JP2007209956A - Spiral type separation membrane element - Google Patents

Spiral type separation membrane element Download PDF

Info

Publication number
JP2007209956A
JP2007209956A JP2006035494A JP2006035494A JP2007209956A JP 2007209956 A JP2007209956 A JP 2007209956A JP 2006035494 A JP2006035494 A JP 2006035494A JP 2006035494 A JP2006035494 A JP 2006035494A JP 2007209956 A JP2007209956 A JP 2007209956A
Authority
JP
Japan
Prior art keywords
separation membrane
channel material
membrane element
supply
warp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035494A
Other languages
Japanese (ja)
Inventor
Masashi Beppu
雅志 別府
Yasuhiro Uda
康弘 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2006035494A priority Critical patent/JP2007209956A/en
Publication of JP2007209956A publication Critical patent/JP2007209956A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spiral type separation membrane element capable of suppressing pressure loss in a channel in the supply side and giving high operation efficiency and good filtered water quality owing to a sufficient effect for suppressing concentration polarization. <P>SOLUTION: The spiral type separation membrane element comprises a separation membrane, a channel material in the supply side, and a channel material in the filtered side which are rolled around a hollow center pipe having holes. The channel material in the supply side is composed of warp yarns 1 parallel to the flow direction of the supplied liquid and weft yarns 2 crossing the flow direction of the supplied liquid, wherein both yarns are entwisted at a crossing angle θ of 20 to 80° and have the ratio (L1/L2) of the intervals L1 of the warp yarns and the intervals L2 of the weft yarns in a range from 1.3 to 2.0, and the intervals L1 of the warp yarns is 5 mm or wider. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体中に浮遊及び溶存している成分を分離するスパイラル型分離膜エレメントに関し、詳しくは、供給側の圧力損失を従来より小さくでき、かつ、膜面上での濃度分極を抑制するために必要となる撹拌効果を有した構造を持つ供給側流路材を内蔵したスパイラル型分離膜エレメントに関する。   The present invention relates to a spiral-type separation membrane element that separates components suspended and dissolved in a liquid. More specifically, the pressure loss on the supply side can be made smaller than before, and concentration polarization on the membrane surface can be suppressed. The present invention relates to a spiral-type separation membrane element having a built-in supply-side channel material having a structure having a stirring effect required for the purpose.

従来、スパイラル型分離膜エレメント(以下「膜エレメント」という場合がある)の構造としては、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻き付けられたものが知られている。この供給側流路材としては、通常、構成糸が菱形に形成されたダイヤモンド型ネットが使用されており、エレメント供給側の流路を確保すると同時に、膜面の表面更新を促進して濃度分極を抑制する機能がある。   Conventionally, as a structure of a spiral separation membrane element (hereinafter sometimes referred to as “membrane element”), a single or a plurality of separation membranes, supply-side flow channel materials, and permeate-side flow channel materials are perforated hollow central tubes. What is wrapped around is known. As the supply-side channel material, a diamond net with diamond-shaped constituent yarn is usually used, and at the same time as securing the channel on the element supply side, the surface renewal of the membrane surface is promoted to promote concentration polarization. There is a function to suppress.

超純水生産に使用されるスパイラル型逆浸透膜エレメントは、近年、運転圧力の低圧化が進んでおり、運転効率を高めるために低圧力損失で高性能のものが望まれている。   In recent years, spiral-type reverse osmosis membrane elements used for ultrapure water production have been reduced in operating pressure, and high-performance elements with low pressure loss are desired in order to increase operating efficiency.

また、濃度分極を抑制するためには、供給側流路材の厚さを薄くして、膜面の線速度を大きくする方法があるが、この方法では圧力損失が大きくなり、供給液を送水するポンプの必要動力が大きくなるという問題がある。   In addition, in order to suppress concentration polarization, there is a method of increasing the linear velocity of the membrane surface by reducing the thickness of the supply-side channel material, but this method increases pressure loss, and the supply liquid is supplied to the water supply. There is a problem that the required power of the pump to be increased.

ダイヤモンド型ネットとしては、下記の特許文献1に、原水流れに対して網脚の角度が±15〜40°の範囲にある原水スペーサーが提案されている。しかし、ダイヤモンド型ネットは、圧力損失が一般に大きくなるため、膜エレメントの運転圧力の低圧化に十分対応できないものであった。   As a diamond-type net, the following Patent Document 1 proposes a raw water spacer in which the angle of the net legs is within a range of ± 15 to 40 ° with respect to the raw water flow. However, the diamond-type net generally has a large pressure loss, so that it cannot sufficiently cope with a reduction in the operating pressure of the membrane element.

このため、ダイヤモンド型ネットより低い圧力損失のスペーサーとして、下記の特許文献2〜3には、供給液の流れ方向に平行な縦糸と供給液流れ方向に交差する横糸とが、鋭角の交差角度で繋がったラダー型ネットが提案されている。具体的には、縦糸間隔L1と横糸間隔L2の比(L1/L2)が1.0〜0.77の範囲で繋がったラダー型ネットが提案されている。   Therefore, as spacers having a pressure loss lower than that of the diamond net, the following Patent Documents 2 to 3 describe that the warp yarns parallel to the flow direction of the supply liquid and the weft yarns crossing the supply liquid flow direction have an acute angle of intersection. A connected ladder net has been proposed. Specifically, a ladder type net is proposed in which the ratio (L1 / L2) of the warp yarn interval L1 and the weft yarn interval L2 is in the range of 1.0 to 0.77.

しかしながら、これらのラダー型ネットは、圧力損失の低減を重視しすぎたために、濃度分極抑制の効果が少ない流路材となり、スパイラル型逆浸透膜エレメント用に用いた場合、十分な塩阻止性能を得ることが困難であった。   However, these ladder-type nets are too important to reduce pressure loss, so they become channel materials with little effect of concentration polarization suppression, and when used for spiral type reverse osmosis membrane elements, they have sufficient salt blocking performance. It was difficult to get.

特開2000−042378号公報Japanese Patent Laid-Open No. 2000-042378 特許第3098600号公報Japanese Patent No. 3098600 特開2005−319454号公報JP 2005-319454 A

そこで、本発明の目的は、供給側流路の圧力損失を低減でき、しかも濃度分極の抑制効果が十分なため、運転効率と透過水水質とが良好なスパイラル型分離膜エレメントを提供することにある。   Accordingly, an object of the present invention is to provide a spiral separation membrane element that can reduce the pressure loss of the supply-side flow path and has a sufficient operation effect and permeated water quality because the effect of suppressing concentration polarization is sufficient. is there.

本発明者らは、上記目的を達成すべく、ラダー形ネット状流路材の縦糸間隔や横糸間隔などについて鋭意研究したところ、縦糸間隔と横糸間隔の比率や長さを一定範囲内に設定することで上記目的が達成できることを見出し、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors diligently studied the warp yarn interval, the weft yarn interval, etc. of the ladder-shaped net-like channel material, and set the ratio and length of the warp yarn interval to the weft yarn interval within a certain range. As a result, the inventors have found that the above object can be achieved, and have completed the present invention.

すなわち、本発明のスパイラル型分離膜エレメントは、分離膜と供給側流路材及び透過側流路材が、有孔の中空状中心管の周りに巻きつけられているスパイラル型分離膜エレメントにおいて、前記供給側流路材は、供給液の流れ方向に平行な縦糸と供給液流れ方向に交差する横糸とが、交差角度20〜80°で繋がっており、縦糸間隔L1と横糸間隔L2の比(L1/L2)が1.3〜2.0の範囲にあり、かつ前記縦糸間隔L1が5mm以上であることを特徴とする。   That is, the spiral separation membrane element of the present invention is a spiral separation membrane element in which a separation membrane, a supply-side channel material and a permeation-side channel material are wound around a perforated hollow central tube. In the supply side channel material, warp yarns parallel to the flow direction of the supply liquid and weft yarns intersecting the supply liquid flow direction are connected at an intersecting angle of 20 to 80 °, and the ratio of the warp yarn interval L1 to the weft yarn interval L2 ( L1 / L2) is in the range of 1.3 to 2.0, and the warp interval L1 is 5 mm or more.

本発明のスパイラル型分離膜エレメントによると、縦糸間隔L1と横糸間隔L2の比(L1/L2)が1.3〜2.0の範囲にあり、かつ前記縦糸間隔L1が5mm以上であるため、供給側流路材の圧力損失の低減効果と濃度分極の抑制効果とを両立させることができ、運転効率と透過水水質とを良好にすることができる。また、縦糸と横糸との交差角度が20〜80°であるため、圧力損失の低減効果と濃度分極の抑制効果とが共に良好になる。   According to the spiral separation membrane element of the present invention, the ratio (L1 / L2) between the warp yarn interval L1 and the weft yarn interval L2 is in the range of 1.3 to 2.0, and the warp yarn interval L1 is 5 mm or more. The effect of reducing the pressure loss of the supply-side channel material and the effect of suppressing the concentration polarization can both be achieved, and the operating efficiency and permeated water quality can be improved. Moreover, since the crossing angle between the warp and the weft is 20 to 80 °, both the effect of reducing the pressure loss and the effect of suppressing the concentration polarization are improved.

本発明のスパイラル型分離膜エレメントは、超純水生産用に使用されるのが好ましく、その場合、操作圧力が0.5MPaで回収率15%の条件で、25℃、500ppmNaCl溶液の阻止率性能が99.0%以上であることが好ましい。   The spiral separation membrane element of the present invention is preferably used for producing ultrapure water. In that case, the rejection performance of a 500 ppm NaCl solution at 25 ° C. under the conditions of an operating pressure of 0.5 MPa and a recovery rate of 15%. Is preferably 99.0% or more.

以下、本発明の実施の形態について、図面を参照しながら説明する。本発明の膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられている構造を有する(図示せず)。かかる膜エレメントは、供給側流路材以外に関しては、従来公知の分離膜、透過側流路材、中空状中心管などが何れも採用できる。例えば、供給側流路材と透過側流路材が複数用いられる場合には、複数の膜リーフが中空状中心管の周りに巻きつけられた構造となる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The membrane element of the present invention has a structure in which one or more of a separation membrane, a supply-side channel material, and a permeate-side channel material are wound around a perforated hollow central tube (not shown). . As for the membrane element, conventionally known separation membranes, permeation side flow channel materials, hollow central tubes, etc. can be adopted except for the supply side flow channel materials. For example, when a plurality of supply-side channel materials and permeation-side channel materials are used, a plurality of membrane leaves are wound around a hollow central tube.

図1は、本発明に係る膜エレメントの供給側流路材の一例を示す図である。供給側流路材は、供給液の流れ方向に平行な縦糸1と供給液流れ方向に交差する横糸2とが繋がった構造を有する。   FIG. 1 is a diagram showing an example of a supply-side channel material of a membrane element according to the present invention. The supply-side channel material has a structure in which warp yarns 1 parallel to the flow direction of the supply liquid are connected to weft yarns 2 that intersect the supply liquid flow direction.

本発明の膜エレメントは、逆浸透濾過、限外濾過、精密濾過など、何れの濾過方法にも適用できるが、上記のような供給側流路材は、主に逆浸透膜を用いた逆浸透濾過の場合にその効果が発揮され、特に超純水生産用に用いるのが好ましい。   The membrane element of the present invention can be applied to any filtration method such as reverse osmosis filtration, ultrafiltration, microfiltration, etc., but the supply side channel material as described above is mainly reverse osmosis using a reverse osmosis membrane. The effect is exhibited in the case of filtration, and it is particularly preferable to use for ultrapure water production.

供給側流路材を構成する縦糸1又は横糸2の材質としては、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリアミドなどの樹脂の他、天然高分子、ゴムなどが挙げられるが、樹脂を使用するのが好ましい。   Examples of the material of the warp 1 or the weft 2 constituting the supply-side channel material include resins such as polypropylene, polyethylene, polyethylene terephthalate (PET), and polyamide, as well as natural polymers and rubbers. Is preferred.

縦糸1及び横糸2は、マルチフィラメントでもモノフィラメントでもよいが、流路の妨げとなりにくいモノフィラメントが好ましい。また、縦糸1と横糸2とは、融着や接着などにより相互に固着されていてもよく、織物であってもよい。ただし、流路を安定に維持する上で、縦糸1と横糸2とが固着されているものが好ましい。   The warp yarn 1 and the weft yarn 2 may be multifilaments or monofilaments, but monofilaments that do not obstruct the flow path are preferred. The warp yarn 1 and the weft yarn 2 may be fixed to each other by fusion or adhesion, or may be a woven fabric. However, in order to maintain the flow path stably, it is preferable that the warp 1 and the weft 2 are fixed.

さらに、縦糸1に対する横糸2の交差角度θは、20〜80°であればよいが、横糸2による流動抵抗を小さくする観点から30°〜70°が好ましく、40°〜50°がより好ましい。交差角度θが20°より小さくなると、濃度分極の抑制効果が小さくなると共に、ネットが変形し易くなり取扱いが困難になる。交差角度θが80°より大きくなると、生産が難しくなり生産コストが大幅に増加すると共に、圧力損失も大きくなる。   Furthermore, the crossing angle θ of the weft 2 with respect to the warp 1 may be 20 to 80 °, but is preferably 30 ° to 70 ° and more preferably 40 ° to 50 ° from the viewpoint of reducing the flow resistance due to the weft 2. When the crossing angle θ is smaller than 20 °, the effect of suppressing the concentration polarization is reduced, and the net is easily deformed and handling becomes difficult. When the crossing angle θ is larger than 80 °, production becomes difficult, production cost is greatly increased, and pressure loss is also increased.

また、縦糸1と横糸2との配置は、図1に示すように、複数配列した縦糸1の片側に全ての横糸2が配置される構造が好ましい。かかる構造によると、供給側流路材の抵抗を低減できるという効果が得られる。   Further, the arrangement of the warp yarn 1 and the weft yarn 2 is preferably a structure in which all the weft yarns 2 are arranged on one side of the plurality of warp yarns 1 arranged as shown in FIG. According to such a structure, an effect that the resistance of the supply-side channel material can be reduced is obtained.

供給側流路材を構成する縦糸1の間隔L1は、5mm以上が好ましい。これよりも、間隔が狭いと濃度分極を抑制する効果が少なくなる。すなわち、ラダー型スペーサーにおいては、縦糸1近傍は流れの乱れが少なくなる傾向にあり、縦糸間隔L1が狭く縦糸1が多くなると結果的に原水流れによる濃度分極の抑制効果が少ない流路材になってしまう。また、縦糸間隔L1が広くなることで圧力損失低減の効果もある。しかし、縦糸間隔L1が広くなりすぎると、流路材のコシがなくなり扱いにくくなるので、10mm以下が好ましい。   The interval L1 between the warp yarns 1 constituting the supply-side channel material is preferably 5 mm or more. If the interval is narrower than this, the effect of suppressing concentration polarization is reduced. That is, in the ladder type spacer, there is a tendency that the turbulence in the vicinity of the warp yarn 1 tends to be less, and when the warp interval L1 is narrow and the warp yarn 1 is increased, the flow path material is less effective in suppressing concentration polarization due to the raw water flow. End up. Moreover, there is also an effect of reducing the pressure loss by increasing the warp interval L1. However, if the warp interval L1 is too wide, the channel material is stiff and difficult to handle, so 10 mm or less is preferable.

縦糸間隔L1と横糸間隔L2の比(L1/L2)は、1.3〜2.0の範囲であり、1.3〜1.8が好ましく、1.3〜1.5がより好ましい。この範囲よりもL1/L2が小さくなると、横糸2の間隔L2が広くなり、圧力損失が低下するものの、濃度分極を抑制する効果が小さい流路材になる。逆に上記範囲より大きくなると、ネットの圧力損失が高くなってしまう。   The ratio (L1 / L2) between the warp interval L1 and the weft interval L2 is in the range of 1.3 to 2.0, preferably 1.3 to 1.8, and more preferably 1.3 to 1.5. When L1 / L2 is smaller than this range, the distance L2 between the wefts 2 is widened and the pressure loss is reduced, but the flow path material is less effective in suppressing concentration polarization. On the other hand, if it exceeds the above range, the net pressure loss will increase.

また、ネットの厚みは、薄くすれば、膜面の線速度が大きくなり濃度分極を抑制できるが、あまり薄くすると供給液を送水するポンプの必要動力が大きくなるという問題が生じる。このため、ネットの厚みは、0.5mm以上1.0mm以下が好ましい。ここで言うネットの厚みは、最低10点以上を測定した平均厚みとするのが好ましい。測定方法としては厚みゲ−ジによる測定や、あるいは光学顕微鏡、CCDカメラ等の拡大装置で測定する方法がある。   Further, if the thickness of the net is reduced, the linear velocity of the film surface increases and concentration polarization can be suppressed. However, if the thickness of the net is too thin, there arises a problem that the required power of the pump for feeding the supply liquid increases. For this reason, the thickness of the net is preferably 0.5 mm or greater and 1.0 mm or less. The net thickness referred to here is preferably an average thickness obtained by measuring at least 10 points. As a measuring method, there are a method using a thickness gauge or a method using a magnifier such as an optical microscope or a CCD camera.

また、供給液の流れによる圧力損失低減の課題に対しては、図2(a)に示すように、供給液流れ方向に交差している横糸2を細くすることで、供給液の流路断面積を大きくすることができ、供給側流路の流れの阻害や閉塞に有効であり、流路の圧力損失を低減できる。   Further, as shown in FIG. 2 (a), for the problem of reducing the pressure loss due to the flow of the supply liquid, the weft thread 2 intersecting the supply liquid flow direction is thinned to cut off the supply liquid flow path. The area can be increased, which is effective for obstructing or blocking the flow of the supply side flow path, and the pressure loss of the flow path can be reduced.

つまり、従来の供給側流路材は、横糸と縦糸がほぼ同じ径で形成されており、供給側流路の原水側の断面積のうち、実際の流路断面積としては1/2に満たない。本発明の供給側流路材では、縦糸1に対する横糸2の径比率を小さくすることで、流路断面積が増加し、圧力損失は従来のものに比べ小さくすることが可能となる。具体的には、縦糸1の糸径は、ネットの厚みの50%以上が好ましく、さらに70%以上75%以下がより好ましい。これより縦糸1の糸径が小さくなれば、結果的に横糸2の糸径が大きくなり圧力損失が高くなる傾向がある。また、逆に縦糸1の糸径が大きくなりすぎると横糸2の糸径が小さくなり、濃度分極を抑制する効果が少なくなる傾向がある。   In other words, in the conventional supply-side channel material, the weft and the warp are formed with substantially the same diameter, and the actual channel cross-sectional area of the supply-side channel cross-sectional area is less than 1/2. Absent. In the supply-side channel material of the present invention, by reducing the diameter ratio of the weft yarn 2 to the warp yarn 1, the channel cross-sectional area increases and the pressure loss can be reduced as compared with the conventional one. Specifically, the yarn diameter of the warp 1 is preferably 50% or more of the thickness of the net, and more preferably 70% or more and 75% or less. If the yarn diameter of the warp 1 becomes smaller than this, the yarn diameter of the weft 2 will eventually become larger and the pressure loss tends to increase. On the other hand, if the yarn diameter of the warp yarn 1 becomes too large, the yarn diameter of the weft yarn 2 becomes small and the effect of suppressing concentration polarization tends to be reduced.

縦糸1及び横糸2の断面形状については、図2(b)に示すように、縦糸1は円形状又は略円形状であり、横糸2はその長径が供給側流路材の面内に対し平行な楕円形状であってもよい。   As for the cross-sectional shapes of the warp yarn 1 and the weft yarn 2, as shown in FIG. 2B, the warp yarn 1 is circular or substantially circular, and the weft yarn 2 has a major axis parallel to the plane of the supply-side channel material. An elliptical shape may be used.

本発明のスパイラル型分離膜エレメントは、0.5MPaで500ppmNaCl溶液の阻止率性能が99.0%以上の性能を示すものが望ましい。低圧で運転される高性能なエレメントほど、本発明の効果が大きい。具体的には、運転圧力を0.2〜0.5MPaで実施する逆浸透濾過に用いるのが好ましい。   The spiral separation membrane element of the present invention preferably has a rejection rate performance of 500 ppm NaCl solution at 0.5 MPa and a performance of 99.0% or more. The higher the performance of the element operating at low pressure, the greater the effect of the present invention. Specifically, it is preferably used for reverse osmosis filtration performed at an operating pressure of 0.2 to 0.5 MPa.

また、本発明のスパイラル型分離膜エレメントは、用途を何ら限定するものではないが、主に超純水製造用に使用される際に特にその効果が発揮される。   Moreover, the spiral-type separation membrane element of the present invention does not limit the application at all, but the effect is particularly exerted when used mainly for the production of ultrapure water.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、本発明が、かかる実施例に限定されるものでないことはいうまでもない。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. Needless to say, the present invention is not limited to such examples.

<実施例1>
本発明で用いる供給側流路材として、表1に示すように、供給側流路材厚み0.66mm,縦糸径0.48mm,横糸径0.18mm,縦糸間隔5.4mm,横糸間隔4.0mm,縦糸と横糸の交差角度43°で、縦糸間隔と横糸間隔の比(L1/L2)が1.35のラダー型(図1参照)のポリプロピレン製ネットを使い、膜面積6.5mの直径4インチの膜エレメントを作製した。
<Example 1>
As shown in Table 1, the supply-side channel material used in the present invention has a thickness of 0.66 mm, a warp diameter of 0.48 mm, a weft diameter of 0.18 mm, a weft interval of 5.4 mm, and a weft interval of 4. A ladder-type (see FIG. 1) polypropylene net with a warp-weft crossing angle of 43 ° and a warp-to-weft spacing ratio (L1 / L2) of 1.35 and a membrane area of 6.5 m 2 was used. A membrane element having a diameter of 4 inches was produced.

この膜エレメントを用いて、操作圧力を変えながら純水の透過試験を行い、各流量における膜エレメントの圧力損失を測定し、その結果を図3に示した。また、操作圧力:0.50MPa、原水:500ppmNaCl溶液(25℃、pH6.7)、回収率:15%の条件で逆浸透濾過を行い、NaCl阻止率と透過水量とを測定した。その結果を表2に示す。   Using this membrane element, a pure water permeation test was performed while changing the operating pressure, and the pressure loss of the membrane element at each flow rate was measured. The results are shown in FIG. Further, reverse osmosis filtration was performed under the conditions of operating pressure: 0.50 MPa, raw water: 500 ppm NaCl solution (25 ° C., pH 6.7), and recovery rate: 15%, and the NaCl rejection and the amount of permeated water were measured. The results are shown in Table 2.

Figure 2007209956
Figure 2007209956

Figure 2007209956
Figure 2007209956

<実施例2>
実施例1において、表1に示すように、横糸間隔L2を3.0mmに変えたポリプロピレン製ネットを用いた以外は、実施例1と全く同様にして、膜エレメントを作製し、評価を行った。その結果を表2と図3に示す。
<Example 2>
In Example 1, as shown in Table 1, a membrane element was produced and evaluated in the same manner as in Example 1 except that a polypropylene net having a weft interval L2 changed to 3.0 mm was used. . The results are shown in Table 2 and FIG.

<比較例1>
供給側流路材として、表1に示すように、供給側流路材厚み0.68mm,縦糸径0.29mm,横糸径0.29mm,縦糸間隔3.0mm,横糸間隔3.0mm,縦糸と横糸の交差角度90°で、縦糸間隔と横糸間隔の比(L1/L2)が1.00のダイヤモンド型(図4参照)のポリプロピレン製ネットを使い、膜面積6.5mの直径4インチの膜エレメントを作製した。この膜エレメントを用いて、実施例1と同様にして、膜エレメントの評価を行った。その結果を表2と図3に示す。
<Comparative Example 1>
As shown in Table 1, the supply-side channel material has a supply-side channel material thickness of 0.68 mm, warp diameter 0.29 mm, weft diameter 0.29 mm, warp interval 3.0 mm, weft interval 3.0 mm, warp and Using a diamond-shaped polypropylene net (see Fig. 4) with a weft crossing angle of 90 ° and a ratio between the warp and weft spacing (L1 / L2) of 1.00 (see Fig. 4), the membrane area is 6.5 m 2 and 4 inches in diameter. A membrane element was prepared. Using this membrane element, the membrane element was evaluated in the same manner as in Example 1. The results are shown in Table 2 and FIG.

<比較例2>
実施例1において、表1に示すように、横糸間隔L2を2.0mmに変えたポリプロピレン製ネットを用いた以外は、実施例1と全く同様にして、膜エレメントを作製し、評価を行った。その結果を表2と図3に示す。
<Comparative example 2>
In Example 1, as shown in Table 1, a membrane element was produced and evaluated in the same manner as in Example 1 except that a polypropylene net having a weft interval L2 changed to 2.0 mm was used. . The results are shown in Table 2 and FIG.

<比較例3>
実施例1において、表1に示すように、横糸間隔L2を6.0mmに変えたポリプロピレン製ネットを用いた以外は、実施例1と全く同様にして、膜エレメントを作製し、評価を行った。その結果を表2と図3に示す。
<Comparative Example 3>
In Example 1, as shown in Table 1, a membrane element was produced and evaluated in the same manner as in Example 1 except that a polypropylene net having a weft interval L2 changed to 6.0 mm was used. . The results are shown in Table 2 and FIG.

<結果>
本発明のラダー型流路材は、通常のスパイラル型逆浸透膜エレメントに使用されるダイヤ型流路材(比較例1)より、40%以上も圧力損失が低いのにもかかわらず、NaClの阻止性能は99.3%以上であり、濃度分極を維持するのに十分な乱流効果が得られることが確認できた。これに対して、比(L1/L2)が大きすぎる比較例2では、圧力損失が大きくなり、透過水量が低下し、比(L1/L2)が小さすぎる比較例3では、NaClの阻止性能が低下しており、濃度分極を維持するのに十分な乱流効果が得られず、また透過水量も低下した。
<Result>
The ladder-type channel material of the present invention has a NaCl loss of 40% or more compared to the diamond-type channel material (Comparative Example 1) used for a normal spiral-type reverse osmosis membrane element. The blocking performance was 99.3% or more, and it was confirmed that a turbulent flow effect sufficient to maintain concentration polarization was obtained. On the other hand, in Comparative Example 2 in which the ratio (L1 / L2) is too large, the pressure loss is increased, the amount of permeated water is reduced, and in Comparative Example 3 in which the ratio (L1 / L2) is too small, the blocking performance of NaCl is increased. The turbulence effect sufficient to maintain concentration polarization was not obtained, and the amount of permeated water was also reduced.

本発明のスパイラル型分離膜エレメントの供給側流路材の一例を示す説明図Explanatory drawing which shows an example of the supply side channel material of the spiral type separation membrane element of this invention 上記供給側流路材の横糸と縦糸との関係を例示する説明図Explanatory drawing which illustrates the relationship between the weft and warp of the supply side channel material 実施例と比較例における流量と圧力損失の関係を示すグラフThe graph which shows the relationship between the flow volume and pressure loss in an Example and a comparative example 従来のスパイラル型分離膜エレメントの供給側流路材の一例を示す説明図Explanatory drawing which shows an example of the supply side channel material of the conventional spiral type separation membrane element

符号の説明Explanation of symbols

1 縦糸
2 横糸
L1 縦糸間隔
L2 横糸間隔
θ 縦糸に対する横糸の交差角度
1 warp 2 weft L1 warp spacing L2 weft spacing θ Crossing angle of weft with warp

Claims (2)

分離膜と供給側流路材及び透過側流路材が、有孔の中空状中心管の周りに巻きつけられているスパイラル型分離膜エレメントにおいて、
前記供給側流路材は、供給液の流れ方向に平行な縦糸と供給液流れ方向に交差する横糸とが、交差角度20〜80°で繋がっており、縦糸間隔L1と横糸間隔L2の比(L1/L2)が1.3〜2.0の範囲にあり、かつ前記縦糸間隔L1が5mm以上であることを特徴とするスパイラル型分離膜エレメント。
In the spiral-type separation membrane element in which the separation membrane, the supply-side channel material, and the permeation-side channel material are wound around a perforated hollow central tube,
In the supply side channel material, the warp yarn parallel to the flow direction of the supply liquid and the weft yarn crossing the supply liquid flow direction are connected at an intersecting angle of 20 to 80 °, and the ratio of the warp yarn interval L1 to the weft yarn interval L2 ( L1 / L2) is in the range of 1.3 to 2.0, and the warp yarn spacing L1 is 5 mm or more.
超純水生産用に使用されるものであり、操作圧力が0.5MPaで回収率15%の条件で、25℃、500ppmNaCl溶液の阻止率性能が99.0%以上である請求項1記載のスパイラル型分離膜エレメント。   2. The rejection performance of a 25 ppm, 500 ppm NaCl solution is 99.0% or more under the conditions of an operating pressure of 0.5 MPa and a recovery rate of 15%, which is used for production of ultrapure water. Spiral type separation membrane element.
JP2006035494A 2006-02-13 2006-02-13 Spiral type separation membrane element Pending JP2007209956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035494A JP2007209956A (en) 2006-02-13 2006-02-13 Spiral type separation membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035494A JP2007209956A (en) 2006-02-13 2006-02-13 Spiral type separation membrane element

Publications (1)

Publication Number Publication Date
JP2007209956A true JP2007209956A (en) 2007-08-23

Family

ID=38488822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035494A Pending JP2007209956A (en) 2006-02-13 2006-02-13 Spiral type separation membrane element

Country Status (1)

Country Link
JP (1) JP2007209956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711570B1 (en) * 2016-06-22 2017-03-06 (주)로멤테크 Open channel spacer for swirl-inducing and membrane filter module using the same
KR20200112415A (en) 2019-03-22 2020-10-05 주식회사 엘지화학 High-recovery reverse osmosis spacer and element
CN113941255A (en) * 2021-11-10 2022-01-18 浙江开创环保科技股份有限公司 Roll type membrane component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711570B1 (en) * 2016-06-22 2017-03-06 (주)로멤테크 Open channel spacer for swirl-inducing and membrane filter module using the same
KR20200112415A (en) 2019-03-22 2020-10-05 주식회사 엘지화학 High-recovery reverse osmosis spacer and element
US20220126240A1 (en) * 2019-03-22 2022-04-28 Lg Chem, Ltd. High recovery rate-reverse osmosis spacer and element
CN113941255A (en) * 2021-11-10 2022-01-18 浙江开创环保科技股份有限公司 Roll type membrane component

Similar Documents

Publication Publication Date Title
JP6609874B2 (en) Reverse osmosis filter module
JP4587937B2 (en) Spiral type separation membrane element
JP5179230B2 (en) Spiral membrane element and spiral membrane module
US20040195164A1 (en) Spiral separation membrane element
JP2004283708A (en) Spiral separation membrane element
JP2000237554A (en) Spiral type membrane element
JP2009195871A (en) Spiral membane element
JP2004050005A (en) Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus
JP2000042378A (en) Fluid separation element
JP2007209956A (en) Spiral type separation membrane element
JP2009050759A (en) Spiral separation membrane element
JPH11235520A (en) Fluid separation element
US11478750B2 (en) Feed spacer and reverse osmosis filter module including same
JP2004283701A (en) Spiral separation membrane element
KR102437204B1 (en) Permeation side flow path material for spiral membrane element and method for manufacturing same
JP2009195870A (en) Spiral membrane element
KR102046688B1 (en) Reverse osmosis filter module for water treatment
JP2000153270A (en) Spiral type separation membrane element and its operation
JP2005319454A (en) Spiral type separation membrane element
JP4684783B2 (en) Supply-side flow path material used for spiral separation membrane element and method for manufacturing the same
JP2005087862A (en) Spiral type separation membrane element
JP5540124B2 (en) Spiral membrane element and spiral membrane module
JP2004089761A (en) Spiral membrane element, reverse osmosis membrane module and reverse osmosis membrane apparatus
JPH0747112B2 (en) Spiral type liquid separation element
JP2022522296A (en) High recovery rate reverse osmosis spacers and elements