JP2007205743A - Colored film thickness variations inspection method and apparatus - Google Patents

Colored film thickness variations inspection method and apparatus Download PDF

Info

Publication number
JP2007205743A
JP2007205743A JP2006021815A JP2006021815A JP2007205743A JP 2007205743 A JP2007205743 A JP 2007205743A JP 2006021815 A JP2006021815 A JP 2006021815A JP 2006021815 A JP2006021815 A JP 2006021815A JP 2007205743 A JP2007205743 A JP 2007205743A
Authority
JP
Japan
Prior art keywords
colored film
light
film thickness
reflected
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006021815A
Other languages
Japanese (ja)
Inventor
Hideki Nakakuki
秀樹 中久木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006021815A priority Critical patent/JP2007205743A/en
Publication of JP2007205743A publication Critical patent/JP2007205743A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variation inspection method and apparatus which avoids variations in inspection sensitivity caused by a difference in transmittance by the color of a resist to detect variations in colored film thickness with high precision. <P>SOLUTION: An imaging device with increased near-infrared region sensitivity is used. Light providing optical transmittance of 50% or more for the entire colored film and providing a half-value width of 30 nm or less for a central value of 800 nm to 900 nm, as a wavelength region in which the imaging device has its sensitivity, is irradiated to a substrate to be inspected 3. On the basis of an interference phenomenon caused by the phase difference between reflected light by the surface of the colored film, and reflected light passed through the colored film and reflected by a boundary with the substrate interface of the substrate to be inspected 3, a change in the colored film thickness is imaged as light and shade of the reflected light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばカラーフィルタに用いて好適な、複数色着色膜のパターンが形成された基板の着色膜厚ムラを精度よく検出できる着色膜厚ムラ検査方法および装置に関する。   The present invention relates to a colored film thickness unevenness inspection method and apparatus capable of accurately detecting a colored film thickness unevenness of a substrate on which a multicolored colored film pattern is formed, which is suitable for use in, for example, a color filter.

近年、液晶ディスプレイ用や有機EL用などのカラーフィルタは、ディスプレイの表示特性に大きく影響する因子であるため、その検査は非常に重要になっている。微小なパターン欠け、異物付着欠陥の検査は欠陥部のコントラストが比較的高く、マシンビジョンによる検査の自動化が進んだ。一方、局所的にみると正常部との差が許容レベルである領域が局部的に集まっていることでムラとして見える欠陥は低コントラストであるため自動検査が困難で目視検査に頼る比率が高いのが現状である。ムラ欠陥の原因として最も多いのは着色膜の膜厚のわずかな違いによるものである。   In recent years, color filters for liquid crystal displays and organic EL are factors that greatly affect the display characteristics of the display, and therefore their inspection has become very important. Inspecting minute pattern defects and foreign substance adhesion defects, the contrast of the defective part is relatively high, and automation of inspection by machine vision has advanced. On the other hand, when viewed locally, the area where the difference from the normal part is at an acceptable level is gathered locally, so defects that appear as unevenness have low contrast, so automatic inspection is difficult and the ratio of relying on visual inspection is high Is the current situation. The most common cause of uneven defects is due to slight differences in the thickness of the colored film.

従来、カラーフィルタのムラ検査ではナトリウムランプによるオレンジ色の光を使用し、着色膜厚のわずかな違いにより生ずる干渉縞を目視、あるいは撮像することで検査が行われている。着色膜厚の違いから生ずる干渉縞をコントラスト良く観察するためには、使用している光の透過率が高いこと、光の波長範囲が狭いことが重要である。ナトリウムランプは590nmに輝度スペクトルを持ち着色膜のRed、Greenで比較的透過率が高いという特性を持つので、干渉縞の観察に適するが、Blueに対しては透過率が低いためムラの検出が困難という問題がある。   Conventionally, in the color filter unevenness inspection, orange light from a sodium lamp is used, and inspection is performed by visually observing or imaging an interference fringe generated due to a slight difference in the colored film thickness. In order to observe the interference fringes resulting from the difference in the colored film thickness with high contrast, it is important that the light transmittance used is high and the light wavelength range is narrow. A sodium lamp has a luminance spectrum at 590 nm and has a characteristic that the transmittance of the colored film Red and Green is relatively high. Therefore, the sodium lamp is suitable for observation of interference fringes. There is a problem of difficulty.

また、ナトリウム光源でBlue検査が困難であることに対する対策として特許文献1にあるように従来の590nm付近に放射ピークを持つ光源に加えて490nmにピークを持つ光源を組み合わせて使用する方法が開示されている。
特開2005−207829号公報
Also, as a countermeasure against the difficulty of blue inspection with a sodium light source, a method of using a light source having a peak at 490 nm in combination with a conventional light source having an emission peak near 590 nm as disclosed in Patent Document 1 is disclosed. ing.
JP 2005-207829 A

従来の着色膜厚ムラ検査方法では、光源を変えて2回撮像する必要があり、検査時間や検査コストの増加要因となる課題があった。   In the conventional method for inspecting colored film thickness unevenness, it is necessary to change the light source and image twice, which causes a problem that increases inspection time and inspection cost.

本発明は上記の問題に鑑みなされたものであり、その目的は、レジストの色による透過率の違いから生ずる検査感度のバラツキを回避し、着色膜厚ムラを高い精度で検出できるムラ検査方法および装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a nonuniformity inspection method capable of detecting unevenness in colored film thickness with high accuracy by avoiding variations in inspection sensitivity resulting from a difference in transmittance depending on resist colors. To provide an apparatus.

本発明は上記課題を解決するために、複数色の着色膜のパターンが形成された検査対象基板に対し、使用している全ての着色膜の光透過率が50%以上となり、且つ、撮像素子が感度を持つ波長域として、中心値800nmから900nmで半値幅30nm以下となる光源からの光を照射し、前記着色膜表面での反射光、および前記着色膜を透過して基板界面との境界で反射してくる反射光との位相差により生ずる干渉現象をもとに前記着色膜厚の変化を反射光の濃淡として撮像することを特徴とする。   In order to solve the above-mentioned problems, the present invention provides that the light transmittance of all the used colored films is 50% or more with respect to a substrate to be inspected on which a pattern of colored films of a plurality of colors is formed, and an imaging device As a wavelength region having a sensitivity, a light from a light source having a central value of 800 nm to 900 nm and a half-value width of 30 nm or less is irradiated, reflected light on the surface of the colored film, and a boundary with the substrate interface through the colored film Based on the interference phenomenon caused by the phase difference from the reflected light reflected by the light, the change in the colored film thickness is imaged as the shade of the reflected light.

また、本発明は上記課題を解決するために、光源からの光を基板上に形成された複数色の着色膜へ照射し、着色膜厚の変化を反射光の濃淡として撮像し、その映像をもとに前記着色膜の着色膜厚ムラを検査する着色膜厚ムラ検査装置であって、全ての着色膜の光透過率が50%以上となり、且つ、波長域が中心値800nmから900nmで半値幅30nm以下となる光を前記基板上に形成された着色膜へ照射する照明部と、前記着色膜表面で反射する反射光と、前記着色膜を透過し前記基板界面で反射する反射光との位相差により生ずる干渉現象をもとに、その着色膜厚の変化を反射光の濃淡として撮像する、前記波長域の感度を有する撮像部とを備えたことを特徴とする。   Further, in order to solve the above problems, the present invention irradiates light from a light source onto a plurality of colored films formed on a substrate, images changes in the colored film as shades of reflected light, and captures the image. A colored film thickness non-uniformity inspection apparatus for inspecting the colored film thickness unevenness of the colored film, wherein the light transmittance of all the colored films is 50% or more, and the wavelength range is half from the central value of 800 nm to 900 nm. An illumination unit that irradiates the colored film formed on the substrate with light having a value width of 30 nm or less, reflected light that is reflected by the surface of the colored film, and reflected light that is transmitted through the colored film and reflected by the substrate interface And an imaging unit having sensitivity in the wavelength range that captures the change in the colored film thickness as the density of reflected light based on the interference phenomenon caused by the phase difference.

本発明によれば、レジストの色による透過率の違いから生ずる検査感度のバラツキを回避し、精度の高いムラ検査が可能となる効果がある。   According to the present invention, there is an effect that unevenness inspection with high accuracy can be performed by avoiding variations in inspection sensitivity caused by differences in transmittance depending on resist colors.

干渉縞は膜面に光を入射したときの膜表面で反射した光と、膜を透過して基板との境界面で反射して戻ってくる光との間に膜厚に対応した位相差が生じ、膜厚により特定の波長に強弱が生じることで観察される。従って、膜の透過率が低いと干渉が起こりにくい。図2はカラーフィルタのRed、Green、Blueの分光透過率の一例を示す特性図である。850nm以上ではどのレジストも90%以上の透過率を有することが分かる。590nmに輝度スペクトルを持つナトリウムランプではBlueの透過率が低く干渉縞観察が出来ない問題はこの850nm以上の波長域の光を使用することで解消される。   The interference fringe has a phase difference corresponding to the film thickness between the light reflected on the film surface when light is incident on the film surface and the light transmitted through the film and reflected on the boundary surface with the substrate. It is observed by the intensity of the specific wavelength depending on the film thickness. Therefore, interference is unlikely to occur when the transmittance of the membrane is low. FIG. 2 is a characteristic diagram showing an example of the spectral transmittance of Red, Green, and Blue of the color filter. It can be seen that any resist has a transmittance of 90% or more at 850 nm or more. A sodium lamp having a luminance spectrum at 590 nm has a low blue transmittance and the interference fringe cannot be observed. This problem can be solved by using light in the wavelength region of 850 nm or more.

ナトリウムランプの特徴は590nm付近の急峻な輝線スペクトルである。入射光の波長範囲は干渉縞の観察しやすさに影響する。図3は、850nmを中心に照射する光の波長範囲を100nmから10nmまで段階的に変えたときの膜厚毎の反射強度を計算した特性図である。これからわかるように照射する光の波長範囲が狭い方が膜厚差により生ずる干渉による反射強度の差が大きく、画像として撮像したとき、コントラストの良い画像が得られることになる。   The characteristic of the sodium lamp is a steep emission line spectrum around 590 nm. The wavelength range of incident light affects the ease of observation of interference fringes. FIG. 3 is a characteristic diagram in which the reflection intensity for each film thickness is calculated when the wavelength range of light irradiated around 850 nm is changed stepwise from 100 nm to 10 nm. As can be seen, the narrower the wavelength range of the irradiated light, the greater the difference in reflection intensity due to interference caused by the difference in film thickness, and an image with good contrast can be obtained when captured as an image.

また、干渉による反射光の特定波長の強弱は波長の整数倍、整数+0.5倍にて極大/極小、あるいは極小/極大を生じるので干渉の周期は長波長になるほど長くなる。つまり、長波長になるほど膜厚が違っても反射強度の変化があまり生ぜず、コントラスト良く干渉を観察できないことになる。カラーフィルタの膜厚1〜2μm、膜屈折率1.6、ガラス基板屈折率1.5程度という条件では波長800から900nm程度が最も適しているといえる。   In addition, the intensity of the specific wavelength of the reflected light due to the interference generates a local maximum / minimum or a local minimum / maximum at an integral multiple of the wavelength and an integer +0.5 times, so that the interference period becomes longer as the wavelength becomes longer. In other words, the longer the wavelength, the less the reflection intensity changes even if the film thickness is different, and the interference cannot be observed with good contrast. It can be said that the wavelength of about 800 to 900 nm is most suitable under the condition that the film thickness of the color filter is 1 to 2 μm, the film refractive index is 1.6, and the glass substrate refractive index is about 1.5.

次に撮像素子であるが、自動検査ではCCD素子のカメラが一般的に使用されている。元々CCD素子は可視域以外に近赤外域にも感度を有している。図4は一般的なCCDカメラの例として竹中システム機器製NC300AIRの分光感度特性を示す特性図である。縦軸は最も高い感度を1として正規化した値である。但し、可視光に比べて波長の長い近赤外光領域の光は、半導体シリコンの深部で光電変換するため感度が十分とはいえないので、従来のCCD構造では、光電変換した信号電荷を効率よくセンサーへ集めることが難しく、充分な感度が得られない。そこで、高い開口率が可能なFT方式の採用等により近赤外域の感度を高めた撮像素子が実用化されてきているのでそれらを使用すれば低照度あるいは、短い露光時間の撮像が可能である。図5は、近赤外域の感度を高めた撮像素子の例として三洋電機の撮像素子LC99115の分光感度特性を示す特性図である。これらの撮像素子を採用することで、従来の可視光を使用した自動検査システムと大差ないコストで自動検査システムを構築可能となる。   Next, as an image pickup device, a CCD device camera is generally used in automatic inspection. Originally, the CCD element has sensitivity not only in the visible range but also in the near infrared range. FIG. 4 is a characteristic diagram showing the spectral sensitivity characteristic of NC300AIR manufactured by Takenaka System Equipment as an example of a general CCD camera. The vertical axis is a value normalized with 1 being the highest sensitivity. However, light in the near-infrared region, which has a wavelength longer than that of visible light, is not sufficiently sensitive because it is photoelectrically converted in the deep part of the semiconductor silicon. It is difficult to collect the sensor well, and sufficient sensitivity cannot be obtained. In view of this, image sensors with high near-infrared sensitivity have been put into practical use by adopting an FT method capable of a high aperture ratio, so that they can be used for imaging with low illuminance or a short exposure time. . FIG. 5 is a characteristic diagram showing the spectral sensitivity characteristics of an image sensor LC99115 from Sanyo Electric as an example of an image sensor with improved sensitivity in the near infrared region. By adopting these image sensors, an automatic inspection system can be constructed at a cost that is not significantly different from conventional automatic inspection systems using visible light.

カラーフィルタの分光透過率、光源、撮像素子といった条件を全て考慮すると中心値800から900nmで半値幅30nm以下となるような光源を用いて照射することが望ましいことになる。   Considering all the conditions such as the spectral transmittance of the color filter, the light source, and the image sensor, it is desirable to irradiate with a light source that has a center value of 800 to 900 nm and a half-value width of 30 nm or less.

以下、本発明の実施例1について図を参照し説明する。
図1は、本実施例1の着色膜厚ムラ検査装置の構成を示す模式図である。近赤外域の光を放出する光源1の候補としてはLED(Light Emitting Diode)がある。車両ナンバー読取りカメラ用光源、赤外監視カメラ用光源として使用されており、波長域も狭い。図6は、近赤外を放出するLEDの分光放射特性の一例を示す特性図である。また、別の光源1候補としてハロゲン電球も波長域は広いが、近赤外光を放出している。図7は、このハロゲン電球の分光放射特性を示す特性図である。
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a configuration of a colored film thickness unevenness inspection apparatus according to the first embodiment. As a candidate of the light source 1 that emits light in the near infrared region, there is an LED (Light Emitting Diode). It is used as a vehicle number reading camera light source and an infrared surveillance camera light source, and has a narrow wavelength range. FIG. 6 is a characteristic diagram showing an example of spectral radiation characteristics of an LED that emits near infrared rays. Further, as another light source 1 candidate, a halogen bulb also emits near infrared light, although the wavelength range is wide. FIG. 7 is a characteristic diagram showing the spectral radiation characteristics of this halogen bulb.

図1に示すように光源1から放出した光がブロードバンドの場合、バンドパスフィルタ2を介して検査対象基板3に照射する。バンドパスフィルタ2は中心波長800nmから900nmで半値幅30nm程度が望ましい。   As shown in FIG. 1, when the light emitted from the light source 1 is broadband, the target substrate 3 is irradiated via the bandpass filter 2. The band pass filter 2 desirably has a center wavelength of 800 nm to 900 nm and a half width of about 30 nm.

図1に示すように、撮像部5は、光源1およびバンドパスフィルタ2からなる照明部と正反射の角度に設置する。入射角度αは10°から40°が望ましい。それより大きな角度にすると表面反射成分が大きくなり過ぎ、透過して反射してくる成分が少なくなるので干渉現象が観察しにくくなる。前記照明部から入射した光が着色膜表面で反射する光と、前記着色膜を透過してガラス基板界面で反射する光とに位相差が生じ、この位相差により生ずる干渉現象をもとに、その着色膜厚の変化が反射光の濃淡として撮像された映像信号が得られる。つまり異なる膜厚を撮像したとき反射強度の差となって、その膜厚の変化が反射光の濃淡として撮像された映像信号が得られる。   As shown in FIG. 1, the imaging unit 5 is installed at an angle of regular reflection with the illumination unit including the light source 1 and the bandpass filter 2. The incident angle α is preferably 10 ° to 40 °. If the angle is larger than that, the surface reflection component becomes too large, and the component that is transmitted and reflected decreases, so that it becomes difficult to observe the interference phenomenon. Based on the interference phenomenon caused by the phase difference between the light incident from the illuminating part and the light reflected by the colored film surface and the light transmitted through the colored film and reflected by the glass substrate interface, A video signal in which the change in the colored film thickness is captured as the shade of reflected light is obtained. That is, when different film thicknesses are imaged, a difference in reflection intensity occurs, and a video signal is obtained in which the change in film thickness is captured as the density of reflected light.

近年、検査対象基板3は大型化しているので撮像部5はライン走査方式のカメラが採用されることが多い。このため検査対象基板3を搬送機構4にて搬送しながら撮像する。これをA/D変換し、そのデジタルデータをコンピュータ6上のソフトウェアや専用ハードウェアを使用することでムラを検出する。   In recent years, since the inspection target substrate 3 has been increased in size, a line scanning camera is often used as the imaging unit 5. Therefore, the inspection target substrate 3 is imaged while being transported by the transport mechanism 4. This is subjected to A / D conversion, and the digital data is detected by using software on the computer 6 or dedicated hardware.

ムラ部と正常部のコントラストが高い画像が得られた場合、その画像からムラを検出する手法については、例えば特開2000−113188号公報に開示されている方法が適用できるので説明は省略する。   When an image having a high contrast between the uneven portion and the normal portion is obtained, a method disclosed in Japanese Patent Application Laid-Open No. 2000-113188 can be applied to a method for detecting unevenness from the image, and the description thereof is omitted.

以上のように、本実施例1によれば、近赤外域の感度を高めた撮像素子を使用し、全ての着色膜の光透過率が50%以上となり、且つ、前記撮像素子が感度を持つ波長域として、中心値800nmから900nmで半値幅30nm以下となる光を検査対象基板3へ照射し、前記着色膜表面での反射光と、前記着色膜を透過して検査対象基板3の基板界面との境界で反射してくる反射光との位相差により生ずる干渉現象をもとに前記着色膜厚の変化を反射光の濃淡として撮像するようにしたので、従来の可視光を使用した自動検査システムと大差ないコストで、レジストの色による透過率の違いから生ずる検査感度のバラツキを回避し、着色膜厚ムラを高い精度で検出できるムラ検査方法および装置を提供できる効果がある。
さらに、850nmを中心に照射する光の波長範囲を狭くすることで、膜厚差により生ずる干渉による反射強度の差を大きくすることが出来、コントラストを高めた画像が得られる着色膜厚ムラ検査方法および装置を提供できる効果がある。
As described above, according to the first embodiment, an imaging device with increased sensitivity in the near infrared region is used, the light transmittance of all the colored films is 50% or more, and the imaging device has sensitivity. As the wavelength range, the inspection target substrate 3 is irradiated with light having a central value of 800 nm to 900 nm and a half-value width of 30 nm or less, and the reflected light on the colored film surface and the substrate interface of the inspection target substrate 3 are transmitted through the colored film Since the change in the colored film thickness is imaged as the shade of the reflected light based on the interference phenomenon caused by the phase difference with the reflected light reflected at the boundary with the automatic inspection using conventional visible light There is an effect that it is possible to provide a non-uniformity inspection method and apparatus capable of detecting a non-uniform color film thickness with high accuracy while avoiding variations in inspection sensitivity caused by a difference in transmittance depending on resist colors at a cost that is not significantly different from the system.
Further, by narrowing the wavelength range of the light irradiated around 850 nm, the difference in the reflection intensity due to the interference caused by the film thickness difference can be increased, and the colored film thickness nonuniformity inspection method that can obtain an image with enhanced contrast And there is an effect that can provide a device.

本発明の実施例1の着色膜厚ムラ検査装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the colored film thickness nonuniformity inspection apparatus of Example 1 of this invention. カラーフィルタのRed、Green、Blueの分光透過率の一例を示す特性図である。It is a characteristic view showing an example of spectral transmittance of Red, Green, Blue of the color filter. 850nmを中心に照射する光の波長範囲を100nmから10nmまで段階的に変えたときの膜厚毎の反射強度を計算した特性図である。It is the characteristic view which calculated the reflection intensity for every film thickness when the wavelength range of the light irradiated centering on 850 nm was changed in steps from 100 nm to 10 nm. 一般的なCCDカメラの例として竹中システム機器製NC300AIRの分光感度特性を示す特性図である。It is a characteristic view which shows the spectral sensitivity characteristic of NC300AIR made from Takenaka system equipment as an example of a general CCD camera. 三洋電機の撮像素子LC99115の分光感度特性を示す特性図である。It is a characteristic view which shows the spectral sensitivity characteristic of the image pick-up element LC99115 of Sanyo Electric. 近赤外を放出するLEDの分光放射特性の一例を示す特性図である。It is a characteristic view which shows an example of the spectral radiation characteristic of LED which discharge | releases near infrared rays. ハロゲン電球の分光放射特性を示す特性図である。It is a characteristic view which shows the spectral radiation characteristic of a halogen bulb.

符号の説明Explanation of symbols

1……光源、2……バンドパスフィルタ、3……検査対象基板、5……撮像部、6……コンピュータ。
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Band pass filter, 3 ... Board | substrate to be examined, 5 ... Imaging part, 6 ... Computer.

Claims (2)

複数色の着色膜のパターンが形成された検査対象基板に対し、使用している全ての着色膜の光透過率が50%以上となり、且つ、撮像素子が感度を持つ波長域として、中心値800nmから900nmで半値幅30nm以下となる光源からの光を照射し、前記着色膜表面での反射光、および前記着色膜を透過して基板界面との境界で反射してくる反射光との位相差により生ずる干渉現象をもとに、前記着色膜厚の変化を反射光の濃淡として前記撮像素子により撮像し、前記撮像された映像から着色膜厚ムラを検出することを特徴とする着色膜厚ムラ検査方法。   For a substrate to be inspected on which a pattern of colored films of multiple colors is formed, the light transmittance of all the used colored films is 50% or more, and the central value is 800 nm as a wavelength range in which the imaging device has sensitivity. The phase difference between the reflected light reflected from the surface of the colored film and the reflected light transmitted through the colored film and reflected at the boundary with the substrate interface is irradiated with light from a light source having a half-width of 30 nm or less at 900 nm Based on the interference phenomenon caused by the above, a variation in the colored film thickness is picked up by the image sensor as the intensity of reflected light, and the colored film thickness unevenness is detected from the captured image. Inspection method. 光源からの光を基板上に形成された複数色の着色膜へ照射し、着色膜厚の変化を反射光の濃淡として撮像し、その映像をもとに前記着色膜の着色膜厚ムラを検査する着色膜厚ムラ検査装置であって、
全ての着色膜の光透過率が50%以上となり、且つ、波長域が中心値800nmから900nmで半値幅30nm以下となる光を前記基板上に形成された着色膜へ照射する照明部と、
前記着色膜表面で反射する反射光と、前記着色膜を透過し前記基板界面で反射する反射光との位相差により生ずる干渉現象をもとに、その着色膜厚の変化を反射光の濃淡として撮像する、前記波長域の感度を有する撮像部と、
を備えたことを特徴とする着色膜厚ムラ検査装置。
Irradiates light from a light source onto multiple colored films formed on the substrate, images changes in the colored film as shades of reflected light, and inspects the colored film for unevenness of the colored film based on the image An apparatus for inspecting colored film thickness unevenness,
An illuminating unit that irradiates the colored film formed on the substrate with light having a light transmittance of 50% or more for all the colored films, a wavelength range of 800 nm to 900 nm, and a half-value width of 30 nm or less;
Based on the interference phenomenon caused by the phase difference between the reflected light reflected on the surface of the colored film and the reflected light transmitted through the colored film and reflected at the substrate interface, the change in the colored film thickness is defined as the shade of the reflected light. An imaging unit having a sensitivity in the wavelength range for imaging,
A colored film thickness nonuniformity inspection apparatus characterized by comprising:
JP2006021815A 2006-01-31 2006-01-31 Colored film thickness variations inspection method and apparatus Pending JP2007205743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021815A JP2007205743A (en) 2006-01-31 2006-01-31 Colored film thickness variations inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021815A JP2007205743A (en) 2006-01-31 2006-01-31 Colored film thickness variations inspection method and apparatus

Publications (1)

Publication Number Publication Date
JP2007205743A true JP2007205743A (en) 2007-08-16

Family

ID=38485356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021815A Pending JP2007205743A (en) 2006-01-31 2006-01-31 Colored film thickness variations inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP2007205743A (en)

Similar Documents

Publication Publication Date Title
JP6629455B2 (en) Appearance inspection equipment, lighting equipment, photography lighting equipment
JP2006005360A (en) Method and system for inspecting wafer
AU2006333500A1 (en) Apparatus and methods for inspecting a composite structure for defects
JP6317892B2 (en) Appearance inspection apparatus and appearance inspection method
US20160356724A1 (en) Automated defect detection and mapping for optical filters
TW201033606A (en) Pattern inspection method, pattern inspection device, photomask manufacturing method, and pattern transfer method
JP5830229B2 (en) Wafer defect inspection system
KR20100053687A (en) Inspection method based on captured image and inspection device
JP2004219108A (en) Method and apparatus for inspecting irregularities in film thickness of colored film
JP2009510426A (en) Device for recording multiple images of a disk-like object
JP2010060415A (en) Lighting device for inspection and inspecting method
JP3944693B2 (en) Film thickness measuring device
JP2007114125A (en) Method for inspecting film thickness irregularities
JP2000097873A (en) Surface defect inspecting device
JP4901246B2 (en) Spectral luminance distribution estimation system and method
US7440118B2 (en) Apparatus and method for color filter inspection
JP5890953B2 (en) Inspection device
JP2006201142A (en) Inspecting apparatus, inspecting method and manufacturing method for color filter
JP2010237029A (en) Apparatus and method of evaluating infrared optical system
JP2007205743A (en) Colored film thickness variations inspection method and apparatus
JP2008026147A (en) Inspection device for color filter, and inspection method for the color filter
JP4857917B2 (en) Color filter appearance inspection method and appearance inspection apparatus
JP2011196897A (en) Inspection device
WO2020003673A1 (en) Spectral sensitivity measurement method for image sensors, inspection method for spectral sensitivity measurement devices, and spectral sensitivity measurement device
JP2001141659A (en) Image pick-up device and defect detecting apparatus