JP2007209085A - System stabilization control system - Google Patents

System stabilization control system Download PDF

Info

Publication number
JP2007209085A
JP2007209085A JP2006023030A JP2006023030A JP2007209085A JP 2007209085 A JP2007209085 A JP 2007209085A JP 2006023030 A JP2006023030 A JP 2006023030A JP 2006023030 A JP2006023030 A JP 2006023030A JP 2007209085 A JP2007209085 A JP 2007209085A
Authority
JP
Japan
Prior art keywords
accident
stabilization control
power plant
system stabilization
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006023030A
Other languages
Japanese (ja)
Other versions
JP4667260B2 (en
Inventor
Takashi Sasaki
孝志 佐々木
Yasuyuki Kowada
靖之 小和田
Hideji Oshida
秀治 押田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006023030A priority Critical patent/JP4667260B2/en
Publication of JP2007209085A publication Critical patent/JP2007209085A/en
Application granted granted Critical
Publication of JP4667260B2 publication Critical patent/JP4667260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a desired system stabilization control device of each power plant control system stabilization without using a terminal device and a transmission channel. <P>SOLUTION: The system stabilization system is constituted such that: power plant bus bars BA, BB are connected via cables to an intermediate bus bar B4 connected to a main system via a cable, respectively; the system stabilization control devices 10A, 20B are arranged in a plurality of the power plants 1, 2, respectively, which are constituted of a plurality of generators connected to the power plant bus bars via blockers CB, respectively; the own system stabilization control device of each power plant is autonomously operated when an accident occurs in the cable; and the plurality of generators in the self power plant are controlled so as to selectively be cut off from the power plant bus bar of the self power plant by the blockers. It is determined whether each system stabilization control device is in a mode that the generator in the self power plant is cut off from an electricity amount at a self-end in the occurrence of the accident, and when it is determined that the device in not in the mode that the generator of the self power plant is cut off, the generator cut-off control of the self power plant is locked. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、複数台の発電機で構成された複数の発電所から送電線を介して主系統に電力を供給する電力系統における事故時に必要最小限の発電機を遮断することにより重大事故時に生じる不安定現象を抑制する所謂系統安定化制御システムに関するものである。   This invention arises at the time of a serious accident by shutting down the minimum necessary generators at the time of an accident in a power system that supplies power to a main system from a plurality of power plants configured by a plurality of generators via a transmission line. The present invention relates to a so-called system stabilization control system that suppresses an unstable phenomenon.

基本的な系統安定化制御システムは、非特許文献であるT.IEEJapan,Vol.110-B,No.8,‘90の652〜661ページに掲載された「大容量電源系統のオンライン安定化制御方式の開発」に示されている。   The basic system stabilization control system is the non-patent document T.IEEJapan, Vol.110-B, No.8, '90, pages 652-661. It is shown in "Development of method".

この系統安定化制御方式では、電力系統の特性を表す電力相差角曲線の計数P,Pを用いて図5のフロー図に示してあるように、以下の(10),(11)式をベースにオンライン計算したP,PであるP1 *,P2 *を算出する(ステップST51)。

Figure 2007209085
Figure 2007209085
In this system stabilization control method, as shown in the flow diagram of FIG. 5 using the power phase difference angle counts P 1 and P 2 representing the characteristics of the power system, the following equations (10) and (11) P 1 * and P 2 * which are P 1 and P 2 calculated online based on the above are calculated (step ST51).
Figure 2007209085
Figure 2007209085

次いで、以下の(1),(12)式より加速エネルギーVk(運動エネルギーとも言う),減速エネルギーVc(臨界エネルギーとも言う)を算出する(ステップST52)。

Figure 2007209085
Figure 2007209085
Next, acceleration energy V k (also referred to as kinetic energy) and deceleration energy V c (also referred to as critical energy) are calculated from the following equations (1) and (12) (step ST52).
Figure 2007209085
Figure 2007209085

次いで、Vk<Vcであるかどうか、即ち、安定しているかどうか、判定する(ステップST53)。このステップST53における判定の結果、YESであれば、つまり安定しておれば、発電機の選択遮断はしない(図5のフロー図におけるストップ)。このステップST53における判定の結果、NOであれば、つまり不安定であれば、次のステップST54に進む。 Next, it is determined whether V k <V c, that is, whether it is stable (step ST53). If the result of determination in step ST53 is YES, that is, if it is stable, the generator is not selectively cut off (stop in the flowchart of FIG. 5). If the result of determination in step ST53 is NO, that is, if unstable, the process proceeds to the next step ST54.

ステップST54では、最小MW量の制御パターンを選択する。即ち、最も少ない発電機選択遮断量である安定化最小制御量MWの制御パターンを選択する。
次いで、以下の(20),(21)式より発電機選択遮断想定後のP,PであるP1 *´,P2 *´を算出する(ステップST55)。

Figure 2007209085
Figure 2007209085
In step ST54, the control pattern with the minimum MW amount is selected. That is, the control pattern of the stabilized minimum control amount MW that is the smallest generator selective cutoff amount is selected.
Then, the following (20), (21) P 1 * generator is selected cutoff P 1 after assumed, P 2 from the equation ', P 2 *' is calculated (step ST55).
Figure 2007209085
Figure 2007209085

次いで、以下の(22),(23)式より発電機選択遮断想定後の加速エネルギー(運動エネルギー)であるVk´,発電機選択遮断想定後の減速エネルギー(臨界エネルギー)Vc´を算出する(ステップST56)。

Figure 2007209085
Figure 2007209085
Next, V k ′, which is the acceleration energy (kinetic energy) after assuming the generator selection interruption, and the deceleration energy (critical energy) V c ′ after assuming the generator selection interruption are calculated from the following equations (22) and (23). (Step ST56).
Figure 2007209085
Figure 2007209085

次いで、発電機選択遮断想定後Vk´<Vc´であるかどうか、即ち、安定しているかどうか、判定する(ステップST57)。このステップST57での判定の結果、YESであれば、つまり安定しておれば、前記最小制御量MWの選択制御パターンの発電機を遮断する(ステップST59)。このステップST57における判定の結果、NOであれば、つまり不安定であれば、次のステップST58に進む。 Next, it is determined whether or not V k ′ <V c ′ after the generator selection cutoff is assumed, that is, whether or not it is stable (step ST57). If the result of determination in step ST57 is YES, that is, if it is stable, the generator of the selected control pattern of the minimum control amount MW is shut off (step ST59). If the result of determination in step ST57 is NO, that is, if unstable, the process proceeds to the next step ST58.

ステップST58では、次にMW量の多い制御パターンを選択し、前述のステップST55に戻る。   In step ST58, the control pattern with the next largest MW amount is selected, and the process returns to step ST55 described above.

前述のようなステップST51〜ST59の動作フローにより、事故時に必要最小限の発電機を遮断し不安定現象を抑制する所謂系統安定化制御が行われる。   According to the operation flow of steps ST51 to ST59 as described above, so-called system stabilization control is performed in which the minimum necessary generators are shut off and an unstable phenomenon is suppressed in the event of an accident.

事故の状況により発電所ごとに発電機を切り離すことによる系統安定化の効果の度合いは異なるが、非特許文献1の系統安定化制御方式では、そのことは考慮されていない。また、系統安定化制御を行う場合、端末装置と伝送路とを使って相手端情報を用いる系統安定化方式もある(特開平8−33208号公報(特許文献1)を参照)。   Although the degree of system stabilization effect by separating the generator for each power plant differs depending on the situation of the accident, the system stabilization control system of Non-Patent Document 1 does not take that into consideration. In addition, when performing system stabilization control, there is also a system stabilization system that uses partner terminal information using a terminal device and a transmission line (see Japanese Patent Laid-Open No. 8-33208 (Patent Document 1)).

「大容量電源系統のオンライン安定化制御方式の開発」、電気学会論文誌B分冊、社団法人電気学会、1990年8月、Vol.110−B、No.8、652〜661"Development of on-line stabilization control method for large-capacity power supply system", Transactions of the IEEJ Transaction B, The Institute of Electrical Engineers of Japan, August 1990, Vol. 110-B, no. 8, 652-661 特開平8−33208号公報(図1、図4、及びそれらの説明)Japanese Patent Laid-Open No. 8-33208 (FIGS. 1, 4 and descriptions thereof)

特許文献1に記載の系統安定化方式では、相手端情報を用いるため、相手端情報を自端に伝送するための端末装置と伝送路とが必要である。
複数台の発電機で構成された複数の発電所から送電線を介して主系統に電力を供給する電源系統における事故時に必要最小限の発電機を遮断することにより重大事故時に生じる不安定現象を抑制する所謂電源系統向けの系統安定化制御システムでは、端末装置と伝送路とを用いることなく各発電所の系統安定化制御装置が所期の系統安定化制御を行えるようにする方が好ましい。
In the system stabilization method described in Patent Literature 1, since the other end information is used, a terminal device and a transmission path for transmitting the other end information to the own end are necessary.
An unstable phenomenon that occurs in the event of a serious accident by shutting off the minimum required number of generators at the time of an accident in a power supply system that supplies power to the main system from a plurality of power stations composed of multiple generators via a transmission line. In the so-called system stabilization control system for the power supply system to be suppressed, it is preferable that the system stabilization control apparatus of each power plant can perform the intended system stabilization control without using a terminal device and a transmission line.

この発明は、前述のような実情に鑑みてなされたもので、端末装置と伝送路とを用いることなく各発電所の系統安定化制御装置が所期の系統安定化制御を行えるようにすることを目的とするものである。   The present invention has been made in view of the above-described circumstances, and enables the system stabilization control device of each power plant to perform an intended system stabilization control without using a terminal device and a transmission line. It is intended.

この発明に係る系統安定化制御システムは、主系統に送電線を介して接続された中間母線にそれぞれ送電線を介して発電所母線が接続され前記発電所母線にそれぞれ遮断器を介して接続された複数台の発電機で構成された複数の発電所の各々に系統安定化制御装置を設け、送電線での事故発生時に前記各発電所において前記系統安定化制御装置が作動し自発電所内の複数台の発電機を自発電所の前記発電所母線から遮断器により選択的に切り離す制御を行う系統安定化制御システムであって、前記各系統安定化制御装置が事故発生中の自端での電気量から自発電所の発電機を切り離し制御するモードであるか否かを判定し、自発電所の発電機を切り離し制御するモードではないと判定すると自発電所の発電機切り離し制御をロックする系統安定化制御システムである。   In the system stabilization control system according to the present invention, a power plant bus is connected to an intermediate bus connected to a main system via a power transmission line, respectively, and a power plant bus is connected to the power plant bus via a circuit breaker. A system stabilization control device is provided in each of a plurality of power plants composed of a plurality of generators, and the system stabilization control device operates in each power plant when an accident occurs in a transmission line. A system stabilization control system that performs control to selectively disconnect a plurality of generators from the power plant bus of the own power plant with a circuit breaker, wherein each system stabilization control device It is determined whether or not it is a mode for controlling the generator at its own power plant from the amount of electricity, and if it is determined that it is not a mode for controlling the generator at its own power plant, it is locked. System A reduction control system.

この発明は、主系統に送電線を介して接続された中間母線にそれぞれ送電線を介して発電所母線が接続され前記発電所母線にそれぞれ遮断器を介して接続された複数台の発電機で構成された複数の発電所の各々に系統安定化制御装置を設け、送電線での事故発生時に前記各発電所において前記系統安定化制御装置が作動し自発電所内の複数台の発電機を自発電所の前記発電所母線から遮断器により選択的に切り離す制御を行う系統安定化制御システムであって、前記各系統安定化制御装置が事故発生中の自端での電気量から自発電所の発電機を切り離し制御するモードであるか否かを判定し、自発電所の発電機を切り離し制御するモードではないと判定すると自発電所の発電機切り離し制御をロックするので、端末装置と伝送路とを用いることなく各発電所の系統安定化制御装置が系統安定化制御を行う効果がある。   The present invention provides a plurality of generators in which a power plant bus is connected to an intermediate bus connected to a main system via a power transmission line via a power transmission line, and is connected to the power plant bus via a circuit breaker. Each of the plurality of constructed power plants is provided with a system stabilization control device, and when an accident occurs in a transmission line, the system stabilization control device operates at each power plant, and a plurality of generators in the power plant are automatically installed. A system stabilization control system that performs control to selectively disconnect from the power plant bus of the power plant by a circuit breaker, wherein each system stabilization control device determines the power of the power plant from the amount of electricity at its own end during the occurrence of the accident. Since it is determined whether or not it is a mode for controlling and disconnecting the generator, and it is determined that it is not a mode for controlling and disconnecting the generator at the own power plant, the generator separation control at the own power plant is locked. Use with No system stabilizing control device of each power station is effective to perform system stabilization control.

実施の形態1.
以下この発明の実施の形態1を図1〜図4により説明する。図1は複数台の発電機で構成された複数の発電所から送電線を介して主系統に電力を供給する電力系統の構成の事例を示す図、図2は系統安定化制御システムの動作フローの事例を示す図、図3は至近端事故発生時の状態の事例を示す図で、(a)は簡略系統図上に事故発生箇所および電気的諸量を示し、(b)は各部の電気的諸量の関係をベクトル図的に示してある。図4は電力動揺モード判定動作フローの事例を示す図である。なお、図1〜図5において、同一符合は同一部分を示す。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing an example of the configuration of a power system that supplies power to a main system via a transmission line from a plurality of power plants composed of a plurality of generators, and FIG. 2 is an operation flow of the system stabilization control system. FIG. 3 is a diagram showing an example of the state at the time of the occurrence of a near-end accident, (a) shows the location of the accident and various electrical quantities on a simplified system diagram, and (b) shows each part The relationship between the electrical quantities is shown in a vector diagram. FIG. 4 is a diagram showing an example of a power oscillation mode determination operation flow. 1 to 5, the same reference numerals indicate the same parts.

図1に示すように、A発電所1は、例えば電力会社の既存火力発電所で、複数台の例えば大容量クラスの発電機GA1・・・GAnで構成され、B発電所2は、例えばIPP(独立系発電事業者)等の新設発電設備で、複数台の例えば中小容量クラスの発電機GB1・・・GBnで構成されている。   As shown in FIG. 1, A power plant 1 is an existing thermal power plant of an electric power company, for example, and is composed of a plurality of, for example, large-capacity class generators GA1... GAn. This is a new power generation facility such as an (independent power generation company), and is composed of a plurality of, for example, small and medium capacity class generators GB1 to GBn.

A発電所1の発電機GA1・・・GAnは何れも個別の遮断器CBを介して発電所母線BAに接続され、B発電所2の発電機GB1・・・GBnも各々個別の遮断器CBを介して発電所母線BBに接続されている。   The generators GA1... GAn of the A power plant 1 are all connected to the power plant bus BA via individual circuit breakers CB, and the generators GB1. Is connected to the power plant bus BB.

A発電所1には系統安定化制御装置10Aが設けられ、B発電所2にも系統安定化制御装置20Bが設けられている。   The A power plant 1 is provided with a system stabilization control device 10A, and the B power plant 2 is also provided with a system stabilization control device 20B.

系統安定化制御装置10Aは、発電機GA1・・・GAnの各発電機母線BGA1・・・BGAnに接続されたPT(計器用変圧器)の出力である自端オンライン電圧、各発電機の出力電流であるCT出力(自端オンライン電流)を入出力装置I/Oを介して入力し、前述の各式や後述の各式の演算を演算装置10A1で演算し、送電線事故等の重大事故時に不安定状態となると予測された場合に、各発電機に対応の遮断器CB,・・・CBを選択的にトリップし、発電機GA1・・・GAnを選択的に遮断し、安定状態となるように制御する。   The system stabilization control device 10A has a self-end online voltage that is an output of a PT (instrument transformer) connected to each generator bus BGA1... BGAn of the generator GA1. CT output (self-end online current), which is current, is input via the input / output device I / O, and the calculation of each of the above formulas and each of the formulas described below is performed by the calculation device 10A1, and a serious accident such as a power line accident When it is predicted that sometimes an unstable state will occur, the circuit breakers CB,... CB corresponding to each generator are selectively tripped, and the generators GA1,. Control to be.

系統安定化制御装置20Bは、発電機GB1・・・GBnの各発電機母線BGB1・・・BGBnに接続されたPT(計器用変圧器)の出力である自端オンライン電圧、各発電機の出力電流であるCT出力(自端オンライン電流)を入出力装置I/Oを介して入力し、前述の各式や後述の各式の演算を演算装置20B1で演算し、送電線事故等の重大事故時に不安定状態となると予測された場合に、各発電機に対応の遮断器CB,・・・CBを選択的にトリップし、発電機GB1・・・GBnを選択的に遮断し、安定状態となるように制御する。   The system stabilization control device 20B has a self-end online voltage that is an output of a PT (instrument transformer) connected to each generator bus BGB1 ... BGBn of the generator GB1 ... GBn, an output of each generator. CT output (self-end online current), which is current, is input via the input / output device I / O, and the arithmetic unit 20B1 calculates the above formulas and the formulas described below, causing serious accidents such as power line accidents. When it is predicted that sometimes an unstable state will occur, the circuit breakers CB,... CB corresponding to each generator are selectively tripped, and the generators GB1. Control to be.

つまり、前記系統安定化制御装置10Aおよび前記系統安定化制御装置20Bは、何れも、他端の電気量情報を入力せずに自端のオンライン電気量により自律的に安定化制御動作をする。但し、従来とは異なるのは、前記系統安定化制御装置10Aおよび前記系統安定化制御装置20Bの何れも、自端のオンライン電気量から事故点及び発電機加減速状態に依存する電力動揺モード(自端での安定化制御の要否を判定する複数の基準モード)から自発電所の発電機を切り離し制御するモードであるか否かを判定し、自発電所の発電機を切り離し制御するモードではないと判定すると自発電所の発電機切り離し制御をロックする。このモード判定の詳細は、図3と図4とにより詳述する。   That is, both the system stabilization control device 10A and the system stabilization control device 20B autonomously perform the stabilization control operation by the online electric quantity at the other end without inputting the electrical quantity information at the other end. However, what is different from the prior art is that both the system stabilization control device 10A and the system stabilization control device 20B have a power oscillation mode (depending on the accident point and the generator acceleration / deceleration state) A mode in which it is determined whether or not it is a mode in which the generator of the own power plant is separated and controlled from a plurality of reference modes for determining the necessity of stabilization control at its own end, and the generator of the own power plant is separated and controlled. If it is determined that it is not, the generator disconnection control of the own power plant is locked. Details of this mode determination will be described in detail with reference to FIGS.

前記A発電所1および前記B発電所2は何れも個別の各々2回線の送電線F31,F32を介して変電所母線等の中間母線B4に接続され、さらに2回線の送電線F5を介して主系統との連系点にあたる変電所母線B6に接続されている。   The A power plant 1 and the B power plant 2 are each connected to an intermediate bus B4 such as a substation bus via two separate transmission lines F31 and F32, and further via a two-line transmission line F5. It is connected to a substation bus B6 corresponding to a connection point with the main system.

次に、図2、図3および図4により動作を説明する。   Next, the operation will be described with reference to FIGS.

先ず、電力動揺モードの判定(図3、図4により追って詳述する)の結果により、制御ロックかどうか判別する(ステップST220)。   First, it is determined whether or not it is a control lock based on the result of determination of the power oscillation mode (described in detail later with reference to FIGS. 3 and 4) (step ST220).

ステップST220での判別結果がNOであれば、即ち制御ロックではなく安定化制御継続の場合は、各安定化制御装置10A,20Bは、図5で前述したステップST51乃至ST59を順に実行していく。   If the determination result in step ST220 is NO, that is, if the stabilization control is continued rather than the control lock, each of the stabilization control devices 10A and 20B sequentially executes steps ST51 to ST59 described above with reference to FIG. .

ステップST220での判別結果がYESであれば、即ち制御ロックであれば、安定化制御演算を停止する(図2のフロー図におけるストップ)。   If the determination result in step ST220 is YES, that is, if the control is locked, the stabilization control calculation is stopped (stop in the flowchart of FIG. 2).

次に、前記電力動揺モード判定に用いる諸量の算出について以下に説明する。   Next, calculation of various quantities used for the power oscillation mode determination will be described below.

電力動揺モード判定手法では、自端情報(P,Q,V)から算出可能な指標値として、
・自端から電圧最低点(通常は事故点)F1までの距離Xc
・自端から中間母線B4までの位相差δ
を使用する。これら距離Xc、位相差δは図3(b)に示すとおりベクトル図的に算出する。算出式は以下の式(26)、式(27)の通りである。
In the power fluctuation mode determination method, as an index value that can be calculated from the self-end information (P, Q, V),
・ Distance Xc from own end to lowest voltage point (usually accident point) F1
・ Phase difference δ from own end to intermediate bus B4
Is used. These distance Xc and phase difference δ are calculated in a vector diagram as shown in FIG. The calculation formulas are as shown in the following formulas (26) and (27).

(1)自端から電圧最低点(通常は事故点)F1までの距離Xc
自端から電圧最低点(通常は事故点)F1までの距離Xcは、図3(b)のベクトル図から以下のように算出される。事故中の電圧最低点は事故点F1相当となることから、Xcにより事故が至近端事故か否かが簡便に判定できる。

Figure 2007209085
(1) Distance Xc from own end to lowest voltage point (usually accident point) F1
The distance Xc from the own end to the lowest voltage point (usually an accident point) F1 is calculated as follows from the vector diagram of FIG. Since the lowest voltage point during the accident is equivalent to the accident point F1, it can be easily determined whether the accident is a near-end accident or not by Xc.
Figure 2007209085

(2)自端から中間母線B4までの位相差δ
自端から中間母線B4までの位相差δは、図3(b)のベクトル図から以下のように算出される。この位相差δから系統安定化制御論理による安定判別時点(例えば事故発生後210ms)での自端発電機位相角の傾向が把握できる。

Figure 2007209085
(2) Phase difference δ from own end to intermediate bus B4
The phase difference δ from the own end to the intermediate bus B4 is calculated as follows from the vector diagram of FIG. From this phase difference δ, the tendency of the self-generator phase angle at the time of stability determination by the system stabilization control logic (for example, 210 ms after the occurrence of the accident) can be grasped.
Figure 2007209085

(3)中間母線電圧V2
上記(2)項における位相差δを演算して求める際は、中間母線電圧V2が必要となる。この中間母線電圧V2は、以下の式(28)のように自端情報のみから算出できる。

Figure 2007209085
(3) Intermediate bus voltage V2
When calculating the phase difference δ in the above item (2), the intermediate bus voltage V2 is required. This intermediate bus voltage V2 can be calculated only from its own end information as shown in the following equation (28).
Figure 2007209085

次に、電力動揺モード判定動作フローの事例を示す図4により、系統安定化制御論理のロック条件判定手法(基準)の基本的考え方を説明する。   Next, the basic concept of the system stabilization control logic lock condition determination method (reference) will be described with reference to FIG. 4 showing an example of the power oscillation mode determination operation flow.

上記(1)項に示す距離Xcから簡略的に自端から電圧最低点までの電気的距離を把握する手法、および上記(2)項および(3)項に示す自端から中間母線B4までの位相差δから自端発電機位相角の傾向が把握できる手法を組み合わせ、系統安定化制御論理のロック条件を判定する手法(基準)を構築する。この手法(基準)の判定動作フローを図4に示してある。   A method of simply grasping the electrical distance from the own end to the lowest voltage point from the distance Xc shown in the item (1), and from the own end to the intermediate bus B4 shown in the items (2) and (3). A technique (standard) for determining the lock condition of the system stabilization control logic is constructed by combining techniques capable of grasping the tendency of the self-generator phase angle from the phase difference δ. FIG. 4 shows a determination operation flow of this method (reference).

図4に示してあるとおり、δ算出に用いるXの値は、事故区間により変化する。即ち、自回線での事故の場合は、事故除去後に1回線開放されるため、リアクタンスの値が2倍となる。この点を考慮し、自端から中間母線B4までのリアクタンスにX、2Xを用いた場合の2通りのδを算出しておく。   As shown in FIG. 4, the value of X used for calculating δ varies depending on the accident section. That is, in the case of an accident on the own line, one line is opened after the accident is removed, so the reactance value is doubled. Considering this point, two kinds of δ are calculated when X and 2X are used for reactance from the own end to the intermediate bus B4.

図4において、αは、自端近傍事故、中間母線近傍事故の判別マージン、δ(X)は自端から中間母線B4までのリアクタンスがXの時の自端から中間母線B4までの位相差、δ(2X)は自端から中間母線B4までのリアクタンスが2Xの時の自端から中間母線B4までの位相差である。   In FIG. 4, α is a margin for determination of an accident near the own end and an accident near the intermediate bus, δ (X) is a phase difference from the own end to the intermediate bus B4 when the reactance from the own end to the intermediate bus B4 is X, δ (2X) is a phase difference from the own end to the intermediate bus B4 when the reactance from the own end to the intermediate bus B4 is 2X.

次に、図4のフローに沿って系統安定化制御論理のロック条件のモード判定手法を以下に説明する。   Next, the mode determination method for the lock condition of the system stabilization control logic will be described below along the flow of FIG.

先ず、最初のステップST41について説明する。
このステップST41では、前記XcとX−αとの大小関係により至近端事故か否かを判定する。
前記Xcは自端から事故点までの電気的距離を表しており、この値が中間母線B4までのリアクタンスXより小さい場合は至近端事故と判定する。但し、事故除去後は回線開放によりXの値が変化するケースも存在するため、事故中のXcを用いることとする。
また、本手法では中間母線近傍事故を至近端事故と誤判断することを避けるため、マージンとしてαを設け、Xの代わりにX−αを用いている。このαはケーススタディにより決定する。
本ステップST41で至近端事故と判定された場合は、系統安定化制御論理の主制御ロジックは有効とする、即ち、系統安定化制御論理での制御を継続実行する。
本ステップST41で至近端事故と判定されなかった場合は、つぎのステップST42へ進む。
First, the first step ST41 will be described.
In this step ST41, it is determined whether or not there is a near-end accident based on the magnitude relationship between Xc and X-α.
Xc represents the electrical distance from the own end to the accident point. If this value is smaller than the reactance X to the intermediate bus B4, it is determined that the near end accident has occurred. However, after the accident is removed, there are cases where the value of X changes due to the opening of the line, so Xc during the accident will be used.
Further, in this method, in order to avoid misjudgment of an accident near the intermediate bus as a near-end accident, α is provided as a margin and X−α is used instead of X. This α is determined by a case study.
If it is determined in step ST41 that the near-end accident has occurred, the main control logic of the system stabilization control logic is validated, that is, the control with the system stabilization control logic is continuously executed.
If it is not determined that the near-end accident has occurred in step ST41, the process proceeds to next step ST42.

次に、ステップST42について説明する。
このステップST42では、前記XcとX−αとの大小関係により遠方事故か否かを判定する。
前記Xcは自端から事故点までの電気的距離を表しており、この値が中間母線B4までのリアクタンスXよりも大きい場合は遠方事故と判定する。この判定も前記ステップST41と同様に事故中のXcを用いることとする。
また、本手法では中間母線近傍事故を遠方事故と誤判断することを避けるため、マージンとしてαを設け、Xの代わりにX−αを用いている。このαはケーススタディにより決定する。ケーススタディの結果として、本ステップST42におけるαは、前記ステップST41におけるαと異なる値とする必要が生じる場合もあり得る。
本ステップST42で遠方事故と判定された場合はステップST43へ、それ以外(中間母線B4近傍事故時)はステップST44へ進む。
Next, step ST42 will be described.
In step ST42, it is determined whether or not there is a far accident based on the magnitude relationship between Xc and X-α.
Xc represents the electrical distance from the terminal to the accident point. When this value is larger than the reactance X to the intermediate bus B4, it is determined that the accident is a far accident. In this determination as well, the accidental Xc is used as in step ST41.
Moreover, in this method, in order to avoid misjudgment of an accident near the intermediate bus as a far accident, α is provided as a margin, and X−α is used instead of X. This α is determined by a case study. As a result of the case study, α in this step ST42 may need to be different from α in step ST41.
If it is determined in this step ST42 that there is a far accident, the process proceeds to step ST43. Otherwise (at the time of an accident near the intermediate bus B4), the process proceeds to step ST44.

次に、ステップST43について説明する。
このステップST43では、δ(X)の正負により、自端発電機が加速しているか否かを判定する。
本ステップST43は遠方事故時の判定であり、事故除去による自回線開放がないため、自回線のリアクタンスは事故前後で変化せず、Xとなる。このため、δ(X)を用いて自端発電機位相角の傾向を判定し、加速している場合は、系統安定化制御論理の主制御ロジックは有効とする、即ち、系統安定化制御論理での制御を継続実行し、減速している場合は、系統安定化制御論理での制御をロックする。
Next, step ST43 will be described.
In this step ST43, it is determined whether or not the self-generator is accelerating based on whether δ (X) is positive or negative.
This step ST43 is a determination at the time of a far accident, and since there is no opening of the own line due to the accident removal, the reactance of the own line does not change before and after the accident and becomes X. For this reason, the tendency of the self-end generator phase angle is determined using δ (X), and when accelerating, the main control logic of the system stabilization control logic is valid, that is, the system stabilization control logic If the control is continuously executed and the vehicle is decelerating, the system stabilization control logic is locked.

次に、ステップST44について説明する。
このステップST44では、δ(X),δ(2X)の正負により、自端発電機が加速しているか否かを判定する。
本ステップST44では、自端事故でも遠方事故でもないケース、即ち、中間母線B4近傍での事故であり、自回線のリアクタンスは事故前後で変化している可能性がある。つまり、他回線の中間母線近傍事故の場合はリアクタンスがXで変化しないが、自回線の中間母線近傍事故の場合はリアクタンスが事故除去後に2Xに変化する。従って、δ(X),δ(2X)の何れを用いるのが妥当であるかの判断は困難であるため、この両変数δ(X),δ(2X)を用いて自端発電機位相角の傾向判定することとしてある。
つまり、具体的には、両変数δ(X),δ(2X)が共に負の場合は自端発電機は減速していると判定し、系統安定化制御論理での制御をロックする。両変数δ(X),δ(2X)が共に負の場合以外のケースは、自端発電機は減速していないものとし、系統安定化制御論理の主制御ロジックは有効とする、即ち、系統安定化制御論理での制御を継続実行する。
Next, step ST44 will be described.
In this step ST44, it is determined whether or not the self-generator is accelerating based on whether δ (X) and δ (2X) are positive or negative.
In this step ST44, it is a case that is neither a self-end accident nor a far-end accident, that is, an accident near the intermediate bus B4, and the reactance of the own line may change before and after the accident. In other words, in the case of an accident near the intermediate bus on the other line, the reactance does not change with X, but in the case of an accident near the intermediate bus on the own line, the reactance changes to 2X after the accident is removed. Therefore, since it is difficult to determine which of δ (X) and δ (2X) is appropriate, the self-end generator phase angle is determined using these variables δ (X) and δ (2X). The tendency is to be determined.
That is, specifically, when both variables δ (X) and δ (2X) are negative, it is determined that the self-generator is decelerating, and the control by the system stabilization control logic is locked. In cases other than when both variables δ (X) and δ (2X) are negative, the self-generator is not decelerated, and the main control logic of the system stabilization control logic is valid. Continue to execute the control with the stabilization control logic.

以上のように、ステップST41,ステップST42による電圧最低点までの電気的距離算出手法と、ステップST43,ステップST44による自端発電機位相角の傾向把握手法とを組み合わせたロック条件のモード判定することで、系統安定化制御論理での制御をロックするか継続実行するかを、各発電所1,2の各系統安定化制御装置10A,10Bが自端の電気量情報のみで、他発電所のローカルモードであるかどうかの判断を含めて自律的に判定する。   As described above, the mode determination of the lock condition is performed by combining the method for calculating the electrical distance to the lowest voltage point in steps ST41 and ST42 and the method for grasping the tendency of the end-generator phase angle in steps ST43 and ST44. Thus, whether the system stabilization control logic is locked or continuously executed is determined by each system stabilization control device 10A, 10B of each power plant 1, 2 only by its own electrical quantity information, Judgment is made autonomously including the judgment of whether or not the mode is the local mode.

前述の説明からも判るように、図4において、Aは自端のローカルモードのため系統安定化制御実施(系統安定化制御をロックせず)、Bは全系モードのため系統安定化制御実施(系統安定化制御をロックせず)、Cは他発電所のローカルモードのため系統安定化制御をロック、Dはモード不明であるが加速傾向のため系統安定化制御実施(系統安定化制御をロックせず)、Eはモード不明であるが明らかに減速傾向のため系統安定化制御をロック、をそれぞれ意味する。   As can be seen from the above description, in FIG. 4, A is a local mode of its own end, and system stabilization control is performed (system stabilization control is not locked), and B is an overall system mode and system stabilization control is performed. (Does not lock system stabilization control), C locks system stabilization control because of local mode of other power plants, D does not know mode but performs system stabilization control due to acceleration tendency (system stabilization control E) means that the mode is unknown but the system stabilization control is locked due to the apparent deceleration tendency.

また、前述の説明からも判るように、本実施の形態1は、主系統に送電線F5を介して接続された中間母線B4にそれぞれ送電線F31,F32を介して発電所母線BA,BBが接続され前記発電所母線BA,BBにそれぞれ遮断器CBを介して接続された複数台の発電機で構成された複数の発電所1,2の各々に系統安定化制御装置10A,20Bを設け、送電線での事故発生時に前記各発電所1,2において自己の前記系統安定化制御装置が自律的に作動し自発電所内の複数台の発電機を自発電所の前記発電所母線から遮断器CBにより選択的に切り離す制御を行う系統安定化制御システムであって、前記各系統安定化制御装置が事故発生中の自端での電気量から自発電所の発電機を切り離し制御するモードであるか否かを判定し、自発電所の発電機を切り離し制御するモードではないと判定すると自発電所の発電機切り離し制御をロックする系統安定化制御システムであり、端末装置と伝送路とを用いることなく各発電所の系統安定化制御装置が自律的に所期の系統安定化制御を行える系統安定化制御システムである。   As can be seen from the above description, in the first embodiment, the power generation buses BA and BB are connected to the intermediate bus B4 connected to the main system via the transmission line F5 via the transmission lines F31 and F32, respectively. System stabilization control devices 10A and 20B are provided in each of a plurality of power plants 1 and 2 composed of a plurality of generators connected to the power plant buses BA and BB via circuit breakers CB, respectively. When an accident occurs in a power transmission line, each of the power plants 1 and 2 has its own system stabilization control device autonomously operated, and a plurality of generators in the power plant are disconnected from the power plant bus of the power plant. It is a system stabilization control system that performs control to selectively disconnect by CB, and each system stabilization control device is a mode in which the generator at the own power plant is separated and controlled from the amount of electricity at its own end during the occurrence of an accident. Power generation at the power plant Is a system stabilization control system that locks the generator disconnection control of the own power plant when it is determined that it is not in the mode for controlling the isolation of the power plant, and the system stabilization control device of each power plant is autonomous without using terminal devices and transmission lines. This is a system stabilization control system that can perform the desired system stabilization control.

また、前述の説明からも判るように、本実施の形態1は、前記各系統安定化制御装置10A,20Bは、自端での電気量から至近端事故であり前記自発電所の発電機を切り離し制御するモードであると判定した場合は、前記自発電所の発電機切り離し制御を続行する系統安定化制御システムである。   Further, as can be seen from the above description, in the first embodiment, each of the system stabilization control devices 10A and 20B is a near-end accident due to the amount of electricity at its own end. Is a system stabilization control system that continues the generator disconnection control of the own power plant when it is determined that the mode is the control mode for disconnecting the generator.

また、前述の説明からも判るように、本実施の形態1は、前記各系統安定化制御装置10A,20Bは、事故中における自端から電圧最低点までのリアクタンスが所定値より小さい場合に至近端事故であると判定する系統安定化制御システムである。   Further, as can be seen from the above description, the first embodiment is that each of the system stabilization control devices 10A and 20B reaches when the reactance from its own end to the lowest voltage point during an accident is smaller than a predetermined value. This is a system stabilization control system that determines that a near-end accident has occurred.

また、前述の説明からも判るように、本実施の形態1は、事故中における自端から電圧最低点までのリアクタンスをXc、事故中における自端電圧をVT、事故中における自端から流れる有効電力をP、事故中における自端から流れる無効電力をQとした場合、前記事故中における自端から電圧最低点までのリアクタンスXcを、Xc=VT*Q/(P+Q)の式で前記各系統安定化制御装置10A,20Bが算出する系統安定化制御システムである。 Further, as can be seen from the above description, the first embodiment is effective in that the reactance from the self-end to the lowest voltage point during the accident is Xc, the self-end voltage during the accident is VT, and the self-end voltage during the accident flows from the self end. When the power is P and the reactive power flowing from the own end during the accident is Q, the reactance Xc from the own end to the lowest voltage point during the accident is expressed as Xc = VT 2 * Q / (P 2 + Q 2 ) The system stabilization control system calculated by each of the system stabilization control devices 10A and 20B.

また、前述の説明からも判るように、本実施の形態1は、前記各系統安定化制御装置10A,20Bは、事故中における自端での電気量から自端発電機が加速傾向にあり前記自発電所の発電機を切り離し制御するモードであると判定した場合は前記自発電所の発電機切り離し制御を続行する系統安定化制御システムである。   Further, as can be seen from the above description, in the first embodiment, each of the system stabilization control devices 10A and 20B has its own-end generator accelerating from the amount of electricity at its own end during an accident. When it determines with it being the mode which isolate | separates and controls the generator of an own power plant, it is a system | strain stabilization control system which continues the generator isolation | separation control of the said own power plant.

また、前述の説明からも判るように、本実施の形態1は、前記各系統安定化制御装置10A,20Bは、事故中における自端から前記中間母線B4までの位相角差δが所定値より大きい場合に加速傾向にあると判定する系統安定化制御システムである。   Further, as can be seen from the above description, in the first embodiment, each of the system stabilization control devices 10A and 20B has a phase angle difference δ from its own end to the intermediate bus B4 during an accident from a predetermined value. This is a system stabilization control system that determines that the vehicle is accelerating when it is large.

また、前述の説明からも判るように、本実施の形態1は、事故中における自端から前記中間母線までの位相角差をδ、事故中における中間母線電圧をV2、事故中における自端から前記中間母線までのリアクタンスをXとした場合、前記事故中における自端から前記中間母線までの位相角差δを、δ=cos-1〔{VT+V2−X*(P+Q)/VT}/(2*VT*V2)〕の式で前記各系統安定化制御装置10A,20Bが算出する系統安定化制御システムである。 Further, as can be seen from the above description, the first embodiment is configured such that the phase angle difference from the own end during the accident to the intermediate bus is δ, the intermediate bus voltage during the accident is V2, and from the own end during the accident. When the reactance to the intermediate bus is X, the phase angle difference δ from the own end to the intermediate bus during the accident is expressed as δ = cos −1 [{VT 2 + V 2 2 −X 2 * (P 2 + Q 2 ) / VT 2 } / (2 * VT * V2)]. The system stabilization control system is calculated by each of the system stabilization control devices 10A and 20B.

なお、前述の図4のフローによる系統安定化制御論理のロック条件のモード判定手法は、中間母線を共用する発電所が2つの場合に限らず、発電所が3つ以上ある場合にも適用できる。   Note that the mode determination method of the lock condition of the system stabilization control logic according to the flow of FIG. 4 described above is not limited to the case where there are two power plants sharing the intermediate bus, but can also be applied when there are three or more power plants. .

この発明の実施の形態1を示す図で、複数台の発電機で構成された複数の発電所から送電線を介して主系統に電力を供給する電力系統の構成の事例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of a structure of the electric power system which supplies electric power to a main system via a power transmission line from the some power plant comprised with the several generator. この発明の実施の形態1を示す図で、系統安定化制御システムの動作フローの事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the operation | movement flow of a system | strain stabilization control system. この発明の実施の形態1を示す図で、至近端事故発生時の状態の事例を示す図であり、(a)は簡略系統図上に事故発生箇所および電気的諸量を示し、(b)は各部の電気的諸量の関係をベクトル図的に示してある。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the state at the time of near-end accident occurrence, (a) shows an accident occurrence location and various electrical quantities on a simplified system diagram, ) Shows the relationship between the electrical quantities of each part in a vector diagram. この発明の実施の形態1を示す図で、電力動揺モード判定動作フローの事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of an electric power oscillation mode determination operation | movement flow. 従来の代表的な系統安定化制御方式を示すフロー図である。It is a flowchart which shows the conventional typical system | strain stabilization control system.

符号の説明Explanation of symbols

F5 主系統への送電線、
B4 中間母線、
F31,F32 中間母線への送電線、
BA,BB 発電所母線、
CB 遮断器、
1,2 発電所、
10A,20B 系統安定化制御装置。
F5 Transmission line to the main system,
B4 Intermediate bus,
F31, F32 Transmission line to intermediate bus,
BA, BB power plant bus,
CB circuit breaker,
1,2 power plant,
10A, 20B System stabilization control device.

Claims (7)

主系統に送電線を介して接続された中間母線にそれぞれ送電線を介して発電所母線が接続され前記発電所母線にそれぞれ遮断器を介して接続された複数台の発電機で構成された複数の発電所の各々に系統安定化制御装置を設け、送電線での事故発生時に前記各発電所において前記系統安定化制御装置が作動し自発電所内の複数台の発電機を自発電所の前記発電所母線から遮断器により選択的に切り離す制御を行う系統安定化システムであって、前記各系統安定化制御装置が事故発生中の自端での電気量から自発電所の発電機を切り離し制御するモードであるか否かを判定し、自発電所の発電機を切り離し制御するモードではないと判定すると自発電所の発電機切り離し制御をロックする系統安定化制御システム。   A plurality of generators composed of a plurality of generators each connected to a power plant bus via a power transmission line and an intermediate bus connected to the main system via a power transmission line, and connected to the power plant bus via a circuit breaker, respectively. Each of the power stations is provided with a system stabilization control device, and when an accident occurs in the transmission line, the system stabilization control device operates at each power plant, and a plurality of generators in the power plant are connected to the power plant. A system stabilization system that performs control to selectively disconnect from a power station bus using a circuit breaker, and each system stabilization control device separates and controls the generator of the power station from the amount of electricity at the end of the accident. A system stabilization control system that determines whether or not the mode is a mode to perform, and locks the power generator disconnection control of the power plant when it is determined that the mode is not a mode for disconnecting and controlling the power generator of the power plant. 請求項1に記載の系統安定化制御システムにおいて、前記各系統安定化制御装置は、自端での電気量から至近端事故であり前記自発電所の発電機を切り離し制御するモードであると判定した場合は、前記自発電所の発電機切り離し制御を続行することを特徴とする系統安定化制御システム。   2. The system stabilization control system according to claim 1, wherein each of the system stabilization control devices is in a mode in which a near-end accident is detected from an amount of electricity at its own end and a generator of the own power plant is separated and controlled. If it is determined, the system stabilization control system continues the generator disconnection control of the power plant. 請求項2に記載の系統安定化制御システムにおいて、前記各系統安定化制御装置は、事故中における自端から電圧最低点までのリアクタンスが所定値より小さい場合に至近端事故であると判定することを特徴とする系統安定化制御システム。   3. The system stabilization control system according to claim 2, wherein each of the system stabilization control apparatuses determines that a near-end accident occurs when a reactance from the local end to the lowest voltage point during the accident is smaller than a predetermined value. A system stabilization control system characterized by that. 請求項3に記載の系統安定化制御システムにおいて、事故中における自端から電圧最低点までのリアクタンスをXc、事故中における自端電圧をVT、事故中における自端から流れる有効電力をP、事故中における自端から流れる無効電力をQとした場合、前記事故中における自端から電圧最低点までのリアクタンスXcを、Xc=VT*Q/(P+Q)の式で前記各系統安定化制御装置が算出することを特徴とする系統安定化制御システム。 4. The system stabilization control system according to claim 3, wherein the reactance from the self-end to the lowest voltage point during the accident is Xc, the self-end voltage during the accident is VT, the active power flowing from the self-end during the accident is P, the accident When the reactive power flowing from its own end is Q, reactance Xc from its own end to the lowest voltage point in the accident is expressed as Xc = VT 2 * Q / (P 2 + Q 2 ) A system stabilization control system characterized in that the control system calculates. 請求項1に記載の系統安定化制御システムにおいて、前記各系統安定化制御装置は、事故中における自端での電気量から自端発電機が加速傾向にあり前記自発電所の発電機を切り離し制御するモードであると判定した場合は前記自発電所の発電機切り離し制御を続行することを特徴とする系統安定化制御システム。   2. The system stabilization control system according to claim 1, wherein each of the system stabilization control devices separates the power generator at the power plant because the power generator at the power plant tends to accelerate from the amount of electricity at the power plant during the accident. A system stabilization control system characterized in that when it is determined that the control mode is set, the generator disconnection control of the power plant is continued. 請求項5に記載の系統安定化制御システムにおいて、前記各系統安定化制御装置は、事故中における自端から前記中間母線までの位相角差が所定値より大きい場合に加速傾向にあると判定することを特徴とする系統安定化制御システム。   6. The system stabilization control system according to claim 5, wherein each of the system stabilization control apparatuses determines that an acceleration tendency is present when a phase angle difference from the own end during the accident to the intermediate bus is greater than a predetermined value. A system stabilization control system characterized by that. 請求項6に記載の系統安定化制御システムにおいて、事故中における自端から前記中間母線までの位相角差をδ、事故中における中間母線電圧をV2、事故中における自端から前記中間母線までのリアクタンスをX、事故中における自端電圧をVT、事故中における自端から流れる有効電力をP、事故中における自端から流れる無効電力をQとした場合、前記事故中における自端から前記中間母線までの位相角差δを、δ=cos-1〔{VT+V2−X*(P+Q)/VT}/(2*VT*V2)〕の式で前記各系統安定化制御装置が算出することを特徴とする系統安定化制御システム。 7. The system stabilization control system according to claim 6, wherein a phase angle difference from the own end to the intermediate bus in the accident is δ, an intermediate bus voltage in the accident is V2, and the own bus to the intermediate bus is in the accident. When the reactance is X, the self-end voltage during the accident is VT, the active power flowing from the self-end during the accident is P, and the reactive power flowing from the self-end during the accident is Q, the intermediate bus from the self-end during the accident Phase angle difference δ up to δ = cos -1 [{VT 2 + V 2 2 −X 2 * (P 2 + Q 2 ) / VT 2 } / (2 * VT * V 2)] A system stabilization control system characterized in that the control device calculates.
JP2006023030A 2006-01-31 2006-01-31 System stabilization control system Expired - Fee Related JP4667260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023030A JP4667260B2 (en) 2006-01-31 2006-01-31 System stabilization control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023030A JP4667260B2 (en) 2006-01-31 2006-01-31 System stabilization control system

Publications (2)

Publication Number Publication Date
JP2007209085A true JP2007209085A (en) 2007-08-16
JP4667260B2 JP4667260B2 (en) 2011-04-06

Family

ID=38488042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023030A Expired - Fee Related JP4667260B2 (en) 2006-01-31 2006-01-31 System stabilization control system

Country Status (1)

Country Link
JP (1) JP4667260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096472A (en) * 2018-12-14 2020-06-18 株式会社東芝 Power system stabilizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194723A (en) * 1984-03-12 1985-10-03 三菱電機株式会社 Reactance relay
JPS6285639A (en) * 1985-10-08 1987-04-20 東京電力株式会社 Fault type identification apparatus
JPS6311025A (en) * 1986-06-30 1988-01-18 東京電力株式会社 Power system stabilizer
JP2000341859A (en) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp Control apparatus and method for stabilizing power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194723A (en) * 1984-03-12 1985-10-03 三菱電機株式会社 Reactance relay
JPS6285639A (en) * 1985-10-08 1987-04-20 東京電力株式会社 Fault type identification apparatus
JPS6311025A (en) * 1986-06-30 1988-01-18 東京電力株式会社 Power system stabilizer
JP2000341859A (en) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp Control apparatus and method for stabilizing power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096472A (en) * 2018-12-14 2020-06-18 株式会社東芝 Power system stabilizer
JP7098515B2 (en) 2018-12-14 2022-07-11 株式会社東芝 Power system stabilizer

Also Published As

Publication number Publication date
JP4667260B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
CN104842798B (en) The control method and system of electrokinetic cell relay disconnection process
CN106575866A (en) Protective device and protective system for electrical circuits, and method for controlling the protective system
CN103928926A (en) Load transferring system and method during power distribution network fault
CN106030950B (en) Network node for power grid, the adjustable transformer for network node and the method for operational network node
CN104737412A (en) Power supply management system and power supply management method
JPH1051949A (en) Power reception protective device
US20220294036A1 (en) Controller for energy storage, system comprising the same, and methods of using the same
CN109274078A (en) A kind of line fault of safety and stability control device surely controls criterion method, device and equipment
CN111313379A (en) Disconnection protection method for comparing line voltage on two sides of line and spare power automatic switching
JP6410696B2 (en) System control device and system stabilization system
JP5112124B2 (en) Power distribution system operation device
CN114967503A (en) Standardized simulation test method for double-circuit line stability control system
CN100492801C (en) Method for implementing electrode isolation of super-high voltage DC system
JP4667260B2 (en) System stabilization control system
CN104393602B (en) Adjusting method and device for distributed energy resource network
CN108345706B (en) Power supply fast switching simulation method and model
Zhou et al. Impact of DC protection strategy of large HVDC network on frequency response of the connected AC system
CN106356864A (en) Electric power system load shedding method and device based on emergency need responding technology
CN111224384B (en) Method for comparing line voltage vector difference on two sides of line and protecting line breakage by adopting loop closing and opening operation
Enacheanu et al. New control strategies to prevent blackouts: Intentional islanding operation in distribution networks
JP5885598B2 (en) Power control device
CN106159987A (en) A kind of direct current network topology and the method for the fast quick-recovery of fault isolation system
CN105552855A (en) Method for preventing single-CT saturation of 3/2 wiring mode from causing distance protection misoperation
JP2005094831A (en) System and method for power grid stabilization control
CN110504682B (en) High-voltage direct-current system alternating current bus splitting operation tripping control method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4667260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees