JP2007209419A - Washing/drying machine, and drying machine - Google Patents

Washing/drying machine, and drying machine Download PDF

Info

Publication number
JP2007209419A
JP2007209419A JP2006030439A JP2006030439A JP2007209419A JP 2007209419 A JP2007209419 A JP 2007209419A JP 2006030439 A JP2006030439 A JP 2006030439A JP 2006030439 A JP2006030439 A JP 2006030439A JP 2007209419 A JP2007209419 A JP 2007209419A
Authority
JP
Japan
Prior art keywords
water
drying
air
temperature
wing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006030439A
Other languages
Japanese (ja)
Other versions
JP4637027B2 (en
Inventor
Naoki Kitayama
直樹 北山
Nobuhisa Koumoto
伸央 甲元
Tamotsu Kawamura
保 川村
Akishi Kimura
陽史 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006030439A priority Critical patent/JP4637027B2/en
Publication of JP2007209419A publication Critical patent/JP2007209419A/en
Application granted granted Critical
Publication of JP4637027B2 publication Critical patent/JP4637027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve excellent drying performance and silentness by using a fan with reduced noise while securing the sufficient quantity of wind even if an air channel for drying has many bends and a large channel resistance. <P>SOLUTION: An impeller 330, as a deformed conventional sirocco fan, has two kinds of vane bodies: a first vane body 334 having only an outer peripheral blade part which is circular as seen from the top, and a second vane body 335 having an inner peripheral blade part of the same shape as of the first vane body 334 extending from the inner side edge of the outer blade part to the inner peripheral side. The vane bodies are annularly disposed so that the second vane bodies 335 are located every integral number of first vane bodies 334. The inner peripheral blade part of the second vane body 335 is nearly triangular with the side facing an inlet as the bottom side, and the distal end on the inner peripheral side is bent to fall in the direction of rotation. With this structure, air can be smoothly taken from the inlet to be fed to the outside, and as the air resistance is small, the noise can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、衣類を洗濯した後に乾燥する洗濯乾燥機、及び洗濯後の濡れた衣類を乾燥する乾燥機に関する。   The present invention relates to a washing dryer that dries after washing clothes and a drier that dries wet clothes after washing.

ドラム式洗濯乾燥機等の洗濯乾燥機では、洗濯物を収容した外槽内の空気を吸引し、この空気を除湿した後にヒータで加熱して外槽内に戻す。このように外槽を含む通風路内に空気流を生成するためにファンが用いられる。例えば特許文献1に記載のドラム式洗濯乾燥機では、乾燥用のファンとして一般にシロッコファンと呼ばれる一種の遠心型ファンが利用されている。同文献の図5に示されているように、シロッコファンは、上面視円弧形状である翼体が所定角度間隔離して円環状に多数配置されたインペラを有しており、回転軸と同方向から吸い込んだ空気を回転軸に略直交する方向に吐き出すものである。   In a laundry dryer such as a drum type laundry dryer, the air in the outer tub containing the laundry is sucked, dehumidified, and heated by a heater to be returned to the outer tub. Thus, a fan is used to generate an air flow in the ventilation path including the outer tub. For example, in the drum-type washing and drying machine described in Patent Document 1, a kind of centrifugal fan generally called a sirocco fan is used as a drying fan. As shown in FIG. 5 of the same document, the sirocco fan has an impeller in which a large number of wing bodies each having a circular arc shape when viewed from above are spaced apart from each other by a predetermined angle and arranged in an annular shape in the same direction as the rotation axis. The air sucked from is discharged in a direction substantially orthogonal to the rotation axis.

シロッコファンはもともと比較的大きな風量が得られるものである。しかしながら、洗濯乾燥機の内部の各部材の配置の都合上、例えば通風路の折れ曲がりが多くなる場合やファンからの空気吐出口の直近にヒータを配置する場合には通風路の流路抵抗が大きくなり、風量を大きくすることが難しくなる。洗濯乾燥機では、乾燥運転時に十分な風量が確保できないと、乾燥運転に時間が掛かる、乾燥不足が発生する、等の問題がある。風量を増加させるためには、シロッコファンの各翼体の幅を広げることが有効である。しかしながら、その場合には風切り音が大きくなり、特に吸音材などで吸収することが難しい低周波域の騒音が増大して静粛性を保つのが困難になる。こうしたことから、洗濯乾燥機や乾燥機においては、乾燥のために十分な風量を確保しながら騒音を抑制できるようなファン構造が強く要望されている。   Sirocco fans originally have a relatively large air flow. However, for the convenience of arrangement of each member inside the washing and drying machine, for example, when the bending of the ventilation path is increased or when the heater is arranged in the immediate vicinity of the air discharge port from the fan, the flow path resistance of the ventilation path is large. It becomes difficult to increase the air volume. In a washing and drying machine, when a sufficient air volume cannot be ensured during the drying operation, there are problems such as a long time for the drying operation and insufficient drying. In order to increase the air volume, it is effective to widen the width of each sirocco fan. However, in that case, wind noise increases, and noise in a low frequency region that is difficult to absorb, particularly with a sound absorbing material, increases, making it difficult to maintain quietness. For these reasons, there is a strong demand for a fan structure that can suppress noise while ensuring a sufficient air volume for drying in washing and drying machines and dryers.

また、一般に洗濯乾燥機では、外槽から吐き出された湿った空気を除湿するために水が使用される、つまり水冷式の除湿を行うため、乾燥時に水道水を連続的又は間欠的に流す必要がある。近年、洗濯乾燥機では節水性が非常に重要視されており、例えば特許文献2に記載のドラム式洗濯乾燥機では、乾燥運転の際に使用された冷却水等を回収して貯留しておく貯水タンクを外槽の下方空間に配置し、この貯留水を次の洗濯の際の洗いやすすぎに利用できるようにしている。このように一旦使用された水を再使用する構成とすれば、かなりの節水効果が期待できる。   In general, in a washing and drying machine, water is used to dehumidify the moist air discharged from the outer tub, that is, water-cooled dehumidification is performed. There is. In recent years, water-saving is very important in washing and drying machines. For example, in the drum type washing and drying machine described in Patent Document 2, the cooling water used in the drying operation is collected and stored. A water storage tank is arranged in the lower space of the outer tub so that the stored water can be used for easy washing in the next washing. Thus, if it is set as the structure which reuses once used water, a considerable water-saving effect can be anticipated.

もちろん、貯水タンクに回収した水を乾燥運転時の除湿用冷却水として利用することも可能であるから、そうすれば乾燥運転時に水道水を使用する必要がなくなる、或いは使用したとしてもその使用量をかなり抑えることができる。しかしながら、一旦除湿に利用した水を回収して除湿に繰り返し使用する場合には次のような問題がある。   Of course, it is also possible to use the water collected in the water storage tank as cooling water for dehumidification during the drying operation, so that it becomes unnecessary to use tap water during the drying operation, or even if it is used, the amount used Can be suppressed considerably. However, when water once used for dehumidification is collected and repeatedly used for dehumidification, there are the following problems.

例えば特許文献3に記載のように、従来のドラム式洗濯乾燥機では乾燥運転時に、ドラム内で洗濯物と熱交換を行った後の排気の温度と除湿に利用された後の冷却水の温度とをそれぞれ検知してその温度差に基づいて洗濯物の乾き具合を判断し、これによって乾燥運転の終了の制御を実行している。ドラム内の洗濯物が或る程度乾いてくると、外槽内に供給された加熱空気から奪われる熱量が減少するため排気温度は徐々に上昇し始め、逆に、冷却水に与えられる熱量は減少するため冷却水の温度は徐々に下がり始める。これにより、両温度の差が徐々に拡大するため、上述のように温度差に基づいた乾燥終了の検知が可能である。   For example, as described in Patent Document 3, in a conventional drum-type washing / drying machine, during drying operation, the temperature of exhaust gas after heat exchange with laundry in the drum and the temperature of cooling water after being used for dehumidification are performed. , And the degree of drying of the laundry is determined based on the temperature difference, thereby controlling the end of the drying operation. When the laundry in the drum dries to some extent, the amount of heat taken away from the heated air supplied into the outer tub decreases, so the exhaust temperature begins to rise gradually. Conversely, the amount of heat given to the cooling water is The temperature of the cooling water starts to gradually decrease due to the decrease. Thereby, since the difference between both temperatures gradually increases, it is possible to detect the end of drying based on the temperature difference as described above.

しかしながら、除湿用冷却水として水道水を用いる場合には、供給される冷却水の温度はほぼ一定であるという前提の下で上記のような制御が可能であるが、除湿用冷却水を回収して繰り返し使用する場合、乾燥運転の時間経過に伴って冷却水に供給される熱量は加算されるため、上記のような供給される冷却水の温度がほぼ一定であるという前提が成り立たない。そのため、従来のような方法により洗濯物の乾き具合の判断を行うと、乾き具合のばらつきが大きくなり、洗濯物が十分に乾燥しない状態で乾燥を終了してしまったり逆に乾燥し過ぎになって洗濯物の布傷みの原因となったりする場合がある。   However, when tap water is used as the dehumidifying cooling water, the above control is possible on the assumption that the temperature of the supplied cooling water is substantially constant, but the dehumidifying cooling water is recovered. In the case of repeated use, the amount of heat supplied to the cooling water is added with the lapse of time of the drying operation, so that the assumption that the temperature of the supplied cooling water is almost constant is not satisfied. Therefore, when the dryness of the laundry is judged by a conventional method, the variation in the dryness becomes large, and the drying ends in a state where the laundry is not sufficiently dried or conversely becomes too dry. May cause damage to the laundry cloth.

特開2003−290588号公報JP 2003-290588 A 特許第2650339号公報Japanese Patent No. 2650339 特開2003−290586号公報JP 2003-290586 A

本発明は上記課題を解決するために成されたものであり、第1の目的とするところは、通風路の流路抵抗が大きい場合でも乾燥に十分な風量を確保しつつ、同時に騒音の発生も抑制することができるファンを搭載した洗濯乾燥機及び乾燥機を提供することにある。   The present invention has been made to solve the above-mentioned problems, and a first object is to generate a sufficient amount of air for drying and at the same time generate noise even when the flow path resistance of the ventilation path is large. Another object of the present invention is to provide a washing / drying machine and a dryer equipped with a fan capable of suppressing the above-described problem.

また本発明の第2の目的は、一回使用した除湿用冷却水を回収して繰り返し使用可能とした節水型の洗濯乾燥機において、洗濯物の乾き具合の判断の正確性を向上し、乾燥不足や乾燥過剰を防止することができる洗濯乾燥機を提供することにある。   The second object of the present invention is to improve the accuracy of the determination of the dryness of the laundry in the water-saving washing and drying machine that collects the dehumidifying cooling water used once and can be used repeatedly. An object of the present invention is to provide a washing / drying machine capable of preventing shortage and excessive drying.

上記第1の目的を達成するために成された第1発明は、外槽の内部に回転自在に設けられ、内部に洗濯物が収容される内槽と、前記外槽に両端が接続された通風路と、該通風路内に配設された、空気流を生起するための送風ファン、外槽内に送る空気を加熱するヒータ、及び外槽から吐き出された湿った空気を除湿する除湿部と、を備えた洗濯乾燥機において、前記ファンは、モータにより回転駆動されるインペラの内周側でその軸方向に吸気し、該インペラの内周から外周側に空気を吐出する遠心型のファンであって、
前記インペラは、上面視円弧形状の外周側羽根部のみを有する第1翼体と、該第1翼体と同一形状の外周側羽根部の内周側縁部から内周側に延展する内周側羽根部を有する第2翼体と、の2種類の翼体が、回転軸を取り囲み、第2翼体が第1翼体の整数個おきに位置するように円環状に配置されて成ることを特徴としている。
In order to achieve the first object, the first invention is configured to be rotatably provided in an outer tub, and an inner tub in which laundry is accommodated, and both ends connected to the outer tub. Ventilation path, a blower fan for generating an air flow, a heater for heating air to be sent into the outer tub, and a dehumidifying unit for dehumidifying the moist air discharged from the outer tub disposed in the ventilation path The centrifugal fan that sucks air in the axial direction on the inner peripheral side of the impeller that is rotationally driven by a motor and discharges air from the inner periphery to the outer peripheral side of the impeller. Because
The impeller includes a first wing body having only an outer peripheral blade portion having an arc shape when viewed from above, and an inner periphery extending from an inner peripheral edge of the outer peripheral blade portion having the same shape as the first wing body to the inner peripheral side. Two types of wing bodies, the second wing body having the side blade portions, are arranged in an annular shape so as to surround the rotating shaft and the second wing body is located at every integer number of the first wing body. It is characterized by.

また上記第1の目的を達成するために成された第2発明は、濡れた洗濯物が収容される乾燥室と、該乾燥室内に加熱空気を供給するために内部に送風用ファン及びヒータを設けた通風路と、を有する乾燥機において、前記ファンは、モータにより回転駆動されるインペラの内周側でその軸方向に吸気し、該インペラの内周から外周側に空気を吐出する遠心型のファンであって、
前記インペラは、上面視円弧形状の外周側羽根部のみを有する第1翼体と、該第1翼体と同一形状の外周側羽根部の内周側縁部から内周側に延展する内周側羽根部を有する第2翼体と、の2種類の翼体が、回転軸を取り囲み、第2翼体が第1翼体の整数個おきに位置するように円環状に配置されて成ることを特徴としている。
A second invention made to achieve the first object includes a drying chamber in which wet laundry is stored, and a fan and a heater for blowing in the heating chamber to supply heated air to the drying chamber. In the dryer having the ventilation path provided, the fan sucks in the axial direction on the inner peripheral side of the impeller rotated and driven by a motor, and discharges air from the inner periphery to the outer peripheral side of the impeller Who is a fan of
The impeller includes a first wing body having only an outer peripheral blade portion having an arc shape when viewed from above, and an inner periphery extending from an inner peripheral edge of the outer peripheral blade portion having the same shape as the first wing body to the inner peripheral side. Two types of wing bodies, the second wing body having the side blade portions, are arranged in an annular shape so as to surround the rotating shaft and the second wing body is located at every integer number of the first wing body. It is characterized by.

第1発明に係る洗濯乾燥機及び第2発明に係る乾燥機ではいずれも、乾燥対象である洗濯物が収容される内槽又は乾燥室内に供給する空気流を生起するためのファンのインペラが特徴的な構成を有している。即ち、従来のインペラの構成では、回転軸を取り囲んで円環状に配置される翼体が全て上面視円弧形状の外周側羽根部のみを有する第1翼体であったのに対し、この特徴的な構成では、第1翼体と同一形状の外周側羽根部の内周側縁部から内周側に延展する内周側羽根部を有する第2翼体が、第1翼体の整数個おきに配置されている。   Both the washing and drying machine according to the first invention and the drying machine according to the second invention are characterized by a fan impeller for generating an air flow to be supplied to an inner tub or a drying chamber in which laundry to be dried is stored. It has a typical configuration. That is, in the configuration of the conventional impeller, the wing bodies that surround the rotating shaft and are arranged in an annular shape are all first wing bodies that have only the outer peripheral blade portion having an arc shape when viewed from above. In such a configuration, the second wing body having the inner peripheral side blade portion extending from the inner peripheral side edge portion of the outer peripheral side blade portion having the same shape as the first wing body to the inner peripheral side is every integer number of the first wing body. Is arranged.

第1及び第2発明の一実施態様として、第2翼体の内周側羽根部は上面視円弧状であって、上面視円弧状である外周側羽根部と略ε状に連結されている構成とすることができる。或いは、第2翼体の内周側羽根部は上面視直線状である構成としてもよい。   As one embodiment of the first and second inventions, the inner peripheral blade portion of the second wing body has an arc shape when viewed from above, and is connected to the outer peripheral blade portion that is arc shape when viewed from above in a substantially ε shape. It can be configured. Alternatively, the inner wing portion of the second wing body may be configured to be linear when viewed from above.

いずれにしても、内周側つまりファンケーシングに形成された吸気口側に第2翼体の内周側羽根部が延出しており、しかも回転方向に隣接する第2翼体の内周側羽根部の間隔は十分に広く空気抵抗も小さいので、その内周側羽根部の作用によって、より多くの空気を取り込んで外周側に送り出すことができる。それにより、従来の構成よりも風量を増加させることができる。また、第2翼体の内周側羽根部が整流板として作用し、円滑に空気を第1翼体及び第2翼体の外周側羽根部の間の空隙に導くので、空気抵抗が減少して風切り音(騒音)を低減することができる。   In any case, the inner peripheral blades of the second wing body extend to the inner peripheral side, that is, the intake port side formed in the fan casing, and the inner peripheral blades of the second wing body adjacent to each other in the rotational direction. Since the interval between the portions is sufficiently wide and the air resistance is small, more air can be taken in and sent out to the outer peripheral side by the action of the inner peripheral blade portion. Thereby, the air volume can be increased as compared with the conventional configuration. In addition, the inner wing portion of the second wing body acts as a rectifying plate and smoothly guides air to the gap between the outer wing portions of the first wing body and the second wing body, thereby reducing air resistance. Wind noise (noise) can be reduced.

また上記インペラにおいては、第2翼体の内周側羽根部にあって、ファンケーシングに形成された吸気口側に面する縁端の内周先端部が当該インペラの回転方向側に倒れるように屈曲されている構成とすると好ましい。   Further, in the above impeller, the inner peripheral tip of the edge facing the air inlet side formed in the fan casing on the inner peripheral blade part of the second wing body is tilted toward the rotation direction side of the impeller. A bent configuration is preferable.

この構成によれば、インペラが回転する際に第2翼体の内周側羽根部にあって空気に当たる面が緩やかに湾曲した凹面状になるため、空気の流れが一層円滑になり、風量の増加と騒音の低減に有効である。   According to this configuration, when the impeller rotates, the air contact surface on the inner peripheral blade portion of the second wing body becomes a gently curved concave surface, so that the air flow becomes smoother and the airflow is reduced. It is effective for increasing and reducing noise.

また上記インペラにおいては、第2翼体の内周側羽根部にあって少なくともその内周側の一部は、ファンケーシングに形成された吸気口の開口内方に対応する位置まで延出している構成とするとよい。   In the impeller, at least a part of the inner peripheral side blade portion of the second wing body extends to a position corresponding to the inside of the opening of the intake port formed in the fan casing. It may be configured.

この構成によれば、吸気口外側直近に位置する空気がファンケーシング内に円滑に吸い込まれ、風量の増加に有効であるとともに騒音を一層低減することができる。   According to this structure, the air located in the immediate vicinity of the outside of the intake port is smoothly sucked into the fan casing, which is effective for increasing the air volume and further reducing noise.

さらにまた上記インペラにおいて、第2翼体の内周側羽根部において風量の増加に特に寄与するのは吸気口に面する縁部である。したがって、吸気口と反対側の縁部は内周側への延出長が短くてもよく、そうすれば、吸気口から吸い込まれて軸に沿った方向に進む空気流に当たる面積が小さくなるため騒音を一層低減することができる。こうしたことから、例えば、第2翼体の内周側羽根部はファンケーシングに形成された吸気口側に底辺を有する略三角形状である構成とするとよい。   Furthermore, in the impeller, it is the edge facing the air intake that particularly contributes to an increase in the air volume in the inner peripheral blade portion of the second wing body. Therefore, the edge on the side opposite to the intake port may have a short extension length toward the inner peripheral side, so that the area of the air flow sucked from the intake port and traveling in the direction along the axis is reduced. Noise can be further reduced. For this reason, for example, the inner wing portion of the second wing body may have a substantially triangular shape having a bottom side on the air inlet side formed in the fan casing.

さらにまた、第2翼体の数が第1翼体の数に比べて少な過ぎても十分な風量増加効果を得られないから、第2翼体は第1翼体の1、2又は3個おきであって回転軸の周囲に等角度間隔で配置される構成とするとよい。   Furthermore, even if the number of the second wing bodies is too small as compared with the number of the first wing bodies, a sufficient air volume increasing effect cannot be obtained, so that the second wing body is one, two or three of the first wing bodies. It is good to set it as the structure arrange | positioned at equal intervals around the rotation axis.

上記第2の目的を達成するために成された第3発明は、外槽の内部に回転自在に設けられ、内部に洗濯物が収容される内槽と、前記外槽に両端が接続された通風路と、該通風路内に配設された、空気流を生起するための送風ファン、外槽内に送る空気を加熱するヒータ、及び外槽から吐き出された湿った空気を除湿する除湿部と、洗濯に使用した及び/又は乾燥の除湿に使用した水を回収して中水として貯留する貯留部と、該貯留部に貯留された中水を前記除湿部に供給する除湿用中水供給手段と、外部から供給された水道水を前記除湿部に供給する除湿用水道水供給手段と、を具備する洗濯乾燥機であって、
前記通風路内に配設され、前記外槽から吐き出されて前記ヒータにより再び加熱されるまでの途中の空気の温度を検出する排気温度検知手段と、
前記除湿部において除湿に使用された後の水の温度を検知する除湿水温度検知手段と、
乾燥運転時に前記除湿部に供給する冷却水を中水と水道水とで切り替えべく前記除湿用中水供給手段及び除湿用水道水供給手段を制御する冷却水切替制御手段と、
前記排気温度検知手段による排気温度と前記除湿水温度検知手段による除湿水温度とに基づいて内槽内の洗濯物の乾き具合を判断する手段であって、前記冷却水切替制御手段による冷却水の切替えに連動して洗濯物の乾き具合を判断する方法を切り替える乾燥運転制御手段と、
を備えることを特徴としている。
According to a third aspect of the present invention, which is achieved to achieve the second object, an outer tub is rotatably provided, an inner tub in which laundry is accommodated, and both ends connected to the outer tub. Ventilation path, a blower fan for generating an air flow, a heater for heating air to be sent into the outer tub, and a dehumidifying unit for dehumidifying the moist air discharged from the outer tub disposed in the ventilation path And a storage unit that collects water used for washing and / or used for dehumidification for drying and stores it as intermediate water, and a dehumidifying middle water supply that supplies the intermediate water stored in the storage unit to the dehumidifying unit A washing and drying machine comprising: a means and a dehumidifying tap water supply means for supplying tap water supplied from the outside to the dehumidifying unit;
An exhaust temperature detecting means that is disposed in the ventilation path and detects the temperature of air in the middle of being discharged from the outer tub and heated again by the heater;
Dehumidified water temperature detecting means for detecting the temperature of water after being used for dehumidification in the dehumidifying section;
A cooling water switching control means for controlling the dehumidifying middle water supply means and the dehumidifying tap water supply means so as to switch between cooling water supplied to the dehumidifying unit during drying operation between middle water and tap water;
A means for determining the dryness of the laundry in the inner tub based on the exhaust temperature by the exhaust temperature detecting means and the dehumidified water temperature by the dehumidified water temperature detecting means, the cooling water by the cooling water switching control means A drying operation control means for switching a method of determining the dryness of the laundry in conjunction with the switching;
It is characterized by having.

この第3発明に係る洗濯乾燥機では、乾燥運転時の除湿用冷却水として、乾燥運転の当初から終了まで温度がほぼ一定であるとみなせる水道水、又は乾燥運転の開始から徐々に温度が上昇してゆくと想定される中水、のいずれかを選択することが可能であるが、乾燥運転制御手段は、中水と水道水のいずれが使用されるのかに応じて洗濯物の乾き具合を判断する方法を変更する。これにより、除湿に利用された後の除湿水(本明細書では、除湿に利用された後の冷却水と凝縮により結露して発生した水を併せて除湿水と呼ぶこととする)の温度の状況の影響を受けずに、洗濯物の乾き具合を正確に判断することができ、適切な時点で乾燥運転を終了させることができる。   In the washer / dryer according to the third aspect of the present invention, as the dehumidifying cooling water during the drying operation, tap water whose temperature is considered to be substantially constant from the beginning to the end of the drying operation, or the temperature gradually increases from the start of the drying operation. It is possible to select either the intermediate water that is supposed to be used, but the drying operation control means determines the dryness of the laundry depending on whether the intermediate water or tap water is used. Change the method of judgment. As a result, the temperature of the dehumidified water after being used for dehumidification (in this specification, the cooling water after being used for dehumidification and the water generated by condensation due to condensation are collectively referred to as dehumidified water). Without being influenced by the situation, it is possible to accurately determine the dryness of the laundry, and it is possible to terminate the drying operation at an appropriate time.

具体的に第3発明に係る洗濯乾燥機では、前記乾燥運転制御手段は、除湿用の冷却水として中水が利用される場合に、前記排気温度と除湿水温度との加算値に基づいて洗濯物の乾き具合を判断して乾燥運転の終了を行う構成とすることができる。   Specifically, in the washer / dryer according to the third aspect of the invention, the drying operation control means performs washing on the basis of an added value of the exhaust temperature and the dehumidified water temperature when middle water is used as the cooling water for dehumidification. It can be set as the structure which judges the dryness of an object and complete | finishes drying operation.

上述のように冷却水として中水が利用される場合には、乾燥運転の開始時から時間が経過するに伴い除湿水の温度が徐々に上昇するから、洗濯物が或る程度乾いた後の排気温度が上昇するような期間(いわゆる減率乾燥期間)では排気温度と除湿水温度との加算値は排気温度自体よりも温度上昇速度が大きくなる。そのため、例えばその値が或る所定値に達したときに十分に洗濯物が乾いたと判断して乾燥運転の終了制御を行う場合に、その終了制御の時間的なばらつきが小さくなる。それにより、乾燥不足や乾燥のし過ぎを防止することができる。   When middle water is used as the cooling water as described above, the temperature of the dehumidified water gradually increases as time elapses from the start of the drying operation. In a period in which the exhaust gas temperature rises (so-called “decreasing rate drying period”), the temperature rise rate of the added value of the exhaust gas temperature and the dehumidified water temperature is greater than the exhaust gas temperature itself. Therefore, for example, when it is determined that the laundry has sufficiently dried when the value reaches a certain predetermined value and the end control of the drying operation is performed, the time variation of the end control is reduced. Thereby, insufficient drying and excessive drying can be prevented.

但し、貯留部に貯留されている中水の初期温度がかなり低い場合や周囲温度が低く乾燥運転の時間が経過しても除湿水温度の上昇度合いが比較的遅い場合など特定の状況下では、洗濯物が十分に乾燥した段階でも排気温度と除湿水温度との加算値が所定値に達しない場合が考えられ、乾燥し過ぎになるおそれもある。そこで、前記乾燥運転制御手段は、除湿用の冷却水として中水が利用される場合に、前記排気温度と除湿水温度との加算値に基づいた乾燥運転の終了制御を行うとともに、前記排気温度のみに基づいた乾燥運転の終了制御も並行して実行する構成とするとよい。   However, under certain circumstances, such as when the initial temperature of the intermediate water stored in the storage part is quite low, or when the ambient temperature is low and the degree of increase in the dehumidified water temperature is relatively slow even after the drying operation time has elapsed, Even when the laundry is sufficiently dried, there may be a case where the sum of the exhaust temperature and the dehumidified water temperature does not reach a predetermined value, and there is a possibility that the laundry will become too dry. Therefore, when the middle water is used as the dehumidifying cooling water, the drying operation control means controls the end of the drying operation based on the added value of the exhaust temperature and the dehumidified water temperature, and the exhaust temperature It is preferable that the end control of the drying operation based only on the control is executed in parallel.

この構成によれば、上記のような特定の条件下で、排気温度と除湿水温度との加算値が所定値に達しない場合でも排気温度が別の所定値に達したときに乾燥運転を終了させることで、洗濯物の乾燥し過ぎを防止することができる。さらにまた、乾燥運転時間が異常に長引くことも防止することができる。   According to this configuration, the drying operation is terminated when the exhaust gas temperature reaches another predetermined value even when the added value of the exhaust gas temperature and the dehumidified water temperature does not reach the predetermined value under the specific conditions as described above. By doing so, it is possible to prevent the laundry from being dried too much. Furthermore, abnormally prolonged drying operation time can be prevented.

また第3発明に係る洗濯乾燥機において、前記乾燥運転制御手段は、除湿用の冷却水として水道水が利用される場合に、前記排気温度と除湿水温度との差に基づいて洗濯物の乾き具合を判断して乾燥運転の終了を行う構成とすることができる。   In the laundry dryer according to the third aspect of the invention, the drying operation control means can dry the laundry based on the difference between the exhaust temperature and the dehumidified water temperature when tap water is used as the cooling water for dehumidification. It can be set as the structure which judges a condition and complete | finishes a drying operation.

冷却水として水道水が利用される場合には供給される水の温度はほぼ一定とみなせるため、上記減率乾燥期間では除湿部で与えられる熱量がその前の期間(いわゆる恒率乾燥期間)よりも減少して除湿水の温度は下がる傾向にある。したがって、排気温度と除湿水温度との差は排気温度自体よりも温度変化が大きくなる。そのため、例えばその値が或る所定値に達したときに十分に洗濯物が乾いたと判断して乾燥運転の終了制御を行う場合に、その終了制御の時間的なばらつきが小さくなる。それにより、乾燥不足や乾燥のし過ぎを防止することができる。   When tap water is used as cooling water, the temperature of the supplied water can be considered to be almost constant, so the amount of heat given by the dehumidifying unit in the above-mentioned reduced-rate drying period is more than that in the previous period (so-called constant rate drying period). However, the temperature of the dehumidified water tends to decrease. Therefore, the difference between the exhaust temperature and the dehumidified water temperature has a greater temperature change than the exhaust temperature itself. Therefore, for example, when it is determined that the laundry has sufficiently dried when the value reaches a certain predetermined value and the end control of the drying operation is performed, the time variation of the end control is reduced. Thereby, insufficient drying and excessive drying can be prevented.

但し、この場合にも、洗濯物が十分に乾燥した段階でも排気温度と除湿水温度との差が所定値に達しない場合が考えられるから、除湿用の冷却水として中水を利用する場合と同様に、排気温度のみに基づいた乾燥運転の終了制御も並行して実行する構成とするのがよい。   In this case, however, the difference between the exhaust temperature and the dehumidified water temperature may not reach a predetermined value even when the laundry is sufficiently dried. Similarly, it is preferable that the end control of the drying operation based only on the exhaust gas temperature is also executed in parallel.

第1発明に係る洗濯乾燥機及び第2発明に係る乾燥機によれば、外槽内又は乾燥室内へ加熱空気を送り込むための通風路内の流路抵抗が大きい場合でも、洗濯物の乾燥を十分に行える程度の風量を確保しながら、ファンの動作音(風切り音)を抑制することができる。それにより、洗濯乾燥機又は乾燥機における良好な乾燥性能と静粛化とをともに達成することができる。   According to the laundry dryer according to the first invention and the dryer according to the second invention, the laundry can be dried even when the flow path resistance in the ventilation passage for feeding heated air into the outer tub or into the drying chamber is large. It is possible to suppress the operation sound (wind noise) of the fan while ensuring a sufficient air volume. Thereby, it is possible to achieve both good drying performance and quietness in the laundry dryer or dryer.

また第3発明に係る洗濯乾燥機によれば、洗濯や乾燥の除湿に使用した水(中水)を回収してこれを乾燥の除湿に繰り返し使用することが可能な構成において、乾燥の除湿に中水を用いる場合と外部から供給された水道水を使用する場合のいずれが選択された場合でも、内槽に収容された洗濯物の乾き具合を的確に判断して乾燥運転を終了させることができる。それによって、乾燥不足や過剰乾燥による衣類の布傷みなどを防止することができる。   Further, according to the laundry dryer according to the third aspect of the present invention, the water (medium water) used for washing and drying dehumidification can be collected and used repeatedly for drying dehumidification. Whether to use medium water or to use tap water supplied from the outside, it is possible to accurately determine the dryness of the laundry stored in the inner tub and terminate the drying operation. it can. Thereby, it is possible to prevent clothes from being damaged due to insufficient drying or excessive drying.

以下、本発明に係る洗濯乾燥機及び乾燥機の一実施例であるドラム式洗濯乾燥機について図面を参照して説明する。図1は本実施例のドラム式洗濯乾燥機の外観斜視図、図2は本実施例のドラム式洗濯乾燥機の概略側面縦断面図、図3は本実施例のドラム式洗濯乾燥機において乾燥運転に関連する部分の概略構成図、図4は本実施例のドラム式洗濯乾燥機の筐体内部の要部の背面斜視図である。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a washing and drying machine according to the present invention and a drum type washing and drying machine as an embodiment of the drying machine will be described with reference to the drawings. FIG. 1 is an external perspective view of a drum-type washing / drying machine according to this embodiment, FIG. 2 is a schematic side sectional view of the drum-type washing / drying machine according to this embodiment, and FIG. FIG. 4 is a rear perspective view of the main part inside the casing of the drum type washing / drying machine of this embodiment.

本ドラム式洗濯乾燥機の外形を成す筐体1は全体として略箱形状である。筐体1の前面1aは、上部から中央部にかけて緩やかに湾曲しつつやや斜め上方を向く形状になっており、そこに略円形状の衣類投入口1bが形成され、衣類投入口1bは内部を透視可能である横開き式のドア2で以て開閉可能である。また、前面1aの上部つまり衣類投入口1bの上には、左右に細長く、各種操作キーや表示器が配置された操作パネル5が設けられ、その左側には前方に引き出し式の洗剤容器6が設置され、右側には同じく引き出し式の乾燥フィルタ容器7が設置されている。   The casing 1 forming the outer shape of the drum type washing and drying machine has a substantially box shape as a whole. The front surface 1a of the housing 1 is slightly curved from the upper part to the center part, and is slightly inclined upward. A substantially circular clothing input port 1b is formed there, and the clothing input port 1b extends inside. It can be opened and closed with a laterally openable door 2 that can be seen through. In addition, an operation panel 5 that is elongated in the left and right directions and has various operation keys and indicators arranged thereon is provided on the upper portion of the front surface 1a, that is, on the clothes insertion opening 1b. The drawer type dry filter container 7 is also installed on the right side.

筐体1の上面1cには一端が水道栓に接続される給水ホースの他端が接続される給水ホース接続口3が配置され、その右隣には一端が浴槽内の風呂水に浸漬される風呂水ホースの他端が接続される風呂水ホース接続口4が配置されている。給水ホース接続口3は後述する給水バルブ21aの入水口を直接上面に露出させることで形成されており、風呂水ホース接続口4は風呂水ポンプ22の入水口を直接上面に露出させることで形成されている。   A water supply hose connection port 3 to which the other end of a water supply hose whose one end is connected to a water tap is connected is arranged on the upper surface 1c of the housing 1, and one end is immersed in the bath water in the bathtub on the right side thereof. A bath water hose connection port 4 to which the other end of the bath water hose is connected is arranged. The water supply hose connection port 3 is formed by exposing a water inlet of a water supply valve 21a described later directly to the upper surface, and the bath water hose connection port 4 is formed by exposing the water inlet of the bath water pump 22 directly to the upper surface. Has been.

図2に示すように、筐体1の内部には、周面が略円筒形状の外槽10が左右両下側方を支持するダンパ11と上部を牽引する図示しないばねとにより適度に揺動自在に保持されている。外槽10の前面には筐体1の衣類投入口1bに相対して円形状に開口した外槽前面開口10aが形成され、この外槽前面開口10aの周縁部と衣類投入口1bの周縁部とはゴムなどの弾性体から成る扁平円筒形状のパッキン12によって連結されている。   As shown in FIG. 2, an outer tub 10 having a substantially cylindrical peripheral surface is moderately rocked inside the housing 1 by a damper 11 that supports the left and right sides and a spring (not shown) that pulls the upper part. It is held freely. A front surface of the outer tub 10 is formed with an outer tub front surface opening 10a that is open in a circular shape relative to the clothing input port 1b of the housing 1, and a peripheral edge portion of the outer tub front surface opening 10a and a peripheral edge portion of the clothing input port 1b. Are connected by a flat cylindrical packing 12 made of an elastic material such as rubber.

外槽10の内部には、洗濯物を収容するための周面略円筒形状のドラム13が前後方向に延伸し且つ前上がりに傾斜して設けられた主軸14により軸支されている。ドラム13の前端面には大きく開口したドラム前面開口13aが形成されており、ドア2が開放されると、前方斜め上から外槽前面開口10aとこのドラム前面開口13aとを通して、ドラム13内部が覗き込めるようになっている。ここでは、ドラム13の中心軸線Cつまり主軸14の中心軸線の傾斜角度θは水平線に対して約15°に定められているが、これは一例であり、傾斜角度θは例えば10〜30°程度の適度な角度に設定される。   Inside the outer tub 10, a drum 13 having a substantially cylindrical shape for accommodating laundry is supported by a main shaft 14 that extends in the front-rear direction and is inclined forward. The front end surface of the drum 13 is formed with a drum front opening 13a that is widely opened. When the door 2 is opened, the interior of the drum 13 is passed through the outer tank front opening 10a and the drum front opening 13a from the upper front side. You can peek into it. Here, the inclination angle θ of the central axis C of the drum 13, that is, the central axis of the main shaft 14 is set to about 15 ° with respect to the horizontal line, but this is an example, and the inclination angle θ is about 10 to 30 °, for example. Is set at an appropriate angle.

主軸14の前端はドラム13の後面に強固に固定され、外槽10の後面部に装着された軸受固定部材15の軸受16により回転自在に支承されている。外槽10の後方側に突出した主軸14の端部には、アウタロータ型のモータ(ドラムモータ)17のロータ172が取り付けられ、一方、軸受固定部材15にはモータ17のステータ171が固定されている。永久磁石を含むロータ172は巻線を含むステータ171の外周側を取り囲むように配置されており、ステータ171に駆動電流が供給されるとロータ172は回転し、主軸14を介してロータ172と同一の回転速度でドラム13が回転駆動される。   The front end of the main shaft 14 is firmly fixed to the rear surface of the drum 13 and is rotatably supported by a bearing 16 of a bearing fixing member 15 attached to the rear surface portion of the outer tub 10. A rotor 172 of an outer rotor type motor (drum motor) 17 is attached to an end portion of the main shaft 14 protruding rearward of the outer tub 10, while a stator 171 of the motor 17 is fixed to the bearing fixing member 15. Yes. The rotor 172 including the permanent magnet is disposed so as to surround the outer peripheral side of the stator 171 including the winding. When a drive current is supplied to the stator 171, the rotor 172 rotates and is identical to the rotor 172 via the main shaft 14. The drum 13 is rotationally driven at a rotational speed of.

筐体1内の上部空間には、給水バルブ21a、冷却水バルブ21b、風呂水給水用の風呂水ポンプ22、注水口部23等を含む給水ユニット20が配設されている。この給水バルブ21aの上方に指向した入水口が上記給水ホース接続口3であり、風呂水ポンプ22の上方に指向した入水口が上記風呂水ホース接続口4である。洗剤容器6を引き出し自在に内装する注水口部23は給水バルブ21aの前方に配置され、給水バルブ21aや風呂水ポンプ22を経て注水口部23に供給された水は主として洗剤容器6の内部を通り、注水口部23の底部に接続された注水管24を通して外槽10の後部に設けられた注水口25から外槽10内へと供給される。   A water supply unit 20 including a water supply valve 21a, a cooling water valve 21b, a bath water pump 22 for bath water supply, a water inlet 23, and the like is disposed in the upper space in the housing 1. The water inlet directed upward of the water supply valve 21 a is the water supply hose connection port 3, and the water inlet directed upward of the bath water pump 22 is the bath water hose connection port 4. A water injection port 23 in which the detergent container 6 can be pulled out is disposed in front of the water supply valve 21a, and the water supplied to the water injection port 23 via the water supply valve 21a and the bath water pump 22 mainly passes through the interior of the detergent container 6. As a result, the water is supplied into the outer tub 10 from the water throat 25 provided at the rear portion of the outer tub 10 through the irrigation pipe 24 connected to the bottom of the water throat 23.

上述したように給水が行われて外槽10に貯留した水は通水穴13bを通してドラム13内へと流入する。また、ドラム13の高速回転による脱水時にドラム13内で洗濯物から吐き出された水は通水穴13bを通して外槽10側へ飛散する。外槽10の底部後方には排水口26が設けられ、排水口26は排水バルブ27の流入口に接続されており、この排水バルブ27が開放されると外槽10内に貯留されている水は排水管28を通して機外へと排出される。   As described above, the water supplied and stored in the outer tub 10 flows into the drum 13 through the water passage hole 13b. In addition, water discharged from the laundry in the drum 13 during dehydration due to the high-speed rotation of the drum 13 scatters to the outer tub 10 side through the water passage hole 13b. A drain outlet 26 is provided behind the bottom of the outer tub 10, and the drain outlet 26 is connected to an inlet of a drain valve 27. When the drain valve 27 is opened, water stored in the outer tub 10 is stored. Is discharged out of the machine through the drain pipe 28.

一方、排水口26は貯水バルブ41の流入口にも接続されており、排水バルブ27が閉鎖状態であって貯水バルブ41が開放されると外槽10内に貯留されている水は排水管28ではなく、筐体1内で外槽10の下方に設置されている、30リットル程度の容量を有する貯水タンク40に流れ込む。これにより、洗濯に一度使用された水を廃棄せずに貯水タンク40に溜めることができる。貯水タンク40と注水口部23とは環流水路43により接続され、その途中には中水ポンプ42と給水環流バルブ44とが設けられている。   On the other hand, the drain outlet 26 is also connected to the inlet of the water storage valve 41, and when the drain valve 27 is closed and the water storage valve 41 is opened, the water stored in the outer tub 10 is drained from the drain pipe 28. Instead, it flows into the water storage tank 40 having a capacity of about 30 liters, which is installed in the housing 1 below the outer tub 10. Thereby, the water once used for washing can be stored in the water storage tank 40 without discarding. The water storage tank 40 and the water inlet 23 are connected by a circulating water channel 43, and a middle water pump 42 and a water supply circulating valve 44 are provided in the middle.

このドラム式洗濯乾燥機では、水道水による最終すすぎが実行された後、そのすすぎに使用された水は廃棄されずに貯水タンク40に貯留される。貯水タンク40には貯留水(中水)を浄化するための図示しない浄化装置が付設されており、この浄化装置の作用により雑菌が繁殖するのが抑えられる。次の洗濯の際に中水給水が指定されると、給水実行時に中水ポンプ42が作動され、貯水タンク40に貯留されている中水が吸引されて環流水路43を通して注水口部23に送られ、水道水や風呂水の代わりに洗剤容器6を経て外槽10内に供給される。これにより、洗濯に使用する水の水量を従来よりも大幅に削減することができる。また、この中水は後述するように乾燥時にも利用される。   In this drum type washing and drying machine, after the final rinse with tap water is executed, the water used for the rinse is stored in the water storage tank 40 without being discarded. The water storage tank 40 is provided with a purification device (not shown) for purifying stored water (middle water), and the action of this purification device suppresses the propagation of germs. When the intermediate water supply is designated at the time of the next washing, the intermediate water pump 42 is operated when the water supply is executed, and the intermediate water stored in the water storage tank 40 is sucked and sent to the water inlet 23 through the circulating water channel 43. Then, it is supplied into the outer tub 10 through the detergent container 6 instead of tap water or bath water. Thereby, the amount of water used for washing can be significantly reduced compared with the past. Moreover, this middle water is utilized also at the time of drying so that it may mention later.

乾燥運転を行うために、図3及び図4に示すように、外槽10の後面下部には空気排出口31が設けられ、空気排出口31に接続された通風路32は外槽10の後方、右側方及び上方を通って外槽10前面上部に設けられた空気供給口36に接続されている。この通風路32の途中には、前方に引き出し自在である乾燥フィルタ容器7内に収納された乾燥フィルタ7a、ファンモータ34により回転駆動されるインペラ330を含むファン33、及び乾燥用のPTCヒータ35が空気流の流れに沿って配設されている。また、通風路32の直立部の内部はドラム13から吐き出された湿った空気を冷却し、その空気に含まれる水蒸気を凝縮・液化して除去する(つまり除湿する)除湿部32aとなっている。この除湿のために、給水ホース接続口3に供給された水道水が冷却水バルブ21bを介して流れる冷却水ホース29の端部がその上部に接続されている。また、同じく除湿のために、通風路32の直立部には散水孔37aが形成された散水室37が設けられ、環流水路43より分岐された除湿用中水路46により除湿環流バルブ45を通して散水室37に中水が供給され、散水可能な量以上の中水は戻り中水路47を経て貯水タンク40に回収されるようになっている。   In order to perform the drying operation, as shown in FIGS. 3 and 4, an air discharge port 31 is provided in the lower rear surface of the outer tub 10, and the ventilation path 32 connected to the air discharge port 31 is located behind the outer tub 10. The air supply port 36 is provided on the upper front surface of the outer tub 10 through the right side and the upper side. In the middle of the ventilation path 32, a drying filter 7 a housed in a drying filter container 7 that can be drawn forward, a fan 33 including an impeller 330 that is driven to rotate by a fan motor 34, and a drying PTC heater 35. Are arranged along the air flow. Further, the inside of the upright portion of the ventilation path 32 is a dehumidifying portion 32a that cools the moist air discharged from the drum 13 and condenses and liquefies the water vapor contained in the air (that is, dehumidifies) 32a. . For this dehumidification, the end of the cooling water hose 29 through which the tap water supplied to the water supply hose connection port 3 flows through the cooling water valve 21b is connected to the upper part thereof. Similarly, for the purpose of dehumidification, a watering chamber 37 having a watering hole 37 a is provided in an upright portion of the ventilation passage 32, and the watering chamber is passed through a dehumidification recirculation valve 45 by a dehumidifying middle waterway 46 branched from the circulation waterway 43. The intermediate water is supplied to 37, and the intermediate water exceeding the amount that can be sprinkled is returned to the water storage tank 40 via the return intermediate water channel 47.

而して、乾燥運転時には、ファンモータ34の駆動によりファン33により生起された空気流がPTCヒータ35で加熱された後に、空気供給口36から外槽10内に供給される。その加熱空気はドラム13内部を通過する際に洗濯物と熱交換を行って水分を奪い、空気排出口31を通って通風路32に流れ込む。通風路32の直立部にある除湿部32aには、水道水又は中水である冷却水が連続的又は間欠的に供給されており、水蒸気を多量に含む加熱空気がこの除湿部32aを通過する際に空気中の水蒸気は凝縮して結露する。結露した水は除湿に利用された後の冷却水と共に通風路32の内壁を伝い落ちて外槽10内に流れ、排水口26から出て貯水バルブ41を経て貯水タンク40に回収される。除湿部32aで水蒸気が除かれた乾いた空気は乾燥フィルタ7aを通過し、ファン33を経てPTCヒータ35に戻る、というように循環する。乾燥フィルタ7aを通過する際に空気に混入している糸屑、塵埃、花粉などの異物は除去される。   Thus, during the drying operation, the air flow generated by the fan 33 by driving the fan motor 34 is heated by the PTC heater 35 and then supplied from the air supply port 36 into the outer tub 10. When the heated air passes through the inside of the drum 13, it exchanges heat with the laundry to remove moisture, and flows into the ventilation path 32 through the air outlet 31. Cooling water, which is tap water or medium water, is continuously or intermittently supplied to the dehumidifying part 32a in the upright part of the ventilation path 32, and heated air containing a large amount of water vapor passes through the dehumidifying part 32a. At the same time, water vapor in the air condenses and condenses. Condensed water flows along the inner wall of the ventilation path 32 together with the cooling water after being used for dehumidification, flows into the outer tub 10, exits from the drain outlet 26, and is collected in the water storage tank 40 through the water storage valve 41. The dry air from which water vapor has been removed by the dehumidifying unit 32a circulates through the drying filter 7a, returns to the PTC heater 35 through the fan 33, and so on. Foreign matters such as lint, dust and pollen mixed in the air when passing through the drying filter 7a are removed.

次に、本実施例のドラム式洗濯乾燥機の特徴の1つであるファン33の構造について詳細に説明する。図5は、ファン33とPTCヒータ35とを一体化したファン/ヒータユニットの外観斜視図(a)及びその上壁面のすぐ下の位置の水平面で切断した状態の内部の斜視図(b)である。扁平形状のケーシング100は下部ケーシング101及び上部ケーシング102の二つの部材を溶着などにより接合することにより形成される。このケーシング100の上壁面には円形状の吸気口104が形成されており、図5では隠れて見えないが、吸気口104の下方でケーシング100の下壁面の下側にはファンモータ34が装着されている。   Next, the structure of the fan 33, which is one of the features of the drum type washer / dryer of this embodiment, will be described in detail. FIG. 5 is an external perspective view (a) of a fan / heater unit in which the fan 33 and the PTC heater 35 are integrated, and an internal perspective view in a state cut by a horizontal plane at a position just below the upper wall surface thereof. is there. The flat casing 100 is formed by joining two members of a lower casing 101 and an upper casing 102 by welding or the like. A circular intake port 104 is formed on the upper wall surface of the casing 100 and is not visible in FIG. 5, but a fan motor 34 is mounted below the lower wall surface of the casing 100 below the intake port 104. Has been.

ケーシング100内部において吸気口104の直下には、下壁面からほぼ垂直上方に突出する回転軸に固着された、全体として円盤形状のインペラ330がファン33の主要部として設けられている。ケーシング100の側壁面はこのインペラ330の外周面との間の間隙に円弧状の送風路105が形成されるように円弧状に形成され、さらにそれに連続してケーシング100内部に円弧状の立壁103が形成されている。その立壁103によりケーシング100内部はファン室107とヒータ室108とに区画され、立壁103の途切れた個所がファン33の吐出口106となっている。   Inside the casing 100, an overall disk-shaped impeller 330 is provided as a main part of the fan 33, which is fixed to a rotating shaft that protrudes substantially vertically upward from the lower wall surface immediately below the air inlet 104. The side wall surface of the casing 100 is formed in an arc shape so that an arc-shaped air passage 105 is formed in the gap between the outer peripheral surface of the impeller 330, and the arc-shaped standing wall 103 is continuously formed inside the casing 100. Is formed. The interior of the casing 100 is partitioned into a fan chamber 107 and a heater chamber 108 by the standing wall 103, and a portion where the standing wall 103 is interrupted serves as a discharge port 106 of the fan 33.

ヒータ室108内には細長い形状のPTCヒータ35が横たわるように配置され、このPTCヒータ35を挟んで吐出口106と反対側にはケーシング100の下壁面に排出口110が形成されている。またヒータ室108内で吐出口106近傍には吐出口106から吐き出される空気流を分散させてPTCヒータ35に流すための整流用リブ109が設けられ、排出口110にもPTCヒータ108で加熱された空気を円滑に下方に流すための整流用リブ111が形成されている。   An elongated PTC heater 35 is disposed in the heater chamber 108 so as to lie down, and a discharge port 110 is formed on the lower wall surface of the casing 100 on the opposite side of the discharge port 106 across the PTC heater 35. Further, a rectifying rib 109 is provided in the heater chamber 108 in the vicinity of the discharge port 106 to disperse the air flow discharged from the discharge port 106 and flow to the PTC heater 35. The discharge port 110 is also heated by the PTC heater 108. A rectifying rib 111 for smoothly flowing the air downward is formed.

図18は吐出口106をファン室107から見た平面図である。吐出口106は下側の開口幅が上端側の開口幅よりも広がるように右上部のコーナーが斜め形状に形成されておいる。これにより、整流用リブ109で区画される右方の吐出口106bからさらに右方に広がるように空気が流れ易く、水平方向に細長いPTCヒータ35に対して適切に空気流が分散され、満遍なくPTCヒータ35に当たる。その結果、効率良く空気を加熱することができる。   FIG. 18 is a plan view of the discharge port 106 as viewed from the fan chamber 107. The discharge port 106 has an upper right corner formed in an oblique shape so that the lower opening width is wider than the upper opening width. As a result, air easily flows from the right discharge port 106b defined by the rectifying rib 109 so as to spread further to the right, and the air flow is appropriately distributed to the PTC heater 35 that is elongated in the horizontal direction. It hits the heater 35. As a result, air can be efficiently heated.

図6は回転体であるインペラ330の外観斜視図、図7はインペラ330の上面平面図、図8はインペラ330の正面平面図、図9は図8中のA−A’矢視線断面図である。   6 is an external perspective view of an impeller 330 that is a rotating body, FIG. 7 is a top plan view of the impeller 330, FIG. 8 is a front plan view of the impeller 330, and FIG. 9 is a cross-sectional view taken along the line AA ′ in FIG. is there.

インペラ330は、略円板状であって中央が上方に膨出した板金製のベース板331と、ドーナツ状板金である固定板332と、ベース板331と固定板332との間に挟持され、等角度間隔(この例では10°)で円環状に配置された複数枚(この例では36枚)の翼体333と、から成る。翼体333はその形状が2種類あり、1つは上面視円弧状である外周側羽根部のみから成る第1翼体334である。また、他の1つは、第1翼体334と同一形状の外周側羽根部335aの内周側縁部からさらに内周側に延出した内周側羽根部335bを持つ第2翼体335である。第2翼体335の内周側羽根部335bの形状は吸気口104に面した側(図7では紙面に垂直な手前側)が底辺である略三角形状であって、且つ第1翼体334と同様に上面視で円弧状であるが、その曲率は外周側羽根部335aの曲率よりも大きくされている。これにより、第2翼体335は全体として上面視略ε形状となっている。   The impeller 330 is sandwiched between a base plate 331 made of a sheet metal having a substantially disc shape and a center bulging upward, a fixed plate 332 that is a donut-shaped sheet metal, and the base plate 331 and the fixed plate 332. And a plurality of (in this example, 36) wing bodies 333 arranged in an annular shape at equal angular intervals (in this example, 10 °). The wing body 333 has two types of shapes, and one is a first wing body 334 including only an outer peripheral blade portion having an arc shape when viewed from above. The other one is a second wing body 335 having an inner peripheral blade portion 335b extending from the inner peripheral edge of the outer peripheral blade portion 335a having the same shape as the first wing body 334 to the inner peripheral side. It is. The shape of the inner peripheral blade portion 335b of the second wing body 335 is a substantially triangular shape whose bottom is the side facing the air inlet 104 (the front side perpendicular to the paper surface in FIG. 7), and the first wing body 334 is formed. As in the case of the top view, it is arcuate in top view, but its curvature is larger than the curvature of the outer blade portion 335a. As a result, the second wing body 335 as a whole has a substantially ε shape in top view.

さらに、第2翼体335の内周側羽根部335bの上縁部、つまり吸気口104に面する側の内周側端部はそのインペラ330の回転方向(図7及び図9で時計回り方向)に倒れるように捻られている。これにより、インペラ330が回転する際に内周側羽根部335bで空気の当たる面は緩やかに湾曲した凹面となっている。また、図7に示すように、第2翼体335の内周側羽根部335bの内周端の内接円は吸気口104の内縁よりも内方に突出している。したがって、ケーシング100の真上から吸気口104を見たときに第2翼体335の内周側羽根部335bの一部が露出している。   Further, the upper edge portion of the inner wing portion 335b of the second wing body 335, that is, the inner peripheral side end portion on the side facing the intake port 104 is the rotational direction of the impeller 330 (the clockwise direction in FIGS. 7 and 9). ) Is twisted to fall. Thereby, when the impeller 330 rotates, the surface that the air impinges on the inner peripheral blade portion 335b is a gently curved concave surface. In addition, as shown in FIG. 7, the inscribed circle at the inner peripheral end of the inner peripheral blade portion 335 b of the second wing body 335 protrudes inward from the inner edge of the intake port 104. Therefore, when the intake port 104 is viewed from directly above the casing 100, a part of the inner peripheral blade portion 335b of the second wing body 335 is exposed.

また、全部で翼体333は36枚であるが、そのうち、第1翼体334は24枚、第2翼体335は12枚であり、インペラ330の回転方向に第1翼体334が2枚連続した後に1枚の第2翼体335が来るような配分で配置されている。即ち、インペラ330の全周に亘って、回転方向に隣接する2枚の第2翼体335の間に2枚の第1翼体334が挟まれるように配置されている。   In total, there are 36 blade bodies 333, of which 24 are the first blade bodies 334 and 12 are the second blade bodies 335, and there are two first blade bodies 334 in the rotational direction of the impeller 330. They are arranged in such a distribution that one second wing body 335 comes after being continuous. That is, the two first wing bodies 334 are arranged between the two second wing bodies 335 adjacent to each other in the rotation direction over the entire circumference of the impeller 330.

上記構成のインペラ330が回転駆動されると、特に吸気口104内方側まで突出された第2翼体335の内周側羽根部335bの作用により吸気口104付近の空気は円滑にファン室107内部に吸い込まれ、さらに隣接する2枚の第2翼体335の間に挟まれる2枚の第1翼体334との間にそれぞれ形成される3つの空隙に空気流が振り分けられて外方に送り出される。これにより、第1翼体334のみが円環状に配置された従来構造のインペラに比べて風量を増加させることができる。また、第2翼体335の内周側羽根部335bの形状を略三角形状にすることにより、風切り音が抑えられ低騒音化を図ることができ、さらに内周側羽根部335bの空気当たり面が凹面形状になっていることで空気が一層円滑に流れるため、一層の低騒音化を図ることができる。   When the impeller 330 configured as described above is rotationally driven, the air near the intake port 104 is smoothly supplied to the fan chamber 107 by the action of the inner blade 335b of the second wing body 335 that protrudes to the inner side of the intake port 104 in particular. The air flow is divided into three gaps formed between two first wing bodies 334 that are sucked into the interior and sandwiched between two adjacent second wing bodies 335, and then outward. Sent out. Thereby, the air volume can be increased as compared with the impeller having a conventional structure in which only the first wing body 334 is arranged in an annular shape. Further, by making the shape of the inner peripheral blade portion 335b of the second wing body 335 into a substantially triangular shape, wind noise can be suppressed and noise reduction can be achieved, and the air contact surface of the inner peripheral blade portion 335b. Since the air flows more smoothly due to the concave shape, further noise reduction can be achieved.

本願発明者はインペラにおける第2翼体335の形状や第1翼体334と第2翼体335の枚数等について風量増加と騒音減少の効果を確認する実証実験を行った。図10〜図15はその実験に使用したインペラの形状を示す斜視図であり、そのうち図10は従来型、つまり全ての翼体が上記構成で言うところの第1翼体で構成されたインペラであり、図11〜図15が本発明によるものであっていずれも第1翼体334と第2翼体335とを有している。   The inventor has conducted a demonstration experiment for confirming the effect of increasing the air volume and reducing the noise with respect to the shape of the second wing body 335 and the number of the first wing body 334 and the second wing body 335 in the impeller. FIGS. 10 to 15 are perspective views showing the shape of the impeller used in the experiment. Of these, FIG. 10 is a conventional type, that is, an impeller composed of the first wing body in which all the wing bodies have the above-mentioned configuration. FIG. 11 to FIG. 15 are according to the present invention, and each has a first wing body 334 and a second wing body 335.

図17は、図10〜図15に記載の各インペラの特徴的な形状の相違と騒音及び風量の実測値とを示す図である。なお、実測時のインペラの回転速度は4500rpmである。   FIG. 17 is a diagram illustrating a difference in characteristic shape of each impeller illustrated in FIGS. 10 to 15 and actual measurement values of noise and air volume. In addition, the rotational speed of the impeller at the time of actual measurement is 4500 rpm.

図11に示したインペラ330aは第2翼体335の内周側羽根部335bは底辺の長さ(ここでは上面視円弧状である内周側羽根部335bの弦の長さで定義)が10mmである略三角形状のものであり、第1翼体334と第2翼体335の枚数をそれぞれ18枚とし、回転方向に隣接する2枚の第2翼体335の間に1枚の第1翼体334が位置するように配置したものである。なお、内周側羽根部335bは底辺の長さが10mmである場合には、内周側羽根部335bは吸気口104の内方には突出しない(つまりケーシング100を上方から見たときに翼体333は全て隠れる)。   In the impeller 330a shown in FIG. 11, the inner wing portion 335b of the second wing body 335 has a bottom length (defined here by the length of the chord of the inner wing portion 335b that is arcuate in top view). The first wing body 334 and the second wing body 335 are each 18 in number, and one first wing body 335 is adjacent between the two second wing bodies 335 in the rotation direction. It is arranged so that the wing body 334 is located. When the inner peripheral blade portion 335b has a bottom length of 10 mm, the inner peripheral blade portion 335b does not protrude inward of the intake port 104 (that is, when the casing 100 is viewed from above, the blade All the body 333 is hidden).

図12に示したインペラ330bは第2翼体335の内周側羽根部335bの形状が略三角形状ではなく、さらに第1翼体334の枚数を24枚、第2翼体335の枚数を12枚とし、回転方向に隣接する2枚の第2翼体335の間に2枚の第1翼体334が位置するように配置したものである。   In the impeller 330b shown in FIG. 12, the shape of the inner peripheral blade portion 335b of the second wing body 335 is not substantially triangular, and the number of the first wing bodies 334 is 24, and the number of the second wing bodies 335 is 12. The two first wing bodies 334 are arranged between the two second wing bodies 335 adjacent to each other in the rotation direction.

図13に示したインペラ330cは上記実施例で説明したインペラ330と同一形状であり、第2翼体335の内周側羽根部335bは底辺の長さが18mmである略三角形状のものである。図14に示したインペラ330dは第2翼体335の形状は図13に示したインペラ330cと同じであるが、第1翼体334の枚数を27枚、第2翼体335の枚数を9枚とし、回転方向に隣接する2枚の第2翼体335の間に3枚の第1翼体334が位置するように配置したものである。さらに図15に示したインペラ330eは図13に示したインペラ330cにおいて、第2翼体335の内周側羽根部335bの底辺の長さを30mmに延ばしたものである。なお、内周側羽根部335bの底辺の長さが30mmである場合には、内周側羽根部335bは吸気口104の内方に約20mm突出する。   The impeller 330c shown in FIG. 13 has the same shape as the impeller 330 described in the above embodiment, and the inner peripheral blade portion 335b of the second wing body 335 has a substantially triangular shape with a bottom length of 18 mm. . The impeller 330d shown in FIG. 14 has the same shape of the second wing body 335 as the impeller 330c shown in FIG. 13, but the number of the first wing bodies 334 is 27 and the number of the second wing bodies 335 is nine. The three first wing bodies 334 are arranged between the two second wing bodies 335 adjacent to each other in the rotation direction. Further, the impeller 330e shown in FIG. 15 is the same as the impeller 330c shown in FIG. 13 except that the length of the bottom side of the inner peripheral blade portion 335b of the second wing body 335 is extended to 30 mm. When the length of the bottom of the inner peripheral blade portion 335 b is 30 mm, the inner peripheral blade portion 335 b protrudes about 20 mm inward of the intake port 104.

上記インペラ330a〜330eの騒音及び風量の実測結果を従来型のインペラの実測結果と比べると、同等又はそれ以上の風量を確保しながら騒音を低減できることが分かる。特に上記実施例の構成で採用したインペラ330cやさらに第2翼体335の内周側羽根部335bの底辺の長さを延ばしたインペラ330eでは、風量を10%以上増加させながら騒音も6dB以上低減させることができる。さらに、騒音の音圧低減効果以外に、内周側羽根部335bを持つ第2翼体335を設けることで空気の流れを円滑にすることにより、風切り音の周波数が低周波域から高周波域に移行するという現象が確認される。一般に、吸音材などを用いて吸音を行う場合、同じ音圧であっても高周波域の音は低周波域の音よりも吸音が容易であるという利点がある。そうしたことから、上記インペラ330a〜330eのような各構成を採ることにより、単に騒音の音圧レベルを下げるのみならず、騒音の対策が容易であるという点でも有利である。   Comparing the actual measurement results of noise and air volume of the impellers 330a to 330e with the actual measurement result of the conventional impeller, it can be seen that noise can be reduced while ensuring an equal or higher air volume. In particular, in the impeller 330c employed in the configuration of the above embodiment and the impeller 330e in which the length of the bottom side of the inner peripheral blade portion 335b of the second wing body 335 is extended, the noise is reduced by 6 dB or more while the air volume is increased by 10% or more. Can be made. Furthermore, in addition to the effect of reducing the sound pressure of the noise, by providing the second wing body 335 having the inner peripheral blade portion 335b, the flow of the wind noise is changed from the low frequency range to the high frequency range by smoothing the air flow. The phenomenon of migration is confirmed. In general, when sound absorption is performed using a sound absorbing material or the like, even if the sound pressure is the same, there is an advantage that sound in a high frequency range is easier to absorb than sound in a low frequency range. For this reason, adopting each of the components such as the impellers 330a to 330e is advantageous not only in reducing the sound pressure level of noise but also in that noise countermeasures are easy.

なお、第2翼体335の内周側羽根部335bの底辺の長さをさらに延ばすと、より一層の騒音低減と風量増加が可能であり、例えば図16に示すインペラ330fのように、第2翼体335の内周側羽根部335bの内周先端部をリング状に連結するようにしてもよい。これにより、回転時の内周側羽根部335bのぶれがなくなり、特に騒音の低減において一層効果的である。   In addition, if the length of the bottom side of the inner peripheral blade portion 335b of the second wing body 335 is further extended, the noise can be further reduced and the air volume can be increased. For example, like the impeller 330f shown in FIG. You may make it connect the inner peripheral front-end | tip part of the inner peripheral side blade | wing part 335b of the wing | blade body 335 in ring shape. This eliminates the shake of the inner peripheral blade portion 335b during rotation, and is particularly effective in reducing noise.

上述したように本実施例のドラム式洗濯乾燥機では、特徴的な構成のインペラ330を有するファン33を用いることにより、上述したような折れ曲がりの多い流路抵抗の比較的な大きな通風路32においても十分な風量を確保することができ、乾燥を効率的に行うことができる。また、それに伴う騒音も低減でき、乾燥時の静粛性を高めることができる。   As described above, in the drum type washing and drying machine of the present embodiment, by using the fan 33 having the impeller 330 having a characteristic configuration, in the ventilation path 32 having a relatively large flow resistance as described above, the flow resistance is relatively large. In addition, a sufficient air volume can be secured and drying can be performed efficiently. Moreover, the noise accompanying it can be reduced and the quietness at the time of drying can be improved.

次に、本実施例のドラム式洗濯乾燥機における電気系構成を図19により説明する。本発明における冷却水切替制御手段及び乾燥運転制御手段に相当する制御部50はCPU、ROM、RAM、タイマなどを含むマイクロコンピュータを中心に構成されており、ROMに格納されている制御プログラムに基づいて、洗い、すすぎ、脱水及び乾燥の各行程の運転動作を行うための各種の制御を実行する。   Next, an electric system configuration in the drum type washing and drying machine of the present embodiment will be described with reference to FIG. The control unit 50 corresponding to the cooling water switching control means and the drying operation control means in the present invention is mainly composed of a microcomputer including a CPU, a ROM, a RAM, a timer and the like, and is based on a control program stored in the ROM. Then, various controls for performing the operation of each process of washing, rinsing, dehydration and drying are executed.

制御部50には、操作部52からキー入力信号が与えられるとともに、外槽10内に貯留された水の水位を検知する外槽内水位検知部54、貯水タンク40内の水位を検知する貯水タンク水位検知部55、前述の通風路32内の空気の温度を検出する排気温度センサ(本発明における排気温度検知手段)38、除湿水の温度を検出する除湿水温度センサ(本発明における除湿水温度検知手段)39からそれぞれ検出信号が入力される。また、制御部50には表示部53や負荷駆動部51が接続されており、この負荷駆動部51を介して、ドラムモータ17、ファンモータ34、PTCヒータ35、給水バルブ21a、冷却水バルブ21b、排水バルブ27、貯水バルブ41、中水ポンプ42、給水環流バルブ44、除湿環流バルブ45等の動作を制御する。   A key input signal is given to the control unit 50 from the operation unit 52, and the water level detection unit 54 in the outer tub that detects the water level stored in the outer tub 10 and the water storage that detects the water level in the water storage tank 40. The tank water level detection unit 55, the exhaust temperature sensor (exhaust temperature detection means in the present invention) 38 for detecting the temperature of the air in the ventilation passage 32, and the dehumidified water temperature sensor for detecting the temperature of the dehumidified water (dehumidified water in the present invention) Detection signals are respectively input from the temperature detection means 39). Further, a display unit 53 and a load driving unit 51 are connected to the control unit 50, and the drum motor 17, the fan motor 34, the PTC heater 35, the water supply valve 21a, and the cooling water valve 21b are connected via the load driving unit 51. The operation of the drain valve 27, the water storage valve 41, the middle water pump 42, the feed water recirculation valve 44, the dehumidification recirculation valve 45, and the like is controlled.

図3に示したように、排気温度センサ38は通風路32内で除湿部32aと乾燥フィルタ7aとの間に配設されており、ドラム13内で洗濯物と熱交換を行い除湿部32aで除湿された後の空気の温度を検出する。他方、除湿水温度センサ39は通風路32内であって除湿に使用された冷却水及び除湿により凝縮液化した水が混じって(つまり除湿水として)溜まる位置に配設されており、この除湿水の温度を検出する。以下の説明では、排気温度センサ38により検出される温度を排気温度Ta、除湿水温度センサ39で検出される温度を除湿水温度Tbという。   As shown in FIG. 3, the exhaust gas temperature sensor 38 is disposed between the dehumidifying part 32a and the drying filter 7a in the ventilation path 32, and exchanges heat with the laundry in the drum 13 so that the dehumidifying part 32a The air temperature after dehumidification is detected. On the other hand, the dehumidified water temperature sensor 39 is disposed in the ventilation path 32 at a position where the cooling water used for dehumidification and the water condensed and liquefied by dehumidification are mixed (that is, as dehumidified water). Detect the temperature. In the following description, the temperature detected by the exhaust temperature sensor 38 is called the exhaust temperature Ta, and the temperature detected by the dehumidified water temperature sensor 39 is called the dehumidified water temperature Tb.

次に、本実施例のドラム式洗濯乾燥機における乾燥運転時の特徴的な制御について説明する。本実施例のドラム式洗濯乾燥機では、乾燥運転時の除湿のために従来通り、外部から供給された水道水を利用するほかに、貯水タンク40内に貯留された、最終すすぎに使用された後の水(つまり中水)を再利用し、且つ一回除湿に利用された中水も繰り返し再利用できるようになっており、除湿に利用する冷却水を水道水か中水か選択できるようにしている。節水のために除湿に中水を利用したい場合、使用者は洗濯・乾燥運転の開始前に操作部52で中水除湿を設定する。図20は乾燥運転時の中水除湿と水道水除湿の切替え制御のフローチャートである。   Next, characteristic control during the drying operation in the drum type washing and drying machine of the present embodiment will be described. In the drum type washing / drying machine of this example, in addition to using tap water supplied from the outside for dehumidification during the drying operation, the drum type washing / drying machine was used for the final rinse stored in the water storage tank 40. The later water (that is, the middle water) can be reused, and the middle water once used for dehumidification can be reused repeatedly, so that the cooling water used for dehumidification can be selected from tap water or middle water. I have to. When it is desired to use middle water for dehumidification in order to save water, the user sets the middle water dehumidification with the operation unit 52 before the start of the washing / drying operation. FIG. 20 is a flowchart of switching control between middle water dehumidification and tap water dehumidification during a drying operation.

自動運転の実行の過程で洗濯運転が終了して乾燥運転に移行すると、乾燥運転の開始に当たって、制御部50は中水除湿が選択されているか否かを判定する(ステップS10)。そして、中水除湿が選択されている場合には冷却水として中水を利用した除湿による乾燥運転を開始する(ステップS11)。まず例えば貯水タンク水位検知部55からの検知信号により貯水タンク40内に十分な水位の水が貯留されているか否かをチェックすることにより中水の供給が可能であるか否かを判定する(ステップS12)。中水の供給が可能であると判定されると、次に中水の温度Trを検知する(ステップS13)。   When the washing operation ends in the course of execution of the automatic operation and the operation moves to the drying operation, the control unit 50 determines whether or not dewatering in the middle water is selected at the start of the drying operation (step S10). And when middle water dehumidification is selected, the drying operation by dehumidification using middle water as cooling water is started (step S11). First, for example, it is determined whether or not supply of intermediate water is possible by checking whether or not sufficient water level is stored in the water storage tank 40 based on a detection signal from the water storage tank water level detection unit 55 ( Step S12). If it is determined that the medium water can be supplied, then the temperature Tr of the medium water is detected (step S13).

中水の温度Trは例えば貯水タンク40内に貯留された水に浸るように温度センサを設けてもよいが、ここでは除湿環流バルブ45を開放して中水ポンプ42を作動させることにより通風路32内に中水を供給し、除湿水温度センサ39の検知温度により中水の水温を検知することとする。そして、このときに検知された中水の温度Trが所定の温度範囲内(例えば5〜50℃)であるか否かを判定し(ステップS14)、その範囲内であれば冷却水として中水を利用した乾燥運転を実行する。それから、後述するような所定の条件に基づいて乾燥運転が終了したか否かを判定し(ステップS15)、乾燥運転が終了していなければステップS12に戻る。したがって、中水の供給及びその水温に問題がなければ、乾燥運転の終了まで中水を冷却水とした乾燥運転が遂行され、乾燥運転が終了したならばその制御を終了して次の行程に移行する。   For example, a temperature sensor may be provided so that the temperature Tr of the middle water is immersed in the water stored in the water storage tank 40. Here, the dehumidification recirculation valve 45 is opened and the middle water pump 42 is operated to open the ventilation path. It is assumed that the intermediate water is supplied into 32 and the water temperature of the intermediate water is detected based on the detection temperature of the dehumidified water temperature sensor 39. Then, it is determined whether or not the temperature Tr of the middle water detected at this time is within a predetermined temperature range (for example, 5 to 50 ° C.) (step S14). Execute dry operation using. Then, it is determined whether or not the drying operation has been completed based on predetermined conditions as will be described later (step S15). If the drying operation has not been completed, the process returns to step S12. Therefore, if there is no problem in the supply of the intermediate water and the water temperature, the drying operation is performed using the intermediate water as cooling water until the end of the drying operation. When the drying operation is completed, the control is terminated and the next process is started. Transition.

中水除湿が選択されていない場合にはステップS10からS17に進み、冷却水として水道水を利用した除湿による乾燥運転を開始し、まず水道水が供給可能であるか否かを判定する(ステップS18)。例えば冷却水バルブ21bを開放する前後の除湿水温度センサ39による検知温度の差に基づいて水道水供給の可否を判定することができる。冷却水バルブ21bを開放する前の検知温度は空気の温度であり、通常、水道水が供給されると温度が変化するからその温度差が或る値以上であるときに水道水供給可能と判断できる。但し、空気温度と水道水温度との差が殆どない場合もあるから、温度差が或る値以下である場合にはさらに、冷却水バルブ21bを開放した状態で乾燥運転を短時間試行し、そのときの除湿水温度センサ39による検知温度と排気温度センサ38による検知温度との差が拡大するか否かを判定するとよい。乾燥運転の試行時に水道水が供給されていない場合には、温度差は拡大しないから水道水供給不可と判断できる。   When middle water dehumidification is not selected, the process proceeds from step S10 to S17, and a drying operation by dehumidification using tap water as cooling water is started, and it is first determined whether or not tap water can be supplied (step). S18). For example, whether or not tap water can be supplied can be determined based on the difference in temperature detected by the dehumidified water temperature sensor 39 before and after opening the cooling water valve 21b. The detected temperature before opening the cooling water valve 21b is the temperature of the air. Usually, when the tap water is supplied, the temperature changes. Therefore, it is determined that the tap water can be supplied when the temperature difference is a certain value or more. it can. However, since there may be almost no difference between the air temperature and the tap water temperature, if the temperature difference is less than a certain value, the drying operation is tried for a short time with the cooling water valve 21b opened, It may be determined whether or not the difference between the temperature detected by the dehumidified water temperature sensor 39 and the temperature detected by the exhaust temperature sensor 38 increases at that time. If tap water is not supplied during the trial of the drying operation, it can be determined that the supply of tap water is not possible because the temperature difference does not increase.

水道水の供給が可能であると判定されれば、冷却水として水道水を利用した乾燥運転を実行する。例えば断水、或いは水道栓が閉じられた等の理由により水道水が供給されない場合には、除湿が行えないため乾燥運転の遂行が不可能である。その場合には、乾燥運転を中止し(ステップS20)、例えば異常報知を行って次の行程に進む。   If it is determined that tap water can be supplied, a drying operation using tap water as cooling water is executed. For example, when tap water is not supplied due to water shutoff or a water tap being closed, it is impossible to perform dehydration because dehumidification cannot be performed. In that case, the drying operation is stopped (step S20), for example, an abnormality is notified and the process proceeds to the next step.

水道水を利用した乾燥運転の実行開始後には、後述するような所定の条件に基づいて乾燥運転が終了したか否かを判定し(ステップS19)、乾燥運転が終了していなければステップS18に戻る。したがって、水道水の供給に問題がなければ、乾燥運転の終了まで水道水を冷却水とした乾燥運転が遂行され、乾燥運転が終了したならばその制御を終了して次の行程に移行する。   After starting the execution of the drying operation using tap water, it is determined whether or not the drying operation has been completed based on a predetermined condition as described later (step S19). If the drying operation has not been completed, the process proceeds to step S18. Return. Therefore, if there is no problem in the supply of tap water, the drying operation using the tap water as cooling water is performed until the end of the drying operation. When the drying operation is completed, the control is terminated and the process proceeds to the next step.

中水除湿が選択されている場合であっても、貯水タンク40内に十分な量の水が無い場合には中水除湿はできない。また、その水温が高過ぎる(例えば50℃以上)場合には十分な除湿効果が得られず、一方、水温が低過ぎる(例えば5℃以下)場合には除湿は可能であるものの除湿後の空気の温度が下がり過ぎて外槽10内に十分に高温の加熱空気を送り込むことができなくなって乾燥効率が大きく下がる。そのため、乾燥運転当初より或いは中水除湿による乾燥運転の途中でステップS12及びS14でNoと判定された場合には、中水除湿による乾燥運転を中止してステップS17に進み、水道水を利用した除湿に自動的に切り替える。   Even if the intermediate water dehumidification is selected, the intermediate water dehumidification cannot be performed if there is no sufficient amount of water in the water storage tank 40. Further, when the water temperature is too high (for example, 50 ° C. or higher), a sufficient dehumidifying effect cannot be obtained. On the other hand, when the water temperature is too low (for example, 5 ° C. or lower), dehumidification is possible but the air after dehumidification As a result, the temperature of the water drops too much, and it becomes impossible to send heated air of sufficiently high temperature into the outer tub 10, so that the drying efficiency is greatly reduced. Therefore, when it is determined No in Steps S12 and S14 from the beginning of the drying operation or in the middle of the drying operation by dewatering with middle water, the drying operation by dewatering with middle water is stopped and the process proceeds to Step S17, and tap water is used. Automatically switch to dehumidification.

さて、上述の如く本ドラム式洗濯乾燥機では乾燥運転時の除湿に中水を利用する場合(中水除湿)と水道水を利用する場合(水道水除湿)とがあるが、乾燥運転を終了するタイミングを決めるために洗濯物の乾き具合を判断する方法を中水除湿と水道水除湿とで切り替えるようにしている。そうした切替えを行う理由は後述する。   Now, as described above, in this drum type washing and drying machine, there are a case where middle water is used for dehumidification during the drying operation (medium water dehumidification) and a case where tap water is used (tap water dehumidification), but the drying operation is terminated. In order to determine the timing to perform, the method of determining the dryness of the laundry is switched between dehumidification of medium water and dehumidification of tap water. The reason for such switching will be described later.

まず冷却水として水道水を利用した除湿が行われる場合の乾燥運転時の制御について説明する。乾燥運転が開始されると、制御部50は負荷駆動部51を介してドラムモータ17を所定時間毎に正逆回転させるように制御し、ドラム13を低速で正逆回転させる。これにより、洗濯物はドラム13内でゆっくりと撹拌される。また、排水バルブ27を閉じて貯水バルブ41を開く。これにより、外槽10内から排出される水(除湿水)は貯水タンク40内に貯留される。また、ファンモータ34を所定回転速度で動作させるとともに、PTCヒータ35に加熱電流を供給する。これにより、PTCヒータ35で加熱された加熱空気が外槽10内に送給され、回転駆動されているドラム13内に流れ込む。さらに冷却水バルブ21bを開いて、水道水を通風路32内に供給し始める。これにより、除湿部32aが機能し始める。したがって、ドラム13内で洗濯物と熱交換を行って洗濯物から吐き出された水蒸気を含む空気が除湿部32aに達すると除湿され、乾いた空気がファン33に戻る。   First, the control during the drying operation when dehumidification is performed using tap water as cooling water will be described. When the drying operation is started, the control unit 50 controls the drum motor 17 to rotate forward and reverse at predetermined time intervals via the load driving unit 51 to rotate the drum 13 forward and backward at a low speed. As a result, the laundry is slowly stirred in the drum 13. Further, the drain valve 27 is closed and the water storage valve 41 is opened. Thereby, the water (dehumidified water) discharged from the outer tub 10 is stored in the water storage tank 40. Further, the fan motor 34 is operated at a predetermined rotational speed, and a heating current is supplied to the PTC heater 35. Thereby, the heated air heated by the PTC heater 35 is fed into the outer tub 10 and flows into the drum 13 that is rotationally driven. Further, the cooling water valve 21 b is opened, and supply of tap water into the air passage 32 is started. Thereby, the dehumidification part 32a begins to function. Therefore, when air containing water vapor discharged from the laundry is exchanged heat with the laundry in the drum 13, the air is dehumidified and the dry air returns to the fan 33.

乾燥運転が開始された後、制御部50は排気温度センサ38により排気温度Taを検出するとともに、除湿水温度センサ39により除湿水の温度Tbを検出する。通常、排気温度Ta及び除湿水温度Tbは図21に示すように乾燥運転の時間経過に伴って変化する。即ち、乾燥運転の開始時点から暫くの間は、加熱空気が持つ熱量の殆どはドラム13や洗濯物、外槽10内壁、或いは加熱空気が通過する通風路32内に位置するその他の構造物の温度上昇に費やされてしまい、洗濯物が含む水の蒸発にはあまり寄与しない。このときには、排気温度Ta、除湿水温度Tbともに比較的大きな温度上昇速度を以て上昇する。この期間が予熱期間である。   After the drying operation is started, the control unit 50 detects the exhaust temperature Ta by the exhaust temperature sensor 38 and detects the temperature Tb of the dehumidified water by the dehumidified water temperature sensor 39. Normally, the exhaust temperature Ta and the dehumidified water temperature Tb change with the passage of time of the drying operation as shown in FIG. That is, for a while from the start of the drying operation, most of the heat amount of the heated air is from the drum 13, the laundry, the inner wall of the outer tub 10, or other structures located in the ventilation path 32 through which the heated air passes. It is spent on the temperature rise and does not contribute much to the evaporation of the water contained in the laundry. At this time, both the exhaust temperature Ta and the dehumidified water temperature Tb rise with a relatively large temperature rise rate. This period is a preheating period.

そして、排気温度Taが所定温度付近に達すると、PTCヒータ35により加えられる熱量と洗濯物に奪われる熱量とがほぼ平衡する状態となり、排気温度Ta、除湿水温度Tbとも温度上昇速度の傾きが緩やかになり、ほぼ一定に維持される状態が暫く続く。これが恒率乾燥期間である。この恒率乾燥期間には、洗濯物からは盛んに水蒸気が発生し、除湿部32aでの除湿も盛んに行われる。洗濯物が十分に湿っていて高温の空気と熱交換を十分に行える状態であるときには、排気温度Taはほぼ一定を保つが、洗濯物が乾いてきて熱交換が十分に行えなくなると、洗濯物に奪われる熱量が減少するため排気温度Taは上昇する傾向となる。一方、空気中の水蒸気量が減るため冷却水に与えられる熱量も減少し、除湿水温度Tbは全体として徐々に下がる傾向となる。この状態が恒率乾燥期間から減率乾燥期間への移行である。   When the exhaust temperature Ta reaches around a predetermined temperature, the amount of heat applied by the PTC heater 35 and the amount of heat taken away by the laundry are almost in equilibrium, and both the exhaust temperature Ta and the dehumidified water temperature Tb have a gradient of the temperature increase rate. It becomes gentle and keeps almost constant for a while. This is the constant rate drying period. During this constant rate drying period, steam is actively generated from the laundry, and dehumidification in the dehumidifying part 32a is also actively performed. When the laundry is sufficiently moist and heat exchange with high-temperature air is sufficiently performed, the exhaust temperature Ta remains almost constant, but when the laundry is dried and heat exchange cannot be performed sufficiently, The exhaust temperature Ta tends to increase because the amount of heat lost to the exhaust gas decreases. On the other hand, since the amount of water vapor in the air decreases, the amount of heat given to the cooling water also decreases, and the dehumidified water temperature Tb tends to gradually decrease as a whole. This state is a transition from the constant rate drying period to the reduced rate drying period.

減率乾燥期間に入ると、排気温度Taは上昇傾向、除湿水温度Tbは下降傾向になるから、両者の温度差は拡大し、その温度差の変化速度は減率乾燥期間に移行すると急に大きくなる。この温度差はドラム13内で洗濯物に奪われる熱量に依存するから、この温度差に基づいて洗濯物の乾燥の度合いを判断することができる。そこで、制御部50は排気温度Taと除湿水温度Tbとの温度差を求め、この温度差が所定の閾値Th1を超えたときに所定の乾燥度合いに達したと判断して乾燥運転を終了する。但し、ここでは閾値Th1は一定ではなく、乾燥運転時間の経過に伴い閾値Th1が下がるように傾斜を有して設定してある。これにより、乾燥運転時間が異常に長くなることを防止する。乾燥運転終了後には、例えばヒータ35をオフして送風のみを継続するクールダウン運転を実行すればよい。また、乾燥不足や乾燥むらを軽減するために、上記のような乾燥運転の終了タイミングを検知した時点から適宜の時間だけ乾燥運転時間を延長するような制御を行い、その後にクールダウン運転に移行するようにしてもよい。   When entering the rate-decreasing period, the exhaust temperature Ta tends to rise and the dehumidified water temperature Tb tends to fall, so the temperature difference between the two increases, and the change rate of the temperature difference suddenly shifts to the rate-decreasing period. growing. Since this temperature difference depends on the amount of heat taken by the laundry in the drum 13, the degree of drying of the laundry can be determined based on this temperature difference. Therefore, the control unit 50 obtains a temperature difference between the exhaust temperature Ta and the dehumidified water temperature Tb, determines that the predetermined drying degree has been reached when the temperature difference exceeds a predetermined threshold Th1, and ends the drying operation. . However, the threshold value Th1 is not constant here, and is set with an inclination so that the threshold value Th1 decreases as the drying operation time elapses. This prevents the drying operation time from becoming abnormally long. After the drying operation is completed, for example, a cool-down operation may be performed in which the heater 35 is turned off and only air blowing is continued. Also, in order to reduce drying deficiencies and uneven drying, control is performed to extend the drying operation time by an appropriate time from the time when the end timing of the drying operation as described above is detected, and then the operation shifts to cool-down operation. You may make it do.

水道水を利用した除湿を行う場合、上記のように減率乾燥期間に入ると排気温度Taと除湿水温度Tbとの温度差が急に拡大するため、或る閾値Th1を超えたか否かを判断する際の時間方向のばらつきが小さい。即ち、これは乾燥運転終了タイミングのばらつきが小さくなることを意味するから、乾燥運転時間が短くなり過ぎて乾燥不足になることや乾燥運転時間が長くなり過ぎて過剰乾燥になることを回避することができる。   When performing dehumidification using tap water, since the temperature difference between the exhaust temperature Ta and the dehumidified water temperature Tb suddenly increases when the rate-decreasing drying period is entered as described above, it is determined whether or not a certain threshold value Th1 has been exceeded. There is little variation in the time direction when judging. In other words, this means that the variation in the timing of completion of the drying operation is reduced, so that it is avoided that the drying operation time becomes too short and the drying operation becomes insufficient, or the drying operation time becomes too long and excessive drying occurs. Can do.

但し、水道栓から供給される水温がかなり高いような場合には排気温度Taと除湿水温度Tbとの温度差が全体として小さくなり、洗濯物の乾燥がかなり進行しても(例えば乾燥率100%に近い状態になっても)、温度差が閾値Th1に達しない場合があり得る。そうした場合には、ドラム13内の空気の温度が高くなり過ぎて衣類を損傷するおそれがある。こうしたことを防止するため、制御部50は、排気温度Taと除湿水温度Tbとの温度差に基づく乾燥運転終了タイミングの判断のほかに、排気温度Taにのみ基づく乾燥運転終了タイミングの判断も並行して行う。   However, when the water temperature supplied from the water tap is considerably high, the temperature difference between the exhaust temperature Ta and the dehumidified water temperature Tb becomes small as a whole, and the drying of the laundry progresses considerably (for example, a drying rate of 100). In some cases, the temperature difference may not reach the threshold value Th1. In such a case, the temperature of the air in the drum 13 may become too high and damage the clothing. In order to prevent this, the control unit 50 performs determination of the drying operation end timing based only on the exhaust temperature Ta in addition to the determination of the drying operation end timing based on the temperature difference between the exhaust temperature Ta and the dehumidified water temperature Tb. And do it.

図21に示した例は、排気温度Taが所定の閾値Th2を超えるよりも前に排気温度Taと除湿水温度Tbとの差が閾値Th1を超えた場合であり、このときには、その温度差が閾値Th1を超えた時点で乾燥運転を終了する。これに対し、図22に示すように、排気温度Taと除湿水温度Tbとの差が閾値Th1を超える以前に、排気温度Taが所定の閾値Th2を超えたときには、その時点で所定の乾燥度合いに達したと判断して乾燥運転を終了する。この閾値Th2は乾燥運転時間の経過に伴い下がるように傾斜を有しているが、その傾斜は閾値Th1よりも大きい。これにより、減率乾燥期間における排気温度Taの上昇速度は排気温度Taと除湿水温度Tbとの差の上昇速度よりも緩やかであるものの、時間方向のばらつきを少なくして確実に乾燥運転を終了させることができる。   The example shown in FIG. 21 is a case where the difference between the exhaust temperature Ta and the dehumidified water temperature Tb exceeds the threshold Th1 before the exhaust temperature Ta exceeds the predetermined threshold Th2, and in this case, the temperature difference is When the threshold Th1 is exceeded, the drying operation is terminated. On the other hand, as shown in FIG. 22, when the exhaust temperature Ta exceeds a predetermined threshold Th2 before the difference between the exhaust temperature Ta and the dehumidified water temperature Tb exceeds the threshold Th1, a predetermined degree of drying at that time It is determined that the temperature has reached the dry operation. The threshold Th2 has an inclination so as to decrease with the elapse of the drying operation time, but the inclination is larger than the threshold Th1. As a result, although the rate of increase in the exhaust temperature Ta during the rate-decreasing drying period is slower than the rate of increase in the difference between the exhaust temperature Ta and the dehumidified water temperature Tb, the drying operation is reliably completed with less variation in the time direction. Can be made.

次に、冷却水として中水を利用した除湿が行われる場合の乾燥運転時の制御について説明する。乾燥運転が開始された後に、ドラム13が回転駆動されることや、ファンモータ34が駆動されるとともにPTCヒータ35に加熱電流が供給されることは水道水利用の除湿時と同じである。但し、この場合には、冷却水バルブ21bが開かれる代わりに除湿環流バルブ45が開放されるとともに中水ポンプ42が作動されて、貯水タンク40から吸引された中水が散水室7から通風路32内に噴霧される。これにより、除湿部32aが機能し始める。したがって、ドラム13内で洗濯物と熱交換を行って洗濯物から吐き出された水蒸気を含む空気が除湿部32aに達すると除湿され、乾いた空気がファン33に戻る。   Next, the control at the time of the drying operation when dehumidification using middle water as cooling water is performed will be described. After the drying operation is started, the drum 13 is driven to rotate, the fan motor 34 is driven, and the heating current is supplied to the PTC heater 35 as in the case of dehumidification using tap water. However, in this case, instead of opening the cooling water valve 21b, the dehumidification recirculation valve 45 is opened and the middle water pump 42 is operated, so that middle water sucked from the water storage tank 40 is ventilated from the water sprinkling chamber 7. 32 is sprayed. Thereby, the dehumidification part 32a begins to function. Therefore, when air containing water vapor discharged from the laundry is exchanged heat with the laundry in the drum 13, the air is dehumidified and the dry air returns to the fan 33.

さて、水道水の場合には供給される水の温度は乾燥運転中ほぼ一定であり、途中で温度が大きく上昇することはないというのが前提である。これに対し、冷却水に中水を利用する場合、一旦除湿に利用された中水が貯水タンク40に戻り、さらに繰り返し使用されるため、冷却水の温度は乾燥運転の進行に伴い次第に上昇してゆくという点で大きな相違がある。これは減率乾燥期間に入っても同じであり、基本的に、水道水利用時のように水温が途中で下がることはない。冷却水として中水を利用したときの乾燥運転時の排気温度Taと除湿水温度Tbの変化を図23に示す。この図にあるように、除湿水温度Tbは予熱期間、恒率乾燥期間、減率乾燥期間を通して上昇し続ける。そのため、洗濯物が或る程度乾いた後の減率乾燥期間においても、排気温度Taと除湿水温度Tbとの差は拡大せず、上述したようにこの温度差に基づいた乾燥度合いの判断はできない。   In the case of tap water, the temperature of the supplied water is substantially constant during the drying operation, and it is assumed that the temperature does not increase greatly during the drying operation. On the other hand, when using the middle water as the cooling water, the middle water once used for dehumidification returns to the water storage tank 40 and is repeatedly used. Therefore, the temperature of the cooling water gradually increases as the drying operation proceeds. There is a big difference in that it goes. This is the same even during the rate-of-decreasing drying period, and basically the water temperature does not drop midway like when using tap water. FIG. 23 shows changes in the exhaust temperature Ta and the dehumidified water temperature Tb during the drying operation when middle water is used as the cooling water. As shown in this figure, the dehumidified water temperature Tb continues to rise throughout the preheating period, the constant rate drying period, and the reduced rate drying period. Therefore, even in the rate-decreasing drying period after the laundry is dried to some extent, the difference between the exhaust temperature Ta and the dehumidified water temperature Tb does not increase, and as described above, the determination of the degree of drying based on this temperature difference is not possible. Can not.

そこで、本実施例のドラム式洗濯乾燥機では、中水利用時には、排気温度Taと除湿水温度Tbとの加算値を求め、この加算値が所定の閾値Th3を超えたときに所定の乾燥度合いに達したと判断して乾燥運転を終了するように、乾燥運転終了タイミングを決める制御を変更する。図23で分かるように、減率乾燥期間に入っても除湿水温度Tbは上昇を続け、排気温度Taは上昇の速度が上がる傾向にあるから、両者の加算値の時間的変化は単なる排気温度Taの時間的変化よりも大きくなる。したがって、或る閾値Th3を超えたか否かを判断する際の時間方向のばらつきが小さくなり、乾燥運転時間が短くなり過ぎて乾燥不足になることや乾燥運転時間が長くなり過ぎて過剰乾燥になることを回避することができる。なお、この閾値Th3も乾燥運転時間の経過に伴って下がるような傾斜を持たせていることは閾値Th1と同様である。   Therefore, in the drum type washing / drying machine of this embodiment, when using middle water, an added value of the exhaust temperature Ta and the dehumidified water temperature Tb is obtained, and when the added value exceeds a predetermined threshold Th3, a predetermined degree of drying is obtained. The control for determining the end timing of the drying operation is changed so as to end the drying operation when it is determined that the value has been reached. As can be seen from FIG. 23, the dehumidified water temperature Tb continues to rise and the exhaust temperature Ta tends to increase at the rate of drying, so that the temporal change in the sum of the two values is simply the exhaust temperature. It becomes larger than the temporal change of Ta. Accordingly, the variation in the time direction when determining whether or not a certain threshold Th3 has been exceeded becomes small, the drying operation time becomes too short and the drying operation becomes too short, or the drying operation time becomes too long and becomes excessively dry. You can avoid that. It is to be noted that the threshold Th3 is also provided with an inclination that decreases with the passage of the drying operation time, similarly to the threshold Th1.

中水を冷却水に利用する場合でも、例えば乾燥運転開始時点で貯水タンク40に貯留されている中水の温度がかなり低い場合、或いは周囲温度が低いような場合には、排気温度Taと除湿水温度Tbと加算値が全体として小さくなり、洗濯物の乾燥がかなり進行しても(例えば乾燥率100%に近い状態になっても)、加算値が閾値Th3に達しない場合があり得る。そこで、この場合にも制御部50は、排気温度Taと除湿水温度Tbとの加算値に基づく乾燥運転終了タイミングの判断のほかに、排気温度Taにのみ基づく乾燥運転終了タイミングの判断も並行して行う。   Even when the intermediate water is used as cooling water, for example, when the temperature of the intermediate water stored in the water storage tank 40 is considerably low at the start of the drying operation, or when the ambient temperature is low, the exhaust temperature Ta and the dehumidification are performed. Even if the water temperature Tb and the added value become smaller as a whole and the laundry is dried considerably (for example, when the drying rate is close to 100%), the added value may not reach the threshold value Th3. Therefore, in this case as well, the control unit 50 determines the drying operation end timing based only on the exhaust temperature Ta in addition to the determination of the drying operation end timing based on the added value of the exhaust temperature Ta and the dehumidified water temperature Tb. Do it.

図23に示した例は、排気温度Taが所定の閾値Th4を超えるよりも前に排気温度Taと除湿水温度Tbとの加算値が閾値Th3を超えた場合であり、このときには、その加算値が閾値Th3を超えた時点で乾燥運転を終了する。これに対し、図24に示すように、排気温度Taと除湿水温度Tbとの加算値が閾値Th3を超える以前に、排気温度Taが所定の閾値Th4を超えたときには、その時点で所定の乾燥度合いに達したと判断して乾燥運転を終了する。この閾値Th4は乾燥運転時間の経過に伴い下がるように傾斜を有しているが、その傾斜は閾値Th3よりも大きい。これにより、減率乾燥期間における排気温度Taの上昇速度は排気温度Taと除湿水温度Tbとの加算値の上昇速度よりも緩やかであるものの、時間方向のばらつきを少なくして確実に乾燥運転を終了させることができる。   The example shown in FIG. 23 is a case where the added value of the exhaust gas temperature Ta and the dehumidified water temperature Tb exceeds the threshold value Th3 before the exhaust gas temperature Ta exceeds the predetermined threshold value Th4. When the value exceeds the threshold Th3, the drying operation is terminated. On the other hand, as shown in FIG. 24, when the exhaust gas temperature Ta exceeds a predetermined threshold value Th4 before the added value of the exhaust gas temperature Ta and the dehumidified water temperature Tb exceeds the threshold value Th3, predetermined drying is performed at that time. It is determined that the degree has been reached and the drying operation is terminated. The threshold Th4 has an inclination so as to decrease as the drying operation time elapses, but the inclination is larger than the threshold Th3. As a result, the rate of increase in the exhaust gas temperature Ta during the reduced rate drying period is slower than the rate of increase in the added value of the exhaust gas temperature Ta and the dehumidified water temperature Tb. Can be terminated.

乾燥運転時において上述したように除湿用冷却水に水道水を利用する場合と中水を利用する場合とで乾燥運転終了タイミング決定の方法を変更することにより、いずれの場合でも洗濯物の乾燥の度合いを正確に判断し、過不足ない乾燥を達成することができる。また、乾燥運転時間が異常に長引くことも回避することができる。   By changing the method for determining the end timing of the drying operation between the case of using tap water as the dehumidifying cooling water and the case of using the middle water as described above during the drying operation, the drying of the laundry can be performed in any case. It is possible to accurately determine the degree and to achieve drying without excess or deficiency. In addition, it is possible to avoid an abnormally prolonged drying operation time.

なお、上記実施例は本発明の一例であって、本発明の趣旨の範囲で適宜変更や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。例えば、上記実施例はドラム式洗濯乾燥機であるが、縦型の外槽内に略垂直な軸を中心に内槽を回転自在に設けた構造の洗濯乾燥機にも第1乃至第3発明を適用することができる。また、上記実施例中の乾燥用のファンの構造は洗濯には直接関連しないから、第2発明は乾燥のみを実行する乾燥機にも適用可能である。   It should be noted that the above embodiment is an example of the present invention, and it is obvious that even if changes, modifications, and additions are made as appropriate within the scope of the present invention, they are included in the claims of the present application. For example, the above embodiment is a drum-type washing / drying machine, but the first to third inventions also apply to a washing / drying machine having a structure in which an inner tub is rotatably provided around a substantially vertical axis in a vertical outer tub. Can be applied. In addition, since the structure of the drying fan in the above embodiment is not directly related to washing, the second invention can be applied to a dryer that performs only drying.

本発明の一実施例によるドラム式洗濯乾燥機の外観斜視図。1 is an external perspective view of a drum type washing and drying machine according to an embodiment of the present invention. 本実施例によるドラム式洗濯乾燥機の概略側面縦断面図。The schematic side longitudinal cross-sectional view of the drum type washing-drying machine by a present Example. 本実施例によるドラム式洗濯乾燥機において乾燥運転に関連する部分の概略構成図。The schematic block diagram of the part relevant to drying operation in the drum type washing-drying machine by a present Example. 本実施例のドラム式洗濯乾燥機の筐体内部の要部の背面斜視図。The rear perspective view of the principal part inside the housing | casing of the drum type washing-drying machine of a present Example. 本実施例のドラム式洗濯乾燥機におけるファン/ヒータユニットの外観斜視図(a)及びその上壁面のすぐ下の位置の水平面で切断した状態の内部の斜視図(b)。The external perspective view (a) of the fan / heater unit in the drum type washing / drying machine of a present Example, and the perspective view (b) inside the state cut | disconnected by the horizontal surface of the position just under the upper wall surface. 本実施例のドラム式洗濯乾燥機におけるファンの構成要素であるインペラの外観斜視図。The external appearance perspective view of the impeller which is a component of the fan in the drum type washing-drying machine of a present Example. インペラの上面平面図。The upper surface top view of an impeller. インペラの正面平面図。The front top view of an impeller. 図8中のA−A’矢視線断面図。FIG. 9 is a cross-sectional view taken along line A-A ′ in FIG. 8. 従来型のインペラの形状を示す斜視図。The perspective view which shows the shape of the conventional impeller. 本発明の一例であるインペラの形状を示す斜視図。The perspective view which shows the shape of the impeller which is an example of this invention. 本発明の一例であるインペラの形状を示す斜視図。The perspective view which shows the shape of the impeller which is an example of this invention. 本発明の一例であるインペラの形状を示す斜視図。The perspective view which shows the shape of the impeller which is an example of this invention. 本発明の一例であるインペラの形状を示す斜視図。The perspective view which shows the shape of the impeller which is an example of this invention. 本発明の一例であるインペラの形状を示す斜視図。The perspective view which shows the shape of the impeller which is an example of this invention. 本発明の一例であるインペラの形状を示す斜視図。The perspective view which shows the shape of the impeller which is an example of this invention. 本発明の一例による各インペラの特徴的な形状の相違と騒音及び風量の実測値とを示す図。The figure which shows the difference in the characteristic shape of each impeller by an example of this invention, and the measured value of noise and an air volume. 吐出口をファン室から見た平面図。The top view which looked at the discharge outlet from the fan chamber. 本実施例のドラム式洗濯乾燥機における要部の電気系構成図。The electric system block diagram of the principal part in the drum type washing-drying machine of a present Example. 乾燥運転時の中水除湿と水道水除湿の切替え制御のフローチャート。Flowchart of switching control between middle water dehumidification and tap water dehumidification during drying operation. 除湿用冷却水として水道水を利用した場合の乾燥運転時の温度変化を示す図。The figure which shows the temperature change at the time of drying operation at the time of using a tap water as cooling water for dehumidification. 除湿用冷却水として水道水を利用した場合の乾燥運転時の温度変化を示す図。The figure which shows the temperature change at the time of drying operation at the time of using a tap water as cooling water for dehumidification. 除湿用冷却水として中水を利用した場合の乾燥運転時の温度変化を示す図。The figure which shows the temperature change at the time of drying operation at the time of using middle water as cooling water for dehumidification. 除湿用冷却水として中水を利用した場合の乾燥運転時の温度変化を示す図。The figure which shows the temperature change at the time of drying operation at the time of using middle water as cooling water for dehumidification.

符号の説明Explanation of symbols

1…筐体
2…ドア
3…給水ホース接続口
10…外槽
10a…外槽前面開口
12…パッキン
13…ドラム
14…主軸
17…ドラムモータ
21b…冷却水バルブ
29…冷却水ホース
31…空気排出口
32…通風路
32a…除湿部
33…ファン
100…ケーシング
101…下部ケーシング
102…上部ケーシング
103…立壁
104…吸気口
105…送風路
106…吐出口
107…ファン室
108…ヒータ室
109、111…リブ
110…排出口
330、330a、330b、330c、330d、330e、330f…インペラ
331…ベース板
332…固定板
333…翼体
334…第1翼体
335…第2翼体
335a…外周側羽根部
335b…内周側羽根部
34…ファンモータ
35…PTCヒータ
36…空気供給口
37…散水室
37a…散水孔
38…排気温度センサ
39…除湿水温度センサ
40…貯水タンク
41…貯水バルブ
42…中水ポンプ
43…環流水路
44…給水環流バルブ
45…除湿環流バルブ
46…除湿用中水路
47…戻り中水路
50…制御部
51…負荷駆動部
55…貯水タンク水位検知部

DESCRIPTION OF SYMBOLS 1 ... Housing 2 ... Door 3 ... Water supply hose connection port 10 ... Outer tank 10a ... Outer tank front opening 12 ... Packing 13 ... Drum 14 ... Main shaft 17 ... Drum motor 21b ... Cooling water valve 29 ... Cooling water hose 31 ... Air exhaust Outlet 32 ... Ventilation path 32a ... Dehumidifying part 33 ... Fan 100 ... Casing 101 ... Lower casing 102 ... Upper casing 103 ... Standing wall 104 ... Intake port 105 ... Air passage 106 ... Discharge port 107 ... Fan chamber 108 ... Heater chambers 109, 111 ... Rib 110 ... discharge ports 330, 330a, 330b, 330c, 330d, 330e, 330f ... impeller 331 ... base plate 332 ... fixed plate 333 ... wing body 334 ... first wing body 335 ... second wing body 335a ... outer wing 335b ... Inner peripheral blade 34 ... Fan motor 35 ... PTC heater 36 ... Air supply port 37 ... Sprinkling chamber 37a ... Sprinkling hole 8 ... Exhaust temperature sensor 39 ... Dehumidified water temperature sensor 40 ... Water storage tank 41 ... Water storage valve 42 ... Middle water pump 43 ... Recirculation water channel 44 ... Water supply recirculation valve 45 ... Dehumidification recirculation valve 46 ... Dehumidification middle water channel 47 ... Return middle water channel 50 ... Control part 51 ... Load drive part 55 ... Water tank water level detection part

Claims (13)

外槽の内部に回転自在に設けられ、内部に洗濯物が収容される内槽と、前記外槽に両端が接続された通風路と、該通風路内に配設された、空気流を生起するための送風ファン、外槽内に送る空気を加熱するヒータ、及び外槽から吐き出された湿った空気を除湿する除湿部と、を備えた洗濯乾燥機において、前記ファンは、モータにより回転駆動されるインペラの内周側でその軸方向に吸気し、該インペラの内周から外周側に空気を吐出する遠心型のファンであって、
前記インペラは、上面視円弧形状の外周側羽根部のみを有する第1翼体と、該第1翼体と同一形状の外周側羽根部の内周側縁部から内周側に延展する内周側羽根部を有する第2翼体と、の2種類の翼体が、回転軸を取り囲み、第2翼体が第1翼体の整数個おきに位置するように円環状に配置されて成ることを特徴とする洗濯乾燥機。
An inner tub that is rotatably provided inside the outer tub and in which laundry is accommodated, an air passage connected to both ends of the outer tub, and an air flow disposed in the air passage are generated. In a washer / dryer comprising a blower fan for heating, a heater for heating air sent into the outer tub, and a dehumidifying unit for dehumidifying the moist air discharged from the outer tub, the fan is driven to rotate by a motor A centrifugal fan that sucks air in the axial direction on the inner peripheral side of the impeller and discharges air from the inner periphery to the outer peripheral side of the impeller,
The impeller includes a first wing body having only an outer peripheral blade portion having an arc shape when viewed from above, and an inner periphery extending from an inner peripheral edge of the outer peripheral blade portion having the same shape as the first wing body to the inner peripheral side. Two types of wing bodies, the second wing body having the side blade portions, are arranged in an annular shape so as to surround the rotating shaft and the second wing body is located at every integer number of the first wing body. A washing dryer characterized by.
濡れた洗濯物が収容される乾燥室と、該乾燥室内に加熱空気を供給するために内部に送風用ファン及びヒータを設けた通風路と、を有する乾燥機において、前記ファンは、モータにより回転駆動されるインペラの内周側でその軸方向に吸気し、該インペラの内周から外周側に空気を吐出する遠心型のファンであって、
前記インペラは、上面視円弧形状の外周側羽根部のみを有する第1翼体と、該第1翼体と同一形状の外周側羽根部の内周側縁部から内周側に延展する内周側羽根部を有する第2翼体と、の2種類の翼体が、回転軸を取り囲み、第2翼体が第1翼体の整数個おきに位置するように円環状に配置されて成ることを特徴とする乾燥機。
In a dryer having a drying chamber in which wet laundry is stored, and a ventilation path provided with a fan for blowing air and a heater for supplying heated air into the drying chamber, the fan is rotated by a motor. A centrifugal fan that sucks air in the axial direction on the inner peripheral side of the driven impeller and discharges air from the inner periphery to the outer peripheral side of the impeller,
The impeller includes a first wing body having only an outer peripheral blade portion having an arc shape when viewed from above, and an inner periphery extending from an inner peripheral edge of the outer peripheral blade portion having the same shape as the first wing body to the inner peripheral side. Two types of wing bodies, the second wing body having the side blade portions, are arranged in an annular shape so as to surround the rotating shaft and the second wing body is located at every integer number of the first wing body. A dryer characterized by.
第2翼体の内周側羽根部は上面視円弧状であって、上面視円弧状である外周側羽根部と略ε状に連結されていることを特徴とする請求項1に記載の洗濯乾燥機、又は請求項2に記載の乾燥機。   The laundry according to claim 1, wherein the inner wing portion of the second wing body has an arc shape when viewed from above, and is connected to the outer wing portion that is arc shape when viewed from above in a substantially ε shape. A dryer or the dryer according to claim 2. 第2翼体の内周側羽根部は上面視直線状であることを特徴とする請求項1に記載の洗濯乾燥機、又は請求項2に記載の乾燥機。   The washing / drying machine according to claim 1, or the drying machine according to claim 2, wherein the inner wing portion of the second wing body is linear when viewed from above. 第2翼体の内周側羽根部にあって、ファンケーシングに形成された吸気口側に面する縁端の内周先端部は、当該インペラの回転方向側に倒れるように屈曲されていることを特徴する請求項1に記載の洗濯乾燥機、又は請求項2に記載の乾燥機。   The inner peripheral tip portion of the second wing body on the inner peripheral side blade portion facing the air inlet side formed in the fan casing is bent so as to fall toward the rotation direction side of the impeller. The laundry dryer according to claim 1, or the dryer according to claim 2. 第2翼体の内周側羽根部にあって少なくともその内周側の一部は、ファンケーシングに形成された吸気口の開口内方に対応する位置まで延出していることを特徴する請求項1に記載の洗濯乾燥機、又は請求項2に記載の乾燥機。   The inner wing portion of the second wing body, at least a part of the inner rim side thereof, extends to a position corresponding to the inside of the opening of the air inlet formed in the fan casing. The washing dryer according to claim 1, or the dryer according to claim 2. 第2翼体の内周側羽根部は、ファンケーシングに形成された吸気口側に底辺を有する略三角形状であることを特徴する請求項1に記載の洗濯乾燥機、又は請求項2に記載の乾燥機。   3. The washing / drying machine according to claim 1, wherein the inner wing portion of the second wing body has a substantially triangular shape having a bottom side on an air inlet side formed in the fan casing. Dryer. 第2翼体は第1翼体の1、2又は3個おきであって回転軸の周囲に等角度間隔で配置されることを特徴する請求項1に記載の洗濯乾燥機、又は請求項2に記載の乾燥機。   The washing / drying machine according to claim 1, wherein the second wing body is disposed at equal angular intervals around the rotating shaft every two, one, or three of the first wing body. The dryer as described in. 外槽の内部に回転自在に設けられ、内部に洗濯物が収容される内槽と、前記外槽に両端が接続された通風路と、該通風路内に配設された、空気流を生起するための送風ファン、外槽内に送る空気を加熱するヒータ、及び外槽から吐き出された湿った空気を除湿する除湿部と、洗濯に使用した及び/又は乾燥の除湿に使用した水を回収して中水として貯留する貯留部と、該貯留部に貯留された中水を前記除湿部に供給する除湿用中水供給手段と、外部から供給された水道水を前記除湿部に供給する除湿用水道水供給手段と、を具備する洗濯乾燥機であって、
前記通風路内に配設され、前記外槽から吐き出されて前記ヒータにより再び加熱されるまでの途中の空気の温度を検出する排気温度検知手段と、
前記除湿部において除湿に使用された後の水の温度を検知する除湿水温度検知手段と、
乾燥運転時に前記除湿部に供給する冷却水を中水と水道水とで切り替えべく前記除湿用中水供給手段及び除湿用水道水供給手段を制御する冷却水切替制御手段と、
前記排気温度検知手段による排気温度と前記除湿水温度検知手段による除湿水温度とに基づいて内槽内の洗濯物の乾き具合を判断する手段であって、前記冷却水切替制御手段による冷却水の切替えに連動して洗濯物の乾き具合を判断する方法を切り替える乾燥運転制御手段と、
を備えることを特徴とする洗濯乾燥機。
An inner tub that is rotatably provided inside the outer tub and in which laundry is accommodated, an air passage connected to both ends of the outer tub, and an air flow disposed in the air passage are generated. A fan for heating, a heater for heating the air sent into the outer tub, a dehumidifying section for dehumidifying the moist air discharged from the outer tub, and water used for washing and / or drying dehumidification And a dehumidifier for supplying dehumidified water to the dehumidifying unit, and a dehumidifying middle water supply means for supplying deionized water to the dehumidifying unit. Tap water supply means, and a washing and drying machine comprising:
An exhaust temperature detecting means that is disposed in the ventilation path and detects the temperature of air in the middle of being discharged from the outer tub and heated again by the heater;
Dehumidified water temperature detecting means for detecting the temperature of water after being used for dehumidification in the dehumidifying section;
A cooling water switching control means for controlling the dehumidifying middle water supply means and the dehumidifying tap water supply means so as to switch the cooling water supplied to the dehumidifying unit during drying operation between middle water and tap water;
A means for determining the dryness of the laundry in the inner tub based on the exhaust temperature by the exhaust temperature detecting means and the dehumidified water temperature by the dehumidified water temperature detecting means, the cooling water by the cooling water switching control means A drying operation control means for switching a method of determining the dryness of the laundry in conjunction with the switching;
A washing and drying machine comprising:
前記乾燥運転制御手段は、除湿用の冷却水として中水が利用される場合に、前記排気温度と除湿水温度との加算値に基づいて洗濯物の乾き具合を判断して乾燥運転の終了を行うことを特徴とする請求項9に記載の洗濯乾燥機。   The drying operation control means, when middle water is used as cooling water for dehumidification, determines the dryness of the laundry based on the added value of the exhaust temperature and the dehumidified water temperature, and terminates the drying operation. The washing / drying machine according to claim 9, wherein the washing / drying machine is performed. 前記乾燥運転制御手段は、除湿用の冷却水として中水が利用される場合に、前記排気温度と除湿水温度との加算値に基づいた乾燥運転の終了制御を行うとともに、前記排気温度のみに基づいた乾燥運転の終了制御も並行して実行することを特徴とする請求項10に記載の洗濯乾燥機。   The drying operation control means performs end control of the drying operation based on an addition value of the exhaust temperature and the dehumidified water temperature when middle water is used as cooling water for dehumidification, and controls only the exhaust temperature. The washing / drying machine according to claim 10, wherein the end control of the drying operation is also executed in parallel. 前記乾燥運転制御手段は、除湿用の冷却水として水道水が利用される場合に、前記排気温度と除湿水温度との差に基づいて洗濯物の乾き具合を判断して乾燥運転の終了を行うことを特徴とする請求項9〜11のいずれかに記載の洗濯乾燥機。   When the tap water is used as the dehumidifying cooling water, the drying operation control means determines the dryness of the laundry based on the difference between the exhaust temperature and the dehumidified water temperature, and ends the drying operation. The washing and drying machine according to any one of claims 9 to 11, wherein 前記乾燥運転制御手段は、除湿用の冷却水として水道水が利用される場合に、前記排気温度と除湿水温度との差に基づいた乾燥運転の終了制御を行うとともに、前記排気温度のみに基づいた乾燥運転の終了制御も並行して実行することを特徴とする請求項12に記載の洗濯乾燥機。

When the tap water is used as the dehumidifying cooling water, the drying operation control means controls the end of the drying operation based on the difference between the exhaust temperature and the dehumidified water temperature, and based only on the exhaust temperature. The washing / drying machine according to claim 12, wherein the end control of the drying operation is also executed in parallel.

JP2006030439A 2006-02-08 2006-02-08 Laundry dryer and dryer Active JP4637027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030439A JP4637027B2 (en) 2006-02-08 2006-02-08 Laundry dryer and dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030439A JP4637027B2 (en) 2006-02-08 2006-02-08 Laundry dryer and dryer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010191750A Division JP4948632B2 (en) 2010-08-30 2010-08-30 Washing and drying machine

Publications (2)

Publication Number Publication Date
JP2007209419A true JP2007209419A (en) 2007-08-23
JP4637027B2 JP4637027B2 (en) 2011-02-23

Family

ID=38488341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030439A Active JP4637027B2 (en) 2006-02-08 2006-02-08 Laundry dryer and dryer

Country Status (1)

Country Link
JP (1) JP4637027B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072492A (en) * 2007-09-25 2009-04-09 Hitachi Appliances Inc Drying machine and washing and drying machine
WO2009069788A1 (en) * 2007-11-28 2009-06-04 Sanyo Electric Co., Ltd. Washing/drying machine
JP2010022498A (en) * 2008-07-17 2010-02-04 Hitachi Appliances Inc Drying machine and washing/drying machine
CN101424036B (en) * 2007-10-02 2011-08-03 日立空调·家用电器株式会社 Drier and washing drier
JP2012143580A (en) * 2012-03-14 2012-08-02 Hitachi Appliances Inc Drying machine
US9493903B2 (en) 2014-10-27 2016-11-15 Haier Us Appliance Solutions, Inc. Impeller assembly for an appliance
WO2018054238A1 (en) * 2016-09-26 2018-03-29 青岛海尔洗衣机有限公司 Positive-negative-rotation fan for clothes dryer, and clothes dryer
CN113718464A (en) * 2020-05-26 2021-11-30 青岛海尔滚筒洗衣机有限公司 Washing and drying integrated equipment
WO2024007636A1 (en) * 2022-07-08 2024-01-11 湖北美的洗衣机有限公司 Rear cover assembly and clothes drying apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183332A (en) * 1987-01-26 1988-07-28 Matsushita Electric Ind Co Ltd Air cleaner
JPH08193598A (en) * 1995-01-18 1996-07-30 Matsushita Electric Ind Co Ltd Motor-driven blower
JP2003290588A (en) * 2002-04-01 2003-10-14 Toshiba Corp Washing and drying machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183332A (en) * 1987-01-26 1988-07-28 Matsushita Electric Ind Co Ltd Air cleaner
JPH08193598A (en) * 1995-01-18 1996-07-30 Matsushita Electric Ind Co Ltd Motor-driven blower
JP2003290588A (en) * 2002-04-01 2003-10-14 Toshiba Corp Washing and drying machine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072492A (en) * 2007-09-25 2009-04-09 Hitachi Appliances Inc Drying machine and washing and drying machine
CN101424036B (en) * 2007-10-02 2011-08-03 日立空调·家用电器株式会社 Drier and washing drier
US8511324B2 (en) 2007-11-28 2013-08-20 Haier Group Corporation Washing/drying machine
WO2009069788A1 (en) * 2007-11-28 2009-06-04 Sanyo Electric Co., Ltd. Washing/drying machine
JP2009125537A (en) * 2007-11-28 2009-06-11 Sanyo Electric Co Ltd Washing/drying machine
CN101874132B (en) * 2007-11-28 2012-05-23 三洋电机株式会社 Washing/drying machine
KR101177988B1 (en) * 2007-11-28 2012-08-28 산요덴키가부시키가이샤 Washing/drying machine
JP2010022498A (en) * 2008-07-17 2010-02-04 Hitachi Appliances Inc Drying machine and washing/drying machine
JP2012143580A (en) * 2012-03-14 2012-08-02 Hitachi Appliances Inc Drying machine
US9493903B2 (en) 2014-10-27 2016-11-15 Haier Us Appliance Solutions, Inc. Impeller assembly for an appliance
WO2018054238A1 (en) * 2016-09-26 2018-03-29 青岛海尔洗衣机有限公司 Positive-negative-rotation fan for clothes dryer, and clothes dryer
US11028524B2 (en) 2016-09-26 2021-06-08 Qingdao Haier Washing Machine Co., Ltd. Positive-negative-rotation fan for clothes dryer, and clothes dryer
CN113718464A (en) * 2020-05-26 2021-11-30 青岛海尔滚筒洗衣机有限公司 Washing and drying integrated equipment
CN113718464B (en) * 2020-05-26 2024-02-27 青岛海尔洗涤电器有限公司 Washing and drying integrated equipment
WO2024007636A1 (en) * 2022-07-08 2024-01-11 湖北美的洗衣机有限公司 Rear cover assembly and clothes drying apparatus

Also Published As

Publication number Publication date
JP4637027B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4637027B2 (en) Laundry dryer and dryer
JP4439417B2 (en) Dryer
JP4679384B2 (en) Washing and drying machine
JP4948632B2 (en) Washing and drying machine
JP4083662B2 (en) Drum type washer / dryer
JP2006000354A (en) Clothing dryer
WO2004104288A1 (en) Washing machine with clothes-drying function
JP2008307416A (en) Washing/drying machine
TWI540235B (en) Drum washing machine
JP2008161396A (en) Washing/drying machine
JP2013126493A (en) Washing and drying machine
JP4243336B2 (en) Drum type washer / dryer
JP6104567B2 (en) Clothes dryer
JP2011167221A (en) Clothes dryer
JP2010011924A (en) Washing/drying machine
JP2006122697A (en) Drum type washing and drying machine
JP2008307417A (en) Washing/drying machine
JP2016221017A (en) Washing and drying machine
JP4829908B2 (en) Washing and drying machine
JP2010194027A (en) Clothes dryer
JP2005137503A (en) Clothes dryer
JP7470065B2 (en) Washing and drying machine
JP2005261691A (en) Drum type washing machine
JP2003290586A (en) Washing and drying machine, and drying machine
JP7457492B2 (en) clothes dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4637027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250