JP2007208071A - Magnetic shield structure - Google Patents

Magnetic shield structure Download PDF

Info

Publication number
JP2007208071A
JP2007208071A JP2006026129A JP2006026129A JP2007208071A JP 2007208071 A JP2007208071 A JP 2007208071A JP 2006026129 A JP2006026129 A JP 2006026129A JP 2006026129 A JP2006026129 A JP 2006026129A JP 2007208071 A JP2007208071 A JP 2007208071A
Authority
JP
Japan
Prior art keywords
magnetic
shield
magnetic field
flux density
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006026129A
Other languages
Japanese (ja)
Inventor
Masahiro Fujikura
昌浩 藤倉
Takeshi Kubota
猛 久保田
Toshiro Yamada
登志郎 山田
Toshifumi Niino
敏文 新納
Kentaro Chikuma
顯太郎 筑摩
Takeshi Saito
健 斉藤
Hiroyuki Hirano
裕之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Nippon Steel Corp
Original Assignee
Kajima Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Nippon Steel Corp filed Critical Kajima Corp
Priority to JP2006026129A priority Critical patent/JP2007208071A/en
Publication of JP2007208071A publication Critical patent/JP2007208071A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimumly transmissive magnetic shield structure having excellent performance, wherein air and light can transmit it and a plurality of spaced magnetic frames composed of tabular magnetic substance are arranged in the direction of the tabular magnetic substance plates to reduce the weight and the cost of the shield. <P>SOLUTION: In this magnetic shield structure, the magnetic flux density in the magnetic substance constituting the shield has a distribution. The ratio of the maximum flux density value Bm in that distribution to the saturated magnetic flux density Bs is made to satisfy the relation 0.4≤Bm/Bs≤0.9, and the ratio between the magnetic substance width W and the frame spacing d is made to satisfy the relation 0<d/W≤4.5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、医療分野、精密計測分野、超LSI製造分野などにおいて、ある空間を磁気的に清浄な状態に保つことを目的とした、強磁性体を用いた磁気シールド構造に関する。   The present invention relates to a magnetic shield structure using a ferromagnetic material for the purpose of keeping a certain space magnetically clean in the medical field, precision measurement field, VLSI manufacturing field, and the like.

透磁率の高い磁性体を用いた磁気シールド技術は一般的な技術である。その構成は、例えば、特許文献1、特許文献2に記載されているように、板状の磁性体で対象の空間を密閉して包囲することが基本となっており、磁性体を複合化したり、板の接合部分からの漏洩をカバーなどで防止したりすることによって、シールド性能の向上を図っている。これらの構成は、磁性体の面が磁気シールドルームの壁面と平行に配置し対象空間を密閉しているため、空気や光の透過性がなかった。さらに、磁性体複合化や接合部の漏洩防止カバーなどの対策では、材料特性から期待されるまでのシールド性能がなかなか得られないという問題もあった。   A magnetic shield technique using a magnetic material having a high magnetic permeability is a general technique. For example, as described in Patent Document 1 and Patent Document 2, the configuration is basically to enclose and enclose a target space with a plate-shaped magnetic body, The shield performance is improved by preventing leakage from the joined portion of the plate with a cover or the like. In these configurations, since the surface of the magnetic body is arranged in parallel with the wall surface of the magnetic shield room and the target space is sealed, there is no air or light permeability. Furthermore, the measures such as the composite of the magnetic material and the leakage prevention cover of the joint have a problem that it is difficult to obtain the shielding performance that is expected from the material characteristics.

空気や光を透過可能とした磁気シールド法として、板状磁性体を板厚方向に間隔を設けて設置するという提案が特許文献3〜7でなされている。しかし、これらはどれも、一つの面の構成を与えているだけで、ある空間を磁気シールドするための構成については何ら記述がなく、そのために優れたシールド性能を得るには不十分である。また、特許文献8では、磁性体の断面積Smと空隙の断面積Saを磁性体の比透磁率μsを用いて(Sm・μs)/Sa>1と規定し、実質的に磁性体の間隔を規定している。厚さE、幅Fの磁性体を簾状に並べた場合を考えると、空隙の断面積Saは磁性体間隔をGとすればG・Fとなる。従って、上記断面積の規定は(E/G)>(1/μs)とできる。ここで磁性体の透磁率μsは材料によって異なり、更に同一材料でも磁束密度によっても異なる。仮に、μsとして特許文献8中に記載の60000を使えば(一般に磁気シールド用途で使われる磁性体は軟質磁性体であり、最大比透磁率であれば、数万の値は妥当である)、E/G>1/60000となる。これは1mmの磁性体を用いれば空隙の間隔は60mにできることを示しており、磁気シールド構造の最適設計指針を与えるには不十分である。   As magnetic shielding methods that allow air and light to pass therethrough, proposals have been made in Patent Documents 3 to 7 in which plate-like magnetic bodies are installed at intervals in the plate thickness direction. However, all of these only give a configuration of one surface, and there is no description about a configuration for magnetically shielding a certain space, and it is insufficient for obtaining an excellent shielding performance. In Patent Document 8, the cross-sectional area Sm of the magnetic material and the cross-sectional area Sa of the air gap are defined as (Sm · μs) / Sa> 1 using the relative magnetic permeability μs of the magnetic material, and the interval between the magnetic materials is substantially reduced. Is stipulated. Considering the case where magnetic materials having a thickness E and a width F are arranged in a bowl shape, the cross-sectional area Sa of the air gap is G · F if the magnetic material interval is G. Therefore, the definition of the cross-sectional area can be (E / G)> (1 / μs). Here, the magnetic permeability μs of the magnetic material varies depending on the material, and also varies depending on the same material or the magnetic flux density. If 60000 described in Patent Document 8 is used as μs (a magnetic material generally used for magnetic shielding is a soft magnetic material, a value of several tens of thousands is reasonable if the maximum relative permeability is). E / G> 1/60000. This indicates that if a 1 mm magnetic material is used, the gap interval can be 60 m, which is insufficient to provide an optimum design guideline for the magnetic shield structure.

これに対し、発明者らは、空気や光が透過可能でありながら遮蔽性能に優れる磁気シールド法として、板状磁性体からなる磁性体フレームを板状磁性体の厚さ方向に間隔をおいて複数配置する構造を特許文献9で提案している。   In contrast, as a magnetic shielding method that allows air and light to pass through but has excellent shielding performance, the inventors have arranged a magnetic frame made of a plate-like magnetic body at intervals in the thickness direction of the plate-like magnetic body. Patent Document 9 proposes a structure in which a plurality of structures are arranged.

特開平5−327263号公報JP-A-5-327263 特開平7−273484号公報JP-A-7-273484 特開平8−288688号公報JP-A-8-288688 特開平9−287368号公報JP-A-9-287368 特開平9−273366号公報Japanese Patent Laid-Open No. 9-273366 特開平10−169336号公報JP-A-10-169336 特開平10−46958号公報JP 10-46958 A 特開2002−164686号公報JP 2002-164686 A WO20041084603A1号WO20041086033A1

先に述べたように、本発明者らは、空気や光が透過可能でありながら遮蔽性能に優れる磁気シールド法を特許文献9にて提案している。そこでは、磁性体フレームを、間隔をおいて並べることにより、磁性体フレーム間の空隙から空気や光の自由透過を確保できる。さらに、磁性体フレームを形成する磁性体同士は、面で接合することにより接合部からの磁束漏洩を減少せしめ、従来工法と同等以上のシールド性能を確保できる。本発明ではこのような透過型磁気シールド法について、シールド体重量やコストを低減するための最適シールド構造を提供することを目的としている。   As described above, the present inventors have proposed a magnetic shield method in Patent Document 9 that is excellent in shielding performance while allowing air and light to pass therethrough. In this case, by arranging the magnetic frames at intervals, it is possible to ensure free transmission of air and light from the gaps between the magnetic frames. Furthermore, the magnetic bodies forming the magnetic body frame can be joined at the surface to reduce magnetic flux leakage from the joint portion, and a shielding performance equivalent to or better than that of the conventional method can be secured. It is an object of the present invention to provide an optimum shield structure for reducing the weight and cost of the shield for such a transmission type magnetic shield method.

本発明は、シールド体を構成する磁性体中の磁束密度と、磁性体の幅、フレーム相互の間隔を最適に定めることを基本としている。具体的には以下の通りである。
(1)幅Wの板状磁性体、あるいは、それら板状磁性体の積層体を、長さ方向の端部同士で相互接触させ、磁気回路が閉じるように磁性体フレームを形成し、これらフレームを、磁性体の厚さ方向に間隙dをおいて配置する磁気シールド構造において、磁性体フレーム内で分布した磁束密度Bの内、最も大きな値Bmを、板状磁性体の材料特性である飽和磁束密度Bsとの比において、
0.4 ≦ Bm/Bs ≦ 0.9
とし、かつ、板状磁性体幅Wとフレーム間隔dの比を、
0 < d/W≦ 4.5
としたことを特徴とする磁気シールド構造。
(2)前記板状磁性体が電磁鋼板あるいはパーマロイであることを特徴とする(1)に記載の磁気シールド構造。
The present invention is based on the optimum determination of the magnetic flux density in the magnetic body constituting the shield body, the width of the magnetic body, and the interval between the frames. Specifically, it is as follows.
(1) A plate-like magnetic body having a width W or a laminated body of these plate-like magnetic bodies are brought into contact with each other at lengthwise ends, and magnetic frames are formed so that the magnetic circuit is closed. In the magnetic shield structure with a gap d in the thickness direction of the magnetic body, the largest value Bm among the magnetic flux density B distributed in the magnetic body frame is saturated as the material characteristic of the plate-like magnetic body. In ratio with magnetic flux density Bs,
0.4 ≤ Bm / Bs ≤ 0.9
And the ratio of the plate-like magnetic body width W to the frame interval d,
0 <d / W ≤ 4.5
Magnetic shield structure characterized by that.
(2) The magnetic shield structure according to (1), wherein the plate-like magnetic body is an electromagnetic steel plate or permalloy.

本発明による強磁性体を用いた磁気シールド構造は、医療分野、精密計測分野、超LSI製造分野などの分野において、特定の空間を磁気的に清浄な状態に保つことが可能となる。   The magnetic shield structure using the ferromagnetic material according to the present invention can maintain a specific space in a magnetically clean state in fields such as the medical field, precision measurement field, and VLSI manufacturing field.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

まず本発明は、幅Wの板状磁性体、あるいは、それら板状磁性体の積層体を、長さ方向の端部同士で相互接触させ、閉じた磁気回路となるよう磁性体フレームを形成する。端部での接触は、磁性体あるいは磁性体積層体の面同士での接触が望ましい。接触部位での磁束漏洩が少なく、磁気シールド性能が良好となるからである。施工を容易にするためには、多少の性能劣化を許容するなら、突き合わせ接触でも良い。また接触部における磁性体間の距離は、磁束漏洩を防止するために3mm以内に保つことが望ましい。以上のように、閉じた磁気回路となるように対象の空間にあわせて磁性体フレームを形成する。次に、このような磁性体フレームを間隙dを置いて配置し磁気シールド構造とする。この間隙を空気や光が透過することができる。   First, according to the present invention, a plate-like magnetic body having a width W, or a laminate of these plate-like magnetic bodies is brought into contact with each other at end portions in the length direction to form a magnetic frame so as to form a closed magnetic circuit. . The contact at the end is preferably contact between the surfaces of the magnetic body or the magnetic layered body. This is because there is little magnetic flux leakage at the contact site and the magnetic shielding performance is good. In order to facilitate the construction, butt contact may be used as long as some performance deterioration is allowed. Further, it is desirable to keep the distance between the magnetic bodies in the contact portion within 3 mm in order to prevent magnetic flux leakage. As described above, the magnetic frame is formed in accordance with the target space so as to form a closed magnetic circuit. Next, such a magnetic body frame is disposed with a gap d between them to form a magnetic shield structure. Air or light can pass through this gap.

上記磁気シールド構造の磁性体フレーム内には磁束密度Bに分布が生じる。このBの分布は、空間の磁場分布や強度、磁気シールド体の形状によって決まる。本発明者らは、このBの分布のうち、最も大きな磁束密度値Bmを制御することが磁性材料を効率よく使い、性能の優れた磁気シールド構造を得るための最良の方策であることを見出した。即ち、磁束密度の分布のうち最大値Bmを、使用している材料特性である飽和磁束密度Bsとの比において、
0.4 ≦ Bm/Bs ≦ 0.9
とすることである。この限定理由を以下に、実験事実を元に説明する。
<実験1>
長手方向に圧延方向を揃えた板厚0.35mm、幅33mm、長さ300mmの方向性電磁鋼板(飽和磁束密度Bs=2.0T)を用いて積層体を作り、積層体を長さ方向端部で互いに面接合し、300mm×300mmの四角形のフレームとした。積層体をなす電磁鋼板の枚数を種々変化させることによって、フレーム内の磁束密度を変化させる事ができる。このフレームを20セット用意し、間隙15mmをおいて図1のように配置し磁気シールド体とした。このシールド体のd/Wは15mm / 33mm ≒0.45である。シールド体内部の中心に径33mm×長さ167mmの鉄心にコイルを巻いた電磁石を設置し、直流磁場を発生させた。電磁石の軸とシールド体外壁が交わる位置で、シールド体がない場合の磁場の強さが2000μT (20G)、5000μT(50G)となるよう電磁石の電流を調整した。シールド後の漏洩磁場もこの位置で測定した。この電磁石の軸と同じ高さのフレームに磁束密度検出用コイルを、図2に示すように75mmピッチで、対象性を考慮して4辺の内2辺に巻いた。直流磁束計を用いて各部の直流磁束密度を測定し、最も大きな値をBmとした。そのBmをBsで規格化したBm / Bsと漏洩磁場の関係を図3に示す。シールドなしの磁場が2000μTのときも5000μTの時も、ほぼ同じ曲線を描き、Bm / Bsの上昇に従い漏洩磁場は大きくなる。特に、この値が0.9より大きくなると漏洩磁場が急激に大きくなる。また、方向性電磁鋼板の重量を増加させBm / Bsを小さくしていった場合、0.6より小さいと漏洩磁場の大きさは一定となりシールド性能は飽和してしまう。
<実験2>
次に飽和磁束密度1.1Tの、Ni-Fe合金であるPCパーマロイを用いて実験を行った。厚さ1mm、幅33mm、長さ300mmのPCパーマロイ4枚を、長さ方向端部で互いに面接合し、300mm×300mmの四角形のフレームとした。このフレームを20セット用意し、間隙15mmをおいて図1のように配置し磁気シールド体とした。d/Wは15mm / 33mm ≒0.45である。シールド体への磁場印加には直径900mmのヘルムホルツコイルを用いた。ヘルムホルツコイルの中心にシールド体を設置し、シールド体の二つの面が磁場方向と垂直となるように向きを決めた。ヘルムホルツコイルの発生する磁場を変化させて、シールド体中心部での磁場とパーマロイフレーム内の磁束密度を測定した。印加磁場はシールド体がない状態のコイル中心で、0〜1000μT(0〜10G)とした。フレーム内磁束密度は、シールド体高さ方向最高部と中心部に図2のコイルを巻いたフレームを設置し、各コイルの電圧から検出した。フレーム内での最大磁束密度BmをBsで規格化したBm / Bsと漏洩磁場の関係を図4に示す。方向性電磁鋼板を用いた<実験1>の場合と同様、Bm / Bsが0.9より大きくなると漏洩磁場が急激に大きくなる。また、印加磁場を減少しBm / Bsを小さくしていった場合、<実験1>より小さい0.4未満の場合に漏洩磁場の大きさは一定となりシールド性能は飽和した。
Distribution occurs in the magnetic flux density B in the magnetic frame of the magnetic shield structure. The distribution of B is determined by the magnetic field distribution and strength of the space and the shape of the magnetic shield body. The present inventors have found that controlling the largest magnetic flux density value Bm in the distribution of B is the best policy for efficiently using a magnetic material and obtaining a magnetic shield structure with excellent performance. It was. That is, in the ratio of the maximum value Bm in the distribution of magnetic flux density to the saturation magnetic flux density Bs which is the material property used,
0.4 ≤ Bm / Bs ≤ 0.9
It is to do. The reason for this limitation will be described below based on experimental facts.
<Experiment 1>
A laminated body is made using a directional electrical steel sheet (saturated magnetic flux density Bs = 2.0T) with a thickness of 0.35mm, a width of 33mm, and a length of 300mm with the rolling direction aligned in the longitudinal direction. The surfaces were joined together to form a 300 mm × 300 mm square frame. The magnetic flux density in the frame can be changed by variously changing the number of electromagnetic steel sheets constituting the laminate. Twenty sets of this frame were prepared and arranged as shown in FIG. 1 with a gap of 15 mm to form a magnetic shield. The d / W of this shield body is 15 mm / 33 mm≈0.45. An electromagnet with a coil wound around an iron core with a diameter of 33 mm and a length of 167 mm was installed in the center of the shield body to generate a DC magnetic field. The current of the electromagnet was adjusted so that the strength of the magnetic field was 2000 μT (20 G) and 5000 μT (50 G) without the shield body at the position where the shaft of the electromagnet and the outer wall of the shield body intersected. The leakage magnetic field after shielding was also measured at this position. A magnetic flux density detection coil was wound around a frame having the same height as the shaft of the electromagnet at a pitch of 75 mm as shown in FIG. The DC magnetic flux density of each part was measured using a DC magnetometer, and the largest value was defined as Bm. FIG. 3 shows the relationship between Bm / Bs obtained by normalizing the Bm with Bs and the leakage magnetic field. When the unshielded magnetic field is 2000 μT and 5000 μT, almost the same curve is drawn, and the leakage magnetic field increases as Bm / Bs increases. In particular, when this value is greater than 0.9, the leakage magnetic field increases rapidly. In addition, when the weight of the grain-oriented electrical steel sheet is increased and Bm / Bs is decreased, if it is smaller than 0.6, the magnitude of the leakage magnetic field becomes constant and the shielding performance is saturated.
<Experiment 2>
Next, an experiment was conducted using a PC permalloy which is a Ni—Fe alloy having a saturation magnetic flux density of 1.1 T. Four PC permalloys with a thickness of 1 mm, a width of 33 mm, and a length of 300 mm were joined to each other at the end in the length direction to form a 300 mm × 300 mm square frame. Twenty sets of this frame were prepared and arranged as shown in FIG. 1 with a gap of 15 mm to form a magnetic shield. d / W is 15 mm / 33 mm≈0.45. A Helmholtz coil with a diameter of 900 mm was used to apply a magnetic field to the shield. A shield body was installed at the center of the Helmholtz coil, and the orientation was determined so that the two surfaces of the shield body were perpendicular to the magnetic field direction. The magnetic field generated by the Helmholtz coil was changed, and the magnetic field at the center of the shield body and the magnetic flux density in the permalloy frame were measured. The applied magnetic field was 0 to 100 μT (0 to 10 G) at the center of the coil without the shield. The magnetic flux density in the frame was detected from the voltage of each coil by installing a frame in which the coil of FIG. FIG. 4 shows the relationship between Bm / Bs obtained by normalizing the maximum magnetic flux density Bm in the frame with Bs and the leakage magnetic field. As in the case of <Experiment 1> using a grain-oriented electrical steel sheet, when Bm / Bs exceeds 0.9, the leakage magnetic field increases rapidly. In addition, when the applied magnetic field was decreased and Bm / Bs was decreased, the magnitude of the leakage magnetic field became constant and the shielding performance was saturated when the value was less than 0.4, which is smaller than <Experiment 1>.

以上の実験より磁性体が異なっても、Bm / Bsが0.9より大きくなると急激に漏洩磁場が大きくなることが分かった。従って、本発明ではBm / Bs≦0.9とする。   From the above experiment, it was found that the leakage magnetic field suddenly increased when Bm / Bs was greater than 0.9 even if the magnetic materials were different. Therefore, in the present invention, Bm / Bs ≦ 0.9.

また、方向性電磁鋼板とパーマロイではシールド性能が飽和するBm / Bsの下限値が異なった。これは、方向性電磁鋼板は圧延方向に容易軸を持ち異方性が強いが、パーマロイは等方的であることを反映していると考えられる。等方的な材料の使用を考慮して、本発明では0.4≦Bm / Bsとする。   In addition, the lower limit of Bm / Bs at which the shielding performance is saturated was different between grain oriented electrical steel and permalloy. This is considered to reflect that the grain-oriented electrical steel sheet has an easy axis in the rolling direction and strong anisotropy, but permalloy is isotropic. In consideration of the use of an isotropic material, 0.4 ≦ Bm / Bs is set in the present invention.

Bm / Bsの制御は、フレームを構成する磁性体の重量の増減によって可能となるが、さらに、空間の磁場が大きい場所に磁性体を多く配置し、磁場が小さい場所には少なく配置するなどの工夫をすれば、シールド体全体の重量を効率的に最大のシールド性能を得る事ができる。   Bm / Bs can be controlled by increasing / decreasing the weight of the magnetic materials that make up the frame, but more magnetic materials can be placed where the magnetic field in the space is larger, and fewer magnetic materials can be placed where the magnetic field is small. If devised, the maximum shield performance can be obtained efficiently with the weight of the entire shield body.

次に、本発明では磁性体幅Wとフレーム間隔dの比d/Wを、0 < d/Wでありかつ、d/W≦4.5とする。これは次のような実験事実に基づいている。
<実験3>
長手方向に圧延方向を揃えた、厚さ0.35mm、幅25mm、50mm、100mm、長さ900mmの方向性電磁鋼板を用いて、900mm×900mmの四角形のフレームからなり、種々のd/W値を持つ高さ900mmのシールド体を作製した。その構成の詳細は表1の通りである。シールド体への磁場印加には、コイル間隔1mで一辺が2.1mの方形ヘルムホルツコイルを用いた。シールド体の二つの面が磁場方向と垂直となるように向きを決め、ヘルムホルツコイルの中心にシールド体を設置した。印加磁場はシールド体がない状態のコイル中心での値を120μT(1.2G)として、シールド体中心位置で漏洩磁場を測定した。測定装置の構成を図5に示す。図6にシールド係数SE(=シールド前磁場/シールド後磁場、大きいほどシールド性能が良好)のd/Wによる変化を示す。板幅が変化しても、シールド係数SEはd/Wで整理することができる。d/W≦4.5の範囲でSEは急激に大きくなりシールド性能は向上する。同時に磁束密度を測定したが、すべての場合において、Bm/Bsは0.5〜0.7の範囲であった。
Next, in the present invention, the ratio d / W between the magnetic body width W and the frame interval d is 0 <d / W and d / W ≦ 4.5. This is based on the following experimental facts.
<Experiment 3>
Using a directional electrical steel sheet with a thickness of 0.35mm, width of 25mm, 50mm, 100mm, and length of 900mm with the rolling direction aligned in the longitudinal direction, it consists of a square frame of 900mm x 900mm and has various d / W values. A shield body with a height of 900 mm was produced. Details of the configuration are shown in Table 1. A square Helmholtz coil with a coil interval of 1 m and a side of 2.1 m was used to apply a magnetic field to the shield. The orientation was determined so that the two surfaces of the shield body were perpendicular to the magnetic field direction, and the shield body was installed at the center of the Helmholtz coil. The applied magnetic field was 120 μT (1.2 G) at the coil center without the shield body, and the leakage magnetic field was measured at the shield body center position. The configuration of the measuring apparatus is shown in FIG. FIG. 6 shows a change in shield coefficient SE (= magnetic field before shield / magnetic field after shield, shield performance is better as the value is larger) due to d / W. Even if the plate width changes, the shield coefficient SE can be arranged in d / W. In the range of d / W ≦ 4.5, SE increases rapidly and the shielding performance improves. The magnetic flux density was measured at the same time. In all cases, Bm / Bs was in the range of 0.5 to 0.7.

Figure 2007208071
Figure 2007208071

<実験4>
厚さ1.0mm、幅50mm、100mm、長さ900mmのPCパーマロイを用いて、900mm×900mmの四角形のフレームからなる高さ900mmのシールド体を作製した。その構成の詳細は表2の通りである。d/Wを変化させた。漏洩磁場の測定方法、条件は<実験3>と同じである。図7にシールド係数SEのd/Wによる変化を示す。全体的に、方向性電磁鋼板を用いた<実験3>よりもシールド性能が良好である。また、d/W≦4.5の範囲でSEが急激に大きくなることは、<実験3>と同様の挙動である。Bm/Bsは0.7〜0.8の範囲であった。
<Experiment 4>
Using a PC permalloy having a thickness of 1.0 mm, a width of 50 mm, a width of 100 mm, and a length of 900 mm, a shield body having a height of 900 mm composed of a square frame of 900 mm × 900 mm was produced. Details of the configuration are shown in Table 2. The d / W was changed. The measurement method and conditions for the leakage magnetic field are the same as in <Experiment 3>. FIG. 7 shows the change of the shield coefficient SE with d / W. Overall, the shielding performance is better than <Experiment 3> using grain-oriented electrical steel sheets. Further, the fact that SE rapidly increases in the range of d / W ≦ 4.5 is the same behavior as in <Experiment 3>. Bm / Bs ranged from 0.7 to 0.8.

Figure 2007208071
Figure 2007208071

<実験5>
長手方向に圧延方向を揃えた、厚さ0.35mm、幅25mmおよび50mm、長さ900mmの方向性電磁鋼板を用いて、900mm×900mmの四角形のフレームからなる高さ900mmのシールド体を作製した。その構成の詳細は表3の通りである。磁気シールド体の内部中心に、径100mm×長さ500mmの鉄心にコイルを巻いた電磁石を設置し磁場を発生させる。ここで調べたのは、壁近傍の漏洩磁場であり、電磁石軸に垂直なシールド体外壁面上を、電磁石軸を高さの基準として上下方向に漏洩磁場の分布を調べた。測定点の壁からの距離は約18mmである。発生させる磁場の強さは、シールド体外壁が電磁石の軸と交わる位置において、シールド体がない状態で2000μT (20G)となるように調整した。測定装置の構成を図8に示す。図9は、各種d/Wにおける高さ方向磁場分布である。d/Wが4.5では、シールドがない場合に比べて、磁場は減衰している。d/Wを3.0にすると、全体的に漏洩磁場は小さく抑えられている。d/Wを1.0以下にすると、磁場の振動はほとんど見られず、漏洩も非常に小さい。
<Experiment 5>
Using a directional electromagnetic steel sheet having a thickness of 0.35 mm, a width of 25 mm and 50 mm, and a length of 900 mm, the rolling direction being aligned in the longitudinal direction, a 900 mm high shield body consisting of a square frame of 900 mm × 900 mm was produced. Details of the configuration are shown in Table 3. At the inner center of the magnetic shield body, an electromagnet with a coil wound around an iron core with a diameter of 100mm x length of 500mm is installed to generate a magnetic field. The leakage magnetic field in the vicinity of the wall was examined here, and the distribution of the leakage magnetic field was examined in the vertical direction on the outer wall surface of the shield body perpendicular to the electromagnet axis, with the electromagnet axis as the height reference. The distance of the measuring point from the wall is about 18 mm. The strength of the generated magnetic field was adjusted to 2000 μT (20 G) without the shield body at the position where the outer wall of the shield body intersects the axis of the electromagnet. The configuration of the measuring device is shown in FIG. FIG. 9 shows the magnetic field distribution in the height direction at various d / W. When d / W is 4.5, the magnetic field is attenuated as compared with the case where there is no shield. When d / W is set to 3.0, the leakage magnetic field is suppressed to be small as a whole. When d / W is 1.0 or less, the vibration of the magnetic field is hardly seen and the leakage is very small.

さらに、上記<実験3>、<実験4>より、d/W≦4.5の範囲で良好なシールド性能が得られるので、d/W≦4.5とする。また、d/Wは0になる事はないので、0<d/W≦4.5とする。好ましくは、d/W≦3.0、さらに好ましくは、d/W≦1.0、である。その理由は、図6、図7よりd/W≦3.0でシールド係数が急激に改善されており、材料がパーマロイの場合の例である表2に示すとおり、No.33、34の比較例のシールド係数が11程度であるのに対して、本発明のd/W≦3.0になるとシールド係数は、No.28のように17以上と5割も急激によくなる。さらに、d/W≦1.0になるとシールド係数は、No.26のように29以上と3倍ほど格段に改善される。   Furthermore, from <Experiment 3> and <Experiment 4>, good shielding performance is obtained in the range of d / W ≦ 4.5, so d / W ≦ 4.5. Since d / W never becomes 0, 0 <d / W ≦ 4.5. Preferably, d / W ≦ 3.0, and more preferably d / W ≦ 1.0. The reason is that the shield coefficient is drastically improved at d / W ≦ 3.0 from FIG. 6 and FIG. 7, and as shown in Table 2 which is an example in the case where the material is permalloy, the comparative examples of No. 33 and 34 Whereas the shield coefficient is about 11, when d / W ≦ 3.0 of the present invention, the shield coefficient increases rapidly to 17 or more and 50% as in No.28. Furthermore, when d / W ≦ 1.0, the shield coefficient is dramatically improved by a factor of 29 or more as in No.26.

また、図9から分かるように、シールド体近傍からの漏洩も、d/W≦3.0、さらに好ましくはd/W≦1.0とすることによって著しく抑制される。   Further, as can be seen from FIG. 9, leakage from the vicinity of the shield body is significantly suppressed by setting d / W ≦ 3.0, more preferably d / W ≦ 1.0.

Figure 2007208071
Figure 2007208071

本発明に用いることができる磁性体は所謂、軟質磁性体であり、方向性電磁鋼板、無方向性電磁鋼板、Ni、Feを主成分とするPBパーマロイ、PCパーマロイなどであるが、その他、純鉄系材料、アモルファス、微結晶軟質磁性材料なども用いることができる。対象の磁場の強さ、要求シールド性能、設置環境、コストなどによって、材料を使い分ける。   Magnetic materials that can be used in the present invention are so-called soft magnetic materials such as grain-oriented electrical steel sheets, non-oriented electrical steel sheets, Ni, Fe-based PB permalloy, PC permalloy, etc. Iron-based materials, amorphous, microcrystalline soft magnetic materials, and the like can also be used. Depending on the strength of the target magnetic field, required shielding performance, installation environment, cost, etc., materials are used properly.

<実施例1>
図10に示すようなMRIの磁気シールドルームを模したモデルを作製した。モデルルーム内側のサイズは幅2.8m×長さ3.5m×高さ1.7mであり、ルーム内には電磁石を設置した。電磁石の励磁は、A面、B面の壁内側に1mT、C面に0.5mT、ガントリー面に相当する壁D面の内側に5mTの磁場が印加される条件で行った。シールドモデルルームの基本構成は以下の通りである。50mm幅の方向性電磁鋼板で、内寸2.8m×3.5mの磁性体フレームを構成し、垂直方向に150mmピッチで10段重ねた。磁性体フレームを構成する電磁鋼板はA、B、D面では4枚積層、C面では2枚積層とした。天井と床ではそれぞれ、方向性電磁鋼板12枚をD面と垂直方向に圧延方向を一致させ全面に貼った。
<Example 1>
A model simulating an MRI magnetic shield room as shown in Fig. 10 was prepared. The inside size of the model room was 2.8m wide x 3.5m long x 1.7m high, and an electromagnet was installed in the room. The electromagnet was excited under the condition that a magnetic field of 1 mT was applied to the inside of the A and B surfaces, 0.5 mT to the C surface, and 5 mT to the inside of the wall D corresponding to the gantry surface. The basic configuration of the shield model room is as follows. A magnetic material frame with an inner dimension of 2.8m x 3.5m was constructed with a 50mm wide grain-oriented electrical steel sheet, and 10 layers were stacked vertically at a pitch of 150mm. The magnetic steel sheets constituting the magnetic frame were laminated in four on the A, B, and D surfaces, and two in the C surface. On the ceiling and floor, 12 grain-oriented electrical steel sheets were pasted on the entire surface with the rolling direction aligned with the D plane.

本実施例ではd/Wは3.0である。電磁石で上記磁場を印加した際のフレーム内の最大磁束密度Bmは1.5Tであり、Bsは2.0Tであるから、Bm/Bsは0.75であり、本発明の要件を満たしていることが分かる。   In this embodiment, d / W is 3.0. Since the maximum magnetic flux density Bm in the frame when the magnetic field is applied by the electromagnet is 1.5T and Bs is 2.0T, Bm / Bs is 0.75, which indicates that the requirement of the present invention is satisfied.

床面からの高さ1mで部屋の外壁から0.5m離れた点を、シールドルーム外壁に沿って磁場を測定した。最も大きな磁場が観測されたのはD面で、磁場の値は0.3mTであった。その他の面では0.1mT以下の磁場であった。MRIのルーム外への漏洩磁場を0.5mT以下とする規制を達成できた。   A magnetic field was measured along the outer wall of the shield room at a point 1 m above the floor and 0.5 m away from the outer wall of the room. The largest magnetic field was observed on the D plane, and the magnetic field value was 0.3 mT. In other aspects, the magnetic field was 0.1 mT or less. We were able to achieve the regulation that the leakage magnetic field outside the MRI room is 0.5mT or less.

実験1および実験2で用いたシールド体の構造を示す図。The figure which shows the structure of the shield body used in Experiment 1 and Experiment 2. 磁気シールドフレームに巻いた磁束密度ピックアップコイルの様子を示す図。The figure which shows the mode of the magnetic flux density pick-up coil wound around the magnetic shield frame. 実験1における、Bm/Bsと漏洩磁場の関係を示す図。The figure which shows the relationship between Bm / Bs and the leakage magnetic field in Experiment 1. 実験2における、Bm/Bsと漏洩磁場の関係を示す図。The figure which shows the relationship between Bm / Bs and the leakage magnetic field in Experiment 2. 実験3、4における測定装置の構成を示す図。The figure which shows the structure of the measuring apparatus in Experiment 3, 4. 実験3における、d/Wとシールド係数SEの関係を示す図。The figure which shows the relationship between d / W and the shield coefficient SE in the experiment 3. FIG. 実験4における、d/Wとシールド係数SEの関係を示す図。The figure which shows the relationship between d / W and the shield coefficient SE in the experiment 4. 実験5における測定装置の構成を示す図。FIG. 6 is a diagram showing a configuration of a measurement apparatus in Experiment 5. 実験5における、シールド体から漏洩する磁場の高さ方向の変化を示す図。The figure which shows the change of the height direction of the magnetic field which leaks from a shield body in Experiment 5. FIG. 実施例で用いたMRI磁気シールドモデルルームの平面図。The top view of the MRI magnetic shield model room used in the Example.

Claims (2)

幅Wの板状磁性体、あるいは、それら板状磁性体の積層体を、長さ方向の端部同士で相互接触させ、磁気回路が閉じるように磁性体フレームを形成し、これらフレームを、磁性体の厚さ方向に間隙dをおいて配置する磁気シールド構造において、磁性体フレーム内で分布した磁束密度Bの内、最も大きな値Bmを、板状磁性体の材料特性である飽和磁束密度Bsとの比において、
0.4 ≦ Bm/Bs ≦ 0.9
とし、かつ、板状磁性体幅Wとフレーム間隔dの比を、
0 < d/W≦ 4.5
としたことを特徴とする磁気シールド構造。
A plate-like magnetic body having a width W or a laminated body of the plate-like magnetic bodies is brought into contact with each other at the end portions in the length direction to form a magnetic body frame so that the magnetic circuit is closed. In the magnetic shield structure arranged with a gap d in the thickness direction of the body, among the magnetic flux density B distributed in the magnetic body frame, the largest value Bm is the saturation magnetic flux density Bs which is the material characteristic of the plate-like magnetic body In the ratio
0.4 ≤ Bm / Bs ≤ 0.9
And the ratio of the plate-like magnetic body width W to the frame interval d,
0 <d / W ≤ 4.5
Magnetic shield structure characterized by that.
前記板状磁性体が電磁鋼板あるいはパーマロイであることを特徴とする請求項1に記載の磁気シールド構造。   2. The magnetic shield structure according to claim 1, wherein the plate-like magnetic body is an electromagnetic steel plate or permalloy.
JP2006026129A 2006-02-02 2006-02-02 Magnetic shield structure Pending JP2007208071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026129A JP2007208071A (en) 2006-02-02 2006-02-02 Magnetic shield structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026129A JP2007208071A (en) 2006-02-02 2006-02-02 Magnetic shield structure

Publications (1)

Publication Number Publication Date
JP2007208071A true JP2007208071A (en) 2007-08-16

Family

ID=38487254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026129A Pending JP2007208071A (en) 2006-02-02 2006-02-02 Magnetic shield structure

Country Status (1)

Country Link
JP (1) JP2007208071A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203399A (en) * 1986-03-03 1987-09-08 富士電機株式会社 Magnetic shielding apparatus of chamber in which uniform field magnet is installed
WO2004084603A1 (en) * 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203399A (en) * 1986-03-03 1987-09-08 富士電機株式会社 Magnetic shielding apparatus of chamber in which uniform field magnet is installed
WO2004084603A1 (en) * 2003-03-17 2004-09-30 Kajima Corporation Open magnetic shield structure and its magnetic frame

Similar Documents

Publication Publication Date Title
US9959968B2 (en) Reactor
US8653930B2 (en) Apparatus and method for reducing inductor saturation in magnetic fields
KR20150089946A (en) Reactor
JP2016152248A (en) Three-phase five-leg iron core and stationary electromagnetic apparatus
JPWO2020071512A1 (en) Winding core and transformer
JP2009129915A (en) Magnetic shield and magnetic shield room
JP4794353B2 (en) Magnetic shield structure and magnetic shield method
US20230368959A1 (en) Magnetic core and magnetic device
JP2007208071A (en) Magnetic shield structure
US20160086705A1 (en) Magnetic material and device
Hirosato et al. Design and construction method of an open-type magnetically shielded room for MRI composed of magnetic square cylinders
JP2009218614A (en) Magnetic shield device
JP3324481B2 (en) Plate member for core and laminated core using the same
JP2021103921A (en) Magnetostriction element for power generation and magnetostriction power generation device
JP4214736B2 (en) Magnetic field generator for MRI
JP2006032433A (en) Magnetic shielding apparatus
Fujikura et al. Open-type magnetic shield structure and its performance
Crawford A Study of Magnetic Shielding Performance of a Fermilab International Linear Collider Superconducting RF Cavity Cryomodule
JP2009260363A (en) Magnetic shielding device
JP2005150130A (en) Magnetic steel sheet with electromagnetic wave absorbing action
JP2002344189A (en) Magnetic material for magnetic shield and structure thereof, and magnetic shield device
JPH07273484A (en) Magnetic shielding device
KR100483520B1 (en) Magnetic fresnel structure for the homogenization of magnetic field distribution and method for installing thereof
JP2008186973A (en) Reactor core and reactor
US9234949B2 (en) Superconducting magnet device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080801

A621 Written request for application examination

Effective date: 20081023

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081023

A977 Report on retrieval

Effective date: 20100906

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Effective date: 20101112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A02