JP2007211321A - Method for producing steel sheet for cpu socket frame or cpu fixing cover - Google Patents

Method for producing steel sheet for cpu socket frame or cpu fixing cover Download PDF

Info

Publication number
JP2007211321A
JP2007211321A JP2006034746A JP2006034746A JP2007211321A JP 2007211321 A JP2007211321 A JP 2007211321A JP 2006034746 A JP2006034746 A JP 2006034746A JP 2006034746 A JP2006034746 A JP 2006034746A JP 2007211321 A JP2007211321 A JP 2007211321A
Authority
JP
Japan
Prior art keywords
cpu
mass
less
fixing cover
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006034746A
Other languages
Japanese (ja)
Inventor
Toshihiro Kondo
敏洋 近藤
Takashi Matsumoto
孝 松元
Shinichi Kodama
真一 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2006034746A priority Critical patent/JP2007211321A/en
Publication of JP2007211321A publication Critical patent/JP2007211321A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a cold rolled steel sheet suitable for a CPU (central processing unit) socket frame and a CPU fixing cover used when a CPU chip is fitted to a wiring board. <P>SOLUTION: Regarding this production method, the continuously cast slab of a steel comprising, by mass, 0.01 to 0.20% C, ≤0.5% Si, ≤1.5% Mn, ≤0.05% P, ≤0.01% S, 0.005 to 0.10% acid soluble Al and ≤0.007% N, and, if required, further comprising 0.01 to 0.15% Ti and/or 0.01 to 0.15mass% Nb is subjected to hot rolling, is pickled, and is thereafter subjected to cold rolling at a cold rolling ratio of 20 to 50%. Since the steel sheet has been subjected to working strengthening by the cold rolling, excellent characteristics of a 0.2% proof stress satisfying ≥600 N/mm<SP>2</SP>, bending workability satisfying the tip radius of ≤0.7 mm and sheet thickness precision satisfying ≤20 μm are imparted thereto. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、コンピュータ等のCPU(中央演算処理装置)を配線基板に取り付けるCPUソケット枠やCPU固定カバー用の鋼板を製造する方法に関する。   The present invention relates to a method of manufacturing a steel plate for a CPU socket frame and a CPU fixing cover for attaching a CPU (Central Processing Unit) such as a computer to a wiring board.

コンピュータ等のCPUは、演算処理能力の高速化に伴い電子機器部品の多ピン化が進められている。多ピン化のためにはピン,基板を確実に接続する必要があり、CPUソケット枠,CPU固定カバーを用いてCPUチップを配線基板に接続固定している。
CPUソケット枠やCPU固定カバーの材質には、従来からの樹脂製に換え、信頼性に優れ高い締結性能が得られる金属製が使用され始めている。
金属製CPUソケット枠1は、CPU固定カバー2,CPUフック3が取り付けられ、CPUソケット4に接合される。CPU固定カバー2は、CPUフック3を引っ掛ける爪5を有し、連結部6を介しCPUソケット枠1と一体化される。配線基板上のCPUソケット4にCPUチップ7を載せ(図1)、CPUフック3と爪5との係合でCPU固定カバー2をCPUソケット枠1に締結すると、CPUチップ7はCPU固定カバー2の押圧力で固定される(図2)。
CPUs of computers and the like have been increased in the number of pins of electronic equipment components with the increase in processing speed. In order to increase the number of pins, it is necessary to securely connect the pins and the board, and the CPU chip is connected and fixed to the wiring board using the CPU socket frame and CPU fixing cover.
As the material for the CPU socket frame and CPU fixing cover, metal, which is highly reliable and has high fastening performance, is beginning to be used instead of conventional resin.
A metal CPU socket frame 1 is attached to a CPU socket 4 with a CPU fixing cover 2 and a CPU hook 3 attached thereto. The CPU fixing cover 2 has a claw 5 for hooking the CPU hook 3, and is integrated with the CPU socket frame 1 through the connecting portion 6. When CPU chip 7 is mounted on CPU socket 4 on the wiring board (Fig. 1) and CPU fixing cover 2 is fastened to CPU socket frame 1 by engaging CPU hook 3 and claw 5, CPU chip 7 is attached to CPU fixing cover 2. (Fig. 2).

CPUチップ7の固定に必要な押圧力を得るため、爪5と連結部6と間のCPU固定カバー2に上反りがつけられている。上反りのあるCPU固定カバー2の爪5をCPUフック3で押さえ付けると、上反りの復元力が押圧力となってCPUチップ7を確実に接続固定する。
CPUソケット枠やCPU固定カバーは、SUS301,SUS304等のオーステナイト系やSUS409等のフェライト系のステンレス鋼の冷延材を打抜き,プレス加工することにより作製されている(特許文献1,2)。ステンレス鋼は、Cr,Ni等の合金成分を多量に含むので耐食性に優れているが、高価で加工性にも問題がある場合が多い。
特開2004-68033号公報 特願2005-27269号
In order to obtain a pressing force necessary for fixing the CPU chip 7, the CPU fixing cover 2 between the claw 5 and the connecting portion 6 is warped. When the claw 5 of the CPU fixing cover 2 with the upper warp is pressed with the CPU hook 3, the restoring force of the upper warp acts as a pressing force to securely connect and fix the CPU chip 7.
The CPU socket frame and the CPU fixing cover are manufactured by punching a cold-rolled material of austenitic stainless steel such as SUS301 and SUS304 or ferritic stainless steel such as SUS409 and press-working them (Patent Documents 1 and 2). Stainless steel is excellent in corrosion resistance because it contains a large amount of alloy components such as Cr and Ni, but is expensive and often has problems with workability.
JP 2004-68033 A Japanese Patent Application No. 2005-27269

ステンレス鋼に換え普通鋼の使用が可能になると、材料費や製造費の節減が可能になる。昨今では、電子機器部品の小型・軽量化に伴い薄肉化の要求が過酷になっており、素材としても板厚精度の高い鋼板が強く求められている。
ブラウン管フレームのような高強度材(特許文献3,4)では、高温強度の改善にMoを添加しているので、材料費が比較的高くなる。Si含有量を高めたブラウン管バンド材(特許文献5)では、表面性状の悪化に起因して曲げ加工性や板厚精度が劣化し、CPUソケット枠やCPU固定カバーの要求レベルを満足しない。
特開2001-59129号公報 特開平8-67945号公報 特開平11-158548号公報
If ordinary steel can be used instead of stainless steel, material costs and manufacturing costs can be reduced. In recent years, with the reduction in size and weight of electronic device parts, the demand for thinning has become severe, and steel plates with high thickness accuracy are strongly demanded as materials.
In a high-strength material such as a cathode ray tube frame (Patent Documents 3 and 4), since Mo is added to improve high-temperature strength, the material cost is relatively high. The cathode ray tube band material (Patent Document 5) with an increased Si content deteriorates the bending workability and the plate thickness accuracy due to the deterioration of the surface properties, and does not satisfy the required level of the CPU socket frame and CPU fixing cover.
JP 2001-59129 A JP-A-8-67945 Japanese Patent Laid-Open No. 11-158548

金属製のCPUソケット枠,CPU固定カバー等の素材に要求される材料特性としては、薄肉・軽量化しても必要強度が得られるように0.2%耐力:600N/mm2以上の引張り特性が要求される。加工性に関しては、曲げ加工で製品化されるので曲げ先端の半径0.7mm以下で曲げ加工できることが要求される。また、切断や打抜きで所定寸法の部品を精度良く安定して採取するため、板厚精度として20μm以下の素材が必要とされる。 The material characteristics required for materials such as metal CPU socket frames and CPU fixing covers are 0.2% proof stress: 600N / mm 2 or more so that the required strength can be obtained even if it is thin and lightweight. Required. Regarding workability, since it is commercialized by bending, it is required to be able to bend with a radius of 0.7 mm or less at the bending tip. In addition, in order to accurately and stably collect parts having a predetermined size by cutting or punching, a material having a thickness of 20 μm or less is required.

本発明者等は、CPUソケット枠やCPU固定カバーの要求特性をステンレス鋼よりも安価な普通鋼で満足させるべく、加工強化を促進させる製造条件を調査・検討した。その結果、成分系が特定された低炭素アルミキルド鋼の熱延鋼帯に冷延率:20〜50%の冷間圧延を施すとき、ステンレス鋼板に匹敵する強度を有し、CPUソケット枠やCPU固定カバーに十分使用可能な鋼板となることを見出した。
本発明は、かかる知見をベースとし、成分系,熱延条件,冷延条件の組合せを特定することにより、CPUソケット枠やCPU固定カバーの要求性能を十分に満足し、曲げ加工性,板厚精度に優れた鋼板を提供することを目的とする。
The present inventors investigated and examined the manufacturing conditions that promoted work strengthening in order to satisfy the required characteristics of the CPU socket frame and CPU fixing cover with ordinary steel cheaper than stainless steel. As a result, when cold rolling with a cold rolling ratio of 20 to 50% is applied to a hot rolled steel strip of low carbon aluminum killed steel whose component system has been specified, it has a strength comparable to that of a stainless steel plate, and the CPU socket frame and CPU It has been found that the steel sheet can be used sufficiently for the fixed cover.
The present invention is based on such knowledge, and by specifying the combination of the component system, hot rolling conditions, and cold rolling conditions, the required performance of the CPU socket frame and CPU fixing cover is fully satisfied, and the bending workability, plate thickness It aims at providing the steel plate excellent in the precision.

本発明の製造方法は、鋼組成,熱延条件、冷延条件で特徴付けられる。
鋼組成は、C:0.01〜0.20質量%,Si:0.5質量%以下,Mn:1.5質量%以下,P:0.05質量%以下,S:0.01質量%以下,酸可溶Al:0.005〜0.10質量%,N:0.007質量%以下,必要に応じTi:0.01〜0.15質量%及び/又はNb:0.01〜0.15質量%を含み、残部が実質的にFeである。
当該組成の鋼材を連続鋳造した後、仕上げ温度:Ar3変態点以上,巻取り温度:450〜600℃で熱間圧延する。次いで酸洗し、冷延率:20〜50%で冷間圧延する。
The production method of the present invention is characterized by steel composition, hot rolling conditions, and cold rolling conditions.
Steel composition: C: 0.01 to 0.20 mass%, Si: 0.5 mass% or less, Mn: 1.5 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% Hereinafter, acid-soluble Al: 0.005 to 0.10% by mass, N: 0.007% by mass or less, Ti: 0.01 to 0.15% by mass and / or Nb: 0.01 to 0 if necessary It contains 0.15% by mass, and the balance is substantially Fe.
After continuously casting the steel material having the composition, it is hot-rolled at a finishing temperature of Ar 3 transformation point or more and a winding temperature of 450 to 600 ° C. Next, pickling and cold rolling at a cold rolling rate of 20 to 50%.

発明の効果及び実施の形態Effects and embodiments of the invention

鋼材の高強度化には加工強化法,固溶体強化法,変態強化法等が知られているが、固溶体強化や変態強化ではSi,Mn等の合金元素を多量添加するため曲げ加工性が劣化しやすい。また、冷延板を焼鈍したままでは板厚精度:20μm以下のCPUソケット枠、CPU固定カバー用素材を製造することが困難であり、焼鈍後にレベリング,スキンパス等の矯正加工が必要になる。   For strengthening steel, work strengthening method, solid solution strengthening method, transformation strengthening method, etc. are known. However, in solid solution strengthening and transformation strengthening, bending workability deteriorates because alloy elements such as Si and Mn are added in large quantities. Cheap. In addition, it is difficult to manufacture a CPU socket frame and a CPU fixing cover material with a plate thickness accuracy of 20 μm or less if the cold-rolled sheet is annealed, and leveling, skin pass and other correction processing are required after annealing.

これに対し、加工強化法では、高強度化を安価に達成でき、板厚精度の高い鋼板が得られる。そこで、本発明においては加工強化法を採用し、鋼組成が特定された低炭素アルミキルド鋼を仕上げ温度:Ar3変態点以上,巻取り温度:450〜600℃で熱間圧延した後、酸洗し、冷延率:20〜50%で冷間圧延することにより、0.2%耐力:600N/mm2以上の引張り特性,先端半径:0.7mm以下の曲げ加工性,板厚精度:20μm以下と、CPUソケット枠,CPU固定カバーに必要な性質を付与している。 On the other hand, in the process strengthening method, high strength can be achieved at low cost, and a steel plate with high thickness accuracy can be obtained. Therefore, in the present invention, a work strengthening method is employed, and a low carbon aluminum killed steel having a specified steel composition is hot-rolled at a finishing temperature: Ar 3 transformation point or higher, a winding temperature: 450-600 ° C., and then pickled. By cold rolling at a cold rolling rate of 20 to 50%, 0.2% proof stress: 600 N / mm 2 or more tensile property, tip radius: 0.7 mm or less bending workability, plate thickness accuracy: 20 μm The following properties are added to the CPU socket frame and CPU fixing cover.

すなわち、特定の鋼成分を有する低炭素アルミキルド鋼の熱延板を冷延率:20〜50%で冷間圧延することにより、高強度化が図られ、優れた曲げ加工性が確保され、更に素材鋼板の板厚精度も向上する。これに対し、C-Mn系,C-Si-Mn系等、比較的多量にSiやMnを含む0.12%C-0.3%Si-2.0%Mnのような高強度熱延鋼帯を比較的低い冷延率で圧延すると、加工条件の僅かな相違に起因する板厚変動が避けられず板厚精度:20μm以下を満足できない。逆に、比較的低強度の鋼板を高圧延率で加工強化すると、板厚精度:20μm以下は満足するものの曲げ加工性が著しく劣化する。   That is, by cold rolling a hot rolled sheet of low carbon aluminum killed steel having a specific steel component at a cold rolling rate of 20 to 50%, high strength is achieved, and excellent bending workability is secured. The plate thickness accuracy of the material steel plate is also improved. On the other hand, high strength hot rolling such as 0.12% C-0.3% Si-2.0% Mn containing relatively large amounts of Si and Mn, such as C—Mn and C—Si—Mn. When the steel strip is rolled at a relatively low cold rolling rate, the thickness variation due to slight differences in processing conditions cannot be avoided, and the thickness accuracy: 20 μm or less cannot be satisfied. Conversely, when a relatively low-strength steel sheet is processed and strengthened at a high rolling rate, although the sheet thickness accuracy of 20 μm or less is satisfied, the bending workability is significantly degraded.

以下、本発明で規定した合金成分,製造条件を個別に説明する。
〔合金成分〕
・C:0.01〜0.20質量%
鋼帯の高強度化に有効な成分であり、50%の冷延率で要求レベルの強度が得られる値として下限値を0.01質量%とした。C含有量の増加に伴い強度が上昇するが、過剰量は曲げ加工性を左右する局部延性を劣化させるので、0.20%を上限とした。好ましくは、0.05〜0.15質量%の範囲でC含有量を選定する。
Hereinafter, the alloy components and production conditions defined in the present invention will be described individually.
[Alloy components]
C: 0.01 to 0.20% by mass
It is an effective component for increasing the strength of the steel strip, and the lower limit is set to 0.01% by mass as a value that can achieve the required level of strength at a cold rolling rate of 50%. The strength increases with an increase in the C content, but an excessive amount deteriorates the local ductility that affects bending workability, so 0.20% was made the upper limit. Preferably, the C content is selected in the range of 0.05 to 0.15% by mass.

・Si:0.5質量%以下
必要に応じて添加される合金成分であり、強度向上に寄与する。Siの添加効果は0.05質量%以上で顕著になり、増量に伴い強度が上昇する。しかし、過剰添加は冷間圧延時の耳割れや表面性状の劣化の原因となるので、0.5質量%を上限とした。好ましくは、0.05〜0.30質量%の範囲でSi含有量を選定する。
-Si: 0.5 mass% or less It is an alloy component added as needed, and contributes to strength improvement. The effect of adding Si becomes noticeable at 0.05% by mass or more, and the strength increases as the amount increases. However, excessive addition causes cracking of the ears during cold rolling and deterioration of surface properties, so the upper limit was made 0.5 mass%. Preferably, the Si content is selected in the range of 0.05 to 0.30 mass%.

・Mn:1.5質量%以下
強度改善に寄与する合金成分であり、0.20質量%以上でMnの添加効果がみられ、含有量が多くなるほど大きな強度改善効果が得られる。しかし、過剰量のMnが含まれると、Mn偏析に伴い熱延板にパーライトのバンド状組織が著しく成長し、曲げ加工性が極端に劣化するので、上限を1.5質量%とした。好ましくは、0.30〜1.20質量%の範囲でMn含有量を選定する。
Mn: 1.5% by mass or less An alloy component that contributes to strength improvement. An effect of addition of Mn is observed at 0.20% by mass or more, and a greater strength improvement effect is obtained as the content increases. However, if an excessive amount of Mn is contained, the band-like structure of pearlite grows significantly on the hot-rolled sheet due to Mn segregation, and the bending workability is extremely deteriorated, so the upper limit was set to 1.5% by mass. Preferably, the Mn content is selected in the range of 0.30 to 1.20% by mass.

・P:0.05質量%以下
高強度化に有効な成分であるが、0.05質量%を超える過剰量のPが含まれると、Mnと同様にパーライトのバンド状組織が著しく成長し、曲げ加工性が劣化する。そのため、P含有量は可能な限り低い方が好ましい。
・S:0.01質量%以下
多量に含まれると高温脆化の原因となるので、可能な限り低い方が好ましい。増量に伴い紐状介在物MnSが生成し曲げ加工性を著しく劣化することもS起因の弊害である。しかし、通常不可避的に含有される0.01質量%以下のレベルであれば、S起因の悪影響を無視できる。
-P: 0.05% by mass or less Although it is an effective component for increasing the strength, when an excessive amount of P exceeding 0.05% by mass is contained, a pearlite band-like structure grows remarkably in the same manner as Mn, Bending workability deteriorates. Therefore, the P content is preferably as low as possible.
-S: 0.01 mass% or less Since it will cause high temperature embrittlement when it is contained in a large amount, it is preferably as low as possible. It is also an adverse effect due to S that string-like inclusions MnS are generated with an increase in the amount and the bending workability is remarkably deteriorated. However, if the level is 0.01% by mass or less, which is usually inevitably contained, the adverse effects due to S can be ignored.

・酸可溶Al:0.005〜0.10質量%
脱酸剤として添加される合金成分であり、十分な脱酸効果を得るため酸可溶Alとして0.005質量%以上が必要である。Al脱酸の効果は0.10質量%で飽和し、それ以上添加しても鋼材コストの上昇を招くだけである。好ましくは、0.01〜0.05質量%の範囲でAl含有量を選定する。
・N:0.007質量%以下
曲げ加工性にとって有害な析出物を形成しやすい元素であり、可能な限り低い方が好ましい。通常不可避的に含まれる0.007質量%以下のレベルであれば、曲げ加工性に及ぼす悪影響を無視できる。
Acid-soluble Al: 0.005 to 0.10% by mass
It is an alloy component added as a deoxidizer, and 0.005% by mass or more is required as acid-soluble Al in order to obtain a sufficient deoxidation effect. The effect of Al deoxidation is saturated at 0.10% by mass, and adding more than that will only cause an increase in steel material cost. Preferably, the Al content is selected in the range of 0.01 to 0.05 mass%.
N: 0.007% by mass or less N is an element that easily forms a precipitate harmful to bending workability, and is preferably as low as possible. If it is a level of 0.007% by mass or less which is usually inevitably contained, an adverse effect on bending workability can be ignored.

・Ti:0.01〜0.15質量%
必要に応じ添加される合金成分であり、鋼中のC,S,Nと反応して析出物となり、析出強化により鋼帯を高強度化する作用を呈する。また、曲げ加工性に有害なMnSの生成を抑制するため、曲げ加工性の改善も図られる。Ti添加の効果は0.01質量%以上でみられるが、0.15質量%で飽和し、それ以上添加しても鋼材コストの上昇を招く。好ましくは、0.02〜0.10質量%の範囲でTi含有量を選定する。
Ti: 0.01 to 0.15% by mass
It is an alloy component added as necessary, reacts with C, S, N in the steel to become precipitates, and exhibits the effect of increasing the strength of the steel strip by precipitation strengthening. Further, since the generation of MnS harmful to the bending workability is suppressed, the bending workability can be improved. The effect of addition of Ti is observed at 0.01% by mass or more, but is saturated at 0.15% by mass, and adding more than that causes an increase in steel material cost. Preferably, the Ti content is selected in the range of 0.02 to 0.10% by mass.

・Nb:0.01〜0.15質量%
Tiと同様にCと反応して析出物となり、析出強化により鋼帯を高強度化する作用を呈する。鋼板の金属組織を微細化して高強度化する上でも、Nbは有効な合金成分である。このような効果は0.01質量%以上でみられるが、0.15質量%で飽和し、それ以上添加しても鋼材コストの上昇を招く。好ましくは、0.02〜0.10質量%の範囲でNb含有量を選定する。
・ Nb: 0.01 to 0.15 mass%
Like Ti, it reacts with C to form precipitates and exhibits the effect of increasing the strength of the steel strip by precipitation strengthening. Nb is an effective alloy component also in increasing the strength by refining the metal structure of the steel sheet. Such an effect is seen at 0.01% by mass or more, but is saturated at 0.15% by mass, and even if added more, the cost of the steel material is increased. Preferably, the Nb content is selected in the range of 0.02 to 0.10% by mass.

〔熱間圧延〕
所定組成の鋼材の連鋳片を仕上げ温度:Ar3変態点以上,巻取り温度:450〜600℃で熱間圧延する。
仕上げ温度は、熱間強度の変動を抑え板厚精度を向上させるためAr3変態点以上に設定される。Ar3変態点に達しない仕上げ温度では、変態に伴った熱間強度の変動が大きく、板厚精度も安定しない。好ましくは、Ar3変態点よりも10〜30℃高い温度に仕上げ温度を設定する。
(Hot rolling)
A continuous cast piece of steel material having a predetermined composition is hot-rolled at a finishing temperature: Ar 3 transformation point or higher and a coiling temperature: 450-600 ° C.
The finishing temperature is set to be higher than the Ar 3 transformation point in order to suppress variation in hot strength and improve the thickness accuracy. At the finishing temperature that does not reach the Ar 3 transformation point, the variation in hot strength accompanying the transformation is large and the thickness accuracy is not stable. Preferably, the finishing temperature is set to a temperature 10 to 30 ° C. higher than the Ar 3 transformation point.

巻取り温度を高くするほど延性の向上を期待できるが、600℃を超える高温巻取りでは鉄炭化物が粗大化し、鋼板の強度低下を補うために冷延率を高く設定する必要があり、結果として加工性劣化の原因になる。逆に450℃以下の低温巻取りでは、変態強化によって強度は上昇するものの、コイル長手方向に関する強度変動が大きくなる。また、後続する冷間圧延時の冷延率も20%以下となり、要求レベルの板厚精度が得られない。好ましくは、巻取り温度を500〜580℃の範囲で選定する。   Increasing the coiling temperature can be expected to improve the ductility, but at high temperature coiling exceeding 600 ° C, the iron carbide becomes coarse and the cold rolling rate needs to be set high to compensate for the strength reduction of the steel sheet. Causes workability degradation. On the other hand, at low temperature winding at 450 ° C. or lower, the strength increases due to transformation strengthening, but the strength fluctuation in the coil longitudinal direction increases. In addition, the cold rolling rate during the subsequent cold rolling is 20% or less, and the required level of sheet thickness accuracy cannot be obtained. Preferably, the winding temperature is selected in the range of 500 to 580 ° C.

〔冷間圧延〕
加工強化による高強度化を図るため、冷延率:20%以上で冷間圧延する。20%以上の冷延率は、板厚精度を向上させる上でも有効である。冷延率の増大に伴い強度,板厚精度共に向上するが、50%を超える冷延率では曲げ加工性が著しく劣化し製造コストの上昇を招く。強度,板厚精度と曲げ加工性とを高レベルでバランスさせる上で、25〜40%の範囲に冷延率を設定することが好ましい。
(Cold rolling)
Cold rolling is performed at a cold rolling rate of 20% or more in order to increase the strength by processing strengthening. A cold rolling rate of 20% or more is effective in improving the plate thickness accuracy. As the cold rolling rate increases, both strength and sheet thickness accuracy are improved. However, when the cold rolling rate exceeds 50%, the bending workability is remarkably deteriorated and the manufacturing cost is increased. In order to balance the strength, plate thickness accuracy and bending workability at a high level, it is preferable to set the cold rolling rate within a range of 25 to 40%.

表1の鋼を溶製し、スラブに連続鋳造した。スラブを1200℃に加熱し、粗圧延,仕上げ圧延を経て板厚:2.0mmの熱延鋼帯を製造した。仕上げ圧延では、仕上げ温度をAr3変態点以上,巻取り温度:500〜550℃の範囲に設定した。 The steels in Table 1 were melted and continuously cast into slabs. The slab was heated to 1200 ° C., and a hot-rolled steel strip having a thickness of 2.0 mm was manufactured through rough rolling and finish rolling. In the finish rolling, the finishing temperature was set to the range of Ar 3 transformation point or higher and the winding temperature: 500 to 550 ° C.

Figure 2007211321
Figure 2007211321

熱延鋼帯を酸洗した後、引き続き冷延率:10〜70%で冷間圧延し、板厚:1.0mmの冷延鋼帯を製造した。
得られた冷延鋼帯のC方向(圧延方向に直交する方向)に沿ってJIS Z2201の5号試験片を切り出し、室温での引張試験に供した。
また、冷延鋼帯の幅方向に沿った複数箇所で板厚をマイクロメータで測定し、鋼帯の幅:980mmにわたった板厚測定で得られた測定値の最大値と最小値との差を板厚精度として算出した。
引張り特性,板厚精度の調査結果を表2に示す。
After pickling the hot-rolled steel strip, it was subsequently cold-rolled at a cold rolling rate of 10 to 70% to produce a cold-rolled steel strip having a plate thickness of 1.0 mm.
A No. 5 test piece of JIS Z2201 was cut out along the C direction (direction orthogonal to the rolling direction) of the obtained cold-rolled steel strip and subjected to a tensile test at room temperature.
Also, the plate thickness is measured with a micrometer at a plurality of locations along the width direction of the cold-rolled steel strip, and the maximum and minimum values of the measurement values obtained by the plate thickness measurement over the width of the steel strip: 980 mm The difference was calculated as the plate thickness accuracy.
Table 2 shows the results of investigations on tensile properties and plate thickness accuracy.

更に、次のVブロック法(JIS Z2248に準拠した90度V曲げ試験)で曲げ加工性を調査した。
先端半径Rが種々異なるポンチを用い、圧延方向と平行な曲げ軸(C方向曲げ),圧延方向に直交する曲げ軸(L方向曲げ)の二方向で試験片を90度V曲げし、ポンチ先端半径Rとの関連で割れ発生を観察し、割れのなかった試験片を○,割れが発生した試験片を×として曲げ加工性を評価した。
評価結果を表3に示す。
Furthermore, bending workability was investigated by the following V block method (90 degree V bending test based on JIS Z2248).
Using punches with different tip radii R, the test piece was bent 90 degrees V in two directions: a bending axis parallel to the rolling direction (C direction bending) and a bending axis perpendicular to the rolling direction (L direction bending). The crack generation was evaluated by observing the occurrence of cracks in relation to the radius R, with ○ indicating a test piece without cracks and × indicating a test piece with cracks.
The evaluation results are shown in Table 3.

Figure 2007211321
Figure 2007211321

Figure 2007211321
Figure 2007211321

表2,3にみられるように、冷延率:20〜50%で冷間圧延したNo.1〜8では0.2%耐力が最低でも600N/mm2を超え、曲げ加工性もC方向曲げで0.5mmR,板厚精度も18μm以下と良好であった。
これに対し、Mnが過剰な鋼種を用いたNo.9では、C方向曲げで1.0mmRと曲げ加工性に劣っており、熱延板に生じたパーライトのバンド状組織の悪影響がみられた。過剰な冷延率(70%)で冷間圧延したNo.10では、0.2%耐力,曲げ加工性共に劣っていた。逆に、過少の冷延率(10%)で冷間圧延したNo.11では、0.2%耐力,曲げ加工性が良好であったものの板厚精度が45μmと大きな値を示し、要求レベルに達しなかった。
As can be seen in Tables 2 and 3, with No. 1-8 cold rolled at a cold rolling rate of 20-50%, the 0.2% proof stress exceeds 600 N / mm 2 at the minimum, and the bending workability is also in the C direction. Bending was as good as 0.5 mmR and plate thickness accuracy was 18 μm or less.
On the other hand, in No. 9 using a steel type with excessive Mn, the bending workability was inferior to 1.0 mmR in the C direction bending, and an adverse effect of the pearlite band-like structure generated on the hot-rolled sheet was observed. . In No. 10 cold-rolled with an excessive cold rolling rate (70%), both 0.2% proof stress and bending workability were inferior. On the contrary, No. cold-rolled with a low cold rolling rate (10%). In No. 11, although 0.2% proof stress and bending workability were good, the plate thickness accuracy was as large as 45 μm, and did not reach the required level.

以上の試験結果から、合金成分が特定された低炭素アルミキルド鋼の熱延鋼帯を冷延率:20〜50%で冷間圧延することにより、引張り特性,曲げ加工性,板厚精度の何れにも優れ、CPUソケット枠やCPU固定カバーの要求特性を満足する素材となる。   From the above test results, any of the tensile properties, bending workability, and plate thickness accuracy can be achieved by cold rolling a hot-rolled steel strip of low carbon aluminum killed steel with specified alloy components at a cold rolling rate of 20-50%. It is also a material that satisfies the required characteristics of the CPU socket frame and CPU fixing cover.

そこで、曲げ加工性が劣っていた試験No.9,10以外の冷延鋼帯を所定幅の帯板にサイジングし、爪5-連結部6の方向をC方向に一致させて帯板をプレス加工することにより、所定形状の有効面積:47mm×57mmのCPUソケット枠,CPU固定カバー(図1,2)を作製した。   Therefore, cold-rolled steel strips other than test Nos. 9 and 10 that were inferior in bending workability were sized into strips of a predetermined width, and the strips were pressed with the direction of the claw 5-connecting portion 6 aligned with the C direction By processing, a CPU socket frame and a CPU fixing cover (FIGS. 1 and 2) having an effective area of 47 mm × 57 mm in a predetermined shape were produced.

同じ冷延鋼帯から作製されたCPUソケット枠,CPU固定カバーを組み合わせてCPU取付け部を配線基板上に設け、サイズ:45mm×47mmのCPUチップを実装する試験に供した。実装試験では、CPUチップ7とCPUソケット4との間に圧力測定フィルムを挟み、爪5をCPUフック3にかけてCPU固定カバー2を閉じ、CPUチップ7を固定したときの圧力(以下、"固定圧力"という)を測定した。固定圧力が1.0MPa以上であれば十分に使用可能であるが、より過酷な条件1.2MPa以上を合否判定の基準とした。   A CPU socket frame made of the same cold-rolled steel strip and a CPU fixing cover were combined to provide a CPU mounting portion on the wiring board, and the test was conducted to mount a CPU chip of size 45 mm × 47 mm. In the mounting test, a pressure measurement film is sandwiched between the CPU chip 7 and the CPU socket 4, the claw 5 is put on the CPU hook 3, the CPU fixing cover 2 is closed, and the pressure when the CPU chip 7 is fixed (hereinafter referred to as "fixing pressure"). Was measured). If the fixed pressure is 1.0 MPa or more, it can be used satisfactorily, but the more severe condition of 1.2 MPa or more was used as a criterion for the pass / fail judgment.

また、CPU固定カバー2の開閉を繰り返したときの固定圧力変化を調べるため、所定回数の開閉動作後に固定圧力を測定した。開閉動作では、CPUチップ7をCPUソケット4に載せた状態で、爪5とCPUフック3との係合及び係合離脱によりCPU固定カバー2の開閉動作を1000回繰り返した。
開閉動作を1000回繰り返した後で、CPU固定カバー2の反り量も測定した。なお、反り量は、上反りしているCPU固定カバー2を上下反転させて定盤に載せ、定盤面からの高さとして求めた。試験前後の反り量を比較し、反り量の差を固定カバー変形量として求めた。固定カバー変形量が300μm以下であれば、開閉動作を繰り返した後でも十分な固定圧力を維持し耐久性のあるCPU固定カバーといえる。
Further, in order to examine changes in the fixed pressure when the CPU fixed cover 2 was repeatedly opened and closed, the fixed pressure was measured after a predetermined number of opening and closing operations. In the opening / closing operation, with the CPU chip 7 placed on the CPU socket 4, the opening / closing operation of the CPU fixing cover 2 was repeated 1000 times by engaging and disengaging the claw 5 and the CPU hook 3.
After the opening / closing operation was repeated 1000 times, the amount of warpage of the CPU fixing cover 2 was also measured. The warpage amount was obtained as the height from the surface plate surface by turning the CPU fixing cover 2 that is warped upside down and placing it on the surface plate. The warpage amount before and after the test was compared, and the difference in the warpage amount was determined as the fixed cover deformation amount. If the amount of deformation of the fixed cover is 300 μm or less, it can be said that the CPU fixed cover is durable and maintains a sufficient fixed pressure even after repeated opening and closing operations.

表4の試験結果にみられるように、仕上げ圧延率:20〜40%の冷延鋼帯から作製されたCPU固定カバー2では固定圧力合否判定基準1.2MPaを超える良好な特性を示し、変形量も300μm以下の小さな値であった。
これに対し、板厚変動が45μm以上の比較例No.11は、固定圧力が合否判定基準1.2MPaに達しない小さな値であった。そのため、本発明例に比較して性能に劣るCPU固定カバー2であった。
As can be seen from the test results in Table 4, the CPU fixed cover 2 made from a cold rolled steel strip with a finish rolling ratio of 20 to 40% exhibits good characteristics exceeding the fixed pressure pass / fail criterion of 1.2 MPa, and is deformed. The amount was also a small value of 300 μm or less.
On the other hand, Comparative Example No. 11 having a plate thickness variation of 45 μm or more was a small value at which the fixed pressure did not reach the pass / fail criterion 1.2 MPa. Therefore, the CPU fixing cover 2 is inferior in performance as compared with the example of the present invention.

Figure 2007211321
Figure 2007211321

以上に説明したように、合金成分が特定された低炭素アルミキルド鋼を加工強化法で高強度化することにより、板厚精度:20μm以下,曲げ先端の半径:0.7mm以下の冷延鋼帯となる。この冷延鋼帯は、コンピュータ等のCPUを配線基板に取り付ける際のCPUソケット枠やCPU固定カバーに適した素材として使用され、長期使用後においても必要な固定圧力でCPUチップを配線基板に押し付け固定するため、電子機器の信頼性向上にもつながる。   As explained above, cold rolled steel strip with a thickness accuracy of 20 μm or less and a bending tip radius of 0.7 mm or less by increasing the strength of low-carbon aluminum killed steel with specified alloy components by the work strengthening method. It becomes. This cold-rolled steel strip is used as a material suitable for the CPU socket frame and CPU fixing cover when attaching a CPU such as a computer to the wiring board, and the CPU chip is pressed against the wiring board with the necessary fixing pressure even after long-term use. Fixing leads to improved reliability of electronic equipment.

配線基板上のCPUソケットにCPUチップを搭載した状態の透視図Perspective view with CPU chip mounted on CPU socket on wiring board CPU固定カバーをCPUソケット枠に締結してCPUチップを押圧固定した状態の透視図A perspective view of the CPU fixing frame with the CPU fixing cover fastened to the CPU socket frame.

符号の説明Explanation of symbols

1:CPUソケット枠 2:CPU固定カバー 3:CPUフック 4:CPUソケット 5:爪 6:連結部 7:CPUチップ 1: CPU socket frame 2: CPU fixing cover 3: CPU hook 4: CPU socket 5: Claw 6: Connecting part 7: CPU chip

Claims (2)

C:0.01〜0.20質量%,Si:0.5質量%以下,Mn:1.5質量%以下,P:0.05質量%以下,S:0.01質量%以下,酸可溶Al:0.005〜0.10質量%,N:0.007質量%以下,残部が不可避的不純物を除きFeの組成をもつ鋼を連続鋳造し、仕上げ温度:Ar3変態点以上,巻取り温度:450〜600℃で熱間圧延し、酸洗後に冷延率:20〜50%で冷間圧延することを特徴とするCPUソケット枠又はCPU固定カバー用鋼板の製造方法。 C: 0.01-0.20 mass%, Si: 0.5 mass% or less, Mn: 1.5 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% or less, acid acceptable Molten Al: 0.005 to 0.10% by mass, N: 0.007% by mass or less, and the balance is continuously cast with a steel having an Fe composition excluding inevitable impurities. Finishing temperature: Ar 3 transformation point or higher, winding A method for producing a steel plate for a CPU socket frame or a CPU fixing cover, which is hot-rolled at a temperature of 450 to 600 ° C. and cold-rolled after pickling and at a cold rolling rate of 20 to 50%. C:0.01〜0.20質量%,Si:0.5質量%以下,Mn:1.5質量%以下,P:0.05質量%以下,S:0.01質量%以下,酸可溶Al:0.005〜0.10質量%,N:0.007質量%以下,Ti:0.01〜0.15質量%及び/又はNb:0.01〜0.15質量%,残部が不可避的不純物を除きFeの組成をもつ鋼を連続鋳造し、仕上げ温度:Ar3変態点以上,巻取り温度:450〜600℃で熱間圧延し、酸洗後に冷延率:20〜50%で冷間圧延することを特徴とするCPUソケット枠又はCPU固定カバー用鋼板の製造方法。 C: 0.01-0.20 mass%, Si: 0.5 mass% or less, Mn: 1.5 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% or less, acid acceptable Melted Al: 0.005 to 0.10% by mass, N: 0.007% by mass or less, Ti: 0.01 to 0.15% by mass and / or Nb: 0.01 to 0.15% by mass, the balance being Continuously cast steel with Fe composition excluding inevitable impurities, finishing temperature: Ar 3 transformation point or higher, coiling temperature: 450-600 ° C, hot rolling after pickling, 20-50% A method of manufacturing a CPU socket frame or a CPU fixing cover steel plate, which is cold-rolled at a temperature.
JP2006034746A 2006-02-13 2006-02-13 Method for producing steel sheet for cpu socket frame or cpu fixing cover Withdrawn JP2007211321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034746A JP2007211321A (en) 2006-02-13 2006-02-13 Method for producing steel sheet for cpu socket frame or cpu fixing cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034746A JP2007211321A (en) 2006-02-13 2006-02-13 Method for producing steel sheet for cpu socket frame or cpu fixing cover

Publications (1)

Publication Number Publication Date
JP2007211321A true JP2007211321A (en) 2007-08-23

Family

ID=38490018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034746A Withdrawn JP2007211321A (en) 2006-02-13 2006-02-13 Method for producing steel sheet for cpu socket frame or cpu fixing cover

Country Status (1)

Country Link
JP (1) JP2007211321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101074A1 (en) * 2009-03-05 2010-09-10 Jfeスチール株式会社 Cold-rolled steel sheet having excellent bendability, method for producing the same, and member employing the same
WO2022004734A1 (en) * 2020-06-29 2022-01-06 川崎重工業株式会社 Electronic component installation device and electronic component installation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101074A1 (en) * 2009-03-05 2010-09-10 Jfeスチール株式会社 Cold-rolled steel sheet having excellent bendability, method for producing the same, and member employing the same
JP2010229545A (en) * 2009-03-05 2010-10-14 Jfe Steel Corp Cold-rolled steel sheet having excellent bendability, method for producing the same and member using the same
CN102341519A (en) * 2009-03-05 2012-02-01 杰富意钢铁株式会社 Cold-rolled steel sheet having excellent bendability, method for producing same, and member employing same
KR101431316B1 (en) 2009-03-05 2014-08-20 제이에프이 스틸 가부시키가이샤 Cold-rolled steel sheet having excellent bendability, method for producing the same, and member employing the same
KR101612593B1 (en) * 2009-03-05 2016-04-15 제이에프이 스틸 가부시키가이샤 Cold-rolled steel sheet having excellent bendability, method for producing the same, and member employing the same
WO2022004734A1 (en) * 2020-06-29 2022-01-06 川崎重工業株式会社 Electronic component installation device and electronic component installation method
JP7413165B2 (en) 2020-06-29 2024-01-15 川崎重工業株式会社 Electronic component mounting device and electronic component mounting method

Similar Documents

Publication Publication Date Title
US20210108283A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
US20200232062A1 (en) Rolled ferritic stainless steel sheet, method for producing the same, and flange part
EP3421635B1 (en) High-strength cold-rolled steel sheet having excellent bendability
EP3530769B1 (en) Martensitic stainless steel sheet
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
KR102401618B1 (en) Clad steel plate and manufacturing method thereof
JP6791646B2 (en) Stainless steel sheet with excellent toughness and its manufacturing method
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
EP3556880A1 (en) Ferrite stainless hot-rolled steel sheet and production method therefor
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
US20210189535A1 (en) Nickel-containing steel for low temperature
WO2020090936A1 (en) Austenitic stainless steel sheet
WO2005014873A1 (en) Work-hardened material from stainless steel
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2023085560A (en) Two-phase stainless steel and manufacturing method therefor
JP2007211321A (en) Method for producing steel sheet for cpu socket frame or cpu fixing cover
KR101594913B1 (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JP4237072B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and workability
WO2015015735A1 (en) Ferritic stainless steel having excellent weld corrosion resistance
JP4752572B2 (en) Ferritic stainless steel sheet for bellows tube and bellows tube
KR101940427B1 (en) Ferritic stainless steel sheet
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP4752571B2 (en) Ferritic stainless steel sheet for bellows tube and bellows tube
JP3800150B2 (en) Martensitic stainless hot rolled steel strip with excellent manufacturability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512