JP2007209926A - Catalyst for cyclic carbonate synthesis - Google Patents

Catalyst for cyclic carbonate synthesis Download PDF

Info

Publication number
JP2007209926A
JP2007209926A JP2006034189A JP2006034189A JP2007209926A JP 2007209926 A JP2007209926 A JP 2007209926A JP 2006034189 A JP2006034189 A JP 2006034189A JP 2006034189 A JP2006034189 A JP 2006034189A JP 2007209926 A JP2007209926 A JP 2007209926A
Authority
JP
Japan
Prior art keywords
salt
organic
catalyst
ion
cyclic carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006034189A
Other languages
Japanese (ja)
Other versions
JP4670014B2 (en
Inventor
Toshikazu Takahashi
利和 高橋
Hiroyuki Yasuda
弘之 安田
Toshiyasu Sakakura
俊康 坂倉
Akira Endo
明 遠藤
Atsuhiro Harada
敦弘 原田
Masaru Nakaiwa
勝 中岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006034189A priority Critical patent/JP4670014B2/en
Publication of JP2007209926A publication Critical patent/JP2007209926A/en
Application granted granted Critical
Publication of JP4670014B2 publication Critical patent/JP4670014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for cyclic carbonate synthesis which enables a miniaturization of a reactor by the side of a production volume in the conventional cyclic carbonate manufacture through an increase of an activity per catalyst unit weight or unit surface area, further gives the cyclic carbonate in good yield and at a high selection rate, makes a catalyst separation after a reaction relatively easy also, eliminates waste of resorces economically favorably and safely, and enables an economic production with a more compact device. <P>SOLUTION: The catalyst containing an onium salt compound and mesoporous silica is used. As an onium salt compound, a material selected from ionicity substances containing group 15, preferably, an organic ammonium salt, an organic phosphonium salt, an organic arsonium salt, and an organic antimonium salt is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エポキシドと二酸化炭素から環状カーボネートを合成する際に用いられる触媒および該触媒を用いた環状カーボネートの合成方法に関する。   The present invention relates to a catalyst used when synthesizing a cyclic carbonate from epoxide and carbon dioxide, and a method for synthesizing a cyclic carbonate using the catalyst.

環状カーボネートは、ポリカーボネート原料、ジアルキルカーボネート及びアルキレングリコール合成の中間体、有機溶剤、合成繊維加工剤、医薬品原料、化粧品添加剤、リチウム電池用電解液溶媒、電気二重層キャパシター用電解質溶媒として広い用途に使用される重要な化合物である。
従来、この環状カーボネートは、エポキシドと二酸化炭素を均一系触媒の存在下、適当な加圧条件のもとで反応させることにより製造されている。このような均一系触媒としては、アルカリ金属等のハロゲン化物(特許文献1等)や第4級アンモニウム塩等のオニウム塩(特許文献2等)が古くから知られており、工業的に用いられている。
また最近では、アルカリ金属ハロゲン化物や、本発明者等によって見出された方法である、フッ化アルキルホスホニウム塩の存在下、超臨界状態の二酸化炭素を試薬のみならず反応媒体として利用した環状カーボネートの製造方法が提案されている(特許文献3)。
Cyclic carbonates are widely used as polycarbonate raw materials, intermediates for synthesis of dialkyl carbonates and alkylene glycols, organic solvents, synthetic fiber processing agents, pharmaceutical raw materials, cosmetic additives, electrolyte solutions for lithium batteries, and electrolyte solvents for electric double layer capacitors. It is an important compound used.
Conventionally, this cyclic carbonate is produced by reacting an epoxide and carbon dioxide under appropriate pressure conditions in the presence of a homogeneous catalyst. As such homogeneous catalysts, halides such as alkali metals (Patent Document 1 etc.) and onium salts such as quaternary ammonium salts (Patent Document 2 etc.) have been known for a long time and are used industrially. ing.
Recently, a cyclic carbonate using carbon dioxide in a supercritical state as a reaction medium as well as a reagent in the presence of an alkali metal halide or a fluorinated alkylphosphonium salt, which is a method discovered by the present inventors. Has been proposed (Patent Document 3).

触媒分離プロセスの簡素化を目的とした固体触媒の利用も提案されている。イオン交換樹脂(特許文献4等)、ハイドロタルサイトなどの塩基性層状化合物(特許文献5)、希土類化合物(特許文献6)、タングステン酸化物又はモリブデン酸化物を主体とするヘテロポリ酸(特許文献7)などが開示されている。また、マグネシアが固体触媒として利用できることが報告されている(非特許文献1)。
しかしながら、多くの固体触媒は一般に均一系触媒に比べ活性、収率や選択性の面で充分ではなく、またイオン交換樹脂についても分子触媒の性能を上回る活性を示すことはない。
The use of solid catalysts for the purpose of simplifying the catalyst separation process has also been proposed. Heteropolyacids mainly composed of ion exchange resins (Patent Document 4 etc.), basic layered compounds such as hydrotalcite (Patent Document 5), rare earth compounds (Patent Document 6), tungsten oxide or molybdenum oxide (Patent Document 7) ) Etc. are disclosed. Further, it has been reported that magnesia can be used as a solid catalyst (Non-patent Document 1).
However, many solid catalysts are generally not sufficient in terms of activity, yield and selectivity as compared to homogeneous catalysts, and ion exchange resins do not show activity exceeding the performance of molecular catalysts.

これらの問題点を解決するために、先に本発明者等は、シリカとオニウム塩を共有結合的に結合したハイブリッド触媒あるいはこれらの混合触媒が選択性、活性ともに従来触媒を上回る性能を有するうえに分離プロセスを容易にし、安価かつ安全に選択性を損なうことなく触媒活性を大幅に向上させることができる触媒を提案した(特許文献8)。   In order to solve these problems, the present inventors previously described that a hybrid catalyst in which silica and an onium salt are covalently bonded or a mixed catalyst thereof has a performance superior to conventional catalysts in both selectivity and activity. In addition, a catalyst capable of facilitating the separation process and significantly improving the catalytic activity at low cost and without impairing selectivity has been proposed (Patent Document 8).

特公昭63−17072号公報Japanese Patent Publication No.63-17072 特開昭55−145623号公報JP-A-55-145623 特開平11−335372号公報JP 11-335372 A 特開平3−120270号公報Japanese Patent Laid-Open No. 3-120270 特開平11−226413号公報JP-A-11-226413 特開2002−363177号公報JP 2002-363177 A 特開平7−206847号公報Japanese Unexamined Patent Publication No. 7-206847 PCT/JP2005/003388PCT / JP2005 / 003388 Chem. Commun., 1997, 1129Chem. Commun., 1997, 1129 JACS, 1992, 114,10834.JACS, 1992, 114, 10834.

本発明は、上記特許文献8に記載の発明の更なる改良を図るためになされたものであって、触媒単位重量もしくは単位体積あたりの活性を高めることを通じて、従来の環状カーボネート製造において生産量に比して反応装置の小型化を可能とし、さらに高収率、高選択率で環状カーボネートを与え、反応後の触媒分離も比較的容易であり、工業的に有利に安全で資源の無駄を省き、より小さな装置での生産を合理的に行うことが可能な環状カーボネートの合成用触媒を提供することを目的とする。   The present invention has been made in order to further improve the invention described in Patent Document 8 described above. By increasing the activity per unit weight or volume of the catalyst, the production amount in the conventional cyclic carbonate production can be increased. Compared with this, it is possible to reduce the size of the reaction apparatus, give cyclic carbonate with high yield and high selectivity, and relatively easy separation of the catalyst after the reaction, which is industrially advantageous and safe and saves resources. An object of the present invention is to provide a catalyst for synthesizing a cyclic carbonate that can be rationally produced in a smaller apparatus.

本発明者らは、上記した触媒の課題を解決するために鋭意研究を重ねた結果、オニウム塩化合物とメソポーラスシリカとの混合物が、触媒単位重量もしくは単位表面積あたりの活性を高めることを通じて、従来の環状カーボネート製造において生産量に比して反応装置の小型化を可能とし、さらに高収率、高選択率で環状カーボネートを与え、反応後の触媒分離も比較的容易であり、工業的に有利に安全で資源の無駄を省き、より小さな装置での生産を合理的に行うことが可能な環状カーボネートの合成用触媒として有用であることを見出した。   As a result of intensive studies to solve the above-described problems of the catalyst, the present inventors have found that a mixture of an onium salt compound and mesoporous silica increases the activity per unit weight of catalyst or unit surface area, thereby increasing the conventional activity. In the production of cyclic carbonate, it is possible to reduce the size of the reactor compared to the production volume, and give cyclic carbonate with high yield and high selectivity, and the catalyst separation after the reaction is relatively easy, which is industrially advantageous. It has been found that the catalyst is useful as a catalyst for synthesizing cyclic carbonates, which is safe and saves resources, and can be rationally produced in a smaller apparatus.

すなわち、この出願によれば、以下の発明が提供される。
〈1〉オニウム塩化合物とメソポーラスシリカを含有することを特徴とする、エポキシドと二酸化炭素から環状カーボネートを合成する際に用いられる触媒。
〈2〉オニウム塩化合物が、第15族を含むイオン性物質であることを特徴とする上記〈1〉に記載の触媒。
〈3〉第15族を含むイオン性物質が、有機アンモニウム塩、有機ホスホニウム塩、有機アルソニウム塩、および有機アンチモニウム塩から選ばれる物質であることを特徴とする上記〈2〉に記載の触媒。
〈4〉有機アンモニウム塩、有機ホスホニウム塩、有機アルソニウム塩及びアンチモニウム塩から選ばれる塩が、ハロゲン化物であることを特徴とする上記〈3〉に記載の触媒。
〈5〉有機アンモニウム塩、有機ホスホニウム塩、有機アルソニウム塩及び有機アンチモニウム塩から選ばれた塩の陰イオンが、硫酸イオン、硫酸水素イオン、燐酸イオン、燐酸水素イオン、燐酸二水素イオン、シアン化物イオン、イソチオシアン酸イオンおよびイソシアン酸イオンから選ばれた1種であることを特徴とする上記〈4〉に記載の触媒。
〈6〉メソポーラスシリカが孔径1nm〜10nmの円柱状の孔をもつものであることを特徴とする上記〈1〉〜〈5〉の何れかに記載の触媒。
That is, according to this application, the following invention is provided.
<1> A catalyst used when synthesizing a cyclic carbonate from epoxide and carbon dioxide, comprising an onium salt compound and mesoporous silica.
<2> The catalyst as described in <1> above, wherein the onium salt compound is an ionic substance containing Group 15.
<3> The catalyst according to <2>, wherein the ionic substance containing Group 15 is a substance selected from an organic ammonium salt, an organic phosphonium salt, an organic arsonium salt, and an organic antimonium salt.
<4> The catalyst according to <3>, wherein the salt selected from organic ammonium salts, organic phosphonium salts, organic arsonium salts, and antimonium salts is a halide.
<5> Anion of a salt selected from organic ammonium salt, organic phosphonium salt, organic arsonium salt and organic antimonium salt is sulfate ion, hydrogen sulfate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, cyanide The catalyst according to <4>, wherein the catalyst is one selected from ions, isothiocyanate ions and isocyanate ions.
<6> The catalyst according to any one of <1> to <5> above, wherein the mesoporous silica has cylindrical pores having a pore diameter of 1 nm to 10 nm.

本発明の触媒は、触媒単位重量もしくは単位表面積あたりの活性を高めることを通じて、従来の環状カーボネート製造において生産量に比して反応装置の小型化を可能とし、さらに高収率、高選択率で環状カーボネートを与え、反応後の触媒分離も比較的容易であり、工業的に有利に安全で資源の無駄を省き、より小さな装置での生産を合理的に行うことが可能となる。
したがって、本発明の触媒によれば、リチウム電池用電解液溶媒、有機溶剤、合成繊維加工剤、医薬品原料、更にはアルキレングリコール及びジアルキルカーボネート合成の中間体として有用な環状カーボネートを、エポキシドと二酸化炭素から極めて高効率、高選択率で得ることができる。また、流通反応系での利用も可能である。
The catalyst of the present invention can reduce the size of the reactor compared to the production amount in conventional cyclic carbonate production by increasing the activity per unit weight or surface area of the catalyst, and further, with high yield and high selectivity. Cyclic carbonate is provided, and the catalyst separation after the reaction is relatively easy, and it is industrially advantageous, safe and less wasteful of resources, and can be produced rationally with a smaller apparatus.
Therefore, according to the catalyst of the present invention, an electrolyte solvent for lithium batteries, an organic solvent, a synthetic fiber processing agent, a pharmaceutical raw material, and a cyclic carbonate useful as an intermediate for synthesizing alkylene glycol and dialkyl carbonate, epoxide and carbon dioxide. Can be obtained with extremely high efficiency and high selectivity. It can also be used in a flow reaction system.

本発明のエポキシドと二酸化炭素からの環状カーボネートの合成反応は下記一般式(1)で示される。

Figure 2007209926
The synthesis reaction of the cyclic carbonate from the epoxide of the present invention and carbon dioxide is represented by the following general formula (1).
Figure 2007209926

上記一般式(1)において、R1、R2、R3およびR4は水素原子または置換基を有するかもしくは無置換の有機基であり、さらに詳しくはアルキル基、アリール基、アルケニル基、シクロアルキル基、アリールアルキル基を表し、互いに同じであっても異なっていてもよい。ここでいう置換基とはハロゲン原子、ハロゲン化アルキル基、ジアルキルアミノ基、ニトロ基、カルボニル基、カルボキシル基、アルコキシ基、アセトキシ基、シアノ基、水酸基、メルカプト基、スルホン基等であるがこれらの置換基に限定されるものではない。またR1〜R4はそのいずれかもしくは複数が環状に結合していてもよく、不飽和結合を含んでいてもよい。 In the general formula (1), R 1 , R 2 , R 3 and R 4 are a hydrogen atom, a substituted or unsubstituted organic group, and more specifically an alkyl group, an aryl group, an alkenyl group, a cyclo Represents an alkyl group or an arylalkyl group, and may be the same or different from each other; Substituents here are halogen atoms, halogenated alkyl groups, dialkylamino groups, nitro groups, carbonyl groups, carboxyl groups, alkoxy groups, acetoxy groups, cyano groups, hydroxyl groups, mercapto groups, sulfone groups, etc. It is not limited to the substituent. Any one or more of R 1 to R 4 may be bonded in a cyclic manner, and may contain an unsaturated bond.

本発明で用いるエポキシドは下記一般式(2)で示される化合物である。

Figure 2007209926
The epoxide used in the present invention is a compound represented by the following general formula (2).
Figure 2007209926

上記一般式(2)において、 R1、R2、R3およびR4は前記一般式(1)の場合と同じである。R1〜R4はそのいずれかもしくは複数が環状に結合していてもよく、ヘテロ元素や不飽和結合を含んでいてもよい。具体的には、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド、ビニルエチレンオキシド、トリフルオロメチルエチレンオキシド、シクロヘキセンオキシド、スチレンオキシド、ブタジエンモノオキシド、ブタジエンジオキシド、クロラール、2−メチル-3-フェニルブテンオキシド、ピネンオキシド、テトラシアノエチレンオキシド、等が例示されるが、本発明はこれらのエポキシドに限定されるものではなく、炭素原子2つと酸素原子1つからなる3員環を構造式中に少なくとも1つ含む、いわゆるエポキシ系化合物であればさしつかえない。 In the general formula (2), R 1 , R 2 , R 3 and R 4 are the same as in the general formula (1). Any one or a plurality of R 1 to R 4 may be bonded cyclically, and may contain a hetero element or an unsaturated bond. Specifically, ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, vinyl ethylene oxide, trifluoromethyl ethylene oxide, cyclohexene oxide, styrene oxide, butadiene monooxide, butadiene dioxide, chloral, 2-methyl-3-phenylbutene oxide, Examples include pinene oxide, tetracyanoethylene oxide, and the like, but the present invention is not limited to these epoxides, and includes at least one three-membered ring composed of two carbon atoms and one oxygen atom in the structural formula. Any so-called epoxy compound can be used.

本発明において製造される環状カーボネートは下記一般式(3)で示される化合物である。

Figure 2007209926
The cyclic carbonate produced in the present invention is a compound represented by the following general formula (3).
Figure 2007209926

上記一般式(3)において、 R1、R2、R3およびR4は前記一般式(1)の場合と同じである。R1〜R4はそのいずれかもしくは複数が環状に結合していてもよく、ヘテロ元素や不飽和結合を含んでいてもよい。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、イソブチレンカーボネート、トリフルオロメチルエチレンカーボネート、ビニルエチレンカーボネート、シクロヘキセンカーボネート、スチレンカーボネート、ブタジエンモノカーボネート、ブタジエンジカーボネート、クロロメチルカーボネート、ピネンカーボネート、テトラシアノエチレンカーボネート等が例示されるが、本発明において製造される環状カーボネートはこれらに限定されるものではなく、O−CO−O結合を有する5員環を含む、いわゆる環状カーボネートであればさしつかえない。 In the general formula (3), R 1 , R 2 , R 3 and R 4 are the same as those in the general formula (1). Any one or a plurality of R 1 to R 4 may be bonded cyclically, and may contain a hetero element or an unsaturated bond. Specifically, ethylene carbonate, propylene carbonate, butylene carbonate, isobutylene carbonate, trifluoromethyl ethylene carbonate, vinyl ethylene carbonate, cyclohexene carbonate, styrene carbonate, butadiene monocarbonate, butadiene dicarbonate, chloromethyl carbonate, pinene carbonate, tetracyano Ethylene carbonate and the like are exemplified, but the cyclic carbonate produced in the present invention is not limited to these, and any so-called cyclic carbonate containing a 5-membered ring having an O—CO—O bond may be used.

本発明において使用される触媒は、オニウム塩化合物とメソポーラスシリカを含む混合系触媒である。この混合系触媒は、特別な前処理を必要とせず、通常、オニウム塩化合物とメソポーラスシリカとを混合して用いるだけで自動的に有効に働く。   The catalyst used in the present invention is a mixed catalyst containing an onium salt compound and mesoporous silica. This mixed catalyst does not require any special pretreatment, and usually works automatically and effectively only by mixing and using an onium salt compound and mesoporous silica.

本発明の混合系触媒における物質の混合方法には特に前処理を必要としないが、バッチ反応で用いる場合は仕込み開始直後から活性を発現させるためにオニウム塩溶媒にあらかじめ溶解させたうえでメソポーラスシリカを共存させ、シリカ表面にオニウム塩をよくゆきわたらせておくことが有効である。このとき用いるべき溶媒としてはオニウム塩をよく溶解することが必要である。このためにふさわしい物質としてはアミド、エステル、ケトン、アルコール等が考えられるが、反応後の精製を考慮するともっとも適した溶媒は生成物である環状カーボネートそのものを用いることである。
なお、後記の実施例においては生成物との区別を容易にし、副生成物の生成を押さえるために異なる種類の環状カーボネートを溶媒として用いている。
The method for mixing substances in the mixed catalyst of the present invention does not require any pretreatment. However, when used in a batch reaction, mesoporous silica is first dissolved in an onium salt solvent in order to develop its activity immediately after the start of charging. It is effective to keep the onium salt well dispersed on the silica surface. As a solvent to be used at this time, it is necessary to dissolve onium salts well. Suitable substances for this purpose include amides, esters, ketones, alcohols, etc., but considering the purification after the reaction, the most suitable solvent is to use the product cyclic carbonate itself.
In the examples described later, different types of cyclic carbonates are used as solvents in order to facilitate the distinction from the products and to suppress the formation of by-products.

本明細書でいう、「オニウム塩化合物」とは第15族元素を含むイオン性物質を意味する。
これらの第15族元素を含むイオン性物質は、一般に、一般式ER5R6R7R8Xで表すことができる。
ここでEは第15族元素(窒素、リン、砒素、アンチモン、ビスマス)のうちの一種を表す。
R5〜R8は置換されていてもよい有機基を表し、より詳しくはアルキル基、アリール基等を表し、これらのうち2ないし4個が環状に結合していてもよい。またはこの場合の環は二重結合もしくは三重結合を包含してもよい。したがって、イミダゾリニウム、ピリジニウム、テトラゾリニウム等のような含窒素複素環型の塩も内包される。
As used herein, “onium salt compound” means an ionic substance containing a Group 15 element.
Ionic substances containing these Group 15 elements can generally be represented by the general formula ER 5 R 6 R 7 R 8 X.
Here, E represents one of group 15 elements (nitrogen, phosphorus, arsenic, antimony, bismuth).
R 5 to R 8 each represents an organic group which may be substituted, and more specifically represents an alkyl group, an aryl group or the like, and 2 to 4 of them may be bonded in a cyclic manner. Or the ring in this case may include a double bond or a triple bond. Accordingly, nitrogen-containing heterocyclic salts such as imidazolinium, pyridinium, tetrazolinium and the like are also included.

Xは陰イオンであり、ハロゲン化物イオン、燐酸イオン、燐酸水素イオン、燐酸二水素イオン、硝酸イオン、硫酸イオン、有機酸イオン、炭酸イオン、炭酸水素イオン、ホウ酸イオン、ホウ酸水素イオン、ホウ酸水素イオン、アルキルまたはアリール硫酸イオン、モノまたはジアルキル燐酸イオン、モノまたはジアリール燐酸イオン、モノまたはジアルキルホウ酸イオン、シアン化物イオン、チオシアン酸イオン、シアン酸イオン、カルボン酸イオン、テトラフルオロボレートイオン等から選ばれる1種類ないしは複数の陰イオンであって、好ましくは、ハロゲン化物イオン、硫酸イオン、シアン化物イオン、燐酸イオン、イソシアン酸イオン、イソチオシアン酸イオン等であり、さらに好ましくは塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物イオンである。
本発明で好ましく用いられるオニウム塩化合物は、有機アンモニウム塩、有機ホスホニウム塩、有機アルソニウム塩及び有機アンチモニウム塩から選ばれた少なくとも一種の塩である。
X is an anion, halide ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, nitrate ion, sulfate ion, organic acid ion, carbonate ion, bicarbonate ion, borate ion, hydrogen borate ion, boron Acid hydrogen ion, alkyl or aryl sulfate ion, mono or dialkyl phosphate ion, mono or diaryl phosphate ion, mono or dialkyl borate ion, cyanide ion, thiocyanate ion, cyanate ion, carboxylate ion, tetrafluoroborate ion, etc. One or a plurality of anions selected from, preferably halide ions, sulfate ions, cyanide ions, phosphate ions, isocyanate ions, isothiocyanate ions, etc., more preferably chloride ions, bromides. Ion, iodide Io Halide ions such as
The onium salt compound preferably used in the present invention is at least one salt selected from organic ammonium salts, organic phosphonium salts, organic arsonium salts, and organic antimonium salts.

このような第15族元素を含むイオン性物質の具体的な例としては、テトラエチルアンモニウムブロミドやセチルトリメチルアンモニウムブロミドやベンザルコニウムクロリド等四級アンモニウムハライド、トリフェニルブチルホスホニウムクロリドやテトラブチルホスホニウムヨージドやテトラフェニルホスホニウムブロミド等四級ホスホニウムハライド、トリフェニルベンジルアルソニウムヨージドやテトラフェニルアルソニウムクロリド等四級アルソニウムハライド、テトラフェニルアンチモニウムブロミド等四級アンチモニウムハライド等が挙げられる。   Specific examples of such ionic substances containing Group 15 elements include quaternary ammonium halides such as tetraethylammonium bromide, cetyltrimethylammonium bromide and benzalkonium chloride, triphenylbutylphosphonium chloride and tetrabutylphosphonium iodide. And quaternary phosphonium halides such as tetraphenylphosphonium bromide, quaternary arsonium halides such as triphenylbenzylarsonium iodide and tetraphenylarsonium chloride, and quaternary antimonium halides such as tetraphenylantimonium bromide.

本発明で用いる「メソポーラスシリカ」とは、シリカを主体とする骨格からなり、数ナノメートルオーダーの均一なナノ細孔を有する多孔体であって、細孔がヘキサゴナルあるいはキュービック相に配列した三次元規則性を持つものをいう。   “Mesoporous silica” used in the present invention is a porous body having a skeleton mainly composed of silica and having uniform nanopores on the order of several nanometers, and the pores are arranged in a hexagonal or cubic phase. A thing with regularity.

具体的には、このメソポーラスシリカは、図1に概略的に示すように極めて均一な孔径を有する微細孔がヘキサゴナル状に並んだ構造を有するものであり、このような微細孔構造は優れた三次元高規則性を有すると言うことができる。   Specifically, this mesoporous silica has a structure in which micropores having extremely uniform pore diameters are arranged in a hexagonal shape as schematically shown in FIG. 1, and such a micropore structure has an excellent tertiary structure. It can be said that it has original high regularity.

この場合、三次元高規則的な柱状に配列した界面活性剤の周りに、ゲル状の加水分解物が配列したものか、ゲル状加水分解物と界面活性剤との複合体を焼成することによって得られた焼成体が好ましい。焼成体としては350〜700℃で1時間以上されているものが好ましい。   In this case, either a gel-like hydrolyzate is arranged around the surfactant arranged in a three-dimensional highly regular columnar shape, or a complex of the gel-like hydrolyzate and the surfactant is baked. The obtained fired body is preferable. As the fired body, a fired body at 350 to 700 ° C. for 1 hour or longer is preferable.

この三次元高規則性はメソポーラスシリカの(100)面のX線回折ピークの半値幅により評価することができる。一般に無機材料はX線回折ピークの半値幅が小さいほど高い結晶性を有するが、メソポーラス体の場合、半値幅は微細孔の規則性(孔径分布及び三次元配列)とも相関している。(100)面のX線回折ピークの半値幅が1°以下であると、三次元高規則性に優れていると言える。半値幅は0.8°以下であるのが好ましく、0.6°以下であるのがより好ましく、0.3°以下であるのが特に好ましい。   This three-dimensional high regularity can be evaluated by the half-value width of the X-ray diffraction peak of the (100) plane of mesoporous silica. In general, inorganic materials have higher crystallinity as the half-value width of the X-ray diffraction peak is smaller. However, in the case of a mesoporous body, the half-value width correlates with the regularity of pores (pore size distribution and three-dimensional arrangement). It can be said that the three-dimensional high regularity is excellent when the half width of the X-ray diffraction peak of the (100) plane is 1 ° or less. The full width at half maximum is preferably 0.8 ° or less, more preferably 0.6 ° or less, and particularly preferably 0.3 ° or less.

メソポーラスシリカの孔径は、好ましくは1〜10 nmであり、更に好ましくは1.2〜6nmであり、より好ましくは1.2〜4.0 nmである。孔径が小さすぎると拡散が遅くなるために表面積に比して活性が低下する場合がある。一方孔径が大きすぎるとメソポーラスであることによる特別な効果については失われてしまう。   The pore size of mesoporous silica is preferably 1 to 10 nm, more preferably 1.2 to 6 nm, and more preferably 1.2 to 4.0 nm. If the pore size is too small, the diffusion is slowed down, so that the activity may be reduced compared to the surface area. On the other hand, if the pore diameter is too large, the special effect due to being mesoporous is lost.

このメソポーラスシリカの孔径は、特開2005-162596号公報にみられるのと同様にガス吸着法により求めた孔径分布のピークにおける孔径と定義する。またガス吸着測定は、メソポーラスシリカを300℃で8時間減圧乾燥(真空脱気)した後、−196℃で行うこととする。減圧乾燥時の圧力は10-1 Pa以下とするのが好ましく、10-2 Pa以下とするのがより好ましい。 The pore diameter of this mesoporous silica is defined as the pore diameter at the peak of the pore diameter distribution obtained by the gas adsorption method as seen in JP-A-2005-162596. In addition, gas adsorption measurement is performed at −196 ° C. after drying the mesoporous silica at 300 ° C. under reduced pressure (vacuum degassing) for 8 hours. Vacuum drying pressure during preferably not more than 10 -1 Pa, more preferably between 10 -2 Pa or less.

本発明において、メソポーラスシリカはシリカを主体とする限り、その成分は限定されない。
シリカ中に微量もしくは少量の炭素、鉛、錫、ホウ素、アルミ、ガリウム、インジウム、窒素、リン、ヒ素、アンチモン、チタン、ジルコン、ハフニウム等の元素を含むものであってもよい。
また、骨格以外の部分に有機物を含有しても良い。例えば焼成を行う前の乾燥メソポーラス体の微細孔内には、カチオン界面活性剤等の有機物が含まれていてもよい。
In the present invention, the components of mesoporous silica are not limited as long as the main component is silica.
Silica may contain a trace amount or a small amount of carbon, lead, tin, boron, aluminum, gallium, indium, nitrogen, phosphorus, arsenic, antimony, titanium, zircon, hafnium, or the like.
Moreover, you may contain organic substance in parts other than frame | skeleton. For example, organic substances such as a cationic surfactant may be contained in the fine pores of the dried mesoporous body before firing.

本発明のメソポーラスシリカとしては、その表面積は500〜2000m2・g-1の対重量比表面積もの、好ましくは600〜1800m2・g-1、さらに好ましくは800〜1600cm2・g-1の表面積をもつものが好ましい。 The mesoporous silica of the present invention, the surface area to weight ratio surface area of 500~2000m 2 · g -1, preferably the surface area of the 600~1800m 2 · g -1, more preferably 800~1600cm 2 · g -1 Those having are preferred.

本発明のメソポーラスシリカの形態に特に制限はないが、通常、微粉状、薄膜状、あるいは平均粒径0.1〜10 mm程度の球形または円柱状の粒子である。   Although there is no restriction | limiting in particular in the form of the mesoporous silica of this invention, Usually, it is a fine particle form, a thin film form, or a spherical or cylindrical particle | grain with an average particle diameter of 0.1-10 mm.

本発明で好ましく使用されるメソポーラスシリカとして、入手容易なものとしては、たとえば、J.S.Beckら、J.Am.Chem.Soc.,114、10834(1992)、に記載されているアルキルトリメチルアンモニウムからなる界面活性剤の集合体をテンプレートとして用い、水熱合成によって得られるメソポーラスシリカ(MCM−41)が挙げられる。   Examples of the mesoporous silica preferably used in the present invention include those readily available from J. S. Beck et al. Am. Chem. Soc. , 114, 10834 (1992), and mesoporous silica (MCM-41) obtained by hydrothermal synthesis using an assembly of a surfactant composed of alkyltrimethylammonium as a template.

また、特開2005-162596号公報にみられる同様の分子集合体を鋳型としたシリカもしくはほかの金属酸化物のアルコキシドからの酸塩基触媒による加水分解縮合を室温付近で起こさせ、減圧乾燥によって得られる固形物を焼結してつくられるメソポーラスシリカ(MPS−C16)等も有効である。この固体は機械的強度、化学的強度、表面積あたりの嵩体積の小ささなどの点でMCM−41よりもさらに好ましい。   In addition, acid-base catalyzed hydrolytic condensation from silica or other metal oxide alkoxides using the same molecular aggregate as found in JP-A-2005-162596 as a template is obtained by drying under reduced pressure. Also effective is mesoporous silica (MPS-C16) produced by sintering a solid material. This solid is more preferable than MCM-41 in terms of mechanical strength, chemical strength, and small bulk volume per surface area.

上記メソポーラスシリカ(MPS-C16)は(a)ケイ素のアルコキシド及び/又はその重縮合物と、界面活性剤と、水及びアルコールからなる溶液と、酸とを含有する反応溶液中で、前記金属アルコキシド及び/又は前記重縮合物を加水分解し、(b) 得られた加水分解物溶液の溶媒を揮発させる方法により、粉状又は粒状のナノポーラス体が効率よく生成する。
また、前記加水分解物溶液の溶媒は、減圧雰囲気中で揮発させるのが好ましい。減圧雰囲気中で揮発させることにより、溶媒を効率よく除去することができる。前記加水分解物溶液が沸騰しない程度の圧力に減圧しながら溶媒を揮発させるのが好ましい。また前記加水分解物溶液の均一性を維持するように強制的に流れを起こしながら、前記溶媒を揮発させるのが好ましい。前記溶媒は0〜70℃で揮発させるのが好ましい。また加水分解物溶液を酸性にして前記溶媒を揮発させるのが好ましい。
The mesoporous silica (MPS-C16) is a metal alkoxide in a reaction solution containing (a) a silicon alkoxide and / or a polycondensate thereof, a surfactant, a solution comprising water and alcohol, and an acid. And / or the said polycondensate is hydrolyzed and the powdery or granular nanoporous body is efficiently produced | generated by the method of volatilizing the solvent of the obtained hydrolyzate solution (b).
The solvent of the hydrolyzate solution is preferably volatilized in a reduced pressure atmosphere. By volatilizing in a reduced-pressure atmosphere, the solvent can be efficiently removed. It is preferable to volatilize the solvent while reducing the pressure to such a level that the hydrolyzate solution does not boil. The solvent is preferably volatilized while forcibly causing a flow so as to maintain the uniformity of the hydrolyzate solution. The solvent is preferably volatilized at 0 to 70 ° C. It is preferable to make the hydrolyzate solution acidic to volatilize the solvent.

前記ケイ素のアルコキシド及び/又は前記重縮合物にはケイ素の他に少量のアルミニウム、チタン及びジルコニウムからなる群から選ばれた少なくとも一種の金属のアルコキシド及び/又はその重縮合物が含まれていてもよい。前記界面活性剤はカチオン界面活性剤又はノニオン界面活性剤であるのが好ましく、四級アンモニウム系界面活性剤であるのがより好ましい。   The silicon alkoxide and / or the polycondensate may contain at least one metal alkoxide selected from the group consisting of aluminum, titanium and zirconium and / or a polycondensate thereof in addition to silicon. Good. The surfactant is preferably a cationic surfactant or a nonionic surfactant, and more preferably a quaternary ammonium surfactant.

上記のような本発明において使用されるメソポーラスシリカは、単位重量あたりもしくは単位嵩あたりの比表面積が十分に大きく、かつ十分な機械的化学的安定性を有するものである。   The mesoporous silica used in the present invention as described above has a sufficiently large specific surface area per unit weight or unit volume and has sufficient mechanical and chemical stability.

オニウム塩化合物とシリカの使用割合はオニウム塩が少なすぎるとシリカ上の不活性な吸着点への吸着のみが起こり、活性が現れない。またオニウム塩が多すぎると溶液が粘稠となりさらには固体が析出するため触媒分離等にとって不利な状態となる。オニウム塩とシリカの重量比は好ましくは0.1:1から10:1であり、さらに好ましくは0.5:1から2:1である。   If the amount of the onium salt compound and silica is too small, only adsorption to an inactive adsorption point on silica occurs, and no activity appears. On the other hand, if the amount of onium salt is too large, the solution becomes viscous and a solid is precipitated, which is disadvantageous for catalyst separation. The weight ratio of onium salt to silica is preferably from 0.1: 1 to 10: 1, more preferably from 0.5: 1 to 2: 1.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by these examples.

参考例1
[メソポーラスシリカ(MPS-C16)の合成]
セチルトリメチルアンモニウムクロライド19.2 gと、エタノール(純度99.5体積%以上)138.0 gとを500 mLのガラスビーカーに入れ、マグネチックスターラーを使用して、常温で15分間撹拌した。次にテトラエチルオルトシリケート(純度98%)62.5 gと、塩酸水溶液(10−3 M)54.0 gとを加えて常温で1時間撹拌し、透明な加水分解物溶液を得た。物性定数推算法[化学工学便覧第3版 丸善(株)]によると、この加水分解物溶液の動粘度は、2cm2/secであった。
Reference example 1
[Synthesis of mesoporous silica (MPS-C16)]
19.2 g of cetyltrimethylammonium chloride and 138.0 g of ethanol (purity 99.5% by volume or more) were placed in a 500 mL glass beaker and stirred at room temperature for 15 minutes using a magnetic stirrer. Next, 62.5 g of tetraethylorthosilicate (purity 98%) and 54.0 g of aqueous hydrochloric acid (10 −3 M) were added and stirred at room temperature for 1 hour to obtain a transparent hydrolyzate solution. According to the physical property constant estimation method [Chemical Engineering Handbook 3rd edition Maruzen Co., Ltd.], the hydrolyzate solution had a kinematic viscosity of 2 cm 2 / sec.

この加水分解物溶液を1000 mLナス型フラスコ(最も径の大きい部分の内径13.2 cm)に移し、ロータリーエバポレータ(40 rpm)を使用して、25℃の温度及び60 hPaの減圧状態で90分間反応させ、白色の析出物を得た。次いで60℃に昇温するとともに、減圧度を10
hPaに上げて、白色析出物を十分に乾燥した。得られた個体を600℃で焼成して、カチオン界面活性剤を除去した。得られた焼成体のX線回折分析(XRD)、及び窒素ガスによる吸着等温線により多孔構造の構造規則性の評価を行った。メソポーラスシリカ(MPS-C16)のX線回折パターン及び窒素吸着等温線を示すグラフを図2及び図3に示す。メソポーラスシリカは高い三次元高規則性を有していることがわかった。
またこの実験で得られた表面積ならびに規則性細孔のサイズのデータを表1に示す。
Transfer this hydrolyzate solution to a 1000 mL eggplant-shaped flask (the inner diameter of the largest part: 13.2 cm), and react for 90 minutes using a rotary evaporator (40 rpm) at a temperature of 25 ° C and a reduced pressure of 60 hPa. To obtain a white precipitate. Next, the temperature was raised to 60 ° C and the degree of vacuum was 10
The white precipitate was sufficiently dried by raising to hPa. The obtained solid was baked at 600 ° C. to remove the cationic surfactant. The structural regularity of the porous structure was evaluated by X-ray diffraction analysis (XRD) of the obtained fired body and adsorption isotherm by nitrogen gas. Graphs showing the X-ray diffraction pattern and nitrogen adsorption isotherm of mesoporous silica (MPS-C16) are shown in FIGS. It was found that mesoporous silica has high three-dimensional high regularity.
The surface area and regular pore size data obtained in this experiment are shown in Table 1.

参考例2
[メソポーラスシリカ(MCM−41)の合成]
40gの水、18.7gのナトリウムシリケート28.7%シリカ溶液と1.2gの亜硫酸を混合し、攪拌する。10分間攪拌を続けた後、C16H33(CH3)3NBr 16.77gを水50.23gに溶かした溶液を加えてさらに30分攪拌を続ける。ゲル状となったものに20gの水をさらに加える。このゲルは100℃で144時間加熱する。この操作により水溶液中から固体が得られた。
この固体を回収して540℃で1時間加熱する。得られた固体はXRD及び窒素ガスによる吸着等温線により多孔質構造の構造規則性の評価を行った。メソポーラスシリカ(MCM-41)のX線解説パターン及び窒素吸着等温線を示すグラフは文献のものとほぼ一致した。またこの実験で得られた表面積ならびに規則性細孔のサイズのデータを表1に示す。メソポーラスシリカは文献と同様、高い三次元高規則性を有していることがわかった。
Reference example 2
[Synthesis of mesoporous silica (MCM-41)]
40 g of water, 18.7 g of sodium silicate 28.7% silica solution and 1.2 g of sulfurous acid are mixed and stirred. After stirring for 10 minutes, a solution of 16.77 g of C 16 H 33 (CH 3 ) 3 NBr in 50.23 g of water is added and stirring is continued for another 30 minutes. An additional 20 g of water is added to the gel. The gel is heated at 100 ° C. for 144 hours. By this operation, a solid was obtained from the aqueous solution.
This solid is recovered and heated at 540 ° C. for 1 hour. The obtained solid was evaluated for structural regularity of the porous structure by XRD and adsorption isotherm by nitrogen gas. The X-ray explanation pattern and the graph showing the nitrogen adsorption isotherm of mesoporous silica (MCM-41) almost coincided with the literature. The surface area and regular pore size data obtained in this experiment are shown in Table 1. As in the literature, mesoporous silica was found to have high three-dimensional high regularity.

また、参考例1および2で得たメソポーラスシリカの単位質量あたりの嵩体積の測定をJIS K1550に準じて、より少量での測定を行なうために5〜8 mlの試料について10 mlのメスシリンダーで計り取ったうえ、その重量を10 mgの単位まで正確に量った上でシリカの詰まったメスシリンダーをゴム板の上で約1分間たたいて紛体を詰め、すきまなく均一に詰まっていることを目視により確認した上で0.05 mlの単位まで正確に読み取って求めた体積でシリカの重量を割ることによって求めた。結果を表1に示す。なお、表1には、一方分離用シリカゲルSG60Nについて同様の実験を行い、その値も同じ表に示した。
この表1から MPS-C16はMCM-41と比較して嵩密度が大幅に高く、単位重量あたりの表面積は同程度でありながら単位嵩体積あたりの表面積は倍であることが判る。一方分離用シリカゲルSG60Nは嵩密度は中程度であるが単位重量あたりの表面積はメソポーラスシリカの半分程度であり、単位嵩体積あたりの表面積はふたつのメソポーラスシリカの中間にあたることが判る。
In addition, in order to measure the bulk volume per unit mass of the mesoporous silica obtained in Reference Examples 1 and 2 in a smaller amount according to JIS K1550, use a 10 ml graduated cylinder for 5 to 8 ml samples. After weighing, weigh accurately to the unit of 10 mg and tap the graduated cylinder filled with silica on the rubber plate for about 1 minute to pack the powder. Was obtained by dividing the weight of silica by the volume obtained by accurately reading up to 0.05 ml. The results are shown in Table 1. In Table 1, a similar experiment was performed on one-side separation silica gel SG60N, and the values are also shown in the same table.
From Table 1, it can be seen that MPS-C16 has a much higher bulk density than MCM-41, and the surface area per unit volume is double while the surface area per unit weight is similar. On the other hand, the silica gel SG60N for separation has a medium bulk density, but the surface area per unit weight is about half that of mesoporous silica, and the surface area per unit volume is between the two mesoporous silicas.

実施例1〜2、比較例1
触媒として一定量の市販のテトラブチルホスホニウムブロミド、表1に示した2種のメソポーラスシリカと通常のシリカゲル各200mgと、溶媒としてエチレンカーボネート2.6 g(溶解時約2.0 ml)、内部標準としてアダマンタン50mgとを攪拌機、圧力ゲージ、ニードルバルブを具備した容積20mlのオートクレーブ中にアルゴン下で仕込み、注射筒を用いてプロピレンオキシド2 .0ml ( 28.6 mmol )を加えたうえで密封し、ニードルバルブを介して室温の液体CO2を充填する。これを密封し、所定の温度に設定したオイルバス中で攪拌しながら約5分間加熱する。さらにバルブから高圧CO2を圧入し一定圧力としたうえで、加熱を続けて反応をうながす。反応中、圧力が著しく低下した場合にはさらにニードルバルブからCO2を追加し、内部の圧力をほぼ一定に保ちながら一時間反応を続ける。反応後、容器の圧開放時には放出されるガスをDMFトラップを通じて気相中に残っている原料のプロピレンオキシドや生成物であるプロピレンカーボネートの一部をできるだけ完全にトラップする。このDMF溶液と反応液をあわせた全体をよく均一にしたうえでろ過し、ろ別されたシリカゲルを再度DMFで洗った洗液とともによく均一にまぜた溶液をガスクロマトグラフィーによって分析した。プロピレンカーボネートの生成モル量から収率を計算し、副生成物の生成量を考慮して選択率を計算した。なお水分が十分に取り除かれた原料を用いた場合、選択率はいずれも99.8%を超えていた。収率の結果を表2に示す。
Examples 1-2, Comparative Example 1
A certain amount of commercially available tetrabutylphosphonium bromide as a catalyst, 200 mg of each of the two types of mesoporous silica and ordinary silica gel shown in Table 1, 2.6 g of ethylene carbonate (approximately 2.0 ml when dissolved), and 50 mg of adamantane as an internal standard Into a 20 ml autoclave equipped with a stirrer, pressure gauge and needle valve under argon, 2.0 ml (28.6 mmol) of propylene oxide was added using a syringe and sealed. filling of liquid CO 2. This is sealed and heated for about 5 minutes with stirring in an oil bath set to a predetermined temperature. In addition, pressurize high-pressure CO 2 from the valve to maintain a constant pressure, and continue the heating to urge the reaction. If the pressure drops significantly during the reaction, CO 2 is further added from the needle valve, and the reaction is continued for one hour while keeping the internal pressure almost constant. After the reaction, when the pressure of the vessel is released, the gas released is trapped through the DMF trap as completely as possible to the raw material propylene oxide remaining in the gas phase and part of the product propylene carbonate. The combined DMF solution and the reaction solution were thoroughly homogenized and filtered, and the solution obtained by mixing the filtered silica gel together with the washing solution washed with DMF again was analyzed by gas chromatography. The yield was calculated from the amount of propylene carbonate produced, and the selectivity was calculated in consideration of the amount of by-product produced. In addition, when the raw material from which water | moisture content was fully removed was used, all the selectivity exceeded 99.8%. The yield results are shown in Table 2.

Figure 2007209926
Figure 2007209926

Figure 2007209926
Figure 2007209926

上記の表1から明らかなように、同じ重量の通常のシリカ(比較例1:SG60N)を触媒として用いた場合と比較してメソポーラスシリカ(実施例1:MPS-C16、実施例2:MCM-41)を用いると収率が明らかに向上していることがわかる。このように通常のシリカに比して大表面積を有するメソポーラスシリカを用いる利点は明らかである。   As is apparent from Table 1 above, mesoporous silica (Example 1: MPS-C16, Example 2: MCM-) compared to the case where normal silica (Comparative Example 1: SG60N) of the same weight was used as a catalyst. It can be seen that the yield is clearly improved by using 41). Thus, the advantage of using mesoporous silica having a large surface area compared with ordinary silica is obvious.

上記実施例と比較例における収率の比較はシリカの重量をそろえた実験(単位重量当たりの収率)によって行ったが、上記メソポーラスシリカは分離用シリカゲルであるSG60Nよりも1.5倍程度高表面積であるため、シリカ単位表面積(100m2)に換算した反応速度定数(ks)でこれらを比較し直すことで単位表面積あたりの触媒性能を比較した。その結果を表3に示す。
なお、単位表面積当たりの反応速度定数ks/min-1m-2は、系の擬一次反応速度定数(k':単位はmin-1)をそれぞれ用いたシリカの表面積で除することによって求めた。
k' =−ln(1−y(t))/t
t:反応時間(min)
y(t):時刻tにおける生成物のモル分率(収率)
The comparison of the yields in the above Examples and Comparative Examples was carried out by an experiment in which the weight of silica was aligned (yield per unit weight). The mesoporous silica was about 1.5 times higher than SG60N, which is a silica gel for separation. Since it is a surface area, the catalyst performance per unit surface area was compared by comparing again with the reaction rate constant (k s ) converted into the silica unit surface area (100 m 2 ). The results are shown in Table 3.
The reaction rate constant k s / min −1 m −2 per unit surface area is obtained by dividing the pseudo first order reaction rate constant (k ′: unit is min −1 ) of the system by the surface area of silica. It was.
k ′ = − ln (1-y (t)) / t
t: Reaction time (min)
y (t): molar fraction of product at time t (yield)

Figure 2007209926
Figure 2007209926

表3から、テトラエチルアンモニウム塩をシリカに対して比較的大量に用いると、シリカゲル60Nでは活性が飽和しているのに対し、ふたつのメソポーラスシリカでは活性が上昇し、表面積あたりの活性で分離用シリカゲルのそれをそれぞれ1.5倍または2.3倍上回ることがわかる。この事実は表面ばかりではなく、孔内におかれているアンモニウム塩も通常の液相中のそれよりも高い活性を担っている可能性を示唆する。   From Table 3, when a relatively large amount of tetraethylammonium salt is used relative to silica, the activity is saturated in silica gel 60N, whereas the activity increases in two mesoporous silicas. It can be seen that it exceeds that of 1.5 times or 2.3 times, respectively. This fact suggests that not only the surface but also the ammonium salt placed in the pores may have a higher activity than that in the normal liquid phase.

更に、上記実施例と比較例において、単位体積(1cm3)に換算した反応速度定数(ks)を比較し、嵩体積あたりの触媒性能を比較した。その結果を表4に示す。
なお、単位体積当たりの反応速度定数kv(min-1・cm-3)は、系の擬一次反応速度定数(k':単位はmin-1)をそれぞれ用いたシリカの体積で除することによって求めた。
k' =−ln(1−y(t))/t
t:反応時間(min)
y(t):時刻tにおける生成物のモル分率(収率)
Furthermore, the reaction rate constant (k s ) converted to unit volume (1 cm 3 ) was compared in the above Examples and Comparative Examples, and the catalyst performance per bulk volume was compared. The results are shown in Table 4.
The reaction rate constant k v (min −1 · cm -3 ) per unit volume should be divided by the volume of silica using the quasi-first order reaction rate constant (k ′: unit is min −1 ) of the system. Sought by.
k ′ = − ln (1-y (t)) / t
t: Reaction time (min)
y (t): molar fraction of product at time t (yield)

Figure 2007209926
Figure 2007209926

表4から、メソポーラスシリカではそれと同量以上のオニウム塩を加えた場合にシリカゲル60Nよりも高い活性を示している。とりわけこの効果はMPS-C16が大きく、シリカ表面だけではなく、孔内にあるオニウム塩も溶液中のそれよりも高い触媒活性を発現している可能性を示唆する。
また、MPS-C16はMCM-41と比べて均一かつ稠密で嵩密度が高い。このことはおそらく多孔質固体触媒の外表面積が低いことが関係していると予想される。
From Table 4, mesoporous silica shows higher activity than silica gel 60N when the same amount or more of onium salt is added. In particular, this effect suggests that MPS-C16 is large, and not only the silica surface but also the onium salt in the pores may express higher catalytic activity than that in solution.
MPS-C16 is more uniform and dense and has a higher bulk density than MCM-41. This is probably expected to be related to the low external surface area of the porous solid catalyst.

以上のことから、高表面積をもつメソポーラスシリカとオニウム塩を用いることでシリカの単位重量あたりの触媒活性を増大させうることが明らかになった。とりわけMCM-41でこの効果は顕著である。一方、MPS-C16などの特定のメソポーラスシリカを用いることによって触媒粒子の嵩体積あたりの活性を増大しうる。これらメソポーラスシリカにおいては表面だけではなくメソ孔内にあるオニウム塩も溶液中にあるそれよりも高い触媒活性をもち、シリカはその高い活性を発現する場として働いていることが予想される。これらのメソポーラスシリカの利用によって環状カーボネートの合成をより効率よく行うことができるようになるほか、小さなリアクターでの生産効率を向上させることが可能となる。   From the above, it became clear that the catalytic activity per unit weight of silica can be increased by using mesoporous silica and onium salt having a high surface area. This effect is particularly noticeable with MCM-41. On the other hand, the activity per bulk volume of the catalyst particles can be increased by using a specific mesoporous silica such as MPS-C16. In these mesoporous silicas, not only the surface but also the onium salt in the mesopores has a higher catalytic activity than that in the solution, and it is expected that the silica acts as a place to express the high activity. By using these mesoporous silicas, the cyclic carbonate can be synthesized more efficiently, and the production efficiency in a small reactor can be improved.

メソポーラスシリカの微細構造の概略断面図。The schematic sectional drawing of the fine structure of mesoporous silica. メソポーラスシリカ(MPS-C16)のX線結晶回折データ。X-ray crystal diffraction data of mesoporous silica (MPS-C16). メソポーラスシリカ(MPS-C16)の-196℃での窒素の吸着等温線データ。Nitrogen adsorption isotherm data at -196 ° C for mesoporous silica (MPS-C16).

Claims (6)

オニウム塩化合物とメソポーラスシリカを含有することを特徴とする、エポキシドと二酸化炭素から環状カーボネートを合成する際に用いられる触媒。 A catalyst used when synthesizing a cyclic carbonate from epoxide and carbon dioxide, comprising an onium salt compound and mesoporous silica. オニウム塩化合物が、第15族を含むイオン性物質であることを特徴とする請求項1に記載の触媒。 2. The catalyst according to claim 1, wherein the onium salt compound is an ionic substance containing a Group 15. 第15族を含むイオン性物質が、有機アンモニウム塩、有機ホスホニウム塩、有機アルソニウム塩、および有機アンチモニウム塩から選ばれる物質であることを特徴とする請求項2に記載の触媒。 The catalyst according to claim 2, wherein the ionic substance containing Group 15 is a substance selected from organic ammonium salts, organic phosphonium salts, organic arsonium salts, and organic antimonium salts. 有機アンモニウム塩、有機ホスホニウム塩、有機アルソニウム塩及びアンチモニウム塩から選ばれる塩が、ハロゲン化物であることを特徴とする請求項3に記載の触媒。 The catalyst according to claim 3, wherein the salt selected from an organic ammonium salt, an organic phosphonium salt, an organic arsonium salt, and an antimonium salt is a halide. 有機アンモニウム塩、有機ホスホニウム塩、有機アルソニウム塩及び有機アンチモニウム塩から選ばれた塩の陰イオンが、硫酸イオン、硫酸水素イオン、燐酸イオン、燐酸水素イオン、燐酸二水素イオン、シアン化物イオン、イソチオシアン酸イオンおよびイソシアン酸イオンから選ばれた1種であることを特徴とする請求項4に記載の触媒。 The anion of the salt selected from organic ammonium salt, organic phosphonium salt, organic arsonium salt and organic antimonium salt is sulfate ion, hydrogen sulfate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, cyanide ion, isothiocyanate. The catalyst according to claim 4, wherein the catalyst is one selected from an acid ion and an isocyanate ion. メソポーラスシリカが孔径1nm〜10nmの円柱状の孔をもつものであることを特徴とする請求項1〜5の何れかに記載の触媒。
The catalyst according to any one of claims 1 to 5, wherein the mesoporous silica has cylindrical pores having a pore diameter of 1 nm to 10 nm.
JP2006034189A 2006-02-10 2006-02-10 Catalyst for cyclic carbonate synthesis Expired - Fee Related JP4670014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034189A JP4670014B2 (en) 2006-02-10 2006-02-10 Catalyst for cyclic carbonate synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034189A JP4670014B2 (en) 2006-02-10 2006-02-10 Catalyst for cyclic carbonate synthesis

Publications (2)

Publication Number Publication Date
JP2007209926A true JP2007209926A (en) 2007-08-23
JP4670014B2 JP4670014B2 (en) 2011-04-13

Family

ID=38488794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034189A Expired - Fee Related JP4670014B2 (en) 2006-02-10 2006-02-10 Catalyst for cyclic carbonate synthesis

Country Status (1)

Country Link
JP (1) JP4670014B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132585A1 (en) * 2010-04-20 2011-10-27 日本化学工業株式会社 Phosphorous-containing mesoporous silica and preparation method therefor
KR101206910B1 (en) 2010-10-06 2012-11-30 부산대학교 산학협력단 Preparation of glycerol carbonate by using the immobilized ionic liquid catalyst on MCM-41
WO2014175263A1 (en) * 2013-04-23 2014-10-30 丸善石油化学株式会社 Method for manufacturing catalyst for synthesizing cyclic carbonate
WO2014175262A1 (en) * 2013-04-23 2014-10-30 丸善石油化学株式会社 Method for producing catalyst for cyclic carbonate synthesis
WO2014175261A1 (en) * 2013-04-23 2014-10-30 独立行政法人産業技術総合研究所 Method for producing catalyst for cyclic carbonate synthesis
CN113426440A (en) * 2021-07-13 2021-09-24 中国科学院山西煤炭化学研究所 Pretreatment method and application of catalyst for cyclic carbonate synthesis
CN115677645A (en) * 2022-12-16 2023-02-03 浙江孚诺林化工新材料有限公司 Preparation method of 4-trifluoromethyl ethylene carbonate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030062A (en) * 2000-07-21 2002-01-29 Naonobu Katada Method for producing carbamate compound
JP2003251189A (en) * 2002-03-06 2003-09-09 National Institute Of Advanced Industrial & Technology Alkylene carbonate synthesizing catalyst
JP2004049937A (en) * 2002-07-16 2004-02-19 Gifu Univ METHOD FOR SYNTHESIZING beta-HYDROXYKETONE AND CATALYST THEREFOR
JP2005162596A (en) * 2003-06-17 2005-06-23 National Institute Of Advanced Industrial & Technology Nanoporous body and method for manufacturing the same
WO2005084801A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Catalyst for cyclic carbonate synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030062A (en) * 2000-07-21 2002-01-29 Naonobu Katada Method for producing carbamate compound
JP2003251189A (en) * 2002-03-06 2003-09-09 National Institute Of Advanced Industrial & Technology Alkylene carbonate synthesizing catalyst
JP2004049937A (en) * 2002-07-16 2004-02-19 Gifu Univ METHOD FOR SYNTHESIZING beta-HYDROXYKETONE AND CATALYST THEREFOR
JP2005162596A (en) * 2003-06-17 2005-06-23 National Institute Of Advanced Industrial & Technology Nanoporous body and method for manufacturing the same
WO2005084801A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Catalyst for cyclic carbonate synthesis

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132585A1 (en) * 2010-04-20 2011-10-27 日本化学工業株式会社 Phosphorous-containing mesoporous silica and preparation method therefor
KR101206910B1 (en) 2010-10-06 2012-11-30 부산대학교 산학협력단 Preparation of glycerol carbonate by using the immobilized ionic liquid catalyst on MCM-41
WO2014175263A1 (en) * 2013-04-23 2014-10-30 丸善石油化学株式会社 Method for manufacturing catalyst for synthesizing cyclic carbonate
WO2014175262A1 (en) * 2013-04-23 2014-10-30 丸善石油化学株式会社 Method for producing catalyst for cyclic carbonate synthesis
WO2014175261A1 (en) * 2013-04-23 2014-10-30 独立行政法人産業技術総合研究所 Method for producing catalyst for cyclic carbonate synthesis
CN105163853A (en) * 2013-04-23 2015-12-16 丸善石油化学株式会社 Method for manufacturing catalyst for synthesizing cyclic carbonate
KR20160003665A (en) * 2013-04-23 2016-01-11 마루젠 세끼유가가꾸 가부시키가이샤 Method for manufacturing catalyst for synthesizing cyclic carbonate
JPWO2014175263A1 (en) * 2013-04-23 2017-02-23 丸善石油化学株式会社 Method for producing catalyst for synthesis of cyclic carbonate
JPWO2014175261A1 (en) * 2013-04-23 2017-02-23 丸善石油化学株式会社 Method for producing catalyst for synthesis of cyclic carbonate
JPWO2014175262A1 (en) * 2013-04-23 2017-02-23 丸善石油化学株式会社 Method for producing catalyst for synthesis of cyclic carbonate
US9834536B2 (en) 2013-04-23 2017-12-05 National Institute Of Advanced Industrial Science And Technology Method for producing catalyst for cyclic carbonate synthesis
US10011621B2 (en) 2013-04-23 2018-07-03 Maruzen Petrochemical Co., Ltd. Method for producing silica gel-immobolized phosphonium salt catalysts
US10029241B2 (en) 2013-04-23 2018-07-24 Maruzen Petrochemical Co., Ltd. Method for producing catalyst for cyclic carbonate synthesis
KR102156460B1 (en) 2013-04-23 2020-09-15 마루젠 세끼유가가꾸 가부시키가이샤 Method for manufacturing catalyst for synthesizing cyclic carbonate
CN113426440A (en) * 2021-07-13 2021-09-24 中国科学院山西煤炭化学研究所 Pretreatment method and application of catalyst for cyclic carbonate synthesis
CN115677645A (en) * 2022-12-16 2023-02-03 浙江孚诺林化工新材料有限公司 Preparation method of 4-trifluoromethyl ethylene carbonate

Also Published As

Publication number Publication date
JP4670014B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4670014B2 (en) Catalyst for cyclic carbonate synthesis
JP5106106B2 (en) Process for producing olefin oxide, 1,2-diol, 1,2-diol ether, or alkanolamine
CA2343784C (en) Process for preparing epoxidation catalysts with improved properties
JP4794042B2 (en) Catalysts for the gas phase epoxidation of olefins and their preparation
CN101827653B (en) Catalyst, method for producing the same, and method for producing chlorine using the catalyst
RU2342993C2 (en) Silver-containing catalysts, obtaining such catalysts and their application
CN101193702B (en) A catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine
KR101629038B1 (en) A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine
CN100553763C (en) The epoxidizing method of the silver catalyst of load and this catalyst of use
CN102781578B (en) Epoxidation catalyst, prepare the method for this catalyst and prepare the method for alkylene oxide
CA2571179C (en) A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine
Liu et al. Squaramide-derived framework modified periodic mesoporous organosilica: A robust bifunctional platform for CO2 adsorption and cooperative conversion
JP5519288B2 (en) Method for treating a support, method for preparing a catalyst, the catalyst, and use of the catalyst
Cordeiro et al. Enhancement of the catalytic activity of titanium-based terminal olefin epoxidation catalysts via surface modification with functionalized protic molecules
EP3572149A1 (en) Preparation method for olefin epoxidation catalyst and applications thereof
CN1317990A (en) Process for removing ionizable species from catalyst surface to improve catalytic properties
WO2015008854A1 (en) Method for manufacturing cyclic carbonate
CA2598523C (en) An olefin epoxidation process, a catalyst for use in the process, a carrier for use in making the catalyst, and a process for making the carrier
TW200600190A (en) Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation
KR20150050420A (en) Alumina carrier, method of preparing the same, and silver catalyst
TW200530212A (en)
Comès et al. Multifunctional heterogeneous catalysts highly performing in the conversion of carbon dioxide: Mechanistic insights
RU2378189C2 (en) Hydrogen peroxide synthesis method
CN104707592A (en) Preparation method of alpha-alumina carrier for silver catalyst
CN1071135C (en) Epoxidation catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees