計測方法において、
    固定位置の位置座標と原座標との比較によって選択された光信号発信機を駆動させ、それ以外の光信号発信機の駆動を停止させることを特徴とする移動ロボットの位置計測方法。
  5. 請求項1乃至請求項3のいずれかに記載する移動ロボットの位置計測方法において、
    前記移動ロボットが、受信した前記光信号発信機からの光信号のうち、固定位置の位置座標と原座標との比較によって選択された光信号発信機からの光信号に基づいて自己の位置計測を行うことを特徴とする移動ロボットの位置計測方法。
  6. 異なる箇所に設置され位置計測用の光信号を発信する複数の光信号発信機と、
    その光信号を受信して自己の位置を計測しながら移動する移動ロボットと、
    前記複数の光信号発信機から発信された光信号を所定の固定位置で受信して当該固定位置の位置計測を行う異常検出機とを有し、
    前記異常検出機は、所定数の光信号発信機の組み合わせを変更しながら各組み合わせの光信号に基づいて当該固定位置の位置計測を行い、その位置計測によって得られた各組み合わせによる固定位置の位置座標を予め記憶された当該固定位置の原座標と比較して前記移動ロボットの位置計測に利用する光信号発信機を選択するものであり、
    前記移動ロボットは、その選択された光信号発信機からの光信号を利用して自己の位置計測を行うようにしたものであることを特徴とする移動ロボットの位置計測システム。
  7. 請求項6に記載する移動ロボットの位置計測システムにおいて、
    前記異常検出機は、光信号発信機からの光信号を受信する光センサと、その光センサの出力値を増幅するアンプ装置と、増幅された出力信号をデジタル処理するデジタル処理回路と、デジタル処理回路の出力から自己の三次元位置を算出する三次元位置算出装置とを有するものであることを特徴とする移動ロボットの位置計測システム。
  8. 請求項6又は請求項7に記載する移動ロボットの位置計測システムにおいて、
    前記異常検出機には、前記光信号発信機や移動ロボットとの無線通信が可能な通信装置が接続され、前記光信号発信機又は移動ロボットに対し、前記移動ロボットが、選択された光信号発信機からの光信号を利用して自己の位置計測を行うための信号を送信するようにしたものであることを特徴とする移動ロボットの位置計測システム。
  9. 請求項8に記載する移動ロボットの位置計測システムにおいて、
    複数ある光信号発信機のうち移動ロボットの位置計測のためのものとして選択されなかった光信号発信機が、前記異常検出機側からの信号を受信して光信号の発信を停止するようにしたものであることを特徴とする移動ロボットの位置計測システム。
  10. 請求項8に記載する移動ロボットの位置計測システムにおいて、
    前記移動ロボットが、前記異常検出機側からの信号を受信し、選択された光信号発信機からの光信号のみを利用して自己の位置計測を行うようにしたものであることを特徴とする移動ロボットの位置計測システム。
JP2006029940A 2006-02-07 2006-02-07 移動ロボットの位置計測方法及び位置計測システム Withdrawn JP2007212184A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029940A JP2007212184A (ja) 2006-02-07 2006-02-07 移動ロボットの位置計測方法及び位置計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029940A JP2007212184A (ja) 2006-02-07 2006-02-07 移動ロボットの位置計測方法及び位置計測システム

Publications (1)

Publication Number Publication Date
JP2007212184A true JP2007212184A (ja) 2007-08-23

Family

ID=38490783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029940A Withdrawn JP2007212184A (ja) 2006-02-07 2006-02-07 移動ロボットの位置計測方法及び位置計測システム

Country Status (1)

Country Link
JP (1) JP2007212184A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159290A (zh) * 2015-06-27 2015-12-16 张永恒 基于物联网的草坪修剪系统及修剪机器人
CN106131375A (zh) * 2016-06-29 2016-11-16 联想(北京)有限公司 设备以及运动状态检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159290A (zh) * 2015-06-27 2015-12-16 张永恒 基于物联网的草坪修剪系统及修剪机器人
CN106131375A (zh) * 2016-06-29 2016-11-16 联想(北京)有限公司 设备以及运动状态检测方法

Similar Documents

Publication Publication Date Title
JP4525473B2 (ja) 移動ロボットの位置制御システムと位置制御方法
US9758239B2 (en) System and method for controlling an unmanned air vehicle
JP6771994B2 (ja) 測定方法及びレーザスキャナ
JP4195894B2 (ja) ドッキングシステム
US10495456B2 (en) Method for calibrating a detection device, and detection device
KR20140002051A (ko) 무인 항공기를 제어하기 위한 시스템 및 방법
JP2007040762A (ja) 光ジャイロ較正装置、光ジャイロを搭載するロボット及び光ジャイロ較正プログラム
US8199316B2 (en) Device and method for tracking the movement of a tool of a handling unit
JP2008533479A (ja) 測定物の位置および方位を測定する姿勢測定方法およびシステム
JP2014513792A (ja) 対象物表面の3d座標を決定するための測定システム
JP2004198330A (ja) 物体の位置検出方法及び装置
JP2009156772A (ja) 測量システム
KR101951573B1 (ko) 평면들을 교차하여 장애물을 검출하는 장치 및 이러한 장치를 사용하는 검출 방법
KR101427364B1 (ko) 라이다 장치를 이용한 3d 실내지도 생성용 스캔시스템
JP2014215296A (ja) 移動体ナビゲーション用レーザスキャナ
JP2006209567A (ja) 無人搬送車の誘導装置
JP2010162635A (ja) 自走式ロボットの位置および姿勢の補正方法
JP2009525793A (ja) 塗布制御ユニット
JP2010190633A (ja) 測定システムおよび干渉計
US10935968B2 (en) Robot, robot system, and method for setting coordinate system of robot
US8848180B1 (en) Reference systems for indicating slope and alignment and related devices, systems, and methods
WO2019205001A1 (zh) 机器人定位方法和装置
KR100948947B1 (ko) 이동체의 위치 추정 장치 및 그 방법
JP7341632B2 (ja) 反射ターゲット
CN110109056B (zh) 一种多目标激光定位系统

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407