JP2007208222A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2007208222A
JP2007208222A JP2006029012A JP2006029012A JP2007208222A JP 2007208222 A JP2007208222 A JP 2007208222A JP 2006029012 A JP2006029012 A JP 2006029012A JP 2006029012 A JP2006029012 A JP 2006029012A JP 2007208222 A JP2007208222 A JP 2007208222A
Authority
JP
Japan
Prior art keywords
concave container
capacitor
current collector
sealing plate
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006029012A
Other languages
Japanese (ja)
Inventor
Yasuo Nakahara
康雄 中原
Hiroshi Nonogami
寛 野々上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006029012A priority Critical patent/JP2007208222A/en
Publication of JP2007208222A publication Critical patent/JP2007208222A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor attaining space saving and stability of internal resistance at the same time, without affecting the adhesion between polarizable electrodes as well as adhesion between a polarizable electrode and a collector even if sealing plate of a concave vessel deforms. <P>SOLUTION: In such state as an opening of a concave vessel 1 is laid sideways, with one of the facing sides of the concave vessel 1 faced down, a positive polarizable electrode 3a, a separator 4, a negative polarizable electrode 3b are stored and stacked along the side surface of the concave vessel 1. On the inside wall of the concave vessel 1, a negative collector 5 is formed on the upper side-surface while a positive collector 2 is formed on the lower side-surface. The positive collector 2 penetrates the bottom surface of the concave vessel 1, to be connected to a positive electrode connection terminal 8. The concave vessel 1 is sealed by welding a metal frame 6 to a sealing plate 7. A part of the sealing plate 7 constitutes a negative electrode connection terminal 7a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、収納容器が封口蓋と凹状容器とで構成されるキャパシタに関する。   The present invention relates to a capacitor in which a storage container includes a sealing lid and a concave container.

電気二重層キャパシタ等のキャパシタはバックアップ電源、補助電源として携帯電話や家庭用電気製品に用いられる。これまでのキャパシタは、各種電子機器のプリント基板にハンダ付けされ、実装されている。このキャパシタの形状は、コイン型あるいはボタン型という呼称が用いられるように円柱状であり、これをプリント基板にハンダ付けするには別途端子の取り付けが必要であった。また、丸い形状であるためにキャパシタの容器より実装面積が大きくなっていた。   Capacitors such as electric double layer capacitors are used in mobile phones and household electric products as backup power sources and auxiliary power sources. Conventional capacitors are soldered and mounted on printed circuit boards of various electronic devices. The capacitor has a cylindrical shape so that a coin type or a button type may be used. To solder this to a printed circuit board, it is necessary to attach a terminal separately. In addition, the mounting area is larger than the capacitor container due to the round shape.

そこで、特許文献1では、正負一対の分極性電極、電解質等を収納する凹状容器を凹状容器と封口板で構成し、凹状容器内部の集電体を、凹状容器の外側底面部や外側側面部に位置する接続端子と電気的に接続し、接続端子が凹状容器と一体化された構造としたものが開示されている。   Therefore, in Patent Document 1, a concave container that houses a pair of positive and negative polarizable electrodes, an electrolyte, and the like is configured by a concave container and a sealing plate, and a current collector inside the concave container is used as an outer bottom surface portion or an outer side surface portion of the concave container. A connection terminal is disclosed which is electrically connected to the connection terminal located at the position where the connection terminal is integrated with the concave container.

この従来構造の一例を図4に示す。凹状容器21の内側底面全体には金属層からなる正極集電体22が形成され、正極集電体22は凹状容器21の壁面を貫通し、凹状容器21の外側側面から正極接続端子28に電気的に接続されている。凹状容器21左側面外壁から底面にかけて負極接続端子29が形成され、金属枠体26と封口板27を介して封口板27の裏面に形成された負極集電体25と電気的に接続している。   An example of this conventional structure is shown in FIG. A positive electrode current collector 22 made of a metal layer is formed on the entire inner bottom surface of the concave container 21, and the positive electrode current collector 22 penetrates the wall surface of the concave container 21 and is electrically connected to the positive electrode connection terminal 28 from the outer side surface of the concave container 21. Connected. A negative electrode connection terminal 29 is formed from the outer wall of the left side surface of the concave container 21 to the bottom surface, and is electrically connected to the negative electrode current collector 25 formed on the back surface of the sealing plate 27 via the metal frame 26 and the sealing plate 27. .

図4のキャパシタを製造する場合には、凹状容器21の内側底面にあらかじめ形成された正極集電体22の上面に正の分極性電極23a、セパレータ24、負の分極性電極23bを順次積層配置して挿入し、金属枠体26を凹状容器21上面の縁部に載せ、その上にさらに封口板27を載せ、溶接することで凹状容器21が密閉される。
特開2001−216952号公報
4 is manufactured, the positive polarizable electrode 23a, the separator 24, and the negative polarizable electrode 23b are sequentially stacked on the upper surface of the positive electrode current collector 22 formed in advance on the inner bottom surface of the concave container 21. Then, the metal frame 26 is placed on the edge of the upper surface of the concave container 21, and the sealing plate 27 is further placed thereon and welded to seal the concave container 21.
JP 2001-216852 A

しかしながら、上記従来の構造では、接続端子取り付け工程を省略することができ、実装面積を低減することができるものの、キャパシタを各種電子機器のプリント基板にハンダ付けする際の温度変化により封口板が変形し、この変形が封口板の下に配置されている積層体に偏った圧力を与え、積層体にも同様の変形が発生する。このように封口板の変形が積層体に伝わり、電荷を蓄積する正負一対の分極性電極間の密着性や分極性電極と集電体との密着性が低下するために、キャパシタの内部抵抗が増大するという問題があった。   However, in the above-described conventional structure, the connecting terminal attaching step can be omitted and the mounting area can be reduced, but the sealing plate is deformed due to a temperature change when the capacitor is soldered to the printed circuit board of various electronic devices. However, this deformation gives a biased pressure to the laminated body arranged under the sealing plate, and the same deformation occurs in the laminated body. In this way, the deformation of the sealing plate is transmitted to the laminated body, and the adhesion between the pair of positive and negative polarizable electrodes for accumulating charges and the adhesion between the polarizable electrode and the current collector are lowered. There was a problem of increasing.

本発明は、上述した課題を解決するために創案されたものであり、凹状容器の封口板に変形が発生したとしても、分極性電極間の密着性や分極性電極と集電体との密着性に影響を与えず、省スペース化と内部抵抗の安定化とを同時に実現したキャパシタを提供することを目的としている。   The present invention was devised to solve the above-described problems, and even when deformation occurs in the sealing plate of the concave container, the adhesion between the polarizable electrodes and the adhesion between the polarizable electrodes and the current collector It is an object of the present invention to provide a capacitor that achieves both space saving and stabilization of internal resistance without affecting performance.

上記目的を達成するために、請求項1記載の発明は、凹状容器と封口蓋とで構成される収納容器を用い、前記凹状容器の対向する側面の間に正負1対の分極性電極、セパレータが前記側面に沿って収納積層されているキャパシタである。   In order to achieve the above object, the invention described in claim 1 uses a storage container composed of a concave container and a sealing lid, and a pair of positive and negative polarizable electrodes and separators between opposing side surfaces of the concave container. Is a capacitor housed and laminated along the side surface.

また、請求項2記載の発明は、前記凹状容器の少なくとも側面内壁に集電体が形成され、該集電体と前記分極性電極が電気的に接続されていることを特徴とする請求項1記載のキャパシタである。   The invention described in claim 2 is characterized in that a current collector is formed on at least the side wall of the concave container, and the current collector and the polarizable electrode are electrically connected. It is a capacitor of description.

また、請求項3記載の発明は、前記集電体が、前記凹状容器の底面内壁まで延伸されていることを特徴とする請求項2記載のキャパシタである。   The invention according to claim 3 is the capacitor according to claim 2, wherein the current collector is extended to the inner wall of the bottom surface of the concave container.

また、請求項4記載の発明は、前記封口蓋が、前記正負1対の分極性電極と電気的に絶縁されていることを特徴とする請求項1〜請求項3のいずれか1項に記載のキャパシタである。   The invention according to claim 4 is characterized in that the sealing lid is electrically insulated from the pair of positive and negative polarizable electrodes. Capacitor.

また、請求項5記載の発明は、前記封口蓋の面積が、凹状容器の対向する側面内壁の一方の面積よりも小さいことを特徴とする請求項1〜請求項4のいずれか1項に記載のキャパシタである。   Moreover, invention of Claim 5 is that the area of the said sealing lid is smaller than one area of the side wall which the concave container opposes, It is any one of Claims 1-4 characterized by the above-mentioned. Capacitor.

本発明によれば、凹状容器の対向する側面の間に、正負一対の分極性電極、セパレータ、集電体が凹状容器の側面に沿って収納積層されており、凹状容器の側面内壁に集電体を形成して、この集電体に分極性電極を電気的に接続させるようにしているので、封口蓋が変形しても、分極性電極や集電体の密着性に影響を与えない。また、セルと封口蓋との間に空間が確保でき、さらに封口蓋の変形が伝わるのを防止することができるので、内部抵抗の増大を防ぐことができる。   According to the present invention, a pair of positive and negative polarizable electrodes, a separator, and a current collector are housed and stacked along the side surface of the concave container between the opposing side surfaces of the concave container, and the current collector is collected on the side wall of the concave container. Since the polarizable electrode is electrically connected to the current collector by forming a body, even if the sealing lid is deformed, the adhesion of the polarizable electrode and the current collector is not affected. Further, a space can be secured between the cell and the sealing lid, and further, the deformation of the sealing lid can be prevented from being transmitted, so that an increase in internal resistance can be prevented.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明による第1のキャパシタの構造を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a first capacitor according to the present invention.

凹状容器1の開口部を横にした状態、すなわち、凹状容器1の対向する側面A、Bの一方を下にして(図1では側面Bを下にした)、対向する側面A、Bの間に、正極集電体2、正の分極性電極3a、セパレータ4、負の分極性電極3b、負極集電体5が側面A、Bに沿って収納され、積層されている。正極集電体2、正の分極性電極3a、セパレータ4、負の分極性電極3b、負極集電体5は、角形で平板状の形状を有しており、これらで1つのセルを構成する。凹状容器1の側面A、Bは、ほぼ平行に形成されており、この側面に正極集電体2、分極性電極3a、セパレータ4、分極性電極3b、負極集電体5の各主面が対向するように設置されており、各主面もほぼ平行に配置される。   In a state where the opening of the concave container 1 is set sideways, that is, between the opposing side surfaces A and B with one of the opposing side surfaces A and B of the concave container 1 facing down (the side surface B in FIG. 1). In addition, the positive electrode current collector 2, the positive polarizable electrode 3a, the separator 4, the negative polarizable electrode 3b, and the negative electrode current collector 5 are accommodated and stacked along the side surfaces A and B. The positive electrode current collector 2, the positive polarizable electrode 3 a, the separator 4, the negative polarizable electrode 3 b, and the negative electrode current collector 5 have a square and flat plate shape, and these constitute one cell. . The side surfaces A and B of the concave container 1 are formed substantially in parallel, and the main surfaces of the positive electrode current collector 2, polarizable electrode 3 a, separator 4, polarizable electrode 3 b, and negative electrode current collector 5 are formed on the side surfaces. It is installed so as to face each other, and each main surface is also arranged substantially in parallel.

凹状容器1の側面Aの内壁には負極集電体5が、側面Bの内壁には正極集電体2が、Auめっき、スパッタなどにより一体に形成されている。正極集電体2は、凹状容器1の底面を貫通して形成されており、貫通した出口のところで正極接続端子8と接続されている。また、密着性を高めて内部抵抗を低減するために、正極集電体2と分極性電極3aとの間、負極集電体5と分極性電極3bとの間に導電性接着剤を用いて接合するようにしても良い。   A negative electrode current collector 5 is integrally formed on the inner wall of the side surface A of the concave container 1, and a positive electrode current collector 2 is integrally formed on the inner wall of the side surface B by Au plating, sputtering, or the like. The positive electrode current collector 2 is formed so as to penetrate the bottom surface of the concave container 1, and is connected to the positive electrode connection terminal 8 at an outlet that penetrates. Moreover, in order to improve adhesiveness and reduce internal resistance, a conductive adhesive is used between the positive electrode current collector 2 and the polarizable electrode 3a and between the negative electrode current collector 5 and the polarizable electrode 3b. You may make it join.

正極接続端子8は、Wメタライズ層、Niめっき層、Auめっき層等からなる。また、分極性電極3a、3bは、活性炭電極で構成されており、セパレータ4はガラス繊維等で構成される。   The positive electrode connection terminal 8 is made of a W metallized layer, a Ni plated layer, an Au plated layer, or the like. The polarizable electrodes 3a and 3b are made of activated carbon electrodes, and the separator 4 is made of glass fiber or the like.

凹状容器1はアルミナやジルコニア等のセラミック等で形成され、金属製の封口板7を凹状容器1の開口部に被せて溶接することにより密閉された容器となるように構成されている。なお、凹状容器1の封口蓋としての封口板7は、板状の形状でなくても良く、凹状容器1の開口部を封止できるものであれば、他の形状でも良い。以上のように構成しているので、図1に示すように、セルと封口板7との間には空間が確保されており、密着していない構造となる。   The concave container 1 is made of ceramic such as alumina or zirconia, and is configured to be a sealed container by covering a metal sealing plate 7 on the opening of the concave container 1 and welding. In addition, the sealing plate 7 as a sealing lid of the concave container 1 may not have a plate shape, and may have another shape as long as the opening of the concave container 1 can be sealed. Since it is comprised as mentioned above, as shown in FIG. 1, space is ensured between the cell and the sealing board 7, and it becomes a structure which is not closely_contact | adhering.

図4の従来構造のように、凹状容器の底面と封口板との間に、正負一対の分極性電極、セパレータ、集電体が積層されたセルを収納し、封口板と凹状容器との圧縮力によって、セルの各部を密着させるのではなく、本発明では、図1に示すように、凹状容器の対向する側面の間に、正負一対の分極性電極、セパレータ、集電体を凹状容器の側面に対向するように積層し、封口板とは密着させないようにしているので、封口板の変形はセルには伝わらない。   As in the conventional structure of FIG. 4, a cell in which a pair of positive and negative polarizable electrodes, separators, and current collectors are stacked is stored between the bottom surface of the concave container and the sealing plate, and the sealing plate and the concave container are compressed. In the present invention, as shown in FIG. 1, a pair of positive and negative polarizable electrodes, a separator, and a current collector are placed between the opposing side surfaces of the concave container. Since the layers are laminated so as to face the side surfaces and are not in close contact with the sealing plate, the deformation of the sealing plate is not transmitted to the cell.

図1の構造を有する第1のキャパシタについて、以下のように作製を行った。分極性電極3a、3bは、比表面積が2000m/gの活性炭粉末にアセチレンブラック5wt%、PTFE(ポリテトラフルオロエチレン)5wt%を加え混練して作製し、3.8mm角で厚み2.0mmの電極とした。電解液は、溶媒にプロピレンカーボネートを用い、溶質である(CNBF(テトラエチル アンモニウム テトラフルオロボロン)を1mol/lの濃度になるように溶解させて調製した。 The first capacitor having the structure of FIG. 1 was manufactured as follows. The polarizable electrodes 3a and 3b are prepared by adding 5 wt% of acetylene black and 5 wt% of PTFE (polytetrafluoroethylene) to activated carbon powder having a specific surface area of 2000 m 2 / g and kneading them. Electrode. The electrolytic solution was prepared by using propylene carbonate as a solvent and dissolving (C 2 H 5 ) 4 NBF 4 (tetraethyl ammonium tetrafluoroboron) as a solute to a concentration of 1 mol / l.

次に、第1のキャパシタの製造方法(組み立て方法)であるが、以下のように行った。まず、凹状容器1には、例えば、各壁面の外寸が一辺約5mmの正方形状であるアルミナ製のものを用いた。上記のようにして作製した2枚の分極性電極3a、3bの間にセルロース製のセパレータ4を介在させて対向させ、この分極性電極3a、3bを上記のようにめっきにより形成された正極集電体2、負極集電体5があらかじめ設けられた凹状容器1内に横方向の開口部から収納した。   Next, although it was the manufacturing method (assembly method) of the 1st capacitor, it carried out as follows. First, as the concave container 1, for example, an alumina one having a square shape with an outer dimension of each wall surface of about 5 mm on a side was used. The positive electrode assembly formed by plating the polarizable electrodes 3a and 3b as described above with the separator 4 made of cellulose interposed between the two polarizable electrodes 3a and 3b produced as described above. The electric body 2 and the negative electrode current collector 5 were housed in the concave container 1 provided in advance from the lateral opening.

この凹状容器1内に分極性電極3a、3bが十分浸るよう分極性電極体積と同量の上述した電解液を注液した後に、凹状容器1の開口端にあらかじめろう付けしておいた金属製の金属枠体6と封口板7とを溶接することで封口し、図1に示すキャパシタを完成させた。ここで、負極集電体5は金属枠体6及び封口板7と電気的に接続されており、封口板7の一部は基板にはんだ付けされる負極接続端子7aを構成する。また、正極集電体2は基板にはんだ付けされる正極接続端子8と電気的に接続されている。   After injecting the same amount of the above-described electrolyte as the polarizable electrode volume so that the polarizable electrodes 3a and 3b are sufficiently immersed in the concave container 1, the metal made by brazing the open end of the concave container 1 in advance is used. The metal frame body 6 and the sealing plate 7 were sealed by welding to complete the capacitor shown in FIG. Here, the negative electrode current collector 5 is electrically connected to the metal frame 6 and the sealing plate 7, and a part of the sealing plate 7 constitutes a negative electrode connection terminal 7 a that is soldered to the substrate. The positive electrode current collector 2 is electrically connected to a positive electrode connection terminal 8 that is soldered to the substrate.

次に、本発明による第2のキャパシタを図2に示す。図1とは特に形状が異なる部分に異なる符号を付けて表している。第1のキャパシタでは封口板7が金属枠体6を介して負極集電体5と電気的に接続されていたが、第2のキャパシタでは、封口板11と負極集電体5は電気的に接続されておらず、負極集電体5は凹状容器1の底面を貫通して形成されており、貫通した出口のところで負極接続端子10と電気的に接続されている。なお、負極接続端子10は、Wメタライズ層、Niめっき層、Auめっき層等からなる。   Next, a second capacitor according to the present invention is shown in FIG. The parts different from those in FIG. 1 are indicated by different reference numerals. In the first capacitor, the sealing plate 7 is electrically connected to the negative electrode current collector 5 via the metal frame 6, but in the second capacitor, the sealing plate 11 and the negative electrode current collector 5 are electrically connected. The negative electrode current collector 5 is not connected and is formed so as to penetrate the bottom surface of the concave container 1 and is electrically connected to the negative electrode connection terminal 10 at the penetrating outlet. The negative electrode connection terminal 10 is made of a W metallized layer, a Ni plated layer, an Au plated layer, or the like.

したがって、図1のように、封口板7の一部を負極接続端子7aとして用いる必要がなく、図2の封口板11は形状が異なり、図1の封口板7よりも小さい面積で構成することができる。また、正極接続端子9の形成位置も図1とは異なり、正極集電体2が凹状容器1の下側側面を貫通して形成されており、貫通出口の部分で正極接続端子9に電気的に接続している。   Therefore, it is not necessary to use a part of the sealing plate 7 as the negative electrode connection terminal 7a as shown in FIG. 1, and the sealing plate 11 of FIG. 2 has a different shape and has a smaller area than the sealing plate 7 of FIG. Can do. In addition, the positive electrode connection terminal 9 is formed at a position different from that shown in FIG. 1, and the positive electrode current collector 2 is formed so as to penetrate the lower side surface of the concave container 1. Connected to.

この第2のキャパシタにおいて、分極性電極の作製及び電解液の調製については第1のキャパシタと同様に行った。第1のキャパシタと同様に作製した2枚の分極性電極3a、3bの間にセルロース製のセパレータ4を介在させて対向させ、この分極性電極群をめっきにより形成された正極集電体2、負極集電体5があらかじめ設けられた凹状容器1内に収容した。凹状容器1には、各壁面の外寸が一辺約5mmの正方形状であるアルミナ製のものを用いた。   In the second capacitor, the production of the polarizable electrode and the preparation of the electrolytic solution were performed in the same manner as in the first capacitor. A positive electrode current collector 2 formed by plating, with a cellulose separator 4 interposed between two polarizable electrodes 3a and 3b produced in the same manner as the first capacitor; The negative electrode current collector 5 was accommodated in a concave container 1 provided in advance. The concave container 1 was made of alumina having a square shape with an outer dimension of each wall surface of about 5 mm on a side.

この凹状容器1内に電極が十分に浸るよう分極性電極体積と同量の上記電解液を注液した後に、凹状容器1の開口端に予めろう付けしておいた金属製の金属枠体6と封口板11とを溶接することで封口し、第2のキャパシタを形成した。ここで、負極集電体5及び正極集電体2は封口板11及び金属枠体6と電気的に接続されておらず、負極集電体5は基板にはんだ付けされる負極接続端子10と電気的に接続されている。上述したように、正極接続端子9は凹状容器1の側面壁を貫いて形成された正極集電体2と電気的に接続されている。   After injecting the same amount of the electrolyte as the polarizable electrode volume so that the electrode is sufficiently immersed in the concave container 1, a metal metal frame 6 made of metal that has been brazed in advance to the open end of the concave container 1. And the sealing plate 11 were welded to form a second capacitor. Here, the negative electrode current collector 5 and the positive electrode current collector 2 are not electrically connected to the sealing plate 11 and the metal frame 6, and the negative electrode current collector 5 is connected to the negative electrode connection terminal 10 to be soldered to the substrate. Electrically connected. As described above, the positive electrode connection terminal 9 is electrically connected to the positive electrode current collector 2 formed through the side wall of the concave container 1.

次に本発明の第3のキャパシタを図3に示す。第2のキャパシタにおける正極集電体2の一部を凹状容器1の開口部に相対する内壁面、すなわち凹状容器1の内壁底面にまで延伸して正極集電体2aの面積を拡大したものであり、この構造以外は、第2のキャパシタと同様に構成した。   Next, a third capacitor of the present invention is shown in FIG. A part of the positive electrode current collector 2 in the second capacitor is extended to the inner wall surface facing the opening of the concave container 1, that is, the inner wall bottom surface of the concave container 1, and the area of the positive electrode current collector 2a is enlarged. Yes, except for this structure, it was configured in the same manner as the second capacitor.

第4のキャパシタは、第1のキャパシタにおける分極性電極3a及び3bの大きさを3.8mm角で厚み0.5mmとし、凹状容器1の内壁底面の外寸を長さ5.0mm幅1.5mm、凹状容器1の内壁側面の長さ、すなわち上記内壁底面と主直な方向の辺の長さを5.0mmとした以外は、第1のキャパシタと同様に構成した。   In the fourth capacitor, the polarizable electrodes 3a and 3b in the first capacitor have a size of 3.8 mm square and a thickness of 0.5 mm, and the outer dimension of the bottom surface of the inner wall of the concave container 1 is 5.0 mm in length and 1 mm in width. The configuration was the same as that of the first capacitor except that the length of the inner wall side surface of the concave container 1 was 5 mm, that is, the length of the side in the direction perpendicular to the inner wall bottom surface was 5.0 mm.

本発明の上記第1〜第4のキャパシタと比較するために、図4に示す従来構造のキャパシタを用いた。従来構造のキャパシタにおいて、分極性電極の作製及び電解液の調製は上記第1のキャパシタと同様に行った。   In order to compare with the first to fourth capacitors of the present invention, a capacitor having a conventional structure shown in FIG. 4 was used. In the conventional capacitor, the polarizable electrode and the electrolyte were prepared in the same manner as the first capacitor.

図1の第1のキャパシタと同様に作製した2枚の分極性電極23a、23bの間にセルロース製のセパレータ24を介在させて対向させ、この分極性電極23a、23bをめっきにより形成された正極集電体22が、予め設けられた凹状の凹状容器21内に収納した。凹状容器21には、各壁面の外寸が一辺約5mmの正方形状であるアルミナ製のものを用いた。   A positive electrode formed by plating the two polarizable electrodes 23a and 23b, which are produced in the same manner as the first capacitor of FIG. 1, with a cellulose separator 24 interposed therebetween. The current collector 22 was accommodated in a concave concave container 21 provided in advance. The concave container 21 was made of alumina having a square shape with an outer dimension of each wall surface of about 5 mm on a side.

この凹状容器21内に分極性電極が十分に浸るよう分極性電極体積と同量の上記電解液を注液した後に、凹状容器21の開口端に予めろう付けしておいた金属製の金属枠体26と封口板27とを溶接することで封口し、図4のキャパシタを形成した。ここで、封口板27の内側にめっきにより設けられた負極集電体25は金属製の金属枠体26及び基板にはんだ付けされる負極接続端子29と電気的に接続されており、正極集電体22は基板にはんだ付けされる正極接続端子28と電気的に接続されている。   After injecting the same amount of the electrolyte as the polarizable electrode volume so that the polarizable electrode is sufficiently immersed in the concave container 21, a metal metal frame brazed in advance to the open end of the concave container 21 is provided. The body 26 and the sealing plate 27 were sealed by welding to form the capacitor of FIG. Here, the negative electrode current collector 25 provided by plating inside the sealing plate 27 is electrically connected to a metal frame 26 made of metal and a negative electrode connection terminal 29 to be soldered to the substrate. The body 22 is electrically connected to a positive electrode connection terminal 28 that is soldered to the substrate.

以上説明した作製方法により作製した第1〜第4のキャパシタ及び比較例としての従来構造のキャパシタを組み立て直後に、リフローはんだ付け(最高温度260℃)を行い、サイクル充放電を実施した後のそれぞれの内部抵抗を比較した。その結果を表1に示す。なお、サイクル充放電は、以下の条件で行った。充電は、定電圧充電3.3V(最大電流を0.5mAに制限)で1時間行い、放電は定電流放電0.2mA(終止電圧2.0V)で行った。なお、繰り返し回数は200回とした。   Immediately after assembling the first to fourth capacitors manufactured by the manufacturing method described above and the capacitor of the conventional structure as a comparative example, each is subjected to reflow soldering (maximum temperature 260 ° C.) and subjected to cycle charge / discharge. The internal resistance of was compared. The results are shown in Table 1. The cycle charge / discharge was performed under the following conditions. Charging was performed with constant voltage charging of 3.3 V (maximum current limited to 0.5 mA) for 1 hour, and discharging was performed with constant current discharging of 0.2 mA (end voltage of 2.0 V). The number of repetitions was 200.

Figure 2007208222
Figure 2007208222

表1からもわかるように、第1のキャパシタでは従来構造と比べてリフローはんだ付け後の内部抵抗が減少している。これは、第1のキャパシタの構造では、リフローはんだ付けの際の温度変化で封口板が湾曲しても電荷を蓄積する一対の分極性電極間の密着性や、この分極性電極と集電体との密着性が低下することが無いためと考えられる。   As can be seen from Table 1, the first capacitor has a lower internal resistance after reflow soldering than the conventional structure. This is because, in the first capacitor structure, the adhesiveness between a pair of polarizable electrodes that accumulates electric charges even if the sealing plate is bent due to temperature change during reflow soldering, and the polarizable electrode and current collector This is thought to be due to the fact that the adhesiveness does not decrease.

次に、第2のキャパシタでは、サイクル充放電後の内部抵抗が第1のキャパシタよりも低減されている。封止のための封口板や金属枠体が電荷を蓄積する一対の分極性電極と接続されておらず、電気的に絶縁されているので、封口板の内部抵抗への影響がなくなっているためであると考えられる。   Next, in the second capacitor, the internal resistance after cycle charge / discharge is reduced as compared with the first capacitor. Since the sealing plate and metal frame for sealing are not connected to the pair of polarizable electrodes that accumulate electric charge and are electrically insulated, the influence on the internal resistance of the sealing plate is eliminated. It is thought that.

また、第3のキャパシタでは、第1のキャパシタよりも内部抵抗が低減されている。第1のキャパシタよりも集電体の面積が大きかったためと考えられる。次に、第4のキャパシタではリフローはんだ付けやサイクル充放電による内部抵抗の増大量が第1のキャパシタよりも少なかった。これは、封口面を凹状容器の最も小さい面とすることで封口板の内部抵抗への影響が低減されたためと考えられる。   In the third capacitor, the internal resistance is reduced as compared with the first capacitor. This is probably because the area of the current collector was larger than that of the first capacitor. Next, in the fourth capacitor, the amount of increase in internal resistance due to reflow soldering or cycle charge / discharge was less than that in the first capacitor. This is thought to be because the influence on the internal resistance of the sealing plate was reduced by making the sealing surface the smallest surface of the concave container.

以上説明したように、従来構造のように、凹状容器の底面から分極性電極やセパレータ等を積層して封口板の裏面に集電体を設けたり、封口板自体を集電体として用いるのではなく、本発明では、凹状容器の側面を下面として、凹状容器の対向する側面の間に分極性電極やセパレータ等を凹状容器の側面に対向するように積層し、凹状容器の側面に集電体を形成するようにしているので、封口板が変形したとしても、その変形が分極性電極や集電体の密着面に影響を与えることを防止できる。また、積層体と封口板との間にはスペースを確保できるので、封口板の変形が積層体に伝わるのをさらに防ぐことができる。
As described above, as in the conventional structure, a current collector is provided on the back surface of the sealing plate by laminating polarizable electrodes or separators from the bottom surface of the concave container, or the sealing plate itself is used as the current collector. In the present invention, the side surface of the concave container is used as the lower surface, and a polarizable electrode, a separator, or the like is laminated between the opposite side surfaces of the concave container so as to face the side surface of the concave container, and the current collector is disposed on the side surface of the concave container Therefore, even if the sealing plate is deformed, it is possible to prevent the deformation from affecting the contact surface of the polarizable electrode and the current collector. Moreover, since a space can be secured between the laminate and the sealing plate, it is possible to further prevent the deformation of the sealing plate from being transmitted to the laminate.

本発明の第1のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the 1st capacitor of this invention. 本発明の第2のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the 2nd capacitor of this invention. 本発明の第3のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the 3rd capacitor of this invention. 従来のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the conventional capacitor.

符号の説明Explanation of symbols

1 凹状容器
2 正極集電体
3a 分極性電極
3b 分極性電極
4 セパレータ
5 負極集電体
7 封口板
7a 負極接続端子
8 正極接続端子
9 正極接続端子
10 負極接続端子
DESCRIPTION OF SYMBOLS 1 Concave container 2 Positive electrode collector 3a Polarization electrode 3b Polarization electrode 4 Separator 5 Negative electrode collector 7 Sealing plate 7a Negative electrode connection terminal 8 Positive electrode connection terminal 9 Positive electrode connection terminal 10 Negative electrode connection terminal

Claims (5)

凹状容器と封口蓋とで構成される収納容器を用い、前記凹状容器の対向する側面の間に正負1対の分極性電極、セパレータが前記側面に沿って収納積層されているキャパシタ。   A capacitor in which a storage container constituted by a concave container and a sealing lid is used, and a pair of positive and negative polarizable electrodes and a separator are stored and stacked along the side surface between the opposing side surfaces of the concave container. 前記凹状容器の少なくとも側面内壁に集電体が形成され、該集電体と前記分極性電極が電気的に接続されていることを特徴とする請求項1記載のキャパシタ。   The capacitor according to claim 1, wherein a current collector is formed on at least a side inner wall of the concave container, and the current collector and the polarizable electrode are electrically connected. 前記集電体は、前記凹状容器の底面内壁まで延伸されていることを特徴とする請求項2記載のキャパシタ。   The capacitor according to claim 2, wherein the current collector is extended to an inner wall of a bottom surface of the concave container. 前記封口蓋は、前記正負1対の分極性電極と電気的に絶縁されていることを特徴とする請求項1〜請求項3のいずれか1項に記載のキャパシタ。   4. The capacitor according to claim 1, wherein the sealing lid is electrically insulated from the pair of positive and negative polarizable electrodes. 前記封口蓋の面積は、凹状容器の対向する側面内壁の一方の面積よりも小さいことを特徴とする請求項1〜請求項4のいずれか1項に記載のキャパシタ。
5. The capacitor according to claim 1, wherein an area of the sealing lid is smaller than an area of one of the opposing side wall surfaces of the concave container.
JP2006029012A 2006-02-06 2006-02-06 Capacitor Withdrawn JP2007208222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029012A JP2007208222A (en) 2006-02-06 2006-02-06 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029012A JP2007208222A (en) 2006-02-06 2006-02-06 Capacitor

Publications (1)

Publication Number Publication Date
JP2007208222A true JP2007208222A (en) 2007-08-16

Family

ID=38487385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029012A Withdrawn JP2007208222A (en) 2006-02-06 2006-02-06 Capacitor

Country Status (1)

Country Link
JP (1) JP2007208222A (en)

Similar Documents

Publication Publication Date Title
JP5013772B2 (en) Electric double layer capacitor
US20070000775A1 (en) Electrochemical device
JP2007201382A (en) Power accumulation device
JP2014041996A (en) Electrochemical cell and method for manufacturing the same
JP5828503B2 (en) Electronic component and electronic device
JP2008294001A5 (en)
JP4868797B2 (en) Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
JP2007273699A (en) Electric double layer capacitor
JP5550571B2 (en) Electrochemical cell, portable electronic device, and method of manufacturing electrochemical cell
JP2007214391A (en) Capacitor
JP2007012921A (en) Electrochemical element and its manufacturing method
JP5588539B2 (en) Electrochemical cell
JP5733823B2 (en) Electronic component, electronic device, and method of manufacturing electronic component
JP4762074B2 (en) Container, battery or electric double layer capacitor using the same, and electronic device
JP2008010780A (en) Electrochemical element
JP4824279B2 (en) Electrochemical cell
JP6362063B2 (en) Electrochemical cell
JP4993873B2 (en) Ceramic container and battery or electric double layer capacitor using the same, and electric circuit board
JP2007208222A (en) Capacitor
JP5341960B2 (en) Electrochemical cell
KR101337373B1 (en) Super capacitor of surface mount type
JP2005209640A (en) Battery housing and battery, and housing for battery and electric double-layer capacitor and electric double-layer capacitor
JP2006108140A (en) Electrochemical element
KR101634959B1 (en) Electrical Energy Storing Device and Manufacturing Method thereof
JP2013021162A (en) Electrochemical device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080118

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080201

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407