JP2007209594A - Duct type hollow structure having air cleaning effect and air cleaning method - Google Patents

Duct type hollow structure having air cleaning effect and air cleaning method Download PDF

Info

Publication number
JP2007209594A
JP2007209594A JP2006033770A JP2006033770A JP2007209594A JP 2007209594 A JP2007209594 A JP 2007209594A JP 2006033770 A JP2006033770 A JP 2006033770A JP 2006033770 A JP2006033770 A JP 2006033770A JP 2007209594 A JP2007209594 A JP 2007209594A
Authority
JP
Japan
Prior art keywords
hollow structure
air
air cleaning
pollutant
removing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006033770A
Other languages
Japanese (ja)
Other versions
JP4754367B2 (en
Inventor
Kakuei Manji
角英 万字
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2006033770A priority Critical patent/JP4754367B2/en
Publication of JP2007209594A publication Critical patent/JP2007209594A/en
Application granted granted Critical
Publication of JP4754367B2 publication Critical patent/JP4754367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Duct Arrangements (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a duct type hollow structure easily adjusting settings such as a pressure loss and an air cleaning capacity according to changes in conditions such as the type and concentration of pollutant and a wind speed, and easily replacing and cleaning an air cleaning means such as photocatalyst and adsorbent at an appropriate time; and an air cleaning method using the same. <P>SOLUTION: This duct type hollow structure is provided with a hollow structure body 2 having an air passage, and a pollutant removing member 3 attachably/detachably disposed inside the hollow structure body 2 in approximately parallel to the circulating direction of air. The hollow structure body 2 has an opening/closing part and the pollutant removing member 3 can be put in/taken out from the opening/closing part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、汚染された空気から汚染物質を除去して空気を清浄化するダクト型中空構造物およびこれを用いた空気清浄方法に関するものである。   The present invention relates to a duct-type hollow structure that cleans air by removing pollutants from contaminated air and an air cleaning method using the same.

近年、環境保護の観点から、例えば二酸化炭素(CO2 )の温室効果ガスについては、国際的な削減目標の設定などが行われており、二酸化炭素の削減を目的とした世界規模での植林事業に呼応して、建築分野においても、屋上緑化などの対策が講じられるようになってきている。 In recent years, from the viewpoint of environmental protection, for example, carbon dioxide (CO 2 ) greenhouse gases have been set for international reduction targets, etc., and a global afforestation project aimed at reducing carbon dioxide In response to this, measures such as rooftop greening have been taken in the construction field.

また、健康面からも、自動車等から発せられる窒素酸化物(NOx)や粒子状物質(PM)についても、その排出規制が一段と厳しくなっており、さらに悪臭物質やたばこ臭、シックハウス症候群を引き起こすホルムアルデヒドなどの居住空間における汚染物質も社会問題となっている。   In terms of health, nitrogen oxide (NOx) and particulate matter (PM) emitted from automobiles, etc. are becoming more stringent, and formaldehyde that causes malodorous substances, tobacco odor and sick house syndrome. Contaminants in living spaces such as are also a social problem.

空気中に含まれるこれら汚染物質を除去する技術としては、太陽光等の光エネルギーの下で活性化した酸化チタン等の光触媒に接触させることにより、上記汚染物質を分解除去する技術や、オゾン処理による除去技術、あるいは活性炭などの吸着剤によって吸着除去する技術などが実用化されている。   As a technology for removing these pollutants contained in the air, a technology for decomposing and removing the pollutants by contacting with a photocatalyst such as titanium oxide activated under light energy such as sunlight, or ozone treatment The removal technique by the use or the technique of adsorption removal with an adsorbent such as activated carbon has been put into practical use.

また、建築物においても、吸着剤や光触媒を用いたフィルターにより、建築物内部に取り込む空気や、建築物外部に排出する空気に含まれる汚染物質を除去する技術が提案されている。しかしながら、それら空気をフィルターに通すには、圧力損失が極めて大きくなるため、専用のブロワーを設置するか、あるいはダクト用の既設ブロワーを強化する必要がある。   Also, in a building, a technique for removing contaminants contained in air taken into the building or air discharged outside the building by using a filter using an adsorbent or a photocatalyst has been proposed. However, in order to pass the air through the filter, the pressure loss becomes extremely large, so it is necessary to install a dedicated blower or strengthen the existing blower for the duct.

これに対して、例えば、特許文献1〜9には、光触媒または光触媒と吸着剤の組合せからなる平板を汚染空気の流通方向と平行に配置することによって、圧力損失を低下させるようにした装置(以下、平行板装置と称する。)が提案されている。また、特許文献2には、平行板を積層配置する場合に、その間隔を経験的な数値(例えば0.5〜2.5mm)に設定することが記載され、特許文献8,9には、平行板の間隔を拡散スクラバとしてのGormley-Kennedy理論式から導かれた除去効率に基づいて設定することが記載されている。   On the other hand, for example, in Patent Documents 1 to 9, an apparatus (see FIG. 1) that reduces a pressure loss by arranging a flat plate made of a photocatalyst or a combination of a photocatalyst and an adsorbent in parallel with the flow direction of contaminated air. Hereinafter, it is referred to as a parallel plate device). Patent Document 2 describes that when parallel plates are stacked and arranged, the interval is set to an empirical numerical value (for example, 0.5 to 2.5 mm). It is described that the interval between parallel plates is set based on the removal efficiency derived from the Gormley-Kennedy theoretical formula as a diffusion scrubber.

一方、屋外の汚染物質を除去する方法としては、例えば、建物外壁、ガードレール、道路などの構造物の表面に光触媒を塗布して、光触媒の作用により、周囲に存在するNOxやSOxを分解除去する方法が検討されている。しかしながら、この方法においては、NOxやSOxから硝酸や硫酸等が生成されて、それら生成物質が雨水によって光触媒表面から洗い流されることとなるため、そのまま放置しておくと、土壌中に拡散して地下水汚染などを引き起こす虞がある。このため、上記汚染水を回収するのが望ましいが、上記汚染水は大量に発生するために、その回収設備に掛かるコストは高く、また上述した建物外壁やガードレール等の構造物の近傍は、何れも回収設備を設置するのに適していないため、現状では汚染水を回収するのは困難である。   On the other hand, as a method for removing outdoor pollutants, for example, a photocatalyst is applied to the surface of a structure such as an outer wall of a building, a guardrail, or a road, and NOx and SOx existing in the surroundings are decomposed and removed by the action of the photocatalyst. A method is being considered. However, in this method, nitric acid, sulfuric acid, and the like are generated from NOx and SOx, and these generated substances are washed away from the surface of the photocatalyst by rainwater. There is a risk of causing contamination. For this reason, it is desirable to collect the contaminated water. However, since a large amount of the contaminated water is generated, the cost for the recovery equipment is high, and the vicinity of the structure such as the outer wall of the building or the guardrail described above However, it is difficult to recover the contaminated water at present because it is not suitable for installing recovery equipment.

そこで、本発明者等は、先に、上記問題点を解決する建築物として、建築物の下層部から頂部に至る範囲に亘ってボイド部を形成し、このボイド部の上昇気流を利用して、建築物の外部および/または内部の汚染空気を建築物頂部に集め、この集めた汚染空気を、建築物頂部に設置した中空状の空気清浄化装置に通して浄化する構成の建築物を提案するとともに、これを特許文献10に開示している。この特許文献10に記載の建築物によれば、地下水汚染などを引き起こすことなく、建築物の外部および/または内部の空気中に含まれる様々な汚染物質を効果的に除去して空気の清浄化を図ることができる。   Therefore, the inventors previously formed a void part over the range from the lower layer part to the top part of the building as a building that solves the above problems, and using the rising air current of this void part Proposes a building that collects contaminated air outside and / or inside the building at the top of the building and purifies the collected contaminated air through a hollow air purifier installed at the top of the building. In addition, this is disclosed in Patent Document 10. According to the building described in Patent Document 10, various pollutants contained in the air outside and / or inside the building are effectively removed without causing groundwater contamination and the like, thereby purifying the air. Can be achieved.

因みに、上記空気清浄化装置の内部には、仕切り板と扉によって仕切られた2つの空間が設けられ、その一方が空気流路(空気が流れる空間)に、他方が洗浄エリア(空気が流れない空間)に設定されるとともに、扉を回動させることによって、空気流路と洗浄エリアの切換が可能となっている。そして、この切換操作を行うことにより、装置内部の洗浄および排水の回収が可能となっている。   Incidentally, inside the air cleaning device, there are provided two spaces partitioned by a partition plate and a door, one of which is an air flow path (a space through which air flows) and the other is a cleaning area (the air does not flow). It is possible to switch between the air flow path and the washing area by rotating the door. Then, by performing this switching operation, it is possible to clean the inside of the apparatus and collect the drainage.

特開平10−305213号公報JP-A-10-305213 特開平10−286436号公報Japanese Patent Laid-Open No. 10-286436 特開2000−271486号公報JP 2000-271486 A 特開2001−120956号公報JP 2001-12095 A 特開2001−137665号公報JP 2001-137665 A 特開2002−166131号公報JP 2002-166131 A 特開2002−95929号公報JP 2002-95929 A 特許第3483208号公報Japanese Patent No. 3484208 特開2005−131553号公報JP 2005-131553 A 特開2004−154754号公報JP 2004-154754 A

ところで、建築物においては、例えば、外気の取入口や、地下空間と地上を結ぶ給排気口、水族館の排気口、地下駐車場の排気口、トンネルの排気口など、汚染物質の濃度が比較的変化し易い箇所がある。また、特許文献10に記載の建築物においては、ボイド部の広さや、立地条件、季節に伴う温度変動などにより、風速や、汚染物質の種類や濃度に変化が生じる場合がある。   By the way, in buildings, for example, the concentration of pollutants is relatively low such as outside air intake, air supply / exhaust opening connecting underground space and ground, aquarium exhaust, underground parking lot, tunnel exhaust, etc. There are places that are easy to change. In addition, in the building described in Patent Document 10, there are cases where changes occur in the wind speed and the type and concentration of pollutants due to the size of the void, location conditions, seasonal temperature fluctuations, and the like.

しかしながら、特許文献1〜9に記載の平行板装置や、特許文献10に記載の空気清浄化装置には、現場に設置した後に圧力損失や空気清浄能力(汚染物質の除去効率)などの設定を調整する手段を有していないため、上記のように、汚染物質の種類や濃度、あるいは風速などの条件が変化する場合に、それら条件に合わせて上記設定を調整することが困難であった。そのため、例えば、設計時の予定性能を確保できない場合には、装置全体の交換が必要であった。   However, the parallel plate devices described in Patent Documents 1 to 9 and the air cleaning device described in Patent Document 10 have settings such as pressure loss and air cleaning capability (contaminant removal efficiency) after installation at the site. Since there is no means for adjustment, it is difficult to adjust the above settings according to the conditions such as the type and concentration of contaminants or the wind speed as described above. Therefore, for example, when the planned performance at the time of design cannot be ensured, it is necessary to replace the entire apparatus.

また、上記平行板装置を既設のダクトなどに連結する際には、上記平行板装置をその設置環境に合わせて設計するか、または給排気動力の増設などの大掛かりな工事によって、既存の設備を上記平行板装置の仕様に合わせる手間が発生する。何れの場合も設置後に上記設定の微調整が必要になる場合が多いが、そのような場合においても、上記設定を調整することが困難であった。
なお、特許文献2には、前述したように、平行板の間隔を経験的な数値に設定する方法が記載され、特許文献8,9には、平行板間の間隔を拡散スクラバとしてのGormley-Kennedy理論式から導かれた除去効率に基づいて設定する方法が記載されているが、それら設計方法は、何れも初期の仮設計に使用することはできても、上記平行板装置を設置した後の調整に適用することはできなかった。
In addition, when connecting the parallel plate device to an existing duct, etc., the existing equipment should be installed by designing the parallel plate device according to the installation environment or by a large-scale construction such as adding supply / exhaust power. Time and effort to meet the specifications of the parallel plate device occurs. In any case, fine adjustment of the setting is often required after installation, but in such a case, it is difficult to adjust the setting.
Note that, as described above, Patent Document 2 describes a method of setting the interval between parallel plates to an empirical value, and Patent Documents 8 and 9 describe Gormley− as a diffusion scrubber. Although the method of setting based on the removal efficiency derived from the Kennedy theoretical formula is described, any of these design methods can be used for the initial temporary design, but after the parallel plate device is installed, Could not be applied to the adjustment.

また、光触媒や吸着剤でNOx除去などを行う場合には、定期的に水洗や交換が必要になるが、それら処理を行うべき時期や対象は、汚染物質の種類や濃度、風速などの使用条件によって変わってくる。しかしながら、特許文献1〜9に記載の平行板装置においては、上記処理を行うべき時期や対象を的確に把握することができないため、必ずしも最適ではない時期に全体を交換または洗浄せざるを得ず、結果的にコスト増大を招いていた。
また、特許文献10に記載の空気清浄化装置においては、光触媒や吸着材などの空気清浄手段を洗浄する際に、装置ごと洗浄しなければならないため、廃水量が多くなり、その回収に多大な労力を要するという問題点があった。
In addition, when removing NOx with a photocatalyst or adsorbent, it is necessary to periodically wash and replace with water. The timing and target of such treatment should be based on usage conditions such as the type and concentration of pollutants, and wind speed. It depends on. However, in the parallel plate devices described in Patent Documents 1 to 9, since it is impossible to accurately grasp the time and object to be processed, it is necessary to replace or clean the whole at a time that is not necessarily optimal. As a result, the cost was increased.
Moreover, in the air purification apparatus of patent document 10, when washing | cleaning air purification means, such as a photocatalyst and an adsorbent, since the whole apparatus must be wash | cleaned, the amount of wastewater increases and it is great for the collection | recovery. There was a problem of requiring labor.

本発明は、かかる事情に鑑みてなされたもので、汚染物質の種類や濃度、あるいは風速などの条件の変化などに応じて、圧力損失や空気清浄能力などの設定を容易に調整することができ、しかも光触媒や吸着材などの空気清浄手段を適切な時期に容易に交換・洗浄することができるダクト型中空構造物およびこれを用いた空気清浄方法を提供することを課題とするものである。   The present invention has been made in view of such circumstances, and settings such as pressure loss and air cleaning capability can be easily adjusted according to changes in conditions such as the type and concentration of contaminants or wind speed. Moreover, it is an object of the present invention to provide a duct type hollow structure in which air cleaning means such as a photocatalyst and an adsorbent can be easily replaced and cleaned at an appropriate time, and an air cleaning method using the same.

上記課題を解決するために、請求項1に記載の本発明に係るダクト型中空構造物は、空気清浄効果を有するダクト型中空構造物であって、空気流路を有する中空構造物本体と、上記中空構造物本体の内部に、空気の流通方向と略平行に且つ着脱自在な状態で配置された汚染物質除去部材とを備え、上記中空構造物本体は、その壁面(天井面、側面または底面の何れか)に開閉部を有し、この開閉部から上記汚染物質除去部材を出し入れ可能となっていることを特徴とするものである。   In order to solve the above problems, a duct type hollow structure according to the present invention described in claim 1 is a duct type hollow structure having an air cleaning effect, and a hollow structure main body having an air flow path, The hollow structure main body includes a contaminant removing member disposed in a detachable state substantially parallel to the air flow direction, and the hollow structure main body has a wall surface (ceiling surface, side surface or bottom surface). 1) having an opening / closing part, and the contaminant removing member can be taken in and out from the opening / closing part.

ここで、上記空気に含まれる汚染物質とは、例えば、建築物の外部の空気については、周囲の工場や自動車、地下空間等から排出されるNOx、SOx、CO2 などが挙げられる。また、建築物内部の空気については、事務所などの居住空間から発生するCO2 、建築材料、塗料、家具などから発生するホルムアルデヒドやトルエン、トイレから発生するアンモニアなどの悪臭物質、たばこなどに起因する有機化合物の塵埃などが該当し、さらに上記建築物が動物園や水族館である場合には、動物やその飼育過程で発生するトリメチルアミンなどの悪臭物質、工場などである場合には、各種の化学物質が挙げられる。 Here, the pollutants contained in the air include, for example, NOx, SOx, CO 2 and the like discharged from surrounding factories, automobiles, underground spaces, etc., for the air outside the building. In addition, the air inside buildings is caused by CO 2 generated from living spaces such as offices, formaldehyde and toluene generated from building materials, paints, furniture, etc., malodorous substances such as ammonia generated from toilets, tobacco, etc. If the building is a zoo or aquarium, it is a malodorous substance such as trimethylamine generated during the animal or its breeding process, or if it is a factory, various chemical substances Is mentioned.

また、上記開閉部は、中空構造物本体を設置した状態で、汚染物質除去部材の出し入れを行うことが可能であれば、例えば、回動式あるいはスライド式の扉部材で開口部を開閉するものや、蓋部材により開口部を開閉するものなど、如何なる態様のものであってもよい。   In addition, the opening / closing part can open and close the opening with, for example, a rotating or sliding door member, as long as the contaminant removing member can be taken in and out with the hollow structure body installed. Or what kind of thing, such as what opens and closes an opening part with a cover member, may be sufficient.

上記汚染物質除去部材を“空気の流通方向と略平行”に配置するのは、圧力損失の増大を抑えるためであり、そうすることで、ブロアーを利用することなく、例えば自然の風の流れが通過できる程度の抵抗、または既存の給排気口に取り付けた場合にそのまま利用できる程度の抵抗とすることができ、究極ではないが効率的な汚染空気除去率を実現することができる。一般的なフィルターにおいては、究極の除去率を実現するために、空気清浄手段(光触媒、吸着材)を密に詰まった状態で配置して、空気清浄手段と空気の接触面積を大きくするが、この場合、空気抵抗が非常に大きくなるため、その分ブロアーの能力を高める必要がある。これに対して、本発明では、汚染空気が空気清浄手段の表面に接触しながら流通するため、フィルターのように空気清浄手段を透過する場合に比べて圧力損失が極めて低くなる。   The pollutant removing member is disposed “substantially parallel to the air flow direction” in order to suppress an increase in pressure loss, and, for example, a natural wind flow can be performed without using a blower. The resistance that can be passed or the resistance that can be used as it is when it is attached to an existing air supply / exhaust port can be achieved, and an effective but not ultimate contamination air removal rate can be realized. In general filters, in order to achieve the ultimate removal rate, air cleaning means (photocatalyst, adsorbent) are arranged in a tightly packed state to increase the contact area between the air cleaning means and air. In this case, since air resistance becomes very large, it is necessary to increase the capacity of the blower accordingly. On the other hand, in the present invention, since the contaminated air flows while contacting the surface of the air cleaning means, the pressure loss is extremely low as compared with the case of passing through the air cleaning means like a filter.

さらに、上記汚染物質除去部材が果たす役割としては、1)空気清浄手段を保持するための支持体、2)空気の流量を制御するための抵抗(汚染物質除去部材の数量や配置を変えることによって、自在に流量を調整することができる)、3)空気の流れを制御したり(セパレート効果)、乱流を起こさせたりして、空気清浄手段への空気の接触面積、接触量を増大させることなどが挙げられる。   Further, the role of the pollutant removing member is as follows: 1) a support for holding the air cleaning means, 2) resistance for controlling the air flow rate (by changing the quantity and arrangement of the pollutant removing member) 3) Control the air flow (separate effect) or cause turbulence to increase the contact area and contact amount of the air to the air cleaning means. And so on.

請求項2に記載の発明は、請求項1に記載のダクト型中空構造物において、上記中空構造物本体は、上記空気中の汚染物質の種類・濃度、風速の何れかを測定する測定装置を取り付けるための観測口を有することを特徴とするものである。   The invention according to claim 2 is the duct type hollow structure according to claim 1, wherein the hollow structure main body is a measuring device for measuring any of the type / concentration of the pollutants in the air and the wind speed. It has an observation port for mounting.

例えば、汚染物質がNOxなどの場合、NOx測定器に内蔵されている吸引ポンプに接続したチューブを上記観測口から差し込むことにより、直接濃度を測定することが可能である。また、各種検知管を観測口から差し込んで測定することにより、精度は落ちるものの、幅広い物質に関して濃度を測定することができる。また、精度の高い測定を行う場合には、ポンプを利用してサンプリングすることにより、精密機器で分析することもできる。また、観測口からペン型の各種風速計を差し込めば、風速を測定することもできる。さらに、複数の観測口における測定結果を相互に比較するようにすれば、各観測口間の圧力損失や空気清浄能力(汚染物質の除去効率)を導き出すことも可能である。   For example, when the pollutant is NOx or the like, the concentration can be directly measured by inserting a tube connected to a suction pump built in the NOx measuring device from the observation port. In addition, by inserting various detector tubes from the observation port and measuring, the concentration can be measured for a wide range of substances, although the accuracy is reduced. Moreover, when performing a highly accurate measurement, it can also analyze with a precision instrument by sampling using a pump. The wind speed can also be measured by inserting various pen-type anemometers from the observation port. Furthermore, if the measurement results at a plurality of observation ports are compared with each other, it is possible to derive the pressure loss and the air cleaning ability (contaminant removal efficiency) between the observation ports.

請求項3に記載の発明は、請求項1または2に記載のダクト型中空構造物において、上記汚染物質除去部材は、光触媒と吸着材の少なくとも一方を空気清浄手段として用いることを特徴とするものである。また、吸着材に光触媒を塗布または焼付けにより固着したものであってもよい。   The invention according to claim 3 is the duct type hollow structure according to claim 1 or 2, wherein the contaminant removing member uses at least one of a photocatalyst and an adsorbent as an air cleaning means. It is. Alternatively, a photocatalyst may be fixed to the adsorbent by coating or baking.

ここで、上記汚染物質除去部材は、その一部または全体に上記空気清浄手段を塗布または焼付けにより固着したものであっても、あるいは上記空気清浄手段を基材の一部または全体に塗布または焼付けにより固着して作製したパネル状またはボード状の空気清浄部材を着脱自在に装着したものであってもよい。また、上記空気清浄部材は、吸着材で構成されていてもよく、その構造がコルゲート状またはプリーツ状であってもよい。上記空気清浄部材を着脱自在に装着する方法としては、例えば、上記空気清浄部材の取付位置に係止溝や係止片等を形成して装着する方法や、専用のクリップ等を利用して装着する方法などが挙げられるが、何れの方法を採用するようにしてもよい。   Here, the pollutant removing member may be a part or the whole of which the air cleaning means is fixed by coating or baking, or the air cleaning means may be applied or baked to a part or whole of the substrate. A panel-like or board-like air cleaning member produced by being fixed by the above may be detachably mounted. The air cleaning member may be composed of an adsorbent, and the structure may be corrugated or pleated. As a method of detachably mounting the air cleaning member, for example, a mounting method in which a locking groove or a locking piece is formed at the mounting position of the air cleaning member or a dedicated clip is used. However, any method may be adopted.

上記空気清浄手段を構成する光触媒としては、酸化チタン、金属酸化物半導体(酸化亜鉛、酸化タングステン、酸化カドミウム、酸化インジウム、酸化銀、酸化マンガン、酸化銅、酸化鉄、酸化スズ、酸化バナジウム、酸化ニオブ、酸化ジルコニウムなど)、金属硫化物半導体(硫化カドミウム、硫化亜鉛、硫化インジウム、硫化鉛、硫化銅、硫化モリブデン、硫化タングステン、硫化アンチモン、硫化ビスマスなど)、チタン酸ストロンチウム、セレン化カドミウム、タンタル酸カリウム、およびこれらの混合物などが適用可能である。また、光触媒とセメントの混合材や光触媒にハイドロキシアパタイトやフッ化アパタイトを結合させた触媒なども適用可能である。   The photocatalyst constituting the air cleaning means includes titanium oxide, metal oxide semiconductor (zinc oxide, tungsten oxide, cadmium oxide, indium oxide, silver oxide, manganese oxide, copper oxide, iron oxide, tin oxide, vanadium oxide, oxidation Niobium, zirconium oxide, etc.), metal sulfide semiconductors (cadmium sulfide, zinc sulfide, indium sulfide, lead sulfide, copper sulfide, molybdenum sulfide, tungsten sulfide, antimony sulfide, bismuth sulfide, etc.), strontium titanate, cadmium selenide, tantalum Potassium acid, a mixture thereof, and the like are applicable. Further, a mixed material of a photocatalyst and cement, a catalyst in which hydroxyapatite or fluorinated apatite is bonded to the photocatalyst, and the like are also applicable.

上記吸着材としては、ゼオライト、シリカゲル、イオン交換材、アルミナ系吸着材、金属錯体系吸着材、セラミックスなどの無機系吸着材や、活性炭、イオン交換材、キレート樹脂などの有機系吸着材が適用可能である。なお、上記吸着材には、特定のガスを除去するためのガス反応成分(例えば、二酸化炭素を除去するための水酸化カリウム溶液など)を塗布または含浸したものも含まれる。   As the adsorbent, inorganic adsorbents such as zeolite, silica gel, ion exchange material, alumina adsorbent, metal complex adsorbent, and ceramics, and organic adsorbents such as activated carbon, ion exchange material, and chelate resin are applicable. Is possible. The adsorbent includes those coated or impregnated with a gas reaction component for removing a specific gas (for example, a potassium hydroxide solution for removing carbon dioxide).

請求項4に記載の発明は、請求項1〜3の何れかに記載のダクト型中空構造物において、上記中空構造物本体は、その天井部が光透過性部材により構成され、この光透過性部材を介して、太陽光または光源の光を上記汚染物質除去部材が受光可能となっていることを特徴とするものである。   According to a fourth aspect of the present invention, in the duct type hollow structure according to any one of the first to third aspects, the ceiling of the hollow structure main body is constituted by a light transmissive member. The pollutant removing member can receive sunlight or light from a light source through the member.

請求項5に記載の発明は、請求項1〜4の何れかに記載のダクト型中空構造物において、上記汚染物質除去部材は、上記中空構造物本体の底部上面に載置可能な底板部と、この底板部上面に立設された一または複数の起立板部とを備えて、断面がU型、逆T型、L型、またはその何れか複数を並列に並べて組み合わせた形状をなしていることを特徴とするものである。   According to a fifth aspect of the present invention, in the duct type hollow structure according to any one of the first to fourth aspects, the contaminant removing member includes a bottom plate portion that can be placed on the upper surface of the bottom portion of the hollow structure main body. And one or a plurality of upright plate portions erected on the upper surface of the bottom plate portion, and the cross-section has a U shape, an inverted T shape, an L shape, or a shape obtained by combining a plurality of them in parallel. It is characterized by this.

ここで、各汚染物質除去部材の高さや幅寸法は、それぞれ中空構造物本体内の空気流路の高さや幅寸法以下であれば特に限定されるものではない。但し、空気清浄手段として光触媒を使用する場合には、光触媒への光の照射に支障を来さないように、各汚染物質除去部材の設置間隔を設定する必要がある。
複数の汚染物質除去部材を中空構造物本体内に配置する場合には、中空構造物本体の幅方向に並列に配置するようにしても、あるいは中空構造物本体の長さ方向(空気の流通方向)に直列に配置するようにしてもよい。また、複数の汚染物質除去部材を並列に並べた組合せを基本ユニットとして、同じ組合せの基本ユニットを直列に続けて配置するようにしたり、あるいは異なる組合せの基本ユニットを直列に配置することも可能である。さらに、中空構造物本体内に配置する汚染物質除去部材は、同じ種類の型で統一するようにしても、複数種類の型を組み合わせて用いるようにしてもよい。なお、中空構造物本体の側壁部内面に沿って空気清浄手段を配置する場合には、L型の汚染物質除去部材を、その起立板部が上記側壁部内面に隣接する状態で配置するようにすればよい。
Here, the height and width dimensions of each contaminant removing member are not particularly limited as long as they are equal to or less than the height and width dimensions of the air flow path in the hollow structure body. However, when using a photocatalyst as an air cleaning means, it is necessary to set the installation interval of each contaminant removing member so as not to hinder the light irradiation to the photocatalyst.
When a plurality of contaminant removing members are arranged in the hollow structure body, they may be arranged in parallel in the width direction of the hollow structure body, or the length direction of the hollow structure body (air flow direction) ) May be arranged in series. It is also possible to arrange a combination of a plurality of pollutant removal members in parallel as a basic unit, and arrange the same combination of basic units in series, or arrange different combinations of basic units in series. is there. Furthermore, the pollutant removal member disposed in the hollow structure body may be unified with the same type of mold, or a plurality of types of molds may be used in combination. In addition, when arrange | positioning an air purifying means along the side wall part inner surface of a hollow structure main body, it arrange | positions so that an L-type contaminant removal member may be arrange | positioned in the state in which the standing board part adjoins the said side wall part inner surface. do it.

請求項6に記載の本発明に係る空気清浄方法は、請求項1〜5の何れかに記載のダクト型中空構造物に汚染空気を流通させて、当該汚染空気を浄化する空気清浄方法であって、上記中空構造物本体を上記汚染空気の経路に沿って設置する第1工程と、上記中空構造物本体の内部に、上記汚染空気の流通方向と略平行に複数の上記汚染物質除去部材を配置する第2工程とを有し、上記第2工程では、予め設定された空気清浄能力および圧力損失に基づいて、上記汚染物質除去部材の数量、配置および空気清浄手段を決定し、その決定に従って、複数の上記汚染物質除去部材を直列および/または並列に配置することを特徴とするものである。   An air cleaning method according to the present invention described in claim 6 is an air cleaning method for purifying the contaminated air by circulating the contaminated air through the duct type hollow structure according to any one of claims 1 to 5. A first step of installing the hollow structure main body along the path of the contaminated air, and a plurality of the contaminant removing members in the hollow structure main body substantially parallel to the flow direction of the contaminated air. And in the second step, the quantity, the arrangement and the air cleaning means of the contaminant removing member are determined based on the preset air cleaning capability and pressure loss, and according to the determination. A plurality of the contaminant removing members are arranged in series and / or in parallel.

汚染物質除去部材の数量を増加させると、圧力損失が増加して風速の低下および空気と空気清浄手段との接触時間の増大をもたらし、また空気と空気清浄手段の接触面積は増加する。一方、汚染物質除去部材の数量を減少させると、圧力損失が減少して風速の増大および空気と空気清浄手段との接触時間の減少をもたらし、また空気と空気清浄手段の接触面積は減少する。すなわち、汚染物質除去部材の数量を増減することにより、圧力損失および空気清浄能力を変化させることができる。
また、汚染物質除去部材の数量を変えなくとも、汚染物質除去部材の配置を変更すれば、圧力損失が変動することから、空気清浄能力が変化する。また、空気清浄手段の種類や密度を変えることによっても、空気清浄能力が変化する。したがって、汚染物質除去部材の数量、配置および空気清浄手段の設定を変えることによって、圧力損失および空気清浄能力を調整することが可能である。このため、適用場所や汚染物質の種類・濃度、風速などの条件に合わせて、汚染物質除去部材の数量、配置、空気清浄手段を選択するようにすれば、空気清浄能力や圧力損失などの要求性能がそれぞれ異なる個別の事例に対応することが可能である。
Increasing the number of pollutant removal members increases pressure loss resulting in lower wind speed and increased contact time between the air and the air cleaning means, and increases the contact area between the air and the air cleaning means. On the other hand, when the quantity of the contaminant removing member is reduced, the pressure loss is reduced, resulting in an increase in the wind speed and a reduction in the contact time between the air and the air cleaning means, and the contact area between the air and the air cleaning means is reduced. That is, the pressure loss and the air cleaning ability can be changed by increasing or decreasing the number of contaminant removal members.
Further, if the arrangement of the pollutant removing member is changed without changing the quantity of the pollutant removing member, the pressure loss fluctuates, so that the air cleaning ability changes. Further, the air cleaning ability also changes by changing the type and density of the air cleaning means. Therefore, it is possible to adjust the pressure loss and the air cleaning capability by changing the quantity of the contaminant removing member, the arrangement and the setting of the air cleaning means. For this reason, if the quantity, arrangement, and air cleaning means of the pollutant removal member are selected according to the conditions such as the location of application, the type / concentration of the pollutant, and the wind speed, requirements such as air cleaning capacity and pressure loss It is possible to deal with individual cases with different performance.

請求項7に記載の発明は、請求項6に記載の空気清浄方法において、上記空気中の汚染物質の種類・濃度、風速の何れかを測定し、その測定結果に基づいて、上記汚染物質除去部材の数量、配置および空気清浄手段の設定の何れかに変更を加えることにより、空気清浄能力および圧力損失を調整することを特徴とするものである。   The invention according to claim 7 is the air cleaning method according to claim 6, wherein any one of the type / concentration of the pollutant in the air and the wind speed is measured, and the pollutant removal is performed based on the measurement result. The present invention is characterized in that the air cleaning capacity and pressure loss are adjusted by changing any of the number of members, the arrangement, and the setting of the air cleaning means.

請求項8に記載の発明は、請求項6または7に記載の空気清浄方法において、上記空気中の汚染物質の種類・濃度、風速の何れかを測定するとともに、その測定結果に基づいて、上記汚染物質除去部材の洗浄または交換を行う時期を推定し、その時期が到来したときに、上記汚染物質除去部材を上記開閉部から取り出して上記汚染物質除去部材の洗浄または交換を行うことを特徴とするものである。   The invention according to claim 8 is the air cleaning method according to claim 6 or 7, wherein either the type / concentration of the pollutant in the air or the wind speed is measured, and based on the measurement result, Estimating the time to clean or replace the pollutant removing member, and when the time has come, take out the pollutant removing member from the opening / closing part and clean or replace the pollutant removing member To do.

請求項1〜5の何れかに記載の発明によれば、中空構造物本体の内部に汚染物質除去部材を設けるようにしたので、中空構造物本体の内部に流入した空気が中空構造物本体内部を通過する過程で、その空気中に含まれる様々な汚染物質を汚染物質除去部材により除去することができ、空気の清浄化を図ることができる。したがって、本発明に係るダクト型中空構造物を、例えば、外気の建築物内部への給気口、建築物内部から発生した汚染空気の外部への排気口、地上から地下空間への給気口、地下空間から地上への排気口、屋外環境中において広い空間から狭い空間に汚染物質が集まる場所または通過する場所、狭い空間から広い空間に汚染物質が拡散する場所または通過する場所などに取り付けることによって、それら給排気口や空気流路を通る空気中に含まれる様々な汚染物質を除去することができ、建築物内部や外部、あるいは地下空間などに清浄な空気を供給することができる。   According to the invention according to any one of claims 1 to 5, since the contaminant removing member is provided inside the hollow structure body, the air flowing into the hollow structure body is inside the hollow structure body. In the process of passing through, various pollutants contained in the air can be removed by the pollutant removing member, and the air can be purified. Therefore, the duct-type hollow structure according to the present invention is, for example, an air supply port to the outside of the building, an exhaust port to the outside of the contaminated air generated from the inside of the building, an air supply port to the underground space from the ground・ Installed in an outlet from the underground space to the ground, a place where pollutants gather or pass from a wide space to a narrow space in an outdoor environment, a place where pollutants diffuse or pass from a narrow space to a wide space, etc. Accordingly, various pollutants contained in the air passing through the air supply / exhaust port and the air flow path can be removed, and clean air can be supplied to the inside or outside of the building or underground space.

また、請求項1〜5の何れかに記載の発明によれば、汚染物質除去部材を空気の流通方向と略平行に配置するようにしたので、圧力損失の増大を抑制することができ、自然の風の流れまたは既存の給排気力のみで、汚染空気をダクト型中空構造物に流入させることができる。したがって、新設および既設を問わず建築物の給排気口に、本発明に係るダクト型中空構造物をそのまま取り付けるのみで、汚染空気の清浄化を図ることができ、またボイド部を内部に備えた建築物の頂部に設置するようにすれば、ボイド部に沿って上昇してきた空気中に含まれる汚染物質を除去することもできる。また、地下空間からの排気口やトンネルの排気口など、従来は適用が困難であった場所にも取り付けることができる。   Further, according to the invention of any one of claims 1 to 5, since the pollutant removing member is arranged substantially in parallel with the air flow direction, an increase in pressure loss can be suppressed, and natural The contaminated air can be caused to flow into the duct type hollow structure only by the wind flow or the existing air supply / exhaust force. Therefore, it is possible to purify contaminated air by simply attaching the duct type hollow structure according to the present invention to the air supply / exhaust port of the building regardless of whether it is newly installed or existing, and the void portion is provided inside. If it is installed at the top of the building, it is possible to remove contaminants contained in the air that has risen along the void. It can also be installed in places where it was difficult to apply in the past, such as vents from underground spaces and tunnel vents.

さらに、請求項1〜5の何れかに記載の発明によれば、中空構造物本体の内部に汚染物質除去部材を着脱自在な状態で配置して、この汚染物質除去部材を開閉部から出し入れ可能としたので、ダクト型中空構造物を設置した後であっても、汚染物質除去部材の数量や配置を簡単に変更することができる。したがって、汚染物質の種類や濃度、あるいは風速などの条件の変化等に応じて、汚染物質除去部材の数量や配置を変更することにより、圧力損失や空気清浄能力などの設定を容易に調整することができる。   Furthermore, according to the invention of any one of claims 1 to 5, the contaminant removing member can be detachably disposed inside the hollow structure body, and the contaminant removing member can be taken in and out of the opening / closing part. Therefore, even after the duct-type hollow structure is installed, the quantity and arrangement of the contaminant removing members can be easily changed. Therefore, it is possible to easily adjust settings such as pressure loss and air cleaning capacity by changing the quantity and arrangement of pollutant removal members according to changes in conditions such as the type and concentration of pollutants or wind speed. Can do.

また、請求項1〜5の何れかに記載の発明によれば、汚染物質除去部材を外部に取り出すことができるので、汚染物質除去部材のみを洗浄あるいは交換することができ、それら処理に掛かるコストや手間を大幅に縮減することができる。
すなわち、建物外壁やガードレールなどの構造物に光触媒を塗布して屋外の汚染物質を除去する従来の方法では、前述したように、光触媒表面に付着した硝酸や硫酸が土壌中に拡散して地下水汚染を引き起こす懸念があり、それを防ぐために汚染水を回収しようとすると、汚染水が大量に発生するために、多大なコストが掛かるという問題点があった。また、前述した特許文献10に記載の空気清浄化装置においても、光触媒や吸着材などの空気清浄手段を洗浄する際に、装置ごと洗浄しなければならないため、効率が悪く、大量の廃水が発生するという問題点があった。
これに対して、請求項1〜5の何れかに記載の発明によれば、光触媒を一ヵ所に容易に集めることができることから、最小の水量で洗浄することができ、廃水の回収や処理も容易である。さらに、建物外壁やガードレールなどの構造物に光触媒を塗布する方法の場合には、光触媒の劣化などの調査や交換を行うのに多大な労力を要するが、本発明によれば、それら作業を短期間で容易に実施することができる。
In addition, according to the invention described in any one of claims 1 to 5, since the pollutant removing member can be taken out, only the pollutant removing member can be cleaned or replaced, and the cost for these treatments And labor can be greatly reduced.
That is, in the conventional method of removing outdoor pollutants by applying a photocatalyst to structures such as building outer walls and guardrails, as described above, nitric acid and sulfuric acid adhering to the surface of the photocatalyst diffuse into the soil and contaminate groundwater. In order to prevent this, there is a problem in that a large amount of contaminated water is required to collect the contaminated water to prevent it. Also, in the air cleaning device described in Patent Document 10 described above, when cleaning the air cleaning means such as a photocatalyst or an adsorbent, the entire device must be cleaned, which is inefficient and generates a large amount of waste water. There was a problem of doing.
On the other hand, according to the invention according to any one of claims 1 to 5, since the photocatalyst can be easily collected in one place, it can be washed with a minimum amount of water, and the recovery and treatment of waste water can also be performed. Easy. Furthermore, in the case of a method of applying a photocatalyst to a structure such as a building outer wall or a guardrail, a great deal of labor is required to investigate and replace the photocatalyst degradation. Can be easily implemented.

一般に、ダクト型中空構造物内部の空気の流れは計算できるが、光触媒反応および物理的吸着を含めた空気清浄効果の総合評価を計算で求めることはほぼ不可能である。これに対して、請求項2に記載の発明によれば、中空構造物本体に、汚染物質の種類・濃度、風速などを測定する測定装置を取り付けるための観測口を設けるようにしたので、中空構造物本体内部の空気中に含まれる汚染物質の種類・濃度、風速などを容易に測定することができる。また、各観測口における汚染物質濃度の測定結果を相互に比較することにより、観測口間の汚染物質の濃度差、すなわち汚染物質除去率を求めることができ、この汚染物質除去率によって、定量的な性能把握が可能になるとともに、空気清浄手段の交換時期を的確に把握することができる。なお、中空構造物本体の空気流入口から成分および濃度既知の模擬汚染空気を流すようにすれば、より確実なデータを採ることが可能である。   In general, the flow of air inside the duct type hollow structure can be calculated, but it is almost impossible to calculate the overall evaluation of the air cleaning effect including the photocatalytic reaction and physical adsorption. On the other hand, according to the invention described in claim 2, since the hollow structure body is provided with an observation port for attaching a measuring device for measuring the type / concentration of contaminants, wind speed, etc. It is possible to easily measure the type and concentration of pollutants contained in the air inside the structure body and the wind speed. Also, by comparing the measurement results of the pollutant concentration at each observation port, the concentration difference of pollutants between the observation ports, that is, the pollutant removal rate can be obtained. As a result, it is possible to accurately grasp the replacement timing of the air cleaning means. Note that more reliable data can be obtained if simulated contaminated air having a known component and concentration is allowed to flow from the air inlet of the hollow structure body.

また、請求項3に記載の発明のように、光触媒と吸着材の少なくとも一方を空気清浄手段として用いることにより、簡単な装置構成によって、複数種類の汚染物質を効果的に除去することができる。また、光触媒と吸着材を併用することにより、光触媒では除去が困難な汚染物質の除去や、夜間のように光が照射されない条件下での汚染物質の除去も可能となる。例えば、チタン酸二バリウムや珪酸リチウムなどの吸着材を用いるか、または吸着材に水酸化カリウム溶液を塗布または含浸することにより、光触媒では除去できない二酸化炭素を捕捉することも可能である。さらに、空気清浄手段として光触媒塗布吸着材を用いれば、光触媒による分解に時間を要する汚染物質についても、上記吸着材によって汚染物質を捉えて、上記光触媒表面に拡散させることにより、光触媒との接触時間を増加させて、汚染物質の分解を促進することができる。さらにまた、空気清浄手段として光触媒を用いる場合には、除菌効果および防カビ効果も期待できる。   Further, as in the invention described in claim 3, by using at least one of the photocatalyst and the adsorbent as the air cleaning means, a plurality of types of contaminants can be effectively removed with a simple apparatus configuration. Further, by using a photocatalyst and an adsorbent in combination, it is possible to remove contaminants that are difficult to remove with a photocatalyst, and remove contaminants under conditions where light is not irradiated, such as at night. For example, carbon dioxide that cannot be removed by a photocatalyst can be captured by using an adsorbent such as dibarium titanate or lithium silicate, or by applying or impregnating a potassium hydroxide solution to the adsorbent. Furthermore, if the photocatalyst-coated adsorbent is used as an air cleaning means, the contact time with the photocatalyst can be obtained by capturing the contaminant with the adsorbent and diffusing it on the surface of the photocatalyst even for a pollutant that requires time for decomposition by the photocatalyst. Can be promoted to promote the degradation of pollutants. Furthermore, when a photocatalyst is used as the air cleaning means, a sterilizing effect and an antifungal effect can be expected.

また、請求項4に記載の発明のように、中空構造物本体の天井部を光透過性部材で構成し、この光透過性部材を介して、汚染物質除去部材が太陽光を受光可能に構成すること(例えば、太陽光の照射位置に汚染物質除去部材を配置すること、あるいは反射鏡を用いて太陽光を汚染物質除去部材に導くこと)によって、光触媒と自然エネルギーのみで汚染空気の清浄化が可能になる。さらに、光ファイバーなどを用いて太陽光を中空構造物本体内部に導入することにより、あるいは紫外線照射手段を中空構造物本体内部に設置することにより、太陽光が届かない場所であっても汚染空気の清浄化を図ることができ、また夜間であっても汚染空気除去効果を継続することができる。   Moreover, like the invention of Claim 4, the ceiling part of a hollow structure main body is comprised with the light transmissive member, and a contaminant removal member can receive sunlight via this light transmissive member. (E.g., placing a pollutant removal member at the sunlight irradiation position, or guiding sunlight to the pollutant removal member using a reflector) to clean the polluted air using only the photocatalyst and natural energy Is possible. Furthermore, by introducing sunlight into the hollow structure body using an optical fiber or by installing ultraviolet irradiation means inside the hollow structure body, polluted air can be removed even in places where sunlight does not reach. Purification can be achieved and the effect of removing contaminated air can be continued even at night.

さらに、上記汚染物質除去部材としては、請求項5に記載の発明のように、断面がU型、逆T型、L型、またはその何れか複数を並列に並べて組み合わせた形状の型(例えば、U型を2つ並べた形状の型)が用意されているため、汚染物質除去部材の数量、間隔および組合せを自在に変更することができる。また、汚染物質除去部材に固定する空気清浄手段の組合せの変更や交換も容易に行える。さらに、汚染物質除去部材が、何れも底板部と、この底板部上面に立設された一または複数の起立板部とにより構成されているため、上方から入射する光を効率良く受光することができる。また、上記汚染物質除去部材から空気清浄手段を取り除いたもの(支持部材)を、例えば、内部の気流の流れを変えたり、抵抗を増やすために使うこともできる。また、中空構造物本体の側壁部内面等に空気清浄手段を直接固定すると、空気清浄手段の交換や洗浄が困難になるが、L型の汚染物質除去部材を上記側壁部内面に沿って設置するようにすれば、ほぼ同じ位置に空気清浄手段を配置することができ、空気清浄手段の交換や洗浄も容易となる。   Further, as the pollutant removing member, as in the invention described in claim 5, the cross section is a U-shaped, inverted T-shaped, L-shaped, or a mold having a shape in which any one of them is combined in parallel (for example, Therefore, the quantity, interval, and combination of the contaminant removing members can be freely changed. In addition, it is possible to easily change or replace the combination of the air cleaning means fixed to the contaminant removing member. Furthermore, since the pollutant removing members are each composed of the bottom plate portion and one or a plurality of upright plate portions erected on the upper surface of the bottom plate portion, it is possible to efficiently receive light incident from above. it can. Moreover, what remove | eliminated the air-cleaning means from the said contaminant removal member (support member) can also be used in order to change the flow of internal airflow, or to increase resistance, for example. Further, if the air cleaning means is directly fixed to the inner surface of the side wall of the hollow structure body, it becomes difficult to replace or clean the air cleaning means. However, an L-type contaminant removing member is installed along the inner surface of the side wall. By doing so, the air cleaning means can be arranged at substantially the same position, and the air cleaning means can be easily replaced and cleaned.

また、外気のように汚染空気に粒子状物質が混在している場合には、ダクト型中空構造物の空気流入側に、粒子状物質を吸着可能な吸着材を取り付けた汚染物質除去部材を配置し、この汚染物質除去部材よりも下流側に、光触媒または光触媒塗布吸着材を取り付けた汚染物質除去部材を配置することによって、粒子状物質の除去と汚染空気の清浄とを分離して連続的に行うことができる。これにより、粒子状物質が光触媒表面に付着することによる光触媒の機能低下を防ぐことができる。また、粒子状物質の吸着が飽和状態に達した場合の吸着材の交換、および光触媒の洗浄または交換を個別に行うことができるため、それぞれの機能を最大限に発揮させ、且つ寿命を延ばすことができる。   In addition, when particulate matter is mixed in the contaminated air like outside air, a contaminant removal member with an adsorbent capable of adsorbing the particulate matter is placed on the air inflow side of the duct type hollow structure However, by disposing a pollutant removing member attached with a photocatalyst or a photocatalyst-coated adsorbent on the downstream side of the pollutant removing member, the removal of particulate matter and the cleaning of polluted air are continuously separated. It can be carried out. Thereby, the function fall of a photocatalyst by particulate matter adhering to the photocatalyst surface can be prevented. In addition, when the adsorption of particulate matter reaches saturation, the adsorbent can be replaced separately and the photocatalyst can be cleaned or replaced separately, so that each function can be maximized and the life can be extended. Can do.

請求項6〜8の何れかに記載の発明によれば、ダクト型中空構造物の設置位置における風量、汚染物質の種類および濃度に応じて、汚染物質除去部材の数量、配置(設置間隔など)、各汚染物質除去部材に固定する空気清浄手段を自在に設定することができる。また、ダクト型中空構造物の設置後に自然または人為的に風量、汚染物質の種類および濃度に変動があった場合にも、同様に、汚染物質除去部材の数量や配置、空気清浄手段の種類等を設置場所において自在に変更することができる。   According to the invention according to any one of claims 6 to 8, the quantity and arrangement (installation interval, etc.) of the pollutant removal member according to the air volume at the installation position of the duct type hollow structure and the kind and concentration of the pollutant. The air cleaning means to be fixed to each contaminant removing member can be freely set. Similarly, if there is a natural or artificial change in the air volume, the type and concentration of pollutants after installation of the duct type hollow structure, the quantity and arrangement of pollutant removal members, the type of air cleaning means, etc. Can be freely changed at the installation location.

例えば、風量(線速度)が増加すると、空気清浄手段への接触時間が低下するため、汚染物質の除去効率が低下する。その際に、汚染物質除去部材の数量を増やしてその間隔を狭めるようにすれば、圧力損失が高まり線速度の増加を抑える効果と、空気清浄手段との接触面積を増加させる効果が付与されることから、汚染物質の除去効率の低下を抑えることができる。一方、風量が減少すると、空気清浄手段への接触時間が増加するため、汚染物質の除去効率が増加する。ここで、汚染物質の除去効率が風量減少前の除去効率で十分である場合には、空気清浄手段を減らし、汚染物質除去部材の間隔を広げて、線速度および空気清浄手段の接触面積を調整することにより、コスト削減を図ることができる。   For example, when the air volume (linear velocity) increases, the contact time with the air cleaning means decreases, so that the contaminant removal efficiency decreases. At that time, if the number of pollutant removing members is increased and the interval is narrowed, the effect of suppressing the increase of the linear velocity and the increase of the contact area with the air cleaning means is given. For this reason, it is possible to suppress a decrease in the removal efficiency of contaminants. On the other hand, when the air volume decreases, the contact time with the air cleaning means increases, so that the contaminant removal efficiency increases. Here, if the removal efficiency of pollutants is sufficient before the air volume reduction, the air cleaning means is reduced, the interval between the pollutant removing members is increased, and the linear velocity and the contact area of the air cleaning means are adjusted. By doing so, cost reduction can be achieved.

また、請求項7に記載の発明によれば、空気中の汚染物質の種類・濃度、風速の何れかを測定し、その測定結果に基づいて、汚染物質除去部材の数量、配置および空気清浄手段の設定を調整するようにしたので、圧力損失や空気清浄能力を常に所望の状態に保つことができ、汚染空気中に含まれる様々な汚染物質を効果的に且つ確実に除去して空気の清浄化を図ることができる。   According to the invention described in claim 7, the type, concentration, and wind speed of the pollutants in the air are measured, and the quantity, arrangement, and air cleaning means of the pollutants removing member are determined based on the measurement results. The pressure loss and air cleaning capability can always be maintained in the desired state, and various pollutants contained in the contaminated air can be effectively and reliably removed to clean the air. Can be achieved.

請求項8に記載の発明によれば、空気中の汚染物質の種類・濃度、風速を測定するとともに、その測定結果に基づいて、汚染物質除去部材の洗浄または交換を行う時期を推定し、その時期が到来したときに、汚染物質除去部材を中空構造物本体の開閉部から取り出して汚染物質除去部材の洗浄または交換を行うようにしたので、適切な時期に汚染物質除去部材の洗浄または交換を行うことができ、それら処理に掛かるコストや手間を大幅に縮減することができる。   According to the invention described in claim 8, the type and concentration of the pollutant in the air and the wind speed are measured, and based on the measurement result, the timing for cleaning or replacing the pollutant removing member is estimated, When the time has come, the pollutant removing member is removed from the opening / closing part of the hollow structure body and the pollutant removing member is cleaned or replaced. Therefore, the pollutant removing member is cleaned or replaced at an appropriate time. The cost and labor required for these processes can be greatly reduced.

図1および図2は、本発明に係るダクト型中空構造物の一実施形態を示す模式図である。
このダクト型中空構造物1は、図1(a)に示すように、中空構造物本体2と、この中空構造物本体2の内部に、空気の流通方向と略平行に且つ着脱自在な状態で配置された汚染物質除去部材3とにより概略構成されている。
1 and 2 are schematic views showing an embodiment of a duct type hollow structure according to the present invention.
As shown in FIG. 1A, the duct-type hollow structure 1 has a hollow structure main body 2 and a hollow structure main body 2 that is detachably attached to the inside of the hollow structure main body 2 substantially in parallel with the air flow direction. It is roughly constituted by the pollutant removing member 3 arranged.

中空構造物本体2は、図1(b)に示すように、角形のダクトであり、その天井部を構成する光透過性部材4と、底部および両側壁部を構成する断面略コ字形の流路構成部材5とにより構成されている。光透過性部材4は、流路構成部材5の上部開口を塞ぐ状態で着脱可能に取り付けられて、上部開口(開閉部)を開閉可能となっている。この光透過性部材4は、例えば硼珪酸ガラスなどからなり、太陽光や光源の光(紫外線)を透過可能となっている。また、光透過性部材4には、空気の流通方向に沿って複数(例えば3つ)の観測口6a,6b,6cが形成されている。各観測口6a,6b,6cには、図2に示すように、汚染空気吸引チューブ11aが挿入され、この汚染空気吸引チューブ11aによって吸引された空気中の汚染物質の濃度および種類が、汚染空気測定装置11により測定されるようになっている。さらに、各観測口6a,6b,6cには、風速計12の検知部12aが挿入され、この風速計12によって中空構造物本体2内部の風速が測定されるようになっている。   As shown in FIG. 1 (b), the hollow structure main body 2 is a rectangular duct, and has a light-transmitting member 4 constituting the ceiling portion thereof and a substantially U-shaped cross section constituting the bottom portion and both side wall portions. It is comprised by the path | route structural member 5. FIG. The light transmissive member 4 is detachably attached in a state of closing the upper opening of the flow path constituting member 5, and can open and close the upper opening (opening / closing portion). The light transmissive member 4 is made of, for example, borosilicate glass or the like, and can transmit sunlight or light (ultraviolet rays) of a light source. In addition, a plurality of (for example, three) observation ports 6a, 6b, 6c are formed in the light transmissive member 4 along the air flow direction. As shown in FIG. 2, a polluted air suction tube 11a is inserted into each observation port 6a, 6b, 6c, and the concentration and type of pollutants in the air sucked by the polluted air suction tube 11a are different from the polluted air. Measurement is performed by the measuring device 11. Further, a detector 12a of the anemometer 12 is inserted into each observation port 6a, 6b, 6c, and the wind speed inside the hollow structure body 2 is measured by the anemometer 12.

一方、汚染物質除去部材3は、図3に示すように、空気中に含まれる汚染物質を除去するための空気清浄部材7と、この空気清浄部材7を支持する支持部材8とにより構成されている。空気清浄部材7は、吸着材等の空気清浄手段を板状に成形したもの、あるいは板状の基材の全体または一部に空気清浄手段を塗布または焼付けたものである。ここでは、上記空気清浄部材7として、光触媒である酸化チタンをセラミックスに塗布して形成した第1空気清浄部材7aと、吸着材である珪藻土タイルからなる第2空気清浄部材7bとを用いている。   On the other hand, as shown in FIG. 3, the pollutant removal member 3 includes an air cleaning member 7 for removing pollutants contained in the air and a support member 8 that supports the air cleaning member 7. Yes. The air cleaning member 7 is obtained by forming an air cleaning means such as an adsorbent into a plate shape, or by applying or baking the air cleaning means on the whole or a part of the plate-like base material. Here, as the air cleaning member 7, a first air cleaning member 7a formed by applying titanium oxide as a photocatalyst to ceramics and a second air cleaning member 7b made of diatomaceous earth tile as an adsorbent are used. .

支持部材8は、中空構造物本体2の底部上面に載置可能な底板部9と、この底板部9上面に立設された一または複数の起立板部10とを備えている。本実施形態では、支持部材8として、図1(c)に示すように、断面がL型の第1支持部材8a、逆T型の第2支持部材8b、U型の第3支持部材8c、U型を2つ並べた形状の第4支持部材8dを用いている。そして、これら支持部材8a,8b,8c,8dの底板部9の上面と、起立板部10の両面または片面に、それぞれ空気清浄部材7が着脱自在な状態で取り付けられている。空気清浄部材7を取り付ける方法としては、例えば、支持部材8に複数のフックを設けて、それらフックで空気清浄部材7を係止する方法や、クリップ等を用いて空気清浄部材7を支持部材8に止着する方法などが挙げられるが、空気清浄部材7を着脱自在に取付可能であれば如何なる方法であってもよい。また、支持部材8の底板部9に空気清浄部材7を取り付ける際には、空気清浄部材7を寝かせた状態で底板部9上面に載置するのみであってもよい。   The support member 8 includes a bottom plate portion 9 that can be placed on the upper surface of the bottom portion of the hollow structure body 2, and one or more upright plate portions 10 that are erected on the upper surface of the bottom plate portion 9. In this embodiment, as shown in FIG. 1C, the support member 8 has a L-shaped first support member 8a, an inverted T-type second support member 8b, a U-shaped third support member 8c, A fourth support member 8d having a shape in which two U shapes are arranged is used. And the air purifying member 7 is attached to the upper surface of the baseplate part 9 of these support members 8a, 8b, 8c, and 8d, and the both surfaces or single side | surface of the standing board part 10 respectively so that attachment or detachment is possible. As a method for attaching the air cleaning member 7, for example, a plurality of hooks are provided on the support member 8, and the air cleaning member 7 is locked with the hooks, or the air cleaning member 7 is supported by using a clip or the like. However, any method may be used as long as the air cleaning member 7 can be detachably attached. Further, when the air cleaning member 7 is attached to the bottom plate portion 9 of the support member 8, the air cleaning member 7 may be simply placed on the upper surface of the bottom plate portion 9 in the state where it is laid down.

各支持部材8の配置方法としては、図1(c)に示すように、空気の流通方向(中空構造物本体2の長さ方向)に沿って、同一タイプの支持部材8を直列に配置する方法と、互いに異なるタイプの支持部材8を直列に配置する方法とがある。   As an arrangement method of each support member 8, as shown in FIG.1 (c), the same type support member 8 is arrange | positioned in series along the distribution | circulation direction (length direction of the hollow structure main body 2) of air. There are a method and a method in which different types of support members 8 are arranged in series.

また、図3に示すように、複数の支持部材8を並列に配置することも可能である。図3(a)の例では、中空構造物本体2の底面中央部に、空気の流通方向と略平行に第2支持部材8bが配置されて、その両側(中空構造物本体2の幅方向における両側)に、中空構造物本体2の側壁部に沿って且つ空気の流通方向と略平行に第1支持部材8aがそれぞれ配置されている。そして、各支持部材8a,8bの底板部9の上面と、第2支持部材8bの起立板部10の両面と、第1支持部材8aの起立板部10の片面(中空構造物本体2内の空気と接触する面)には、それぞれ空気清浄部材7(第1空気清浄部材7aまたは第2空気清浄部材7b)が着脱自在な状態で取り付けられている。この図3(a)の例では、第1支持部材8aの起立板部10の高さが、中空構造物本体2の側壁部の高さよりも若干低く、また第2支持部材8bの起立板部10の高さが第1支持部材8aの起立板部10の高さよりも低く設定されている。   Moreover, as shown in FIG. 3, it is also possible to arrange a plurality of support members 8 in parallel. In the example of FIG. 3A, the second support member 8b is disposed in the center of the bottom surface of the hollow structure main body 2 substantially in parallel with the air flow direction, and both sides thereof (in the width direction of the hollow structure main body 2). On both sides, the first support members 8a are arranged along the side walls of the hollow structure body 2 and substantially parallel to the air flow direction. And the upper surface of the bottom plate part 9 of each support member 8a, 8b, both surfaces of the upright plate part 10 of the second support member 8b, and one side of the upright plate part 10 of the first support member 8a (in the hollow structure body 2) The air cleaning member 7 (the first air cleaning member 7a or the second air cleaning member 7b) is detachably attached to the surface in contact with the air. In the example of FIG. 3A, the height of the upright plate portion 10 of the first support member 8a is slightly lower than the height of the side wall portion of the hollow structure body 2, and the upright plate portion of the second support member 8b. The height of 10 is set lower than the height of the upright plate portion 10 of the first support member 8a.

同様に、図3(b)の例では、中空構造物本体2の底面中央部に、空気の流通方向と略平行に第3支持部材8cが配置されて、その両側に、中空構造物本体2の側壁部に沿って且つ空気の流通方向と略平行に第1支持部材8aがそれぞれ配置され、それら支持部材8a,8cの各面9,10に、それぞれ空気清浄部材7が着脱自在な状態で取り付けられている。また、図3(c)の例では、中空構造物本体2の底面中央部に、空気の流通方向と略平行に第4支持部材8dが配置されて、その両側に、中空構造物本体2の側壁部に沿って且つ空気の流通方向と略平行に第1支持部材8aがそれぞれ配置され、それら支持部材8a,8dの各面9,10に、それぞれ空気清浄部材7が着脱自在な状態で取り付けられている。   Similarly, in the example of FIG. 3 (b), the third support member 8c is disposed at the center of the bottom surface of the hollow structure body 2 substantially in parallel with the air flow direction, and the hollow structure body 2 is disposed on both sides thereof. The first support members 8a are respectively disposed along the side wall portions and substantially parallel to the air flow direction, and the air purifying members 7 are detachably attached to the surfaces 9 and 10 of the support members 8a and 8c, respectively. It is attached. In the example of FIG. 3C, the fourth support member 8d is disposed at the center of the bottom surface of the hollow structure main body 2 substantially in parallel with the air flow direction. A first support member 8a is disposed along the side wall portion and substantially parallel to the air flow direction, and the air cleaning member 7 is attached to each of the surfaces 9 and 10 of the support members 8a and 8d in a detachable manner. It has been.

図4は、汚染物質除去部材3の各種配置例を示す平断面図である。
先ず、図4(a)の例では、上述した図3(b)と同様の支持部材8a,8cの組合せ2組が、空気の流通方向に直列に配置されている。そして、中空構造物本体2の空気流入側の各支持部材8a,8cには、分解性の高い光触媒を空気清浄手段として用いた空気清浄部材7cが着脱自在な状態で取り付けられ、中空構造物本体2の空気排出側の各支持部材8a,8cには、吸着効果を付与した光触媒を空気清浄手段として用いた空気清浄部材7dが着脱自在な状態で取り付けられている。この場合、中空構造物本体2内に流入した汚染空気は、先ず、空気清浄部材7cの表面を通過する際に、空気清浄部材7cによって汚染物質が分解されることにより、汚染物質の濃度が大幅に低下し、その後、空気清浄部材7dの表面を通過する際に、空気清浄部材7cで分解しきれなかった低濃度の汚染物質が空気清浄部材7dにより吸着・分解されることにより、汚染物質の濃度がさらに低下する。したがって、このような空気清浄部材の配置構成によれば、効率良く汚染物質を除去することができる。
FIG. 4 is a plan sectional view showing various arrangement examples of the contaminant removing member 3.
First, in the example of FIG. 4A, two sets of support members 8a and 8c similar to those of FIG. 3B described above are arranged in series in the air flow direction. An air cleaning member 7c using a highly decomposable photocatalyst as an air cleaning means is detachably attached to each support member 8a, 8c on the air inflow side of the hollow structure body 2, and the hollow structure body An air cleaning member 7d using a photocatalyst imparted with an adsorption effect as an air cleaning means is attached to each of the support members 8a and 8c on the air discharge side 2 in a detachable state. In this case, when the contaminated air flowing into the hollow structure body 2 first passes through the surface of the air cleaning member 7c, the contaminant is decomposed by the air cleaning member 7c, so that the concentration of the contaminant is greatly increased. Then, when passing through the surface of the air cleaning member 7d, the low-concentration pollutant that could not be decomposed by the air cleaning member 7c is adsorbed and decomposed by the air cleaning member 7d. The concentration is further reduced. Therefore, according to the arrangement configuration of such an air cleaning member, it is possible to efficiently remove contaminants.

図4(b)の例では、図4(a)と同様に各支持部材8a,8cが配置されている。そして、中空構造物本体2の空気流入側の各支持部材8a,8cには、浮遊粒子状物質を吸着する吸着材を空気清浄手段として用いた空気清浄部材7eが取り付けられ、中空構造物本体2の空気排出側の各支持部材8a,8cには、前述した空気清浄部材7dが取り付けられている。このような空気清浄部材の配置構成は、外気のように、浮遊粒子状物質を含む汚染空気を清浄化する場合に効果的であり、中空構造物本体2内に流入した汚染空気は、先ず、空気清浄部材7eの表面を通過する際に、空気清浄部材7eによって浮遊粒子状物質が吸着除去され、空気清浄部材7dの表面を通過する際に、空気清浄部材7dによって、その他の汚染物質が吸着・分解されることとなる。   In the example of FIG. 4B, the support members 8a and 8c are arranged in the same manner as in FIG. The support member 8a, 8c on the air inflow side of the hollow structure body 2 is attached with an air cleaning member 7e using an adsorbent that adsorbs suspended particulate matter as air cleaning means. The air cleaning member 7d described above is attached to each of the support members 8a and 8c on the air discharge side. Such an arrangement of the air cleaning member is effective when cleaning contaminated air containing suspended particulate matter, such as outside air, and the contaminated air flowing into the hollow structure body 2 is When passing through the surface of the air cleaning member 7e, the suspended particulate matter is adsorbed and removed by the air cleaning member 7e, and when passing through the surface of the air cleaning member 7d, other contaminants are adsorbed by the air cleaning member 7d.・ It will be disassembled.

図4(c)の例では、中空構造物本体2の空気流入側と空気排出側とで支持部材の組合せが異なるものとなっている。すなわち、中空構造物本体2の空気流入側には、図3(a)と同様の支持部材8a,8bの組合せが配置され、中空構造物本体2の空気排出側には、図3(b)と同様の支持部材8a,8cの組合せが配置されている。そして、各支持部材8a,8b,8cには、それぞれ空気清浄部材7dが取り付けられている。この場合、空気流入側の各空気清浄部材7dに接触することなく通過した空気(第1支持部材8aの起立板部10と第2支持部材8bの起立板部10の中央付近を通過した空気)が、空気排出側の第3支持部材8cの起立板部10によって2分されて、この第3支持部材8cに取り付けられた空気清浄部材7dの表面に沿って流れることとなる。したがって、このような空気清浄部材の配置構成によれば、圧力損失を低く抑えつつも、効率良く汚染物質を除去することができる。   In the example of FIG. 4C, the combination of the support members is different between the air inflow side and the air discharge side of the hollow structure main body 2. That is, the same combination of support members 8a and 8b as in FIG. 3A is arranged on the air inflow side of the hollow structure body 2, and the air discharge side of the hollow structure body 2 is shown in FIG. A combination of support members 8a and 8c similar to those shown in FIG. An air cleaning member 7d is attached to each of the support members 8a, 8b, and 8c. In this case, air that has passed without contacting each air cleaning member 7d on the air inflow side (air that has passed near the center of the upright plate portion 10 of the first support member 8a and the upright plate portion 10 of the second support member 8b). Is divided into two by the upright plate portion 10 of the third support member 8c on the air discharge side, and flows along the surface of the air cleaning member 7d attached to the third support member 8c. Therefore, according to such an arrangement configuration of the air cleaning member, it is possible to efficiently remove contaminants while keeping the pressure loss low.

次に、上記構成からなるダクト型中空構造物1を用いた空気清浄方法の一実施形態について説明する。
先ず、汚染空気の経路に沿って中空構造物本体2を設置する(第1工程)。中空構造物本体2の設置場所としては、図5に示すように、建築物の排気口(例えば、一般建築物のトイレ、厨房、禁煙スペース、動物館や水族館の飼育施設や鑑賞施設、工場などの排気口)や、建築物の外気取込口などが挙げられる。例えば、図6に示すように、建築物頂部の排気口や、地下駐車場、地下空間、トンネル内の空気の排気口に取り付けるようにしてもよい。中空構造物本体2の設置箇所が、例えば図7に示すように、雨よけを装備した排気口である場合には、中空構造物本体2等に反射鏡13を取り付けて、太陽光が反射鏡13に反射して中空構造物本体2の内部に入射するように構成する。また、夜間の光源確保のために、中空構造物本体2の内部にブラックライトを取り付けるようにしてもよい。
Next, an embodiment of an air cleaning method using the duct type hollow structure 1 having the above configuration will be described.
First, the hollow structure main body 2 is installed along the path of contaminated air (first step). As shown in FIG. 5, the installation location of the hollow structure main body 2 is an exhaust port of a building (for example, a toilet, a kitchen, a non-smoking space in a general building, an animal or aquarium breeding facility, an appreciation facility, a factory, etc. Air outlets) and outside air intakes of buildings. For example, as shown in FIG. 6, you may make it attach to the exhaust port of a building top part, an underground parking lot, underground space, and the exhaust port of the air in a tunnel. When the installation location of the hollow structure main body 2 is, for example, an exhaust port equipped with rain protection as shown in FIG. 7, the reflecting mirror 13 is attached to the hollow structure main body 2 or the like so that the sunlight is reflected by the reflecting mirror 13. It reflects so that it may inject into the inside of the hollow structure main body 2. In order to secure a light source at night, a black light may be attached to the inside of the hollow structure body 2.

こうして中空構造物本体2の設置が完了したら、設置した中空構造物本体2の内部に、汚染空気の流通方向と略平行に複数の汚染物質除去部材3を配置する(第2工程)。その際に、要求される空気清浄能力および許容される圧力損失に基づいて、汚染物質除去部材3の配置構成(支持部材8の数量、タイプおよび配置、空気清浄部材7の種類および配置など)を決定し、その決定に従って、前述したように汚染物質除去部材3を配置する。   When the installation of the hollow structure main body 2 is completed in this way, a plurality of contaminant removing members 3 are arranged inside the installed hollow structure main body 2 substantially in parallel with the flowing direction of the contaminated air (second step). At that time, based on the required air cleaning capability and allowable pressure loss, the arrangement configuration of the pollutant removal member 3 (the number, type and arrangement of the support member 8, the type and arrangement of the air cleaning member 7, etc.) According to the determination, the pollutant removing member 3 is arranged as described above.

その後、汚染物質除去部材3の配置が完了したら、光透過性部材4を取り付けて、中空構造物本体2の天井部を塞ぎ、図2に示すように、各観測口6a,6b,6cに汚染空気吸引チューブ11aと風速計12の検知部12aを取り付ける。これにより、ダクト型中空構造物1の設置が完了となり、この状態で、汚染空気を中空構造物本体2の内部に流し込めば、その汚染空気中に含まれる様々な汚染物質を空気清浄部材7により除去することができ、空気の清浄化を図ることができる。   Thereafter, when the arrangement of the contaminant removing member 3 is completed, the light transmissive member 4 is attached, the ceiling portion of the hollow structure body 2 is closed, and the observation ports 6a, 6b, 6c are contaminated as shown in FIG. The air suction tube 11a and the detector 12a of the anemometer 12 are attached. Thereby, the installation of the duct-type hollow structure 1 is completed, and in this state, if polluted air is poured into the hollow structure main body 2, various pollutants contained in the contaminated air are removed from the air cleaning member 7. Therefore, the air can be purified.

ダクト型中空構造物1の仮運転を行い、設定と現地評価との誤差を検知した場合には、汚染物質除去部材3の数量、配置、構成を変更して微調整を行う。その後、本運転を開始し、常時または定期的に、各観測口6a,6b,6cから空気を採取して、当該空気中に含まれる汚染物質の濃度および種類のモニタリングを汚染空気測定装置11により行うとともに、風速計12により風速のモニタリングを行う。   When the duct type hollow structure 1 is temporarily operated and an error between the setting and the on-site evaluation is detected, the quantity, arrangement, and configuration of the pollutant removal member 3 are changed and fine adjustment is performed. Thereafter, this operation is started, and air is collected from the observation ports 6a, 6b, 6c at all times or regularly, and the concentration and type of contaminants contained in the air are monitored by the contaminated air measuring device 11. In addition, the wind speed is monitored by the anemometer 12.

そして、汚染物質の濃度のモニタリングの結果、何れかの汚染物質除去部材3の汚染物質除去効果が著しく低下していることを検知した場合には、その汚染物質除去部材3を中空構造物本体2から取り出して、新たな汚染物質除去部材3または洗浄済みの汚染物質除去部材3と交換する。例えば、図4(a)に示すように汚染物質除去部材3が配置されている場合に、観測口6bと観測口6c間の汚染物質の濃度差に変化はないが、観測口6aと観測口6b間の汚染物質の濃度差が著しく低下したときには、中空構造物本体2の空気流入側の汚染物質除去部材3のみを中空構造物本体2から取り出して、新しい汚染物質除去部材3または洗浄済みの汚染物質除去部材3と交換するようにすればよい。   As a result of monitoring the concentration of the contaminant, if it is detected that the contaminant removal effect of any of the contaminant removal members 3 is significantly reduced, the contaminant removal member 3 is attached to the hollow structure body 2. And is replaced with a new contaminant removing member 3 or a cleaned contaminant removing member 3. For example, when the pollutant removing member 3 is arranged as shown in FIG. 4A, there is no change in the concentration difference of pollutants between the observation port 6b and the observation port 6c, but the observation port 6a and the observation port are not changed. When the difference in the concentration of contaminants between 6b is remarkably reduced, only the contaminant removal member 3 on the air inflow side of the hollow structure body 2 is taken out from the hollow structure body 2, and a new contaminant removal member 3 or washed What is necessary is just to replace | exchange with the pollutant removal member 3.

中空構造物本体2から取り出した汚染物質除去部材3は、一箇所に集めて洗浄し、次の交換の際に再び使用する。このサイクルを繰り返す過程で、劣化が激しくなった場合には、適性廃棄を行う。なお、本実施形態のように、空気清浄部材7が着脱自在である場合には、空気清浄部材7のみを取り外して交換・洗浄するようにしてもよい。   The contaminant removing member 3 taken out from the hollow structure main body 2 is collected at one place, washed, and used again at the next replacement. In the process of repeating this cycle, if the deterioration becomes severe, appropriate disposal is performed. When the air cleaning member 7 is detachable as in the present embodiment, only the air cleaning member 7 may be removed and replaced / washed.

また、風速計12によるモニタリングの結果、風速の上昇を検知した場合(あるいは風速の測定値が設定値よりも高い場合)には、汚染物質除去部材3の数量を増やす調整を行う。
例えば、季節変動または人為的な調整により中空構造物本体2内部の風速が上昇すると、汚染空気の空気清浄手段への接触時間が減少するため、汚染物質の除去効率が低下することとなる。そこで、このような場合には、例えば図8(a)に示すように、汚染物質除去部材3の設置数量を増やして、汚染物質除去部材3の配置構成を変更することにより、圧力損失を高めて風速の増加を抑えると同時に、汚染空気と空気清浄手段の接触面積を増加させ、それら作用により、汚染物質の除去効率の低下を抑制する。汚染物質除去部材3の配置構成の変更後は、風速および汚染濃度を再度測定して性能(圧力損失、空気清浄能力)を確認する。
Further, when an increase in the wind speed is detected as a result of monitoring by the anemometer 12 (or when the measured value of the wind speed is higher than the set value), an adjustment is performed to increase the quantity of the contaminant removing member 3.
For example, when the wind speed inside the hollow structure main body 2 increases due to seasonal variation or artificial adjustment, the contact time of the contaminated air with the air cleaning means decreases, and therefore the contaminant removal efficiency decreases. Therefore, in such a case, for example, as shown in FIG. 8A, the number of installed pollutant removing members 3 is increased, and the arrangement of the pollutant removing members 3 is changed to increase the pressure loss. Thus, the increase in the wind speed is suppressed, and at the same time, the contact area between the contaminated air and the air cleaning means is increased, and the decrease in the removal efficiency of the pollutants is suppressed by their action. After the arrangement configuration of the pollutant removing member 3 is changed, the wind speed and the contamination concentration are measured again to confirm the performance (pressure loss, air cleaning ability).

一方、風速計12によるモニタリングの結果、風速の低下を検知した場合(あるいは風速の測定値が設定値よりも低い場合)には、汚染物質除去部材3の数量を減らす調整を行う。
例えば、季節変動または人為的な調整により中空構造物本体2内部の風速が低下すると、汚染空気の空気清浄手段への接触時間が増加するため、汚染物質の除去効率が増加することとなる。そこで、このような場合には、例えば図8(b)に示すように、汚染物質除去部材3の設置数量を減らして、汚染物質除去部材3の配置構成を変更することにより、圧力損失を低下させて風速の低下を抑えると同時に、汚染空気と空気清浄手段の接触面積を減少させ、それら作用により、汚染物質の除去効率の増加を適度に抑える。汚染物質除去部材3の配置構成の変更後は、風速および汚染濃度を再度測定して性能を確認する。
On the other hand, when a decrease in the wind speed is detected as a result of monitoring by the anemometer 12 (or when the measured value of the wind speed is lower than the set value), adjustment is performed to reduce the quantity of the contaminant removing member 3.
For example, when the wind speed inside the hollow structure main body 2 decreases due to seasonal variation or artificial adjustment, the contact time of the polluted air with the air cleaning means increases, so that the pollutant removal efficiency increases. Therefore, in such a case, for example, as shown in FIG. 8B, the number of installed pollutant removing members 3 is reduced and the arrangement of the pollutant removing members 3 is changed to reduce the pressure loss. Thus, the decrease in the wind speed is suppressed, and at the same time, the contact area between the contaminated air and the air cleaning means is decreased, and the increase in the removal efficiency of the pollutants is moderately suppressed by their action. After the arrangement of the pollutant removing member 3 is changed, the wind speed and the contamination concentration are measured again to confirm the performance.

また、汚染空気測定装置11によるモニタリングの結果、汚染物質の濃度の低下を検知した場合(あるいは濃度の測定値が設定値よりも低い場合)には、汚染物質除去部材3の数量を減らす調整を行う。
例えば、交通量の減少など、周辺環境の変化により中空構造物本体2内部の汚染物質濃度が低下すると、空気清浄手段の設置量が過剰になる。そこで、このような場合には、例えば、図8(c)に示すように、支持部材8を残したまま、一部の空気清浄部材7のみを撤去する。これにより、圧力損失を変動させることなく、空気清浄能力のみを調整することができる。なお、汚染濃度が比較的低い場合や、求められる空気清浄能力が緩やかな場合など、予め設定した条件が満たされる場合には、例えば、図8(d)に示すように、支持部材8を併せて撤去することも可能である。但し、この場合には、圧力損失が減少して風速が上昇することとなるので、それに伴う影響を予め把握しておく必要がある。汚染物質除去部材3の配置構成の変更後は、風速および汚染濃度を再度測定して性能を確認する。
In addition, when a decrease in the concentration of the pollutant is detected as a result of monitoring by the polluted air measuring device 11 (or when the measured concentration value is lower than the set value), an adjustment to reduce the quantity of the pollutant removing member 3 is made. Do.
For example, when the concentration of contaminants inside the hollow structure body 2 is reduced due to changes in the surrounding environment such as a decrease in traffic volume, the installation amount of the air cleaning means becomes excessive. Therefore, in such a case, for example, as shown in FIG. 8C, only a part of the air cleaning member 7 is removed while the support member 8 remains. Thereby, it is possible to adjust only the air cleaning ability without changing the pressure loss. In addition, when the preset conditions are satisfied, such as when the concentration of contamination is relatively low or when the required air cleaning capability is moderate, for example, as shown in FIG. It is also possible to remove it. However, in this case, since the pressure loss is reduced and the wind speed is increased, it is necessary to grasp in advance the accompanying effects. After the arrangement of the pollutant removing member 3 is changed, the wind speed and the contamination concentration are measured again to confirm the performance.

以上のように、本実施形態によれば、中空構造物本体2の内部に流入した空気中に含まれる様々な汚染物質を汚染物質除去部材3により効率的に除去して、空気の清浄化を図ることができる。また、汚染物質除去部材3を空気の流通方向と略平行に配置するようにしたので、圧力損失の増大を抑制することができ、自然の風の流れまたは既存の給排気力のみで、汚染空気をダクト型中空構造物1に流入させることができる。したがって、新設および既設を問わず建築物の給排気口に、本発明に係るダクト型中空構造物1をそのまま取り付けるのみで、汚染空気の清浄化を図ることができる。   As described above, according to the present embodiment, various contaminants contained in the air that has flowed into the hollow structure main body 2 are efficiently removed by the contaminant removing member 3 to clean the air. Can be planned. In addition, since the pollutant removing member 3 is arranged substantially in parallel with the air flow direction, it is possible to suppress an increase in pressure loss, and the polluted air can be reduced only by a natural wind flow or existing air supply / exhaust force. Can flow into the duct type hollow structure 1. Therefore, it is possible to purify contaminated air by simply attaching the duct type hollow structure 1 according to the present invention as it is to an air supply / exhaust port of a building regardless of whether it is newly installed or existing.

また、中空構造物本体2の内部に汚染物質除去部材3を着脱自在な状態で配置して、この汚染物質除去部材3を開閉部から出し入れ可能としたので、ダクト型中空構造物1を設置した後であっても、汚染物質除去部材3の数量や配置、空気清浄手段の設定を簡単に変更することができる。したがって、汚染物質の種類や濃度、あるいは風速などの条件の変化等に応じて、汚染物質除去部材3の数量や配置、空気清浄手段の設定を変更することにより、圧力損失や空気清浄能力などの設定を容易に調整することができる。   In addition, since the pollutant removing member 3 is detachably disposed in the hollow structure main body 2 so that the pollutant removing member 3 can be inserted and removed from the opening / closing portion, the duct type hollow structure 1 is installed. Even after, the quantity and arrangement of the contaminant removing member 3 and the setting of the air cleaning means can be easily changed. Therefore, by changing the quantity and arrangement of the pollutant removal member 3 and the setting of the air cleaning means in accordance with changes in the conditions such as the type and concentration of the pollutant or the wind speed, the pressure loss, the air purifying capacity, etc. Settings can be adjusted easily.

また、汚染物質の種類・濃度、風速の測定結果に基づいて、汚染物質除去部材3の数量、配置および空気清浄手段の設定を調整するようにしたので、圧力損失や空気清浄能力を常に所望の状態に保つことができ、汚染空気中に含まれる様々な汚染物質を効果的に且つ確実に除去して空気の清浄化を図ることができる。   In addition, since the quantity and arrangement of the pollutant removing member 3 and the setting of the air cleaning means are adjusted based on the measurement result of the type and concentration of the pollutant and the wind speed, the pressure loss and the air cleaning capability are always set to a desired value. It is possible to maintain the state, and it is possible to effectively and reliably remove various contaminants contained in the contaminated air, thereby purifying the air.

さらに、汚染物質の種類・濃度、風速の測定結果に基づいて、汚染物質除去部材3の洗浄または交換を行う時期を推定し、その時期が到来したときに、汚染物質除去部材3を中空構造物本体2から取り出して汚染物質除去部材3の洗浄または交換を行うようにしたので、適切な時期に汚染物質除去部材3の洗浄または交換を行うことができ、それら処理に掛かるコストや手間を大幅に縮減することができる。   Further, based on the measurement result of the type / concentration of the pollutant and the wind speed, the time for cleaning or replacing the pollutant removal member 3 is estimated, and when the time comes, the pollutant removal member 3 is removed from the hollow structure. Since the pollutant removing member 3 is cleaned or replaced after being taken out from the main body 2, the pollutant removing member 3 can be cleaned or replaced at an appropriate time, which greatly reduces the costs and labor involved in the processing. Can be reduced.

なお、本実施形態では、空気清浄効果を有するダクト型中空構造物1を給気口や排気口に設置する場合について例示したが、本発明はこれに限定されるものではなく、例えば、図9に示すように、給気ラインや排気ラインの途中に設けるようにしてもよい。また、1ラインに設置するダクト型中空構造物1の数も1に限られるものではなく、複数であってもよい。ダクト型中空構造物1を複数設置する場合には、図9に示すように、すべての中空構造物本体2内に汚染物質除去部材3を配置するようにしても、あるいは図10(a)および図10(b)に示すように、一部の中空構造物本体2内に汚染物質除去部材3を配置するようにしてもよい。   In addition, in this embodiment, although the case where the duct type hollow structure 1 which has an air purifying effect was installed in the air supply port and the exhaust port was illustrated, this invention is not limited to this, For example, FIG. As shown in FIG. 4, it may be provided in the middle of the air supply line or the exhaust line. Also, the number of duct type hollow structures 1 installed in one line is not limited to one, and may be plural. When a plurality of duct-type hollow structures 1 are installed, as shown in FIG. 9, the pollutant removing members 3 may be arranged in all the hollow structure main bodies 2, or FIG. 10 (a) and As shown in FIG. 10B, the contaminant removing member 3 may be disposed in a part of the hollow structure main body 2.

また、地下階からの排気ラインにダクト型中空構造物1を設置する場合には、例えば、図11に示すような箇所に、中空構造物本体2を介装することも可能である。光触媒を空気清浄手段として用いる場合、太陽光が届く箇所については、中空構造物本体2の天井部を光透過性部材4により構成して、汚染物質除去部材3に太陽光が照射するように調整する。一方、太陽光が届かない箇所については、中空構造物本体2の内部にブラックライト15を取り付けたり、あるいは太陽光または光源の光を光ファイバで中空構造物本体2の内部に導くことにより、汚染物質除去部材3に紫外線が照射するように調整する。なお、空気清浄手段として光触媒を用いずに吸着材(例えば、浮遊粒子状物質を吸着する吸着材)を用いる場合には、このような対処は不要である。   Moreover, when installing the duct type | mold hollow structure 1 in the exhaust line from an underground floor, it is also possible to interpose the hollow structure main body 2 in a location as shown in FIG. 11, for example. When the photocatalyst is used as an air cleaning means, for the place where sunlight reaches, the ceiling part of the hollow structure main body 2 is constituted by the light transmissive member 4 so that the pollutant removing member 3 is irradiated with sunlight. To do. On the other hand, in places where sunlight does not reach, the black light 15 is attached inside the hollow structure body 2 or the sunlight or light from the light source is guided to the inside of the hollow structure body 2 by an optical fiber. Adjustment is made so that the substance removing member 3 is irradiated with ultraviolet rays. In the case where an adsorbent (for example, an adsorbent that adsorbs suspended particulate matter) is used as the air cleaning means without using a photocatalyst, such a countermeasure is unnecessary.

また、既設の給気口または排気口にダクト型中空構造物1を設置する場合には、例えば、図12に示すように、二股状の中空構造物本体2を用いることも可能である。このような構成によれば、圧力損失の増大、および空気清浄手段との接触面積の低下を比較的抑えながら建築物外部への垂直突出部分の長さを低減できる。   Moreover, when installing the duct type hollow structure 1 in the existing air supply port or exhaust port, for example, as shown in FIG. 12, a bifurcated hollow structure body 2 can be used. According to such a configuration, it is possible to reduce the length of the vertically projecting portion to the outside of the building while relatively suppressing an increase in pressure loss and a decrease in the contact area with the air cleaning means.

また、本実施形態では、光透過性部材(蓋部材)4により中空構造物本体2の上部開口を開閉するようにしたが、上述した図9,図11および図12に示すように、回動式の扉部材16で、中空構造物本体2の開口部を開閉するようにしてもよい。   In the present embodiment, the upper opening of the hollow structure body 2 is opened and closed by the light transmissive member (lid member) 4. However, as shown in FIGS. You may make it open and close the opening part of the hollow structure main body 2 with the door member 16 of a type | formula.

さらに、本実施形態では、空気清浄部材7として、光触媒である酸化チタンをセラミックスに塗布して形成した空気清浄部材7aや、吸着材である珪藻土タイルからなる空気清浄部材7bなどを例示したが、これ以外の光触媒、吸着材を用いることも可能である。例えば、図13に示すように、タイル状に成形された珪藻土等の無機系吸着材17aの表面に光触媒17bを塗布してなる空気清浄部材(光触媒塗布吸着材)17を用いることも可能である。この図13の例では、各支持部材8の空気接触面を覆うように空気清浄部材17を配置した後、汚染物質除去部材3の頂部に固定金物18を取り付けることによって、空気清浄部材17を支持部材8に固定することができる。   Furthermore, in the present embodiment, as the air cleaning member 7, an air cleaning member 7a formed by applying titanium oxide as a photocatalyst to ceramics, an air cleaning member 7b made of diatomaceous earth tile as an adsorbent, and the like are exemplified. Other photocatalysts and adsorbents can also be used. For example, as shown in FIG. 13, it is also possible to use an air cleaning member (photocatalyst-coated adsorbent) 17 obtained by applying a photocatalyst 17b to the surface of an inorganic adsorbent 17a such as diatomaceous earth formed in a tile shape. . In the example of FIG. 13, after the air cleaning member 17 is disposed so as to cover the air contact surface of each support member 8, the fixed metal 18 is attached to the top of the contaminant removing member 3 to support the air cleaning member 17. It can be fixed to the member 8.

また、本実施形態では、支持部材8として、第1〜第4支持部材8a,8b,8c,8dを例示したが、支持部材8の形状はこれに限定されるものではなく、例えば中空構造物本体2の形状などに応じて適宜に変更することも可能である。また、本実施形態では、支持部材8を中空構造物本体2の底部に載置する構成としたが、例えば図7に示すように、空気の流通方向が鉛直方向となる場合などには、支持部材8を中空構造物本体2の底部に係止する構成としてもよい。
また、本実施形態では、汚染物質除去部材3を空気の流通方向と略平行に配置して、それら汚染物質除去部材3の数量や配置の設定を変更することにより、圧力損失等の調整を行うようにしたが、本発明はこれに限定されるものではなく、例えば、上記空気の流通方向に対して汚染物質除去部材3を傾けることにより、圧力損失等の調整を行うことも可能である。
Moreover, in this embodiment, although the 1st-4th support members 8a, 8b, 8c, 8d were illustrated as the support member 8, the shape of the support member 8 is not limited to this, For example, a hollow structure It is also possible to change appropriately according to the shape of the main body 2 and the like. In the present embodiment, the support member 8 is placed on the bottom of the hollow structure body 2. However, for example, as shown in FIG. 7, the support member 8 is supported when the air flow direction is the vertical direction. It is good also as a structure which latches the member 8 to the bottom part of the hollow structure main body 2. FIG.
In the present embodiment, the contaminant removal member 3 is arranged substantially parallel to the air flow direction, and the quantity of the contaminant removal member 3 and the setting of the arrangement are changed to adjust the pressure loss and the like. However, the present invention is not limited to this. For example, it is possible to adjust the pressure loss or the like by tilting the contaminant removing member 3 with respect to the air flow direction.

本発明に係るダクト型中空構造物の一実施形態を示す模式図で、(a)は全体構成、(b)は中空構造物本体、(c)は支持部材の構成例をそれぞれ示している。It is a schematic diagram which shows one Embodiment of the duct type hollow structure which concerns on this invention, (a) is the whole structure, (b) is a hollow structure main body, (c) has shown the structural example of the supporting member, respectively. 図1のダクト型中空構造物に風速計および汚染空気測定装置を取り付けた状態を示す模式図である。It is a schematic diagram which shows the state which attached the anemometer and the pollution air measuring apparatus to the duct type | mold hollow structure of FIG. 汚染物質除去部材の配置構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of arrangement | positioning structure of a contaminant removal member. 汚染物質除去部材の配置構成例を示す平断面図である。It is a top sectional view which shows the example of arrangement | positioning structure of a contaminant removal member. 図1のダクト型中空構造物の設置例を示す模式図で、(a)は設置前の状態、(b)は設置後の状態を示している。It is a schematic diagram which shows the example of installation of the duct type | mold hollow structure of FIG. 1, (a) has shown the state before installation, (b) has shown the state after installation. 図1のダクト型中空構造物の設置例を示す模式図で、(a)は設置前の状態、(b)は設置後の状態を示している。It is a schematic diagram which shows the example of installation of the duct type | mold hollow structure of FIG. 1, (a) has shown the state before installation, (b) has shown the state after installation. 図1のダクト型中空構造物の設置例を示す模式図で、(a)は設置前の状態、(b)は設置後の状態を示している。It is a schematic diagram which shows the example of installation of the duct type | mold hollow structure of FIG. 1, (a) has shown the state before installation, (b) has shown the state after installation. 汚染物質除去部材の数量および配置の調整例を示す平断面図である。It is a plane sectional view which shows the example of adjustment of the quantity and arrangement | positioning of a contaminant removal member. 図1のダクト型中空構造物の設置例を示すもので、(a)は平面図、(b)は(a)のA−A線に沿った断面図であるFIGS. 2A and 2B show an installation example of the duct type hollow structure of FIG. 1, wherein FIG. 図9(a)の変形例を示す平面図である。It is a top view which shows the modification of Fig.9 (a). 図1のダクト型中空構造物の設置例を示す模式図である。It is a schematic diagram which shows the example of installation of the duct type | mold hollow structure of FIG. 図1のダクト型中空構造物の設置例を示すもので、(a)は平面図、(b)は(a)のB−B線に沿った断面図、(c)は正面図である。The example of installation of the duct type hollow structure of Drawing 1 is shown, (a) is a top view, (b) is a sectional view which met a BB line of (a), and (c) is a front view. 空気清浄部材の一例を示す断面図である。It is sectional drawing which shows an example of an air purifying member.

符号の説明Explanation of symbols

1 ダクト型中空構造物
2 中空構造物本体
3 汚染物質除去部材
4 光透過性部材
6a,6b,6c 観測口
7 空気清浄部材
8 支持部材
9 底板部
10 起立板部
DESCRIPTION OF SYMBOLS 1 Duct type hollow structure 2 Hollow structure main body 3 Contaminant removal member 4 Light transmissive member 6a, 6b, 6c Observation port 7 Air cleaning member 8 Support member 9 Bottom plate part 10 Standing plate part

Claims (8)

空気清浄効果を有するダクト型中空構造物であって、
空気流路を有する中空構造物本体と、上記中空構造物本体の内部に、空気の流通方向と略平行に且つ着脱自在な状態で配置された汚染物質除去部材とを備え、
上記中空構造物本体は開閉部を有し、この開閉部から上記汚染物質除去部材を出し入れ可能となっていることを特徴とするダクト型中空構造物。
A duct type hollow structure having an air cleaning effect,
A hollow structure body having an air flow path, and a contaminant removing member disposed inside the hollow structure body in a detachable state substantially parallel to the air flow direction,
The duct type hollow structure, wherein the hollow structure body has an opening / closing part, and the contaminant removing member can be taken in and out from the opening / closing part.
上記中空構造物本体は、上記空気中の汚染物質の種類・濃度、風速の何れかを測定する測定装置を取り付けるための観測口を有することを特徴とする請求項1に記載のダクト型中空構造物。   2. The duct-type hollow structure according to claim 1, wherein the hollow structure main body has an observation port for attaching a measuring device for measuring any of the type / concentration of the pollutants in the air and the wind speed. object. 上記汚染物質除去部材は、少なくとも光触媒、吸着材、光触媒を担持した吸着材の何れかを空気清浄手段として用いることを特徴とする請求項1または2に記載のダクト型中空構造物。   The duct type hollow structure according to claim 1 or 2, wherein the contaminant removing member uses at least one of a photocatalyst, an adsorbent, and an adsorbent carrying the photocatalyst as an air cleaning means. 上記中空構造物本体は、その天井部が光透過性部材により構成され、この光透過性部材を介して、太陽光または光源の光を上記汚染物質除去部材が受光可能となっていることを特徴とする請求項1〜3の何れかに記載のダクト型中空構造物。   The hollow structure body has a ceiling portion made of a light transmissive member, and the contaminant removing member can receive sunlight or light from a light source through the light transmissive member. The duct type hollow structure according to any one of claims 1 to 3. 上記汚染物質除去部材は、上記中空構造物本体の底部上面に載置可能な底板部と、この底板部上面に立設された一または複数の起立板部とを備えて、断面がU型、逆T型、L型、またはその何れか複数を並列に並べて組み合わせた形状をなしていることを特徴とする請求項1〜4の何れかに記載のダクト型中空構造物。   The contaminant removing member includes a bottom plate portion that can be placed on the upper surface of the bottom portion of the hollow structure body, and one or a plurality of upright plate portions that are erected on the upper surface of the bottom plate portion, with a U-shaped cross section, The duct type hollow structure according to any one of claims 1 to 4, wherein the duct type hollow structure has a reverse T shape, an L shape, or a shape obtained by combining a plurality of them in parallel. 請求項1〜5の何れかに記載のダクト型中空構造物に汚染空気を流通させて、当該汚染空気を浄化する空気清浄方法であって、
上記中空構造物本体を上記汚染空気の経路に沿って設置する第1工程と、
上記中空構造物本体の内部に、上記汚染空気の流通方向と略平行に複数の上記汚染物質除去部材を配置する第2工程とを有し、
上記第2工程では、予め設定された空気清浄能力および圧力損失に基づいて、上記汚染物質除去部材の数量、配置および空気清浄手段を決定し、その決定に従って、複数の上記汚染物質除去部材を直列および/または並列に配置することを特徴とする空気清浄方法。
An air cleaning method for purifying contaminated air by circulating contaminated air through the duct type hollow structure according to any one of claims 1 to 5,
A first step of installing the hollow structure body along the path of the contaminated air;
A second step of disposing a plurality of the contaminant removing members substantially parallel to the direction of flow of the contaminated air inside the hollow structure main body,
In the second step, the quantity, arrangement and air cleaning means of the pollutant removing member are determined based on a preset air cleaning capability and pressure loss, and a plurality of the pollutant removing members are connected in series according to the determination. And / or an air cleaning method characterized by being arranged in parallel.
上記空気中の汚染物質の種類・濃度、風速の何れかを測定し、その測定結果に基づいて、上記汚染物質除去部材の数量、配置および空気清浄手段の設定の何れかに変更を加えることにより、空気清浄能力および圧力損失を調整することを特徴とする請求項6に記載の空気清浄方法。   By measuring any of the types / concentrations and wind speeds of the pollutants in the air, and making changes to any of the quantity, arrangement and setting of the air cleaning means based on the measurement results The air cleaning method according to claim 6, wherein the air cleaning capacity and the pressure loss are adjusted. 上記空気中の汚染物質の種類・濃度、風速を測定するとともに、その測定結果に基づいて、上記汚染物質除去部材の洗浄または交換を行う時期を推定し、その時期が到来したときに、上記汚染物質除去部材を上記開閉部から取り出して上記汚染物質除去部材の洗浄または交換を行うことを特徴とする請求項6または7に記載の空気清浄方法。   Measure the type, concentration, and wind speed of the pollutants in the air, and estimate the timing for cleaning or replacing the pollutant removal member based on the measurement results. The air cleaning method according to claim 6 or 7, wherein the substance removing member is taken out from the opening / closing part and the contaminant removing member is cleaned or replaced.
JP2006033770A 2006-02-10 2006-02-10 Duct type hollow structure having air cleaning effect and air cleaning method Expired - Fee Related JP4754367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033770A JP4754367B2 (en) 2006-02-10 2006-02-10 Duct type hollow structure having air cleaning effect and air cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033770A JP4754367B2 (en) 2006-02-10 2006-02-10 Duct type hollow structure having air cleaning effect and air cleaning method

Publications (2)

Publication Number Publication Date
JP2007209594A true JP2007209594A (en) 2007-08-23
JP4754367B2 JP4754367B2 (en) 2011-08-24

Family

ID=38488504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033770A Expired - Fee Related JP4754367B2 (en) 2006-02-10 2006-02-10 Duct type hollow structure having air cleaning effect and air cleaning method

Country Status (1)

Country Link
JP (1) JP4754367B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025467A (en) * 2008-07-22 2010-02-04 Taisei Corp Air cleaner and air cleaning method
JP2012077997A (en) * 2010-09-30 2012-04-19 Taisei Corp Air cleaning duct type hollow structure
WO2014080830A1 (en) * 2012-11-22 2014-05-30 株式会社フジコー Air purifying device
KR20150086921A (en) * 2014-01-21 2015-07-29 조영서 The bad smell removal method and thereof device
US9121574B2 (en) 2011-02-25 2015-09-01 Trilite Technologies Gmbh Illumination device with movement elements
JP2015531731A (en) * 2012-06-29 2015-11-05 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Composition photocatalysts based on metal sulfides for hydrogen production
JP2017023897A (en) * 2015-07-16 2017-02-02 株式会社フジコー Deodorization device
WO2022163844A1 (en) * 2021-01-29 2022-08-04 国立研究開発法人産業技術総合研究所 Air cleaning apparatus, air cleaning method, microbe removal apparatus, microbe removal method, and flow path body
CN115875896A (en) * 2022-10-25 2023-03-31 珠海格力电器股份有限公司 Refrigerator and sterilization control method thereof
CN116135311A (en) * 2023-04-20 2023-05-19 山西省煤炭地质物探测绘院有限公司 Nanometer material based on molybdenum disulfide network structure and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146490A (en) * 1991-11-26 1993-06-15 Matsushita Electric Works Ltd Deodorizing machine
JPH0824563A (en) * 1994-07-13 1996-01-30 Engel:Kk Adsorbent unit and adsorption device using the same
JP2000185215A (en) * 1998-12-22 2000-07-04 Daikin Ind Ltd Method for measuring amount of voltage harmful chemical substance adsorbed in adsorbing material and air cleaner for removing volatile harmful chemical substance
JP2001149739A (en) * 1999-09-13 2001-06-05 Esupo Kk Device and method for washing polluted gas
JP2002355301A (en) * 2001-03-09 2002-12-10 Toto Ltd Photocatalyst unit and air conditioner loaded therewith
JP2003117335A (en) * 2001-10-10 2003-04-22 Kobe Steel Ltd Housing container for honeycomb filter
JP2003284926A (en) * 2002-03-28 2003-10-07 Nippon Shokubai Co Ltd Gas cleaning apparatus using photocatalyst
JP2004065307A (en) * 2002-08-01 2004-03-04 Techno Medical Kk Sterilization and deodorization device for gas
JP2004180895A (en) * 2002-12-03 2004-07-02 Kankyo Assist:Kk Air purification apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146490A (en) * 1991-11-26 1993-06-15 Matsushita Electric Works Ltd Deodorizing machine
JPH0824563A (en) * 1994-07-13 1996-01-30 Engel:Kk Adsorbent unit and adsorption device using the same
JP2000185215A (en) * 1998-12-22 2000-07-04 Daikin Ind Ltd Method for measuring amount of voltage harmful chemical substance adsorbed in adsorbing material and air cleaner for removing volatile harmful chemical substance
JP2001149739A (en) * 1999-09-13 2001-06-05 Esupo Kk Device and method for washing polluted gas
JP2002355301A (en) * 2001-03-09 2002-12-10 Toto Ltd Photocatalyst unit and air conditioner loaded therewith
JP2003117335A (en) * 2001-10-10 2003-04-22 Kobe Steel Ltd Housing container for honeycomb filter
JP2003284926A (en) * 2002-03-28 2003-10-07 Nippon Shokubai Co Ltd Gas cleaning apparatus using photocatalyst
JP2004065307A (en) * 2002-08-01 2004-03-04 Techno Medical Kk Sterilization and deodorization device for gas
JP2004180895A (en) * 2002-12-03 2004-07-02 Kankyo Assist:Kk Air purification apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025467A (en) * 2008-07-22 2010-02-04 Taisei Corp Air cleaner and air cleaning method
JP2012077997A (en) * 2010-09-30 2012-04-19 Taisei Corp Air cleaning duct type hollow structure
US9121574B2 (en) 2011-02-25 2015-09-01 Trilite Technologies Gmbh Illumination device with movement elements
US9689551B2 (en) 2011-02-25 2017-06-27 Trilite Technologies Gmbh Display device with movement elements for obtaining a high resolution and/or a 3D effect
JP2015531731A (en) * 2012-06-29 2015-11-05 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Composition photocatalysts based on metal sulfides for hydrogen production
KR101581398B1 (en) 2012-11-22 2015-12-30 후지코 가부시키가이샤 Air purifying device
KR20150039812A (en) * 2012-11-22 2015-04-13 후지코 가부시키가이샤 Air purifying device
JP2014104371A (en) * 2012-11-22 2014-06-09 Fuji Corp Air cleaning device
WO2014080830A1 (en) * 2012-11-22 2014-05-30 株式会社フジコー Air purifying device
KR20150086921A (en) * 2014-01-21 2015-07-29 조영서 The bad smell removal method and thereof device
KR101595321B1 (en) 2014-01-21 2016-02-23 조영서 The bad smell removal method and thereof device
JP2017023897A (en) * 2015-07-16 2017-02-02 株式会社フジコー Deodorization device
WO2022163844A1 (en) * 2021-01-29 2022-08-04 国立研究開発法人産業技術総合研究所 Air cleaning apparatus, air cleaning method, microbe removal apparatus, microbe removal method, and flow path body
CN115875896A (en) * 2022-10-25 2023-03-31 珠海格力电器股份有限公司 Refrigerator and sterilization control method thereof
CN116135311A (en) * 2023-04-20 2023-05-19 山西省煤炭地质物探测绘院有限公司 Nanometer material based on molybdenum disulfide network structure and preparation method and application thereof
CN116135311B (en) * 2023-04-20 2023-08-04 山西省煤炭地质物探测绘院有限公司 Nanometer material based on molybdenum disulfide network structure and preparation method and application thereof

Also Published As

Publication number Publication date
JP4754367B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4754367B2 (en) Duct type hollow structure having air cleaning effect and air cleaning method
CN204478340U (en) A kind of regenerative air cleaning system
Zhong et al. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation
JP5475605B2 (en) Air purification duct type hollow structure
KR101989069B1 (en) Tower-type Self-power Generation and Fine Dust Removal System
KR20180083234A (en) A water filter equipped a cylindrical bar,apply to an air purifier and a chimney dust reduction device
EP2826543B1 (en) A biofilter-adsorber
RU2500867C2 (en) Energy-saving device for cleaning of smoke gases of group of heat generators of apartment heating systems
KR102278468B1 (en) Bus Stand
JP5179982B2 (en) Air cleaning apparatus and air cleaning method
CN104833008A (en) Multifunctional air purifying device
JP2002061314A (en) Atmosphere cleaning method using building of double exterior wall structure, and exterior wall structure body used therefor
JP2016000189A (en) Air purification device
JP4239897B2 (en) Building with air purification effect
JP4958281B2 (en) Cleaning device and air cleaning device using the same
JP2003284926A (en) Gas cleaning apparatus using photocatalyst
CN102026686A (en) Control system for UV-PCO air purifier
RU2581072C2 (en) Device for cleaning and recovery of flue gas heat of group of heat generators of residential heating systems
RU2627808C1 (en) Device for cleaning and utilisation of flue gases of roof boiler
KR20030022752A (en) Air Pollution Removal Device
CN205760454U (en) A kind of absorbent charcoal adsorber
CN108380025A (en) A kind of low-temperature plasma photooxidation catalysis VOCs waste gas treatment equipments
KR101925556B1 (en) Modular waste gas scrubber with prefabricated net-like filler plate
JP2009183919A (en) Air cleaning apparatus
CN207076343U (en) A kind of central haze VOCs cleaning systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170603

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4754367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees