JP2007204830A - Method for leaching copper sulfide ore including brass ore - Google Patents

Method for leaching copper sulfide ore including brass ore Download PDF

Info

Publication number
JP2007204830A
JP2007204830A JP2006027280A JP2006027280A JP2007204830A JP 2007204830 A JP2007204830 A JP 2007204830A JP 2006027280 A JP2006027280 A JP 2006027280A JP 2006027280 A JP2006027280 A JP 2006027280A JP 2007204830 A JP2007204830 A JP 2007204830A
Authority
JP
Japan
Prior art keywords
copper
leaching
sulfide ore
copper sulfide
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006027280A
Other languages
Japanese (ja)
Other versions
JP4904836B2 (en
Inventor
Hidemasa Okamoto
秀征 岡本
Ryoichi Nakayama
良一 中山
Yoshihisa Takahashi
佳久 高橋
Tatsuhito Kuroiwa
樹人 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006027280A priority Critical patent/JP4904836B2/en
Publication of JP2007204830A publication Critical patent/JP2007204830A/en
Application granted granted Critical
Publication of JP4904836B2 publication Critical patent/JP4904836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economically efficient method for leaching copper from copper sulfide ore including brass ore with the low use amount of sulfuric acid, in an increased leaching speed and in high leaching ratio. <P>SOLUTION: In the method where copper sulfide ore including brass ore is leached from copper, the copper sulfide ore is mixed with a fixed carbon-containing material by an amount of 0.1 to 2.0 times to the whole weight of the copper mineral in the copper sulfide ore, thereafter, the obtained mixture is dipped into an iron sulfate aqueous solution in which the concentration of iron is controlled to 1 to 20 g/L and pH is controlled to 2.6 to 3.5. Further, as the fixed carbon-containing material, active carbon is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、黄銅鉱を含む硫化銅鉱の浸出方法に関し、さらに詳しくは、黄銅鉱を含む硫化銅鉱から、低硫酸使用量で、浸出速度を高め高浸出率で銅を浸出する経済的に効率的な方法に関する。   The present invention relates to a method for leaching copper sulfide ores containing chalcopyrite, and more specifically, economically efficient for leaching copper from a sulfide ore containing chalcopyrite with a low sulfuric acid consumption, a high leaching rate and a high leaching rate. Related to different methods.

従来、銅鉱石から銅を回収する方法の一つとして、銅を硫酸などにより浸出し、浸出された銅を溶媒抽出によって濃縮した液を用いて、電解採取によって銅カソードとして回収する方法が行われている。この方法において、銅鉱石に含まれる銅が酸化物又は炭酸塩の形態であるときには、単純な酸浸出で含有される銅の40〜90%を容易に浸出することができ、銅を高収率で回収することができる。   Conventionally, as one of the methods for recovering copper from copper ore, a method has been used in which copper is leached with sulfuric acid or the like, and the leached copper is concentrated by solvent extraction and recovered as a copper cathode by electrowinning. ing. In this method, when the copper contained in the copper ore is in the form of oxide or carbonate, 40 to 90% of the copper contained by simple acid leaching can be easily leached, and the copper can be obtained in a high yield. Can be recovered.

また、銅鉱石中の銅鉱物が、輝銅鉱(CuS)、斑銅鉱(CuFeS)等の二次硫化鉱物であるときには、バクテリアリーチング法が用いられる。この方法では、鉄酸化バクテリア等の微生物が共存する条件下で酸化剤として硫酸鉄を含む浸出液を用いることによって、銅を効率的に浸出することができる。上記方法は、いずれも経済的に効率よく銅を回収することができ、北米又は南米の大規模銅鉱山で広く採用されている。 Further, when the copper mineral in the copper ore is a secondary sulfide mineral such as chalcocite (Cu 2 S), porphyry (Cu 5 FeS 4 ), a bacterial leaching method is used. In this method, copper can be efficiently leached by using a leaching solution containing iron sulfate as an oxidizing agent under the conditions in which microorganisms such as iron-oxidizing bacteria coexist. All of the above methods can recover copper economically and efficiently, and are widely used in large-scale copper mines in North and South America.

しかしながら、銅鉱石に含まれる銅鉱物が黄銅鉱(CuFeS)である場合には、銅の浸出速度が極端に遅くなるので、一般的に行われているバクテリアリーチングでは数%から20%程度の銅浸出率であり、経済性が著しく損なわれるという問題があった。この原因は、浸出液の酸化還元電位と関係している。すなわち、前記浸出液に含まれるFe3+イオンは酸化剤として作用し硫化鉱物の溶解を促進するが、このときFe2+イオンに還元されるので、浸出反応が進むにつれて浸出液の酸化還元電位は低下する。このとき、堆積された鉱石ダンプ中に自然に生息する鉄酸化バクテリア等の微生物が、このFe2+イオンをFe3+イオンに酸化して、浸出液の酸化還元電位を再び高める役割を担っている。 However, when the copper mineral contained in the copper ore is chalcopyrite (CuFeS 2 ), the leaching rate of copper becomes extremely slow. Therefore, in general bacterial leaching, it is about several to 20%. There was a problem that the copper leaching rate was remarkably impaired. This cause is related to the redox potential of the leachate. That is, Fe 3+ ions contained in the leachate act as an oxidant and promote the dissolution of sulfide minerals. At this time, they are reduced to Fe 2+ ions, so that the redox potential of the leachate decreases as the leaching reaction proceeds. At this time, microorganisms such as iron-oxidizing bacteria naturally inhabiting the deposited ore dump have a role of oxidizing the Fe 2+ ions to Fe 3+ ions and increasing the redox potential of the leachate again.

例えば、硫化銅鉱に含まれる銅鉱物が、輝銅鉱(CuS)、斑銅鉱(CuFeS)等の二次硫化鉱物である場合には、これらは酸化還元電位が高いほど溶解しやすいため、バクテリアが活発に活動して浸出液中のFe3+イオンが多くなるほど溶出される銅分も多い。一方、前記銅鉱物が、一次硫化鉱物である黄銅鉱(CuFeS)では、バクテリアが活発に活動する500〜700mV(Ag/AgCl電極規準)の酸化還元電位領域では、浸出が極端に遅くなる性質を有しており、上記の二次硫化鉱物の浸出に適した条件ではほとんど浸出されない。また、これ以上に高電位にすることで浸出が早めることができるが、バクテリアの酸化作用のみで前記高電位を維持するのは困難である。 For example, when the copper mineral contained in the copper sulfide ore is a secondary sulfide mineral such as chalcocite (Cu 2 S) or porphyry (Cu 5 FeS 4 ), these are more easily dissolved as the redox potential is higher. Therefore, the more copper is eluted as the bacteria are actively activated and the Fe 3+ ions in the leachate increase. On the other hand, when the copper mineral is chalcopyrite (CuFeS 2 ), which is a primary sulfide mineral, leaching is extremely slow in a redox potential region of 500 to 700 mV (Ag / AgCl electrode standard) where bacteria are actively active. And hardly leached under conditions suitable for leaching of the secondary sulfide mineral. Further, leaching can be accelerated by making the potential higher than this, but it is difficult to maintain the high potential only by the oxidizing action of bacteria.

ところで、一般に、低品位の銅鉱石、例えばポーフィリー型鉱床下部の一次富化帯等は含有される銅の大半が黄銅鉱である。しかも、黄銅鉱を含む銅鉱石は世界に広く分布している。しかしながら、これら鉱石は、上記浸出法による銅回収に適さないので、経済的に不利な浮選法により銅精鉱を回収するか、あるいは廃石として処分するしかなかった。   By the way, generally, copper contained in the low-grade copper ore, for example, the primary enrichment zone below the porphyry type ore is chalcopyrite. Moreover, copper ores including chalcopyrite are widely distributed throughout the world. However, since these ores are not suitable for copper recovery by the above leaching method, the copper concentrate must be recovered by an economically disadvantageous flotation method or disposed as waste ore.

この解決策として、黄銅鉱を浸出する方法として、硫酸と酸化剤を加えて加圧浸出する方法、塩酸を使用し加熱する方法等が提案されているが、いずれも消費エネルギー及び試薬コストが大きく経済的でない。例えば、銅精鉱の硫酸溶液による酸化加圧浸出の際に、反応促進剤として炭素質添加物を用いる技術(例えば、特許文献1参照。)が提案されている。この方法は、黄銅鉱のような難浸出性の銅鉱物に有効な方法であるが、浸出反応温度が90〜220℃で、圧力が100〜3000kPaという厳しい条件下で酸化加圧浸出を行うものである。したがって、バクテリアリーチングのような緩やかな条件下の浸出方法とは期待する浸出速度において根本的に異なる。   As a solution to this, as a method of leaching chalcopyrite, a method of adding pressure sulfuric acid and an oxidizing agent and leaching under pressure, a method of heating using hydrochloric acid, etc. have been proposed. Not economical. For example, a technique using a carbonaceous additive as a reaction accelerator at the time of oxidative pressure leaching with a sulfuric acid solution of copper concentrate (for example, see Patent Document 1) has been proposed. This method is an effective method for hardly leaching copper minerals such as chalcopyrite, but oxidative pressure leaching is performed under severe conditions of leaching reaction temperature of 90 to 220 ° C. and pressure of 100 to 3000 kPa. It is. Therefore, the leaching method under mild conditions such as bacterial leaching is fundamentally different in the expected leaching rate.

さらに、本発明者らにより、黄銅鉱を含む硫化銅鉱と粉状炭素との混合物を、鉄濃度を1〜20g/L、pHを1.0〜2.5、及び酸化還元電位(Ag/AgCl電極規準)を350〜450mVに調整した硫酸鉄水溶液に浸漬して硫化銅鉱から銅を浸出する方法(例えば、特許文献2参照。)が提案されている。これにより、浸出速度を高め高浸出率で銅を浸出することができるが、高浸出率を得るためには、2.5未満、好ましくは2.0未満までpHを低下させることが必要であり、硫酸の使用量が多くなるという問題があった。   Furthermore, the present inventors have made a mixture of copper sulfide ore containing chalcopyrite and powdered carbon with an iron concentration of 1 to 20 g / L, a pH of 1.0 to 2.5, and a redox potential (Ag / AgCl). A method of leaching copper from a copper sulfide ore by immersing it in an iron sulfate aqueous solution whose electrode standard is adjusted to 350 to 450 mV has been proposed (for example, see Patent Document 2). Thus, copper can be leached at a high leaching rate by increasing the leaching rate, but in order to obtain a high leaching rate, it is necessary to lower the pH to less than 2.5, preferably less than 2.0. There was a problem that the amount of sulfuric acid used was increased.

以上の状況から、黄銅鉱を含む硫化銅鉱から、浸出速度を高め高浸出率で銅を浸出するとともに、硫酸の使用量が少なく経済性の高い方法が求められている。
米国特許第5730776号明細書 特開2005−15864号公報(第1頁、第2頁)
In view of the above situation, there is a demand for a method that is highly economical because it uses a copper sulfide ore containing chalcopyrite to leach copper at a high leaching rate by increasing the leaching rate.
US Pat. No. 5,730,776 Japanese Patent Laying-Open No. 2005-15864 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、黄銅鉱を含む硫化銅鉱から、低硫酸使用量で、浸出速度を高め高浸出率で銅を浸出する経済的に効率的な方法を提供することにある。   An object of the present invention is to provide an economically efficient method of leaching copper from a copper sulfide ore containing chalcopyrite with a low sulfuric acid consumption, a high leaching rate and a high leaching rate in view of the problems of the prior art. It is to provide.

本発明者らは、上記目的を達成するために、黄銅鉱を含む硫化銅鉱から銅を浸出する方法について、鋭意研究を重ねた結果、前記硫化銅鉱に固定炭素含有材料を混合して、特定の条件に調整した硫酸鉄水溶液に浸漬したところ、低い硫酸使用量で、銅の浸出速度を高め高浸出率で銅を浸出することができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted extensive research on a method of leaching copper from chalcopyrite containing chalcopyrite. When immersed in an aqueous iron sulfate solution adjusted to the conditions, it was found that copper can be leached at a high leaching rate by increasing the leaching rate of copper with a low amount of sulfuric acid used, thereby completing the present invention.

すなわち、本発明の第1の発明によれば、黄銅鉱を含む硫化銅鉱から銅を浸出する方法であって、
前記硫化銅鉱に、該硫化銅鉱中の銅鉱物の全重量に対して0.1〜2.0倍量の固定炭素含有材料を混合した後、得られた混合物を、鉄濃度を1〜20g/L、pHを2.6〜3.5に調整した硫酸鉄水溶液に浸漬することを特徴とする硫化銅鉱の浸出方法が提供される。
That is, according to the first invention of the present invention, a method of leaching copper from a copper sulfide ore containing chalcopyrite,
After mixing a fixed carbon-containing material in an amount of 0.1 to 2.0 times the total weight of the copper mineral in the copper sulfide ore with the copper sulfide ore, the resulting mixture was adjusted to an iron concentration of 1 to 20 g / There is provided a leaching method of copper sulfide ore characterized by immersing in an aqueous iron sulfate solution adjusted to L and pH of 2.6 to 3.5.

また、本発明の第2の発明によれば、第1の発明において、前記固定炭素含有材料は、活性炭であることを特徴とする硫化銅鉱の浸出方法が提供される。   According to a second aspect of the present invention, there is provided a copper sulfide ore leaching method characterized in that, in the first aspect, the fixed carbon-containing material is activated carbon.

また、本発明の第3の発明によれば、第1又は2の発明において、前記硫酸鉄水溶液の酸化還元電位(Ag/AgCl電極規準)を350〜450mVに調整することを特徴とする硫化銅鉱の浸出方法が提供される。   According to a third invention of the present invention, the copper sulfide ore according to the first or second invention is characterized in that the oxidation-reduction potential (Ag / AgCl electrode standard) of the iron sulfate aqueous solution is adjusted to 350 to 450 mV. A method of leaching is provided.

本発明の黄銅鉱を含む硫化銅鉱の浸出方法は、黄銅鉱を含む硫化銅鉱から、低い硫酸使用量で銅の浸出速度を高めてかつ銅を高浸出率で浸出することができるので、その工業的価値は極めて大きい。   The leaching method of copper sulfide ore containing chalcopyrite of the present invention can increase the leaching rate of copper with a low amount of sulfuric acid and leaching copper at a high leaching rate from copper ore containing chalcopyrite. Target value is extremely high.

以下、本発明の黄銅鉱を含む硫化銅鉱の浸出方法を詳細に説明する。
本発明の黄銅鉱を含む硫化銅鉱の浸出方法は、黄銅鉱を含む硫化銅鉱から銅を浸出する方法であって、前記硫化銅鉱に、該硫化銅鉱中の銅鉱物の全重量に対して0.1〜2.0倍量の固定炭素含有材料を混合した後、得られた混合物を、鉄濃度を1〜20g/L、pHを2.6〜3.5に調整した硫酸鉄水溶液に浸漬することを特徴とする。
Hereinafter, the method for leaching copper sulfide ore containing chalcopyrite according to the present invention will be described in detail.
The method for leaching a copper sulfide ore containing chalcopyrite according to the present invention is a method for leaching copper from a copper sulfide ore containing chalcopyrite. The copper sulfide ore contains 0. 0% relative to the total weight of the copper mineral in the copper sulfide ore. After mixing 1 to 2.0 times the amount of fixed carbon-containing material, the resulting mixture is immersed in an iron sulfate aqueous solution adjusted to an iron concentration of 1 to 20 g / L and a pH of 2.6 to 3.5. It is characterized by that.

本発明において、黄銅鉱を含む硫化銅鉱を該硫化銅鉱中の銅鉱物の全重量に対して0.1〜2.0倍量の固定炭素含有材料と混合することと、この混合物を所定の条件の硫酸鉄水溶液に浸漬して銅を浸出することが重要である。これによって、硫酸水溶液中において、黄銅鉱は特定の酸化還元電位領域で反応して高速浸出されることになる。しかも、pHを調整するために要する硫酸の使用量を低減することができる。   In the present invention, the copper sulfide ore containing chalcopyrite is mixed with a fixed carbon-containing material in an amount of 0.1 to 2.0 times the total weight of the copper mineral in the copper sulfide ore, and the mixture is subjected to predetermined conditions. It is important to leach copper by immersing it in an aqueous iron sulfate solution. Thereby, in the sulfuric acid aqueous solution, the chalcopyrite reacts in a specific oxidation-reduction potential region and is leached at high speed. In addition, the amount of sulfuric acid used for adjusting the pH can be reduced.

ここで、本発明における固定炭素含有材料の作用について硫酸水溶液中における黄銅鉱の浸出反応に基づいて説明する。一般に、硫酸水溶液中における黄銅鉱は、ある酸化還元電位領域において、下記の反応式(1)と(2)に示される2段階の反応にしたがって浸出される。   Here, the effect | action of the fixed carbon containing material in this invention is demonstrated based on the leaching reaction of a chalcopyrite in sulfuric acid aqueous solution. In general, chalcopyrite in a sulfuric acid aqueous solution is leached in a certain oxidation-reduction potential region according to a two-step reaction shown in the following reaction formulas (1) and (2).

CuFeS+3Cu2++3Fe2+=2CuS+4Fe3+ (1)
CuS+4Fe3+=2Cu2++S+4Fe2+ (2)
CuFeS 2 + 3Cu 2+ + 3Fe 2+ = 2Cu 2 S + 4Fe 3+ (1)
Cu 2 S + 4Fe 3+ = 2Cu 2+ + S + 4Fe 2+ (2)

すなわち、まず、式(1)に基づいて、低酸化還元電位域において黄銅鉱が還元され、より酸化溶出速度が高い輝銅鉱が反応中間体として生成する。その後、式(2)に基づいて、輝銅鉱が酸化されて銅が溶出する。このような反応機構が成立するためには、溶液の酸化還元電位Eが下記の式(3)を満足することが必須条件である。   That is, first, based on the formula (1), chalcopyrite is reduced in a low redox potential region, and chalcopyrite having a higher oxidation elution rate is generated as a reaction intermediate. Thereafter, based on the formula (2), the chalcocite is oxidized and copper is eluted. In order to establish such a reaction mechanism, it is an essential condition that the oxidation-reduction potential E of the solution satisfies the following formula (3).

Eox<E<Ec (3)
(式中Ecは式(1)の酸化還元電位を、Eoxは式(2)の酸化還元電位を表す。)
Eox <E <Ec (3)
(In the formula, Ec represents the redox potential of formula (1), and Eox represents the redox potential of formula (2).)

上記反応機構について、反応の速度と酸化還元電位(以下、電位と略称する場合がある。)の関係、及び本発明に係る固定炭素含有材料の共存の効果を、図面を用いて詳細に説明する。
図1は、黄銅鉱の溶出速度と電位の関係を示す。
図1より、式(3)の条件が満たされる場合、黄銅鉱は還元され、より酸化溶出速度の高い輝銅鉱を反応中間体として生成し、その輝銅鉱が酸化溶出するため高速浸出される。すなわち、Ecの近傍では、黄銅鉱還元反応(CuS生成反応:R)とCuS酸化反応(O)のうち、黄銅鉱の還元反応が全過程を律速するので、銅の溶出速度Kは電位の低下に伴って高くなる。一方、Eoxの近傍ではCuS酸化反応が律速段階となり、銅の溶出速度Kは電位の上昇に伴って高くなる。従って、黄銅鉱還元反応(R)とCuS酸化反応(O)が交わる電位(Eop)で銅の溶出速度は最大となる。また、Ec<Eの場合、黄銅鉱酸化反応(D)により直接黄銅鉱から銅が溶出するため、銅の溶出速度は低くなる。
Regarding the reaction mechanism, the relationship between the reaction rate and the oxidation-reduction potential (hereinafter sometimes referred to as potential), and the coexistence effect of the fixed carbon-containing material according to the present invention will be described in detail with reference to the drawings. .
FIG. 1 shows the relationship between the dissolution rate of chalcopyrite and the potential.
As shown in FIG. 1, when the condition of the formula (3) is satisfied, the chalcopyrite is reduced, and a chalcopyrite having a higher oxidation elution rate is generated as a reaction intermediate. That is, in the vicinity of Ec, the chalcopyrite reduction reaction (Cu 2 S formation reaction: R) and the Cu 2 S oxidation reaction (O), the reduction reaction of chalcopyrite controls the entire process, so the copper elution rate K Increases with decreasing potential. On the other hand, in the vicinity of Eox, the Cu 2 S oxidation reaction becomes a rate-limiting step, and the elution rate K of copper increases as the potential increases. Therefore, the elution rate of copper is maximized at the potential (Eop) at which the chalcopyrite reduction reaction (R) and the Cu 2 S oxidation reaction (O) intersect. Moreover, when Ec <E, since copper elutes from chalcopyrite directly by the chalcopyrite oxidation reaction (D), the elution rate of copper becomes low.

図2は、固定炭素含有材料が共存する場合の黄銅鉱の溶出速度と電位の関係を示す。
図2より、輝銅鉱酸化反応(O)が促進され、新たな、輝銅鉱酸化反応(O’)に示すように、銅の溶出速度KはEopにおいて上昇する。
ここで、固定炭素含有材料は、2価のFeを3価のFeに酸化する触媒として働き、また、溶液電位が下がりすぎた場合には、これを最適値付近に戻す作用がある。また、同じ電位においても浸出速度が高くなるのは、黄銅鉱溶解反応の生成物の1つであるHSを吸着除去することにより、溶解反応を促進するためと考えられる。
以上より、溶液電位を黄銅鉱の浸出に適した範囲に維持することによって、固定炭素含有材料が浸出を促進する役割をはたすことが分る。
FIG. 2 shows the relationship between the elution rate of chalcopyrite and the potential when the fixed carbon-containing material coexists.
As shown in FIG. 2, the chalcopyrite oxidation reaction (O) is promoted, and the copper elution rate K increases at Eop as shown in the new chalcopyrite oxidation reaction (O ′).
Here, the fixed carbon-containing material functions as a catalyst for oxidizing divalent Fe to trivalent Fe, and has an effect of returning the value to the vicinity of the optimum value when the solution potential is excessively lowered. In addition, the leaching rate is increased even at the same potential because the dissolution reaction is accelerated by adsorbing and removing H 2 S, which is one of the products of the chalcopyrite dissolution reaction.
From the above, it can be seen that the fixed carbon-containing material plays a role of promoting leaching by maintaining the solution potential in a range suitable for the leaching of chalcopyrite.

本発明の原料に用いる黄銅鉱を含む硫化銅鉱としては、特に限定されるものではなく、含有される銅鉱物の一部あるいは大部分が黄銅鉱である硫化銅鉱、又は該硫化銅鉱から浮選等によって銅鉱物が濃縮された銅精鉱が用いられる。   The copper sulfide ore containing chalcopyrite used for the raw material of the present invention is not particularly limited, and copper sulfide ore in which part or most of the contained copper mineral is chalcopyrite, or flotation from the copper sulfide ore, etc. A copper concentrate enriched with copper is used.

上記硫化銅鉱は、銅鉱物の大部分を露出させるため、破砕されて用いられる。破砕の方法としては、特に限定されるものではなく、採掘時の発破や各種の破砕機によって通常の方法で行われる。ここで、破砕産物の粒度は、特に限定されるものではなく、原料鉱石の性状や採算性を総合的に判断して最適な粉砕粒度を選択すればよい。対象が銅精鉱である場合には、既に細粒となっているので粉砕は不要である。   The copper sulfide ore is crushed and used in order to expose most of the copper mineral. The crushing method is not particularly limited, and the crushing method is performed by a normal method using blasting during mining or various crushers. Here, the particle size of the crushed product is not particularly limited, and an optimum pulverized particle size may be selected by comprehensively judging the properties and profitability of the raw ore. When the target is copper concentrate, it is already fine and does not need to be crushed.

本発明に用いる固定炭素含有材料としては、特に限定されるものではなく、HSを吸着することができる炭素やその化合物からなる官能基を有する構造を持つ固定炭素含有材料が用いられ、例えば、活性炭(固定炭素90%以上)、石炭(固定炭素30〜95%)、コークス(固定炭素75〜85%)、木炭(固定炭素約85%)等が挙げられる。この中で、特に、経済性を考慮すると活性炭が好ましい。 The fixed carbon-containing material used in the present invention is not particularly limited, and a fixed carbon-containing material having a structure having a functional group made of carbon capable of adsorbing H 2 S or a compound thereof is used. Activated carbon (fixed carbon 90% or more), coal (fixed carbon 30 to 95%), coke (fixed carbon 75 to 85%), charcoal (fixed carbon about 85%), and the like. Among these, activated carbon is particularly preferable in consideration of economy.

上記固定炭素含有材料の粒度は、特に限定されるものではないが、浸出促進剤としての効果を充分発揮するため、粉状に破砕されたものが好ましい。例えば、粒度が75μm以下のものが用いられる。   The particle size of the fixed carbon-containing material is not particularly limited, but is preferably crushed into a powder form in order to sufficiently exhibit the effect as a leaching accelerator. For example, a particle size of 75 μm or less is used.

上記固定炭素含有材料の添加割合は、硫化銅鉱中の銅鉱物の全重量に対して0.1〜2.0倍量、好ましくは0.2〜1.0倍量である。すなわち、添加割合が0.1倍量未満では、浸出促進剤としての効果を充分発揮できない。一方、添加割合が2.0倍量を超えると、コスト高になり経済性が損われる。固定炭素含有材料の最適量は、硫化銅鉱の組成及び粒度により異なるため、その都度予備試験を行うことによって、対象硫化銅鉱に対して上記範囲内で最適量を決定することができる。   The addition ratio of the fixed carbon-containing material is 0.1 to 2.0 times, preferably 0.2 to 1.0 times the total weight of the copper mineral in the copper sulfide ore. That is, when the addition ratio is less than 0.1 times, the effect as a leaching accelerator cannot be sufficiently exhibited. On the other hand, if the addition ratio exceeds 2.0 times, the cost increases and the economic efficiency is impaired. Since the optimum amount of the fixed carbon-containing material varies depending on the composition and particle size of the copper sulfide ore, the optimum amount can be determined within the above range for the target copper sulfide ore by performing a preliminary test each time.

本発明に用いる硫酸鉄水溶液は、硫化銅鉱から銅を溶出させるための浸出液であり、pH及び鉄濃度が調整される。例えば、後述するように、本発明の浸出方法を黄銅鉱を含む硫化銅鉱から銅を回収する湿式製錬プロセスの浸出工程において用いる場合には、通常は、浸出生成液から銅を回収した後の浸出循環液、例えば溶媒抽出で発生する抽出残液等を所定の条件になるようにpH及び鉄濃度を調整して用いる。   The aqueous iron sulfate solution used in the present invention is a leachate for eluting copper from copper sulfide ore, and the pH and iron concentration are adjusted. For example, as will be described later, when the leaching method of the present invention is used in a leaching step of a hydrometallurgical process for recovering copper from chalcopyrite containing copper ore, normally, after recovering copper from the leaching product liquid A leaching circulating liquid, such as an extraction residual liquid generated by solvent extraction, is used by adjusting pH and iron concentration so as to satisfy predetermined conditions.

上記硫酸鉄水溶液のpHは、2.6〜3.5に調整される。すなわち、低pHでは、副次的に生成されたHSが吸着除去されないため溶解反応が促進されにくいので、銅の浸出速度の観点からはpH2.0以上が望ましい。しかしながら、pHが低いほど硫酸の使用量が多くなり経済的に不利になるという問題が生じる。したがって、低い硫酸使用量で経済的な高浸出速度が得られるpH2.6以上が用いられる。一方、pHが3.5を超えると、銅の浸出速度が低下し、また不溶性鉄化合物が沈殿して浸出反応が妨げられるという問題が起きる。
上記pHの調整方法は、特に限定されるものではなく、硫酸、塩酸等の鉱酸を水溶液又は浸出循環液に添加して行うが、特に経済性から安価な硫酸を用いることが好ましい。
The pH of the iron sulfate aqueous solution is adjusted to 2.6 to 3.5. That is, at a low pH, since the secondary reaction of H 2 S is not adsorbed and removed, the dissolution reaction is difficult to be promoted, so that pH of 2.0 or more is desirable from the viewpoint of copper leaching rate. However, there is a problem that the lower the pH, the more the sulfuric acid is used, which is economically disadvantageous. Accordingly, a pH of 2.6 or higher is used, which provides an economical high leaching rate with a low amount of sulfuric acid. On the other hand, when the pH exceeds 3.5, there arises a problem that the leaching rate of copper is lowered and the insoluble iron compound is precipitated to prevent the leaching reaction.
The method for adjusting the pH is not particularly limited, and a mineral acid such as sulfuric acid or hydrochloric acid is added to the aqueous solution or the leaching circulating solution. In particular, it is preferable to use inexpensive sulfuric acid from the viewpoint of economy.

上記硫酸鉄水溶液の鉄濃度は、1〜20g/L、好ましくは5〜10g/Lに調整される。すなわち、鉄の濃度が高いほど銅の浸出速度が高くなるが、鉄濃度が1g/L未満では、銅の浸出速度が低下し、回収の効率が低下する。一方、鉄濃度が20g/Lを超えると、液の粘性の増大や不溶性鉄化合物の析出が多くなり、浸出の妨げとなる。   The iron concentration of the iron sulfate aqueous solution is adjusted to 1 to 20 g / L, preferably 5 to 10 g / L. That is, the higher the iron concentration, the higher the copper leaching rate. However, when the iron concentration is less than 1 g / L, the copper leaching rate decreases and the recovery efficiency decreases. On the other hand, when the iron concentration exceeds 20 g / L, the viscosity of the liquid increases and precipitation of insoluble iron compounds increases, which hinders leaching.

上記硫酸鉄水溶液の鉄濃度の調整方法は、特に限定されるものではなく、硫酸第一鉄又は硫酸第二鉄を水溶液又は浸出循環液に添加して行うのが好ましい。ここで、添加する硫酸鉄の形態は、該硫酸鉄水溶液の電位に大きく関わるので、電位の調節が容易な方を適宜選択する。   The method for adjusting the iron concentration of the aqueous iron sulfate solution is not particularly limited, and it is preferable to add ferrous sulfate or ferric sulfate to the aqueous solution or the leaching circulating liquid. Here, since the form of the iron sulfate to be added is greatly related to the potential of the aqueous iron sulfate solution, the one that allows easy adjustment of the potential is appropriately selected.

上記硫酸鉄水溶液の添加量は、特に限定されるものではなく、少なくとも硫化銅鉱全体に十分に行き渡る量を添加するが、使用する反応容器の形状、あるいは浸出以降の下流工程の状況等に合わせて適宜調整する。この中で、浸出液の量が多すぎると得られる浸出貴液(浸出生成液)の濃度が薄くなりすぎて下流工程の溶媒抽出等における効率が低下するので、硫化銅鉱の20倍以下が好ましい。   The addition amount of the iron sulfate aqueous solution is not particularly limited, and at least an amount that sufficiently spreads over the entire copper sulfide ore is added, but according to the shape of the reaction vessel to be used, the situation of the downstream process after leaching, etc. Adjust as appropriate. Among these, since the density | concentration of the leaching noble liquid (leaching production | generation liquid) obtained will become thin too much and the efficiency in solvent extraction etc. of a downstream process will fall when there is too much quantity of a leaching liquid, 20 times or less of a copper sulfide ore is preferable.

本発明の方法において、浸出反応の制御のためには、反応時の硫酸鉄水溶液のpHと電位を一定期間毎に測定することが好ましい。ここで、前記浸出液の電位は銅鉱物自体の還元力により徐々に低下するが、通常、空気から溶け込む酸素の酸化力によってある一定値に保たれる。   In the method of the present invention, in order to control the leaching reaction, it is preferable to measure the pH and potential of the aqueous iron sulfate solution during the reaction at regular intervals. Here, the potential of the leaching solution gradually decreases due to the reducing power of the copper mineral itself, but is usually kept at a certain value by the oxidizing power of oxygen dissolved from the air.

本発明に用いる硫酸鉄水溶液の酸化還元電位(Ag/AgCl電極規準)としては、特に限定されるものではなく、好ましくは350〜450mVに調整され、より好ましくは380〜420mVに調整される。すなわち、この範囲の電位に維持することが、黄銅鉱の浸出に適している。
上記酸化還元電位の調整方法としては、以下の手段が用いられる。例えば、酸化還元電位(Ag/AgCl電極規準)が350mV未満の場合には反応容器内の浸出液の一部を抜き取り、硫酸第二鉄を含む新規の硫酸鉄水溶液を補充することによって電位を上昇させる。一方、酸化還元電位(Ag/AgCl電極規準)が450mVを超える場合には、同様に浸出液の一部を抜き取り、硫酸第一鉄を含む新規の硫酸鉄水溶液を補充して電位を下降させる。補充する硫酸鉄水溶液の液量及び鉄濃度は、反応時の浸出液の電位と鉄濃度が上記の範囲に維持されるように適宜調節する。
The oxidation-reduction potential (Ag / AgCl electrode standard) of the aqueous iron sulfate solution used in the present invention is not particularly limited and is preferably adjusted to 350 to 450 mV, more preferably 380 to 420 mV. That is, maintaining the potential in this range is suitable for leaching of chalcopyrite.
As a method for adjusting the oxidation-reduction potential, the following means are used. For example, when the oxidation-reduction potential (Ag / AgCl electrode standard) is less than 350 mV, a part of the leachate in the reaction vessel is extracted, and the potential is increased by replenishing with a new aqueous iron sulfate solution containing ferric sulfate. . On the other hand, when the oxidation-reduction potential (Ag / AgCl electrode standard) exceeds 450 mV, a portion of the leachate is similarly extracted and replenished with a new aqueous iron sulfate solution containing ferrous sulfate to lower the potential. The amount and iron concentration of the iron sulfate aqueous solution to be replenished are appropriately adjusted so that the potential of the leachate and the iron concentration during the reaction are maintained within the above ranges.

本発明に用いる浸出方式としては、特に限定されるものではなく、硫化銅鉱と固定炭素含有材料の混合物を上記硫酸鉄水溶液中に浸漬して浸出する方法、例えば、反応容器内で撹拌しながら浸出する方法、ヒープリーチング法、バットリーチング法又はカラムリーチング法のいずれかが用いられる。   The leaching method used in the present invention is not particularly limited, and is a method of leaching by immersing a mixture of copper sulfide ore and fixed carbon-containing material in the aqueous iron sulfate solution, for example, leaching while stirring in a reaction vessel. , Heap leaching method, butt leaching method or column leaching method is used.

本発明の方法で得られる銅を含んだ貴液は、反応容器内への浸出液の補充操作によって断続的に回収する方法、少量ずつの浸出液を連続的に回収する方法、全ての貴液を一度に回収する方法等により浸出残渣と分離され系外ヘ取り出されるが、下流工程の形態と能力に適した方法を適宜選択することができる。   The noble liquid containing copper obtained by the method of the present invention can be recovered intermittently by replenishment of the leachate into the reaction vessel, a method of continuously collecting small amounts of leachate, and all the noble liquids once. However, it can be separated from the leaching residue and taken out of the system by a method such as recovery, but a method suitable for the form and capacity of the downstream process can be appropriately selected.

本発明の方法は、黄銅鉱を含む硫化銅鉱から銅を回収する湿式製錬プロセスの浸出工程において、低硫酸使用量で銅を高浸出率で浸出する方法として好適に用いられる。以下に、本発明の浸出方法を用いた前記プロセスの一例を、図面を用いて説明する。図3は、本発明の浸出方法を用いた黄銅鉱を含む硫化銅鉱から電解銅を回収する湿式製錬プロセスの概略工程図を表す。
図3において、まず、浸出工程1において、硫化銅鉱5と固定炭素含有材料6を含む混合物7が所定の組成に調整された硫酸鉄水溶液8に浸漬され、銅が浸出される。次に、一般に酸性抽出剤が用いられる溶媒抽出工程2において、浸出工程1において浸出残渣9と固液分離して得られた浸出生成液10から、銅が濃縮分離されている逆抽出生成液11と鉄を含む抽出残液12とが得られる。この際、酸性抽出剤が使用される場合には、抽出時のpHが高い程銅の抽出率が上昇するので、本発明の方法で用いるpHは好都合である。すなわち、抽出時に、浸出生成液10から中和剤等を用いたpH調整することなしに高効率で銅を分離することができる。
次いで、逆抽出生成液11からは、不溶性電極を使用した銅電解工程3により電解銅15が得られる。また、硫酸鉄を含む抽出残液12は、浸出循環液として浸出工程1に繰返えされる。この際に、浸出液である硫酸鉄水溶液8のpH、鉄濃度、酸化還元電位等の調整のため、浸出液調整工程4で必要により硫酸13、及び硫酸第一鉄又は硫酸第二鉄14の所定量が添加されるが、本発明の浸出方法によれば、硫酸の使用量を低減することができる。
The method of the present invention is suitably used as a method of leaching copper at a high leaching rate with a low amount of sulfuric acid used in a leaching step of a hydrometallurgical process for recovering copper from a copper sulfide ore containing chalcopyrite. Hereinafter, an example of the process using the leaching method of the present invention will be described with reference to the drawings. FIG. 3 shows a schematic process diagram of a hydrometallurgical process for recovering electrolytic copper from a copper sulfide ore containing chalcopyrite using the leaching method of the present invention.
In FIG. 3, first, in the leaching step 1, a mixture 7 containing the copper sulfide ore 5 and the fixed carbon-containing material 6 is immersed in an aqueous iron sulfate solution 8 adjusted to a predetermined composition, and copper is leached. Next, in the solvent extraction process 2 in which an acidic extractant is generally used, the back extraction product liquid 11 in which copper is concentrated and separated from the leaching product liquid 10 obtained by solid-liquid separation from the leaching residue 9 in the leaching process 1. And an extraction residual liquid 12 containing iron are obtained. At this time, when an acidic extractant is used, the higher the pH at the time of extraction, the higher the copper extraction rate, so the pH used in the method of the present invention is more convenient. That is, at the time of extraction, copper can be separated from the leaching product liquid 10 with high efficiency without adjusting the pH using a neutralizing agent or the like.
Next, electrolytic copper 15 is obtained from the back extraction product solution 11 by the copper electrolysis process 3 using an insoluble electrode. Further, the extraction residual liquid 12 containing iron sulfate is repeated in the leaching step 1 as a leaching circulating liquid. At this time, a predetermined amount of sulfuric acid 13 and ferrous sulfate or ferric sulfate 14 is necessary in the leachate adjustment step 4 to adjust pH, iron concentration, oxidation-reduction potential, etc. of the aqueous iron sulfate solution 8 that is the leachate. However, according to the leaching method of the present invention, the amount of sulfuric acid used can be reduced.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属、鉱物割合及び固定炭素の分析方法は、以下の通りである。
(1)金属の分析:ICP発光分析法で行った。
(2)鉱物割合の分析:顕微鏡観察によって求めた。
(3)固定炭素の分析:JIS K 2425によって求めた。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the metal used in an Example and a comparative example, a mineral ratio, and fixed carbon is as follows.
(1) Metal analysis: ICP emission analysis was performed.
(2) Analysis of mineral ratio: Determined by microscopic observation.
(3) Analysis of fixed carbon: Determined according to JIS K 2425.

また、実施例及び比較例で用いた銅精鉱の化学分析値と鉱物割合を表1に示す。表1より、前記銅精鉱は含有される銅のほぼ全てが黄銅鉱であることが分る。   In addition, Table 1 shows the chemical analysis values and mineral ratios of the copper concentrates used in the examples and comparative examples. From Table 1, it can be seen that almost all of the copper contained in the copper concentrate is chalcopyrite.

Figure 2007204830
Figure 2007204830

また、固定炭素含有材料として実施例及び比較例で用いた市販活性炭の固定炭素の分析値を表2に示す。   In addition, Table 2 shows analytical values of fixed carbon of commercially available activated carbon used in Examples and Comparative Examples as a fixed carbon-containing material.

Figure 2007204830
Figure 2007204830

(実施例1)
原料として、上記銅精鉱を、微生物を滅菌するためアルコール洗浄した後、滅菌室内で自然乾燥させたものを使用した。また、浸出液としては、硫酸第一鉄(試薬特級)を水に溶解して、鉄濃度を5g/Lとしたものを使用した。なお、浸出液のpHは、希硫酸(HSO濃度:64重量%)を滴下して2.6に調整した。
まず、容量300mLのフラスコ内に、上記銅精鉱10.0g(銅鉱物として8.8g)と75μm以下に粉砕した上記活性炭8.8gを量り取り、その中に、浸出液100mLを加えた後、フラスコの口にスポンジ性の栓を施した。この後、浸出条件を一定とするために30℃に調節した恒温室に設置した振とう機にフラスコを固定し、回転速度120rpmで旋回振とうした。
1週間後にフラスコを取り出し計量し、蒸発した水分を補給した。その後、固形物を十分沈降させてから、上澄液50mLを採取して分析用試料とした。残った試料溶液に、希硫酸を滴下してpHを2.6に調整し、上記浸出液50mLを新たに補充して、再び振とうした。ここで、試薬類、浸出液の調整に使用するガラス器具、ピペット等は全て滅菌処理したものを使用し、細菌の混入が起こらないように十分配慮した。
この操作を1週間毎に繰り返し、浸出を継続した。なお、上記反応槽内の浸出液の酸化還元電位(Ag/AgCl電極規準)は、350〜450mVの範囲に維持された。その後、前記分析用試料を用いて、銅の分析を行いCu浸出率の推移を求めた。浸出日数21日と42日での結果を表3に示す。また、このときの希硫酸(HSO濃度:64重量%)の使用量を表3に示す。
Example 1
As the raw material, the copper concentrate was washed with alcohol to sterilize microorganisms and then naturally dried in a sterilization chamber. Further, as the leachate, ferrous sulfate (reagent special grade) dissolved in water to have an iron concentration of 5 g / L was used. The pH of the leachate was adjusted to 2.6 by adding dropwise dilute sulfuric acid (H 2 SO 4 concentration: 64% by weight).
First, 10.0 g of the copper concentrate (8.8 g as a copper mineral) and 8.8 g of the activated carbon pulverized to 75 μm or less were weighed into a 300 mL flask, and 100 mL of a leachate was added to the flask. A sponge-like stopper was applied to the mouth of the flask. Thereafter, the flask was fixed to a shaker installed in a thermostatic chamber adjusted to 30 ° C. in order to make the leaching conditions constant, and swirled at a rotational speed of 120 rpm.
One week later, the flask was taken out and weighed to replenish the evaporated water. Thereafter, after solids were sufficiently settled, 50 mL of the supernatant was collected and used as a sample for analysis. To the remaining sample solution, dilute sulfuric acid was added dropwise to adjust the pH to 2.6, and 50 mL of the leachate was newly replenished and shaken again. Here, the reagents, glass instruments used for the adjustment of the exudate, pipettes, etc. were all sterilized, and sufficient consideration was given so that contamination of bacteria did not occur.
This operation was repeated every week to continue leaching. The redox potential (Ag / AgCl electrode standard) of the leachate in the reaction vessel was maintained in the range of 350 to 450 mV. Thereafter, copper was analyzed using the analytical sample to determine the transition of the Cu leaching rate. Table 3 shows the results of leaching days 21 and 42. Table 3 shows the amount of dilute sulfuric acid (H 2 SO 4 concentration: 64% by weight) used at this time.

(実施例2)
浸出液のpHを3.0に調整したこと以外は実施例1と同様に行い、その後、銅の分析を行いCu浸出率の推移を求めた。浸出日数21日と42日での結果を表3に示す。また、このときの希硫酸(HSO濃度:64重量%)の使用量を表3に示す。なお、上記反応槽内の浸出液の酸化還元電位(Ag/AgCl電極規準)は、350〜450mVの範囲に維持された。
(Example 2)
Except that the pH of the leachate was adjusted to 3.0, the same procedure as in Example 1 was performed, and then copper was analyzed to determine the transition of the Cu leaching rate. Table 3 shows the results of leaching days 21 and 42. Table 3 shows the amount of dilute sulfuric acid (H 2 SO 4 concentration: 64% by weight) used at this time. The redox potential (Ag / AgCl electrode standard) of the leachate in the reaction vessel was maintained in the range of 350 to 450 mV.

(実施例3)
浸出液のpHを3.5に調整したこと以外は実施例1と同様に行い、その後、銅の分析を行いCu浸出率の推移を求めた。浸出日数21日と42日での結果を表3に示す。また、このときの希硫酸(HSO濃度:64重量%)の使用量を表3に示す。なお、上記反応槽内の浸出液の酸化還元電位(Ag/AgCl電極規準)は、350〜450mVの範囲に維持された。
(Example 3)
Except that the pH of the leachate was adjusted to 3.5, it was performed in the same manner as in Example 1, and then the copper was analyzed to determine the transition of the Cu leaching rate. Table 3 shows the results of leaching days 21 and 42. Table 3 shows the amount of dilute sulfuric acid (H 2 SO 4 concentration: 64% by weight) used at this time. The redox potential (Ag / AgCl electrode standard) of the leachate in the reaction vessel was maintained in the range of 350 to 450 mV.

(比較例1)
浸出液のpHを2.0に調整したこと以外は実施例1と同様に行い、その後、銅の分析を行いCu浸出率の推移を求めた。浸出日数21日と42日での結果を表3に示す。また、このときの希硫酸(HSO濃度:64重量%)の使用量を表3に示す。なお、上記反応槽内の浸出液の酸化還元電位(Ag/AgCl電極規準)は、350〜450mVの範囲に維持された。
(Comparative Example 1)
Except having adjusted the pH of the leaching solution to 2.0, it carried out similarly to Example 1, and analyzed copper and calculated | required transition of Cu leaching rate after that. Table 3 shows the results of leaching days 21 and 42. Table 3 shows the amount of dilute sulfuric acid (H 2 SO 4 concentration: 64% by weight) used at this time. The redox potential (Ag / AgCl electrode standard) of the leachate in the reaction vessel was maintained in the range of 350 to 450 mV.

(比較例2)
浸出液のpHを1.5に調整したこと以外は実施例1と同様に行い、その後、銅の分析を行いCu浸出率の推移を求めた。浸出日数21日と42日での結果を表3に示す。また、このときの希硫酸(HSO濃度:64重量%)の使用量を表3に示す。なお、上記反応槽内の浸出液の酸化還元電位(Ag/AgCl電極規準)は、350〜450mVの範囲に維持された。
(Comparative Example 2)
Except that the pH of the leachate was adjusted to 1.5, it was carried out in the same manner as in Example 1, and then the copper was analyzed to determine the transition of the Cu leach rate. Table 3 shows the results of leaching days 21 and 42. Table 3 shows the amount of dilute sulfuric acid (H 2 SO 4 concentration: 64% by weight) used at this time. The redox potential (Ag / AgCl electrode standard) of the leachate in the reaction vessel was maintained in the range of 350 to 450 mV.

(比較例3)
活性炭を添加しなかったこと、及び浸出液のpHを2.0に調整したこと以外は実施例1と同様に行い、その後、銅の分析を行いCu浸出率の推移を求めた。浸出日数21日と42日での結果を表3に示す。また、このときの希硫酸(HSO濃度:64重量%)の使用量を表3に示す。
(Comparative Example 3)
Except that the activated carbon was not added and the pH of the leaching solution was adjusted to 2.0, it was performed in the same manner as in Example 1, and then the copper was analyzed to determine the transition of the Cu leaching rate. Table 3 shows the results of leaching days 21 and 42. Table 3 shows the amount of dilute sulfuric acid (H 2 SO 4 concentration: 64% by weight) used at this time.

Figure 2007204830
Figure 2007204830

表3より、実施例1〜3では、浸出促進剤として固定炭素含有材料を混合した後、得られた混合物を所定の鉄濃度とpHに調整された硫酸鉄水溶液に浸漬し、本発明の方法に従って行われたので、銅の浸出速度を高めてかつ高浸出率で浸出することができるとともに、硫酸の使用量を少なくすることができることが分かる。これに対して、比較例1〜3では、浸出液のpH、固定炭素含有材料の添加のいずれかがこれらの条件に合わないので、銅の浸出速度、硫酸の使用量のいずれかにおいて満足すべき結果が得られないことが分かる。   From Table 3, in Examples 1-3, after mixing fixed carbon containing material as a leaching promoter, the obtained mixture was immersed in the iron sulfate aqueous solution adjusted to predetermined iron concentration and pH, and the method of this invention Thus, it can be seen that the leaching rate of copper can be increased and leaching can be performed at a high leaching rate, and the amount of sulfuric acid used can be reduced. On the other hand, in Comparative Examples 1 to 3, either the pH of the leaching solution or the addition of the fixed carbon-containing material does not meet these conditions, so it should be satisfied in either the leaching rate of copper or the amount of sulfuric acid used. It turns out that a result is not obtained.

以上より明らかなように、本発明の黄銅鉱を含む硫化銅鉱の浸出方法は、銅精錬分野で利用される銅鉱物の浸出方法として好適である。特に、黄銅鉱が主たる銅鉱物である難浸出性の銅鉱石から銅を回収する湿式製錬プロセスにおいて、低硫酸使用量で銅を高浸出率で浸出する方法として有用である。   As is clear from the above, the leaching method of copper sulfide ore containing chalcopyrite of the present invention is suitable as a leaching method of copper mineral used in the copper refining field. In particular, it is useful as a method of leaching copper with a low amount of sulfuric acid and a high leaching rate in a hydrometallurgical process for recovering copper from a hardly leachable copper ore whose main mineral is chalcopyrite.

黄銅鉱の溶出速度と電位の関係を表す概念図である。It is a conceptual diagram showing the relationship between the elution rate of chalcopyrite and electric potential. 固定炭素含有材料共存下の黄銅鉱の溶出速度と電位の関係を表す概念図である。It is a conceptual diagram showing the relationship between the dissolution rate of chalcopyrite and electric potential in the presence of fixed carbon-containing materials. 本発明の浸出方法を用いた黄銅鉱を含む硫化銅鉱から電解銅を回収する湿式製錬プロセスの概略工程図である。It is a schematic process drawing of the hydrometallurgical process which collects electrolytic copper from copper sulfide ore containing chalcopyrite using the leaching method of the present invention.

符号の説明Explanation of symbols

1 浸出工程
2 溶媒抽出工程
3 銅電解工程
4 浸出液調整工程
5 硫化銅鉱
6 固定炭素含有材料
7 混合物
8 硫酸鉄水溶液
9 浸出残渣
10 浸出生成液
11 逆抽出生成液
12 抽出残液
13 硫酸
14 硫酸第一鉄又は硫酸第二鉄
15 電解銅
DESCRIPTION OF SYMBOLS 1 Leaching process 2 Solvent extraction process 3 Copper electrolysis process 4 Leaching liquid adjustment process 5 Copper sulfide ore 6 Fixed carbon containing material 7 Mixture 8 Iron sulfate aqueous solution 9 Leaching residue 10 Leaching product liquid 11 Back-extraction product liquid 12 Extraction residual liquid 13 Sulfuric acid 14 Ferrous or ferric sulfate 15 Electrolytic copper

Claims (3)

黄銅鉱を含む硫化銅鉱から銅を浸出する方法であって、
前記硫化銅鉱に、該硫化銅鉱中の銅鉱物の全重量に対して0.1〜2.0倍量の固定炭素含有材料を混合した後、得られた混合物を、鉄濃度を1〜20g/L、pHを2.6〜3.5に調整した硫酸鉄水溶液に浸漬することを特徴とする硫化銅鉱の浸出方法。
A method of leaching copper from a copper sulfide ore containing chalcopyrite,
After mixing a fixed carbon-containing material in an amount of 0.1 to 2.0 times the total weight of the copper mineral in the copper sulfide ore with the copper sulfide ore, the resulting mixture was adjusted to an iron concentration of 1 to 20 g / A method of leaching copper sulfide ore characterized by immersing in an aqueous iron sulfate solution having L and pH adjusted to 2.6 to 3.5.
前記固定炭素含有材料は、活性炭であることを特徴とする請求項1に記載の硫化銅鉱の浸出方法。   The copper sulfide ore leaching method according to claim 1, wherein the fixed carbon-containing material is activated carbon. 前記硫酸鉄水溶液の酸化還元電位(Ag/AgCl電極規準)を350〜450mVに調整することを特徴とする請求項1又は2に記載の硫化銅鉱の浸出方法。   The copper sulfide ore leaching method according to claim 1 or 2, wherein an oxidation-reduction potential (Ag / AgCl electrode standard) of the iron sulfate aqueous solution is adjusted to 350 to 450 mV.
JP2006027280A 2006-02-03 2006-02-03 Leaching method of copper sulfide ores containing chalcopyrite Active JP4904836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027280A JP4904836B2 (en) 2006-02-03 2006-02-03 Leaching method of copper sulfide ores containing chalcopyrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027280A JP4904836B2 (en) 2006-02-03 2006-02-03 Leaching method of copper sulfide ores containing chalcopyrite

Publications (2)

Publication Number Publication Date
JP2007204830A true JP2007204830A (en) 2007-08-16
JP4904836B2 JP4904836B2 (en) 2012-03-28

Family

ID=38484546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027280A Active JP4904836B2 (en) 2006-02-03 2006-02-03 Leaching method of copper sulfide ores containing chalcopyrite

Country Status (1)

Country Link
JP (1) JP4904836B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042858A (en) * 2009-08-24 2011-03-03 Jx Nippon Mining & Metals Corp Method for leaching laminated body of copper from copper sulfide ore
US8968442B2 (en) 2009-10-21 2015-03-03 The University Of British Columbia Leaching process for copper concentrates with a carbon catalyst
JP2015232170A (en) * 2014-05-12 2015-12-24 Jx日鉱日石金属株式会社 Method for refining silver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118991A (en) * 1974-06-28 1976-02-14 Cyprus Metallurg Process Kinzokuryukabutsuno sankaho
JP2003073752A (en) * 2001-08-27 2003-03-12 Mitsui Mining & Smelting Co Ltd Method for leaching pyrite containing chalcopyrite
JP2003147443A (en) * 2001-11-14 2003-05-21 Nippon Mining & Metals Co Ltd Method of leaching copper from copper sulfide ore
JP2003328051A (en) * 2002-05-17 2003-11-19 Sumitomo Metal Mining Co Ltd Method for leaching treatment of copper sulfide ore containing copper pyrite
JP2005015864A (en) * 2003-06-27 2005-01-20 Sumitomo Metal Mining Co Ltd Method for leaching out copper from copper sulfide ore containing copper pyrite
JP2005350719A (en) * 2004-06-10 2005-12-22 Sumitomo Metal Mining Co Ltd Method for leaching copper from copper sulfide ore containing copper pyrite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118991A (en) * 1974-06-28 1976-02-14 Cyprus Metallurg Process Kinzokuryukabutsuno sankaho
JP2003073752A (en) * 2001-08-27 2003-03-12 Mitsui Mining & Smelting Co Ltd Method for leaching pyrite containing chalcopyrite
JP2003147443A (en) * 2001-11-14 2003-05-21 Nippon Mining & Metals Co Ltd Method of leaching copper from copper sulfide ore
JP2003328051A (en) * 2002-05-17 2003-11-19 Sumitomo Metal Mining Co Ltd Method for leaching treatment of copper sulfide ore containing copper pyrite
JP2005015864A (en) * 2003-06-27 2005-01-20 Sumitomo Metal Mining Co Ltd Method for leaching out copper from copper sulfide ore containing copper pyrite
JP2005350719A (en) * 2004-06-10 2005-12-22 Sumitomo Metal Mining Co Ltd Method for leaching copper from copper sulfide ore containing copper pyrite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042858A (en) * 2009-08-24 2011-03-03 Jx Nippon Mining & Metals Corp Method for leaching laminated body of copper from copper sulfide ore
US8968442B2 (en) 2009-10-21 2015-03-03 The University Of British Columbia Leaching process for copper concentrates with a carbon catalyst
JP2015232170A (en) * 2014-05-12 2015-12-24 Jx日鉱日石金属株式会社 Method for refining silver

Also Published As

Publication number Publication date
JP4904836B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
Koleini et al. Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite
Wang Copper leaching from chalcopyrite concentrates
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
US8795612B2 (en) Leaching process for copper concentrates containing chalcopyrite
JP2009235525A (en) Method for leaching out gold
JP4360696B2 (en) Copper leaching method from copper sulfide ore using bacteria
JP2010133004A (en) Method of separating arsenic mineral from copper-containing substance with high arsenic content
JP5439997B2 (en) Method for recovering copper from copper-containing iron
WO2014076544A1 (en) Recovering lead from a lead material including lead sulfide
Chen et al. Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching
WO2015102865A1 (en) Process for dissolving or extracting at least one precious metal from a source material containing the same
US8968442B2 (en) Leaching process for copper concentrates with a carbon catalyst
JP4904836B2 (en) Leaching method of copper sulfide ores containing chalcopyrite
Jafari et al. Improvement of chalcopyrite atmospheric leaching using controlled slurry potential and additive treatments
JP4232694B2 (en) Leaching method of copper sulfide ores containing chalcopyrite
JP7299592B2 (en) beneficiation method
JP2013155416A (en) Method for leaching copper from copper sulfide ore containing copper pyrite
Zhao et al. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions
JP2008031504A (en) Method for leaching copper sulfide ore containing copper pyrite
Parsonage et al. Adverse effects of fluoride on hydrometallurgical operations
JP3991934B2 (en) Method of leaching copper from copper sulfide ores containing chalcopyrite
JP4525372B2 (en) Leaching method of copper sulfide ores containing chalcopyrite
AU734584B2 (en) Production of electrolytic copper from dilute solutions contaminated by other metals
JP2003147443A (en) Method of leaching copper from copper sulfide ore
Parga et al. Removal of aqueous lead and copper ions by using natural hydroxyapatite powder and sulphide precipitation in cyanidation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150