JP2007202734A - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP2007202734A
JP2007202734A JP2006023946A JP2006023946A JP2007202734A JP 2007202734 A JP2007202734 A JP 2007202734A JP 2006023946 A JP2006023946 A JP 2006023946A JP 2006023946 A JP2006023946 A JP 2006023946A JP 2007202734 A JP2007202734 A JP 2007202734A
Authority
JP
Japan
Prior art keywords
vibration
pressure sensor
eyepiece
cornea
state conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006023946A
Other languages
Japanese (ja)
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2006023946A priority Critical patent/JP2007202734A/en
Publication of JP2007202734A publication Critical patent/JP2007202734A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intraocular pressure sensor to realize a higher accuracy sensor system, a simpler structure and a smaller system which is a contact pressure sensor to be used as a tonometer used for an early diagnosis of glaucoma. <P>SOLUTION: The pressure sensor, employing a structure in which the main oscillation of a piezoelectric single crystal serves as a bending oscillation, is built so as to make an oscillation figure conversion section length (L) range from 75% to 92% of a maximum output value. By using the change of resonance frequency or resonance resistance (output voltage) in accordance with the height of the aqueous humor pressure at the time when the leakage energy of a lateral oscillation is emitted into aqueous humor through a cornea, the pressure sensor senses the intraocular pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、角膜上に直接接触させて眼圧を検知する圧力センサの構造に属し、侵襲性(in vivo)ではあるが精度の高い計測を可能にした、圧電振動式の小型眼圧センサに関する。   The present invention relates to a piezoelectric vibration-type compact intraocular pressure sensor that belongs to the structure of a pressure sensor that directly contacts a cornea to detect intraocular pressure, and that enables highly accurate measurement in spite of being invasive (in vivo). .

40歳以上の約6%の人が「緑内障」であると言われている。緑内障の最も基本的な2タイプは、開放性隅角緑内障(POAG)と、閉塞隅角緑内障(PACG)であり、それらは原発緑内障(Primary galucoma)に属し、房水の流出阻害の機序によるものが原因とされる。その中でも、正常眼圧緑内障(NTG)は遺伝的に日本人にとても多いことで学会等で話題となっている。一方、原発緑内障に対して続発性緑内障(Secondary galucoma)があるが、これは他の疾患が原因となって隅角の機能低下や、閉塞が発生するとされる。   About 6% of people over the age of 40 are said to have “glaucoma”. The two most basic types of glaucoma are open angle glaucoma (POAG) and closed angle glaucoma (PACG), which belong to primary glaucoma (Primary galucoma) and depend on the mechanism of aqueous outflow inhibition. Things are the cause. Among them, normal-tension glaucoma (NTG) is a topic in academic societies because it is genetically very common in Japanese. On the other hand, secondary glaucoma (Secondary galucoma) is associated with primary glaucoma, and this is considered to be caused by a decrease in corner function or obstruction due to other diseases.

そして、緑内障は失明原因の上位を占める病気であるにもかかわらず、その約半数の患者は罹患を自覚していないのが現状であり、また、一般に高齢者の疾患とみなされるが、どの年齢層でも起こりうること、一度罹患・進行すると視力の回復が困難であること、などから早期発見・早期治療が望まれる疾患の一つとなっている。
緑内障の早期発見には、以下の3項目、(1)眼圧検査(Tonometry)、(2)眼底検査(fundus examination)、(3)視野検査(perimetry)が必須検査となっており、これら3データの結果から総合的診断がなされる。本眼圧センサはこの様な社会的背景と、必要性から開発されたものである。
特開平5−253190号公報 なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を本出願までに発見するに至らなかった。
And although glaucoma is a disease that accounts for the top causes of blindness, about half of the patients are not aware of the illness and are generally regarded as diseases of the elderly. It is one of the diseases for which early detection and early treatment are desired because it can occur even in the layer, and it is difficult to recover vision once affected or progressed.
The following three items are essential for early detection of glaucoma: (1) Tonometry, (2) Fundus examination, and (3) Perimetry. A comprehensive diagnosis is made from the data results. This intraocular pressure sensor was developed from such a social background and necessity.
In addition, the applicant has not found any prior art documents related to the present invention by the present application other than the prior art documents specified by the prior art document information described above.

一般に使用される眼圧センサ装置(眼圧計)は、「接触式」と「非接触式」に大別される。接触式では、角膜に一定の圧力を加え、その変化量を測定する「圧入式」と、角膜に一定の変化を生じるのに必要な「力」、又は、「時間」を測定する「圧平式」があり、それぞれ、シェッツ眼圧計、アブラネーション眼圧計が有名である。これら接触式眼圧計は測定精度が高いが、操作が煩雑で熟練を要すること、装置も複雑・高価という問題がある。   Generally used intraocular pressure sensor devices (tonometers) are roughly classified into “contact type” and “non-contact type”. In the contact method, a constant pressure is applied to the cornea and the amount of change is measured. The press-fitting method, and the “force” or “time” required to cause a constant change in the cornea is measured. "Schetz Tonometer" and "Abrasion Tonometer" are famous. These contact-type tonometers have high measurement accuracy, but there are problems that the operation is complicated and skill is required, and the apparatus is complicated and expensive.

一方、集団の健康診断などで使用される「非接触式」は、対物レンズの中心に埋め込まれた空気噴射ノズルを被検眼に近接させ、その位置から角膜の中心に向けて空気を吹き付け、角膜の中央部が所定形状に変形した瞬間の空気圧を検出して計測値とする。この様な、非接触式では、被検眼角膜に対し空気噴射ノズルの位置合わせを正確にしなければ大きな測定誤差が生じることになる。被検眼は動き易く空気噴射ノズルの位置の正確なアライメントは困難であり、測定者の熟練と測定誤差が必至となっている。近年では自動でアライメントを行うものもあるが、出願人はその精度評価データを持ち合わせていない。   On the other hand, in the “non-contact type” used for group health examinations, an air injection nozzle embedded in the center of the objective lens is brought close to the eye to be examined, and air is blown toward the center of the cornea from that position. The air pressure at the moment when the central part of the lens is deformed into a predetermined shape is detected and used as a measured value. In such a non-contact type, a large measurement error occurs unless the alignment of the air injection nozzle with respect to the eye cornea to be examined is accurate. The eye to be examined is easy to move and it is difficult to accurately align the position of the air injection nozzle, and the skill of the measurer and measurement error are inevitable. In recent years, there are some that automatically perform alignment, but the applicant does not have the accuracy evaluation data.

上述する課題を解決するために本発明は、構造体となる振動部の固有振動により発生する屈曲振動を、振動部と一体化して構築した振動姿態変換部分内に導入(伝播)し同一周波数の横振動に変換した後、横振動を振動姿態変換部端部に構築した接眼部を介して眼球(角膜)内に拡散させ、角膜直下に存在する房水の圧力変化による振動拡散状態の変化を固有振動の周波数変化、あるいは、共振抵抗の変化として検知する圧力センサである。   In order to solve the above-described problems, the present invention introduces (propagates) bending vibration generated by the natural vibration of the vibration part serving as a structure into a vibration state conversion part constructed integrally with the vibration part, and has the same frequency. After conversion to lateral vibration, the lateral vibration is diffused into the eyeball (cornea) through the eyepiece constructed at the end of the vibration mode conversion part, and the change of vibration diffusion state due to the pressure change of aqueous humor present just under the cornea Is a pressure sensor that detects a change in frequency of natural vibration or a change in resonance resistance.

また、本発明では実験的に棒状の屈曲振動部の長手方向の片端と一体化して構築した振動姿態変換部の接続部を固定端とし、固定端と反対方向先端にある接眼部までの長さ(L:振動姿態変換部の長さ)を変えながら、接眼部全面を束縛固定して、前記振動出力値と、共振周波数を計測すると、振動出力値と、共振周波数の値が周期的に変化することから、振動出力値に着目し、その任意の一周期内で最大の出力となる値(最大出力値)に対し、振動出力値が75%から92%の範囲に相当する任意の長さに前記振動姿態変換部の長さ寸法(L)を設定した圧力センサである。   Further, in the present invention, the connecting portion of the vibration state converting portion constructed experimentally integrated with one end in the longitudinal direction of the rod-like bending vibration portion is defined as the fixed end, and the length to the eyepiece at the tip opposite to the fixed end is set. When the vibration output value and the resonance frequency are measured while the entire eyepiece is bound and fixed while changing the length (L: the length of the vibration state conversion portion), the vibration output value and the resonance frequency value are cyclic. Therefore, paying attention to the vibration output value, the vibration output value is an arbitrary value corresponding to the range of 75% to 92% with respect to the value (maximum output value) that is the maximum output within the arbitrary one cycle. It is the pressure sensor which set the length dimension (L) of the said vibration state conversion part to length.

なお、本発明のセンサ構造体は、圧電単結晶で構築されており、その接眼部面はポリシュ加工後、Ti薄膜を下地として、Au薄膜を構築し、更に疎水加工が施されていることを特徴とする。   The sensor structure of the present invention is constructed of a piezoelectric single crystal, and the eyepiece surface is polished with an Au thin film with a Ti thin film as a base and further subjected to hydrophobic processing. It is characterized by.

ここに、眼球断面概略と各部名称を図1に記載する。正常な人の場合、水晶体と角膜の間を満たす房水は、分泌産生と排出がバランス良く行われ、その圧力(眼圧)は一定に保持される。その一次的排出機構は前房の隅角にあり、正常な状態では房水流出の83〜96%を担い、2次的排出機構である副流出路や、ぶどう膜強膜間房水流出系で、排出全体の5〜15%程度を担っているが、緑内障では、隅角を主体とする流出阻害により房水の圧力が上昇することが判明しており、従って、房水の圧力を計測することは緑内障を診断する有力な手がかりとなる。   Here, the outline of the eyeball cross section and the names of each part are shown in FIG. In a normal person, the aqueous humor that fills the space between the lens and the cornea is well-balanced in production and excretion, and the pressure (intraocular pressure) is kept constant. Its primary drainage mechanism is located at the corner of the anterior chamber, and in the normal state is responsible for 83 to 96% of the aqueous humor outflow. The secondary drainage mechanism is the secondary outflow tract and the uveal-scleral aqueous humor outflow system. However, in glaucoma, it has been found that the pressure of aqueous humor increases due to outflow inhibition mainly in the corners. Therefore, the pressure of aqueous humor is measured. Doing is a powerful clue to diagnosing glaucoma.

従って本発明では、圧電単結晶構造体の固有振動である屈曲振動を用い、振動伝達系となる振動姿態変換部において横振動に変換して角膜に一定圧力で接触させて振動エネルギを角膜を介して房水中に拡散(リーク)させる。そのとき、房水の圧力に応じてリークエネルギの浸透条件が異なるため、振動系から見た振動伝達系のインピーダンスが変化することで主振動に対し振動の束縛(抵抗)量の変化となって、その結果、固有振動周波数や、共振抵抗の値が変化することによる振動出力電圧の変化から、これらの値を検知する事で眼圧の計測が可能となる。その結果、接触式のため測定精度が高く、かつ、簡便に測定することが可能であり、安価・小型・可般式の眼圧センサを提供することが可能となる。   Therefore, in the present invention, flexural vibration, which is the natural vibration of the piezoelectric single crystal structure, is used, converted into lateral vibration in the vibration state conversion section serving as a vibration transmission system, and brought into contact with the cornea at a constant pressure to transmit vibration energy through the cornea. Diffuse (leak) into the aqueous humor. At that time, since the permeation conditions of leak energy differ depending on the pressure of the aqueous humor, the impedance of the vibration transmission system as seen from the vibration system changes, resulting in a change in the amount of vibration restraint (resistance) relative to the main vibration. As a result, it is possible to measure intraocular pressure by detecting these values from changes in the vibration output voltage caused by changes in the natural vibration frequency and the value of the resonance resistance. As a result, it is possible to provide a low-cost, small-sized, and general-purpose tonometric sensor that has high measurement accuracy and can be easily measured because of the contact type.

本発明は、圧電単結晶構造体の固有振動である屈曲振動エネルギを伝播系内で横振動に変換され、その振動エネルギが伝播系の接眼部を介して角膜下の房水に伝達され、その房水の圧力に対応した振動エネルギモレの状態を反映した固有振動周波数や、共振抵抗の値が変化から眼圧を計測するもので、接触式のため測定精度が高く、しかも、簡便に測定することが可能で、正確・安価・小型・可般式の眼圧センサの提供が可能となる。   In the present invention, bending vibration energy, which is a natural vibration of the piezoelectric single crystal structure, is converted into lateral vibration in the propagation system, and the vibration energy is transmitted to the aqueous humor under the cornea via the eyepiece of the propagation system, Measures intraocular pressure from changes in the natural vibration frequency and resonance resistance value reflecting the state of vibration energy mole corresponding to the pressure of the aqueous humor. Therefore, it is possible to provide an accurate, inexpensive, small-sized, and general-purpose tonometric sensor.

以下、本発明の実施形態について図を参照しながら説明する。
図2は本発明の内容を説明するために、一例として圧電単結晶の一つ、水晶材料を使用した音叉型センサ素子を示しており、簡略のため屈曲振動を励振させるために必要な電極、リード部などは省略して記載している。図2において、線(a)−(a’)で仕切られた上側を振動部、下側を振動姿態変換部とし、この境界部を振動部の固定端とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows a tuning fork type sensor element using one of the piezoelectric single crystals and a quartz material as an example for explaining the contents of the present invention. For simplicity, electrodes necessary for exciting flexural vibration, The lead portion and the like are omitted. In FIG. 2, the upper side partitioned by the lines (a)-(a ′) is the vibration part, the lower side is the vibration state conversion part, and this boundary part is the fixed end of the vibration part.

音叉型センサ素子は、外部より交流電圧を印加すると、図3に示すように振動部には自由端(固定端の反対側の振動部)を最大振幅とする実線と点線で示す屈曲振動が発生するため、それぞれの振動部枝の固定端近傍の振動姿態変換部には、この主振動を受けて振動姿態変換部長手方向に伸縮振動が誘発される。即ち、固定端は実際は完全な“固定”ではなく一つの振動部枝の左右で反対方向の伸縮振動が誘発され、2本の振動部枝による振動は振動姿態変換部の表裏を貫通し、左右対称に2点発生するノーダルポイント(図3に黒点として表記)を中心に回転する往復振動になり、その結果、振動姿態変換部固定端の接眼部には紙面に平行な「横振動」が誘起されることになる。   When an AC voltage is applied from the outside to the tuning fork type sensor element, as shown in FIG. 3, a bending vibration indicated by a solid line and a dotted line with the maximum amplitude at the free end (vibrating part opposite the fixed end) is generated in the vibrating part. For this reason, the vibration state conversion unit near the fixed end of each vibration unit branch receives this main vibration and induces stretching vibration in the longitudinal direction of the vibration state conversion unit. In other words, the fixed end is not completely “fixed”, and stretching vibrations in the opposite direction are induced on the left and right of one vibration part branch, and the vibration by the two vibration part branches penetrates the front and back of the vibration state conversion part. It becomes a reciprocating vibration that rotates around a nodal point (symbolized as a black dot in Fig. 3) that occurs symmetrically. As a result, the eyepiece at the fixed end of the vibration state conversion part is a "lateral vibration" parallel to the paper surface. Will be induced.

この時、センサ素子の振動部の固定端と接眼部までの距離、すなわち、振動姿態変換部の長手方向の長さを(L)として、実験的に、この寸法を変化させながら、接眼部を別途基台に接着剤などを使用して固定(束縛固定)して屈曲振動を励振すると、図4(a)に示す様に、センサ素子の共振周波数、出力電圧が一定の周期を持って変化する事が確認された。これは図4(b)に示す主振動である屈曲振動が姿態を変化させながら、振動姿態変換部内を伝播するが、そのとき、長さ(L)に対応して特定の定在波を持って伝播していることを示す現象で、周波数変化率が大きい、あるいは、出力電圧が低下しているL寸法の部分では、振動エネルギが接眼部を介して固定用基台にリークしていることを示し、また、反対に周波数の変化が無い、あるいは、出力電圧の高いL寸法の部分では、振動エネルギが閉じ込められ、外部へのエネルギ流出が無いことを意味している。   At this time, the distance between the fixed end of the vibration part of the sensor element and the eyepiece part, that is, the length in the longitudinal direction of the vibration state conversion part is set to (L), and the eyepiece is experimentally changed while changing this dimension. When the part is separately fixed to the base using an adhesive or the like (bound and fixed) and bending vibration is excited, the resonance frequency and output voltage of the sensor element have a certain period as shown in FIG. It was confirmed that it changed. This is because the flexural vibration, which is the main vibration shown in FIG. 4 (b), propagates in the vibration state conversion section while changing the shape, but at that time, it has a specific standing wave corresponding to the length (L). The vibration energy leaks to the fixing base through the eyepiece in the portion of the L dimension where the frequency change rate is large or the output voltage is low. On the contrary, there is no change in frequency, or in the portion of the L dimension where the output voltage is high, it means that vibration energy is confined and there is no outflow of energy to the outside.

通常、共振系振動子を設計する場合には、主振動の振動エネルギが支持系に流出しないよう、周波数の変化が無い、あるいは、出力電圧の高いL寸法に設定して振動エネルギを閉じ込め、外部の影響(擾乱)を受けない様に作製するが、本発明の眼圧センサでは、主振動と成る屈曲振動エネルギ振動姿態変換部で横振動に変換し、その振動エネルギを接眼部を介して角膜にリークさせ、角膜下の房水の圧力に応じた振動エネルギの変化量による共振周波数変化、あるいは、出力電圧変化から眼圧を計測することを特徴とする。   Normally, when designing a resonant oscillator, the vibration energy is confined by setting the L dimension so that the vibration energy of the main vibration does not flow out to the support system, or the frequency is not changed, or the output voltage is set to a high L dimension. However, in the intraocular pressure sensor of the present invention, the bending vibration energy, which is the main vibration, is converted into lateral vibration by the vibration state conversion unit, and the vibration energy is transmitted through the eyepiece. Intraocular pressure is measured from a change in resonance frequency or a change in output voltage caused by a change in vibration energy corresponding to the pressure of aqueous humor under the cornea.

従って、振動エネルギのリーク量の設定は、重要であり最大出力値の75%から92%の間になる様に、図4(b)に示すようにL寸法を設定して、振動エネルギが接眼部を介して外部(測定部位)に漏れる(リークする)様に設定することが振動への擾乱を最小にし、また、高感度を維持する条件となる。   Therefore, the setting of the leakage amount of vibration energy is important, and the L dimension is set as shown in FIG. 4B so that the vibration energy is in contact with the maximum output value between 75% and 92%. Setting so as to leak (leak) to the outside (measurement site) via the eye part is a condition for minimizing vibration disturbance and maintaining high sensitivity.

図5は、眼圧測定時の様子を図示したもので、センサ素子はその振動のため外部にある発振器回路と接続するのに電気的2端子が必要であり、図3に記載したノーダルポイント(振動姿態の形態上は、振動姿態変換部表裏を貫通する2点であるが、振動姿態変換部の表面上に表現すれば、表裏・左右対称の位置に現れるので4点になる)と成る所をセンサ素子支持部とすると共に、これと兼用して電気的2端子を引き出す構造としている。なお、接眼部は、機械加工によりポリシュ加工をして平坦化処理を施し、その表面にTi薄膜をベースにAu薄膜をスパッタなどで構築した後、測定直前に殺菌洗浄と疎水処理を施して使用することが望ましい。これは、涙などがセンサ素子の振動姿態変換部側面部を濡らし、振動エネルギの不要リークによる測定誤差の発生を防止する効果を持たせるためである。   FIG. 5 is a diagram illustrating a state during measurement of intraocular pressure. The sensor element requires two electrical terminals for connection to an external oscillator circuit due to the vibration, and the nodal point described in FIG. (In terms of the shape of the vibration mode, there are two points penetrating the front and back of the vibration mode conversion unit, but if expressed on the surface of the vibration mode conversion unit, it appears at the front and back and left and right symmetrical positions, so there are four points) This is used as a sensor element support portion, and also serves as a structure for drawing out two electrical terminals. The eyepiece is polished by mechanical polishing and flattened. The surface of the eyepiece is constructed by sputtering a thin Au film based on a Ti thin film, and then subjected to sterilization washing and hydrophobic treatment immediately before measurement. It is desirable to use it. This is because tears and the like wet the side surface of the vibration state converting portion of the sensor element, and have the effect of preventing the occurrence of measurement errors due to unnecessary leakage of vibration energy.

そして、眼圧測定は被検眼を麻酔し、センサ素子を固有振動(発振)させ、周波数、あるいは、出力電圧を記録した後、接眼部(振動姿態変換部の底部)を一定圧力(接眼部全体が接触したことを目安とする)で被検眼角膜に接触させ、そのときの周波数、あるいは、出力電圧との差から眼圧を検知することが可能となる。   In intraocular pressure measurement, the eye to be examined is anesthetized, the sensor element is caused to vibrate (oscillate), the frequency or the output voltage is recorded, and then the eyepiece (the bottom of the vibration state converter) is kept at a constant pressure (eyepiece). It is possible to detect the intraocular pressure from the frequency or the difference between the output voltage and the contacted eye cornea.

眼球断面の概略図と各部名称を示す平面図である。It is the top view which shows the schematic of an eyeball cross section, and each part name. 本発明の眼圧センサの概念を示す概念図である。It is a conceptual diagram which shows the concept of the intraocular pressure sensor of this invention. 本発明の眼圧センサの振動姿態の概念を示す概念図である。It is a conceptual diagram which shows the concept of the vibration mode of the intraocular pressure sensor of this invention. (a)共振周波数変化、及び、振動出力変化と、振動姿態変換部長さ(L)との関係を示すグラフである。 (b)(a)のグラフに於ける任意の周期について、振動出力変化と振動姿態変換部長さとの関係を拡大して記載し、設定する振動姿態変換部長さの位置を説明したグラフである。(A) It is a graph which shows the relationship between the resonance frequency change and vibration output change, and the vibration mode conversion part length (L). (B) It is the graph which expanded and described the relationship between a vibration output change and a vibration state conversion part length about the arbitrary periods in the graph of (a), and demonstrated the position of the vibration state conversion part length to set. 眼圧測定時の様子を示す状態図である。It is a state figure which shows the mode at the time of intraocular pressure measurement.

Claims (3)

構造体に構築した振動部の固有振動により発生する屈曲振動を、前記振動部と一体化した振動姿態変換部分内に導入し、同一周波数の横振動に変換した後、前記横振動を振動姿態変換部端部に構築した接眼部を介して眼球(角膜)内に拡散させ、角膜直下に存在する房水の圧力変化による振動拡散状態の変化を固有振動の周波数変化、あるいは、共振抵抗の変化として検知することを特徴とした圧力センサ。 The bending vibration generated by the natural vibration of the vibration part built in the structure is introduced into the vibration state conversion part integrated with the vibration part, converted into the horizontal vibration of the same frequency, and then the transverse vibration is converted into the vibration state. Diffuses in the eyeball (cornea) through the eyepiece constructed at the end of the head part, and changes in the vibration diffusion state due to changes in the aqueous humor present directly under the cornea can change the frequency of the natural vibration or change in the resonance resistance. A pressure sensor characterized by detecting as 請求項1の記載において、棒状の屈曲振動部の長手方向の片端と一体化して構築した振動姿態変換部との接続部を固定端とし、前記振動姿態変換部の固定端と反対方向先端にある接眼部までの長さ寸法(L:前記、振動姿態変換部の長さ)を、その長さを変化させると周期的に変化する振動出力値の任意の周期内で成る最大出力値の75%から92%の範囲に設定したことを特徴とした圧力センサ。 The connection part with the vibration state conversion part constructed integrally with one end in the longitudinal direction of the rod-shaped bending vibration part as a fixed end in the description of claim 1, and located at a tip opposite to the fixed end of the vibration state conversion part The maximum output value of 75 that is within an arbitrary period of the vibration output value that changes periodically when the length of the eyepiece is changed (L: the length of the vibration state conversion unit) is changed. A pressure sensor characterized by being set in a range of% to 92%. 請求項1と請求項2項の記載において、センサ構造体が、圧電単結晶で構築されており、その接眼部面はポリシュ加工後Au薄膜を構築し、更に疎水加工が施されていることを特徴とした圧力センサ。 3. The sensor structure according to claim 1 and claim 2, wherein the sensor structure is constructed of a piezoelectric single crystal, the eyepiece surface is constructed of an Au thin film after polishing and further subjected to hydrophobic processing. Features a pressure sensor.
JP2006023946A 2006-01-31 2006-01-31 Pressure sensor Pending JP2007202734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023946A JP2007202734A (en) 2006-01-31 2006-01-31 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023946A JP2007202734A (en) 2006-01-31 2006-01-31 Pressure sensor

Publications (1)

Publication Number Publication Date
JP2007202734A true JP2007202734A (en) 2007-08-16

Family

ID=38482744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023946A Pending JP2007202734A (en) 2006-01-31 2006-01-31 Pressure sensor

Country Status (1)

Country Link
JP (1) JP2007202734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139435A1 (en) 2008-05-15 2009-11-19 国立大学法人筑波大学 Device for measuring eigenfrequency of eyeball tissue and noncontact tonometer using the same
WO2011062309A1 (en) * 2009-11-18 2011-05-26 순천향대학교 산학협력단 Device for measuring intraocular pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139435A1 (en) 2008-05-15 2009-11-19 国立大学法人筑波大学 Device for measuring eigenfrequency of eyeball tissue and noncontact tonometer using the same
US8545404B2 (en) 2008-05-15 2013-10-01 University Of Tsukuba Eyeball tissue characteristic frequency measurement device and non-contact tonometer utilizing the same
WO2011062309A1 (en) * 2009-11-18 2011-05-26 순천향대학교 산학협력단 Device for measuring intraocular pressure

Similar Documents

Publication Publication Date Title
Kanngiesser et al. Dynamic contour tonometry: presentation of a new tonometer
US7713197B2 (en) Pressure measuring method, pressure measuring device, and tonometer
US8545404B2 (en) Eyeball tissue characteristic frequency measurement device and non-contact tonometer utilizing the same
JPWO2008072527A1 (en) Tonometry device
DE602009000454D1 (en) Contactless ultrasonic tonometer
CN104367347B (en) A kind of measurement intraocular pressure and the viscoelastic system and method for cornea
JP3700062B2 (en) Retinal blood pressure gauge
Salvetat et al. Repeatability and accuracy of applanation resonance tonometry in healthy subjects and patients with glaucoma
JP2003532473A (en) Intraocular pressure test
Singh et al. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument
JP5397670B2 (en) Non-contact ultrasonic tonometer
JP2007202734A (en) Pressure sensor
JP4562970B2 (en) Method and apparatus for determining intraocular pressure by measuring changes in frequency characteristics
EA007554B1 (en) A force feedback tonometer
US3613666A (en) System for detecting glaucoma
Eklund et al. A resonator sensor for measurement of intraocular pressure-evaluation in an in vitro pig-eye model
JP7210010B2 (en) Lens hardness measuring device
Eklund et al. Evaluation of applanation resonator sensors for intra-ocular pressure measurement: results from clinical and in vitro studies
JP5435417B2 (en) Tonometry device
Morán et al. Polyvinylidene flouride polymer applied in an intraocular pressure sensor
RU2667962C1 (en) Eye tonometry method
US20220409044A1 (en) System and method for measuring at least one parameter of eye
CN114098634A (en) Optical tonometer
RU2361506C2 (en) Method of eye tonometry
JP5962226B2 (en) Ocular biological information collecting apparatus and ocular biological information collecting method