JP2007198975A - Both-end open type half wavelength resonator and method of measuring dielectric constant using it - Google Patents

Both-end open type half wavelength resonator and method of measuring dielectric constant using it Download PDF

Info

Publication number
JP2007198975A
JP2007198975A JP2006019576A JP2006019576A JP2007198975A JP 2007198975 A JP2007198975 A JP 2007198975A JP 2006019576 A JP2006019576 A JP 2006019576A JP 2006019576 A JP2006019576 A JP 2006019576A JP 2007198975 A JP2007198975 A JP 2007198975A
Authority
JP
Japan
Prior art keywords
open
dielectric constant
value
dielectric
ended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006019576A
Other languages
Japanese (ja)
Other versions
JP4776382B2 (en
Inventor
Yoshihiro Nakao
吉宏 中尾
Akira Nakayama
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006019576A priority Critical patent/JP4776382B2/en
Publication of JP2007198975A publication Critical patent/JP2007198975A/en
Application granted granted Critical
Publication of JP4776382B2 publication Critical patent/JP4776382B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring a dielectric constant by suppressing deterioration of a non-load Q value in particular, even when thickness is 50 μm or less by measuring the dielectric constant of a dielectric thin layer arranging a conductor on upper and lower faces at high precision and to provide a both-end open type half wavelength resonator. <P>SOLUTION: The both-end open type half wavelength resonator A1 comprises providing a rectangular strip conductor 3 on one face of the dielectric thin layer 1, providing a ring-like ground conductor 4 on the other face of the dielectric thin layer 1, and being arranged so that at least one end in a long axis direction of the slip conductor 3 and a part of the ground conductor 4 are overlapped in viewing from a layered direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、誘電体薄層の上下面に配置された導体によって挟まれる領域のマイクロ波帯域における誘電定数を測定するための両端開放形半波長共振器およびこれを用いた誘電定数測定方法に関するものである。   The present invention relates to an open-ended half-wave resonator for measuring a dielectric constant in a microwave band in a region sandwiched between conductors disposed on upper and lower surfaces of a thin dielectric layer, and a dielectric constant measuring method using the same. It is.

近年においては、移動体通信技術の発展、普及に伴い、マイクロ波回路構成用の誘電体基板の誘電定数測定方法が強く求められている。誘電体基板のマイクロ波における誘電定数測定方法は種々提案されているが、その中でも空洞共振器法(JIS R 1641、2002年制定)は高精度測定法として認知されている。なお、この空洞共振器法では基板の面方向の誘電定数が測定される。   In recent years, with the development and popularization of mobile communication technology, there is a strong demand for a dielectric constant measurement method for dielectric substrates for microwave circuit configuration. Various methods for measuring dielectric constants of microwaves on dielectric substrates have been proposed. Among them, the cavity resonator method (JIS R 1641, established in 2002) is recognized as a high-precision measurement method. In this cavity resonator method, the dielectric constant in the surface direction of the substrate is measured.

一方、セラミックスが電子部品として使用される場合、同時焼成技術によりメタライズとセラミックスとが同時に焼成され、電子部品を構成する場合が多い。この場合、セラミックスの誘電定数は、セラミックスだけで焼成した場合との焼成条件の違いや、メタライズとの相互拡散により変化する可能性があるので、誘電定数測定は同時焼成体、特にメタライズ間に挟まれたセラミックス(試料)で測定する必要がある。しかしながら、前記空洞共振器法は、一対の金属製有底筒状部材で測定試料を挟持するようにして測定するものであるため、測定できる試料はセラミックス単体の基板である必要があり、メタライズと同時焼成されたセラミック基板の測定はできない。   On the other hand, when ceramics are used as electronic parts, metallized and ceramics are often fired simultaneously by a simultaneous firing technique to constitute electronic parts. In this case, the dielectric constant of ceramics may change due to differences in firing conditions compared to firing with ceramics alone or due to interdiffusion with metallization, so dielectric constant measurement is sandwiched between cofired bodies, especially metallized. It is necessary to measure with ceramics (sample). However, since the cavity resonator method is to measure by sandwiching a measurement sample between a pair of metal bottomed cylindrical members, the sample that can be measured needs to be a substrate of a single ceramic, Measurement of the co-fired ceramic substrate is not possible.

そこで、メタライズと同時焼成されたセラミック基板、特にメタライズ間に挟まれたセラミック基板の誘電特性を測定する方法として、マイクロストリップラインリング共振器を利用した測定方法が提案されている(例えば、非特許文献1参照)。このマイクロストリップラインリング共振器は、セラミック層の上面にリング状導体を形成し、下面にベタグランド導体を形成してなるもので、この測定方法では、同一形状のリング状導体を具備する厚さの異なるセラミック基板をそれぞれ同時焼成することによってマイクロストリップラインリング共振器を形成し、これらのマイクロストリップラインリング共振器の無負荷Q値の差を測定して、メタライズの導電率とセラミック層の誘電正接を決定している。この方法では、セラミック層の厚さが薄いと導体損が大きくなることを測定原理として利用しており、さらに厚さの異なるセラミック層を構成する誘電体の誘電特性は等しいと仮定している。
Aly E. Fathy, et al., “An Innovative Semianalytical Technique for Ceramic Evaluation at Microwave Frequencies,” IEEE Trans. MTT., vol. 50, pp. 2247-2252, Oct. 2002.
Therefore, a measurement method using a microstrip line ring resonator has been proposed as a method for measuring the dielectric characteristics of a ceramic substrate co-fired with metallization, particularly a ceramic substrate sandwiched between metallizations (for example, non-patented). Reference 1). This microstrip line ring resonator is formed by forming a ring-shaped conductor on the upper surface of the ceramic layer and a solid ground conductor on the lower surface. In this measurement method, the thickness of the ring-shaped conductor having the same shape is provided. The microstrip line ring resonators are formed by simultaneously firing different ceramic substrates, and the difference between the unloaded Q values of these microstrip line ring resonators is measured to determine the conductivity of the metallization and the dielectric of the ceramic layer. The tangent is determined. This method uses the fact that the conductor loss increases when the ceramic layer is thin as a measurement principle, and further assumes that the dielectric properties of the ceramic layers having different thicknesses are equal.
Aly E. Fathy, et al., “An Innovative Semianalytical Technique for Ceramic Evaluation at Microwave Frequencies,” IEEE Trans. MTT., Vol. 50, pp. 2247-2252, Oct. 2002.

しかしながら、メタライズと同時焼成されたセラミックス基板においては、セラミック層の厚さが薄いとき、メタライズからの拡散による誘電特性の変化が相対的に大きくなるため、上記測定法は精度が低いという問題があった。また、セラミック層の厚さが50μm以下となるとき、上記のマイクロストリップラインリング共振器では導体損が非常に大きくなるため、無負荷Q値が低下し、測定が困難であるという問題があった。   However, in a ceramic substrate co-fired with metallization, when the thickness of the ceramic layer is thin, the change in dielectric properties due to diffusion from the metallization becomes relatively large. It was. In addition, when the thickness of the ceramic layer is 50 μm or less, the above-mentioned microstrip line ring resonator has a very large conductor loss, so that there is a problem that the unloaded Q value is lowered and measurement is difficult. .

本発明は、上下面に導体が配置された誘電体薄層の誘電定数を高い精度で測定でき、特に厚さが50μm以下となっても無負荷Q値の低下を抑制する誘電定数測定方法および両端開放形半波長共振器を提供することを目的とする。   The present invention provides a dielectric constant measuring method capable of measuring the dielectric constant of a thin dielectric layer having conductors on the upper and lower surfaces with high accuracy, and in particular, suppressing the decrease in no-load Q value even when the thickness is 50 μm or less. An object is to provide an open-ended half-wave resonator.

本発明は、誘電体薄層の一方の面に矩形状のストリップ導体を設けるとともに、前記誘電体薄層の他方の面に環状のグランド導体を設け、前記ストリップ導体の長軸方向における少なくとも一方の端部と前記グランド導体の一部とが積層方向から見て重なり合うように配置されていることを特徴とする両端開放形半波長共振器である。   According to the present invention, a rectangular strip conductor is provided on one surface of the thin dielectric layer, and an annular ground conductor is provided on the other surface of the thin dielectric layer, and at least one of the strip conductors in the major axis direction is provided. An open both-end half-wave resonator, wherein the end portion and a part of the ground conductor are arranged so as to overlap each other when viewed from the stacking direction.

このような両端開放形半波長共振器は、後述の誘電定数測定方法に有効に用いることができる。この両端開放形半波長共振器によれば、両端部のキャパシタンスを大きくできるため、フィルタ等の小型化に有効である。また、後述の図4に示すような両端開放形マイクロストリップライン共振器に比較して、導体損を小さくできるので、低損失化に有効である。なお、後述の誘電定数測定方法に用いるだけでなく、セラミックス基板を利用したフィルタ等の電子部品の基本構造となる共振器としても有効である。   Such an open-ended half-wave resonator can be effectively used in a dielectric constant measurement method described later. According to this open-ended half-wavelength resonator, the capacitance at both ends can be increased, which is effective for reducing the size of a filter or the like. In addition, the conductor loss can be reduced as compared with a microstrip line resonator having both ends open as shown in FIG. 4 described later, which is effective in reducing the loss. It is effective not only for the dielectric constant measurement method described later, but also as a resonator serving as a basic structure of an electronic component such as a filter using a ceramic substrate.

そして、本発明の第一の誘電定数測定方法は、前記両端開放形半波長共振器を励振させて共振周波数および無負荷Q値の少なくともいずれか一方を測定し、前記共振周波数および前記無負荷Q値の少なくともいずれか一方の測定値から前記誘電体薄層の厚さ方向における誘電定数を算出することを特徴とするものである。なお、両端開放形半波長共振器における半波長とは、ストリップ導体の長軸方向の長さが半波長であることを意味する。   In the first dielectric constant measurement method of the present invention, the open-ended half-wave resonator is excited to measure at least one of a resonance frequency and an unloaded Q value, and the resonance frequency and the unloaded Q are measured. The dielectric constant in the thickness direction of the dielectric thin layer is calculated from at least one of the measured values. The half-wavelength in the open both-end half-wave resonator means that the length of the strip conductor in the major axis direction is a half-wavelength.

このような誘電定数測定方法によれば、共振空間に対する電界エネルギーの比率が、ストリップ導体とグランド導体とが積層方向に重なり合う部分で高くなるため、これらの導体間に挟まれた誘電体薄層の誘電定数を高精度で測定できる。また、グランド導体が環状に形成されグランド導体の内側に導体非形成領域が存在することで、導体損を抑制でき無負荷Q値を高くすることができる。これにより、測定が容易となるとともに測定精度の改善を図ることができる。さらに、誘電定数測定のための両端開放形半波長共振器と誘電体薄層とを平面回路として一体に作製できるため、立体共振器を利用する場合に比べ、共振器組み立てに伴う測定誤差を除くことができる。即ち、共振器作製は、例えば、通常の同時焼成技術により、誘電体を形成するグリーンシートの上下面にスクリーン印刷等によりストリップ導体とグランド導体とを形成するメタライズペーストを塗布し、これを焼成することによって容易に作製することができ、共振器作製に伴う測定誤差を最小限に抑制できる。   According to such a dielectric constant measurement method, since the ratio of the electric field energy to the resonance space is high at the portion where the strip conductor and the ground conductor overlap in the stacking direction, the dielectric thin layer sandwiched between these conductors Dielectric constant can be measured with high accuracy. Further, since the ground conductor is formed in an annular shape and the conductor non-forming region exists inside the ground conductor, conductor loss can be suppressed and the unloaded Q value can be increased. Thereby, measurement can be facilitated and measurement accuracy can be improved. In addition, the open-ended half-wave resonator for dielectric constant measurement and the dielectric thin layer can be integrally fabricated as a planar circuit, eliminating measurement errors associated with resonator assembly compared to using a three-dimensional resonator. be able to. That is, the resonator is manufactured by, for example, applying a metallized paste for forming a strip conductor and a ground conductor by screen printing or the like on the upper and lower surfaces of a green sheet for forming a dielectric, using a common simultaneous firing technique, and firing this Therefore, it is possible to manufacture easily, and it is possible to minimize the measurement error accompanying the manufacture of the resonator.

また、本発明の第二の誘電定数測定方法は、前記両端開放形半波長共振器からなり前記環状のグランド導体で囲まれる導体非形成領域の面積が異なる第一の両端開放形半波長共振器と第二の両端開放形半波長共振器とを励振させて前記第一の両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定するとともに前記第二の両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定し、前記共振周波数fおよび前記共振周波数fと前記無負荷Q値Qおよび前記無負荷Q値Qの少なくともいずれか一方の測定値から前記誘電体薄層の厚さ方向における誘電定数を算出することを特徴とするものである。 The second dielectric constant measuring method of the present invention is a first open-ended half-wave resonator comprising the open-ended half-wave resonator and having a different area of a conductor non-forming region surrounded by the annular ground conductor. And the second open-ended half-wave resonator are excited to measure at least one of a resonance frequency f 1 and an unloaded Q value Q 1 of the first open-ended half-wave resonator and And measuring at least one of a resonance frequency f 2 and an unloaded Q value Q 2 of the two open-ended half-wavelength resonators, and measuring the resonance frequency f 1 and the resonance frequency f 2 and the unloaded Q value Q 1 and it is characterized in that to calculate the dielectric constant in the thickness direction of the dielectric thin layer from at least one of the measured values of the unloaded Q value Q 2.

この誘電定数測定方法は、両端開放形半波長共振器の導体損が環状のグランド導体で囲まれる導体非形成領域の面積に依存し、この導体非形成領域の面積の異なる第一の両端開放形半波長共振器の無負荷Q値と第二の両端開放形半波長共振器の無負荷Q値との間に差が生じることを利用している。この方法において、前記第一の両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定するとともに、前記第二の両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定し、これらのデータを用いて、FEM(有限要素法)等の数値解析により、導体の導電率、誘電体薄層の比誘電率及び誘電正接のうち少なくとも一種を算出できる。 In this dielectric constant measurement method, the conductor loss of the open-ended half-wave resonator depends on the area of the conductor non-forming region surrounded by the annular ground conductor, and the first open-ended type having a different area of the conductor non-forming region is different. The fact that there is a difference between the unloaded Q value of the half-wave resonator and the unloaded Q value of the second open-ended half-wave resonator is utilized. In this method, at least one of the resonance frequency f 1 and the unloaded Q value Q 1 of the first open-ended half-wave resonator is measured, and the resonance of the second open-ended half-wave resonator is measured. At least one of the frequency f 2 and the unloaded Q value Q 2 is measured, and using these data, the electrical conductivity of the conductor and the relative dielectric constant of the dielectric thin layer are obtained by numerical analysis such as FEM (finite element method). At least one of the ratio and the dielectric loss tangent can be calculated.

第二の誘電定数測定方法においては、第一の両端開放形半波長共振器におけるストリップ導体の長軸方向における少なくとも一方の端部とグランド導体の一部とが積層方向から見て重なり合う領域の面積と、第二の両端開放形半波長共振器におけるストリップ導体の長軸方向における少なくとも一方の端部とグランド導体の一部とが積層方向から見て重なり合う領域の面積とを適宜調整することによって、共振周波数fとfの差を小さくすることができ、導体の導電率、誘電体薄層の比誘電率及び誘電正接の周波数依存性による精度低下を容易に抑制することができる。また、第一の両端開放形半波長共振器と第二の両端開放形半波長共振器との間で誘電体薄層の厚みを同じにすることによって、メタライズからの拡散による影響を等しくすることができ、誘電体薄層の厚さが極めて薄い場合においても精度の高い誘電定数を得ることができる。 In the second dielectric constant measurement method, in the first open-ended half-wave resonator, the area of the region where at least one end in the major axis direction of the strip conductor and a part of the ground conductor overlap when viewed from the stacking direction. And by appropriately adjusting the area of the region where at least one end in the major axis direction of the strip conductor in the second open-ended half-wave resonator and a part of the ground conductor overlap when viewed from the stacking direction, The difference between the resonance frequencies f 1 and f 2 can be reduced, and a decrease in accuracy due to the frequency dependence of the conductivity of the conductor, the relative dielectric constant of the dielectric thin layer, and the dielectric loss tangent can be easily suppressed. Also, by making the thickness of the dielectric thin layer the same between the first open-ended half-wave resonator and the second open-ended half-wave resonator, the effect of diffusion from metallization is made equal. Thus, even when the thickness of the dielectric thin layer is extremely thin, a highly accurate dielectric constant can be obtained.

さらに、本発明の第三の誘電定数測定方法は、前記両端開放形半波長共振器と該両端開放形半波長共振器の前記環状のグランド導体に代えてベタグランド導体を設けてなる両端開放形マイクロストリップライン共振器とを励振させて前記両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定するとともに前記両端開放形マイクロストリップライン共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定し、前記共振周波数fおよび前記共振周波数fと前記無負荷Q値Qおよび前記無負荷Q値Qの少なくともいずれか一方の測定値から前記誘電体薄層の厚さ方向における誘電定数を算出することを特徴とするものである。 Furthermore, the third dielectric constant measuring method of the present invention is a double-ended open type comprising a solid ground conductor in place of the open-ended half-wave resonator and the annular ground conductor of the open-ended half-wave resonator. The microstrip line resonator is excited to measure at least one of the resonance frequency f 3 and the no-load Q value Q 3 of the open both-end half-wave resonator and the resonance of the open both-end microstrip line resonator. At least one of the frequency f 4 and the no-load Q value Q 4 is measured, and at least one of the resonance frequency f 3, the resonance frequency f 4 , the no-load Q value Q 3, and the no-load Q value Q 4 The dielectric constant in the thickness direction of the dielectric thin layer is calculated from one measured value.

このような誘電定数測定方法も、両端開放形マイクロストリップライン共振器の導体損が非常に大きく、両端開放形半波長共振器の無負荷Q値と両端開放形マイクロストリップライン共振器の無負荷Q値との間に差が生じることを利用している。この方法において、前記両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定するとともに、前記両端開放形マイクロストリップライン共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定し、これらのデータを用いて、FEM等の数値解析により、導体の導電率、誘電体薄層の比誘電率及び誘電正接のうち少なくとも一種を算出できる。 Also in this dielectric constant measurement method, the open-ended microstrip line resonator has a very large conductor loss, and the unloaded Q value of the open-ended half-wave resonator and the unloaded Q of the open-ended microstrip line resonator. The fact that there is a difference between values is used. In this method, at least one of the resonance frequency f 3 and the no-load Q value Q 3 of the open-ended half-wave resonator is measured, and the resonant frequency f 4 of the open-ended microstrip line resonator is measured. Measure at least one of the load Q values Q 4 and use these data to calculate at least one of the electrical conductivity of the conductor, the relative dielectric constant of the dielectric thin layer, and the dielectric loss tangent by numerical analysis such as FEM it can.

第三の誘電定数測定方法においては、両端開放形半波長共振器におけるストリップ導体の長軸方向における少なくとも一方の端部とグランド導体の一部とが積層方向から見て重なり合う領域の面積を適宜調整することによって、共振周波数fとfの差を小さくすることができ、導体の導電率、誘電体薄層の比誘電率及び誘電正接の周波数依存性による精度低下を容易に抑制することができる。また、両端開放形半波長共振器と両端開放形マイクロストリップライン共振器との間で誘電体薄層の厚みを同じにすることによって、メタライズからの拡散による影響を等しくすることができ、誘電体薄層の厚さが極めて薄い場合においても精度の高い誘電定数を得ることができる。 In the third dielectric constant measurement method, the area of the region where at least one end in the major axis direction of the strip conductor and a part of the ground conductor overlap in the open direction half-wave resonator as viewed from the stacking direction is appropriately adjusted. By doing so, the difference between the resonance frequencies f 3 and f 4 can be reduced, and the accuracy degradation due to the frequency dependence of the conductivity of the conductor, the relative dielectric constant of the dielectric thin layer and the dielectric loss tangent can be easily suppressed. it can. Also, by making the thickness of the dielectric thin layer the same between the open-ended half-wave resonator and the open-ended microstrip line resonator, the influence of diffusion from metallization can be made equal, and the dielectric A highly accurate dielectric constant can be obtained even when the thin layer is extremely thin.

本発明の両端開放形半波長共振器およびこれを用いた誘電定数測定方法によれば、上下面に導体が配置された誘電体薄層の誘電定数を高い精度で測定でき、特に厚さが50μm以下となっても無負荷Q値の低下を抑制することができる。   According to the open-ended half-wave resonator of the present invention and the dielectric constant measurement method using the same, the dielectric constant of a thin dielectric layer in which conductors are arranged on the upper and lower surfaces can be measured with high accuracy. Even if it becomes below, the fall of a no-load Q value can be suppressed.

(両端開放形半波長共振器)
本発明の両端開放形半波長共振器の実施形態を、図1に基づいて説明する。
(Double-ended open half-wave resonator)
An embodiment of an open-ended half-wave resonator according to the present invention will be described with reference to FIG.

図1に示す本発明の両端開放形半波長共振器A1は、誘電体薄層(試料層)1と、誘電体試料1の上面に設けられた矩形状のストリップ導体3と、誘電体薄層(試料層)1の下面に設けられた環状のグランド導体4とから構成されている。   An open-ended half-wavelength resonator A1 of the present invention shown in FIG. 1 includes a dielectric thin layer (sample layer) 1, a rectangular strip conductor 3 provided on the upper surface of the dielectric sample 1, and a dielectric thin layer. (Sample layer) It is comprised from the cyclic | annular ground conductor 4 provided in the lower surface of 1. FIG.

具体的には、誘電体薄層(試料層)1は積層方向から見て略正方形の形状になっていて、この誘電体薄層(試料層)1の上面に積層方向から見て細長い形状をしたストリップ導体3が形成され、誘電体薄層(試料層)1の下面に積層方向から見て周辺部に沿って環状のグランド導体4が形成され、ストリップ導体3の長軸方向における両端とグランド導体4の一部とが積層方向から見て重なり合うように配置されている。   Specifically, the dielectric thin layer (sample layer) 1 has a substantially square shape when viewed from the stacking direction, and an elongated shape is formed on the upper surface of the dielectric thin layer (sample layer) 1 when viewed from the stacking direction. The strip conductor 3 is formed, and an annular ground conductor 4 is formed along the peripheral portion when viewed from the stacking direction on the lower surface of the dielectric thin layer (sample layer) 1. It arrange | positions so that a part of conductor 4 may overlap seeing from a lamination direction.

この積層方向から見てストリップ導体3の端部であるグランド導体4と重なり合う領域で電界エネルギーが高くなるため、誘電体薄層1のこれらストリップ導体3とグランド導体4とで挟まれる部分における厚さ方向の誘電定数を高精度で測定できる。また、この重なり合う領域はストリップ導体3の両端であることから、導体損はおこりにくく、Q値の低下が抑制できる。   Since the electric field energy is high in a region overlapping the ground conductor 4 that is the end of the strip conductor 3 when viewed from the stacking direction, the thickness of the dielectric thin layer 1 at the portion sandwiched between the strip conductor 3 and the ground conductor 4 The dielectric constant in the direction can be measured with high accuracy. Further, since the overlapping region is at both ends of the strip conductor 3, conductor loss is unlikely to occur, and a decrease in Q value can be suppressed.

なお、積層方向からみて重なり合う領域は、ストリップ導体3の両端に限らず、一方の端部であってもよい。また、ストリップ導体3とグランド導体4とは必ずしも表層に露出している必要はなく、誘電体薄層(試料層)1が50μm以下と極めて薄い場合には、グランド導体4の下面に、さらに反りの発生を抑制するための誘電体支持層2が設けられていることが望ましい。また、誘電体支持層2としては、誘電体薄層(試料層)1と組成及び構造が同一である必要はなく、導体等が形成されたものであっても良い。特に、反りの発生を抑制する上で、両端開放形半波長共振器A1全体としては上下対称構造になっていることが望ましい。   Note that the overlapping region when viewed from the stacking direction is not limited to both ends of the strip conductor 3, but may be one end. Further, the strip conductor 3 and the ground conductor 4 do not necessarily have to be exposed on the surface layer, and when the dielectric thin layer (sample layer) 1 is very thin as 50 μm or less, the lower surface of the ground conductor 4 is further warped. It is desirable to provide a dielectric support layer 2 for suppressing the occurrence of the above. The dielectric support layer 2 does not have to have the same composition and structure as the dielectric thin layer (sample layer) 1 and may be formed with a conductor or the like. In particular, in order to suppress the occurrence of warping, it is desirable that the open-ended half-wave resonator A1 as a whole has a vertically symmetrical structure.

(第一の誘電定数測定方法)
本発明の第一の誘電定数測定方法を、図1に基づいて説明する。
先ず、測定試料として、図1に示す両端開放形半波長共振器A1を作製する。
そして、この両端開放形半波長共振器A1を例えば3〜30GHzのマイクロ波を用いて励振させて両端開放形半波長共振器の共振周波数および無負荷Q値を測定するが、この測定に際しては、図1に示すように一方の同軸ケーブル5の先端に形成されたループアンテナ6で両端開放形半波長共振器A1を励振させ、他方の同軸ケーブル5の先端に形成されたループアンテナ6で検波し、ネットワークアナライザー等の測定器で共振周波数fと無負荷Q値Qを測定する。なお、両端開放形半波長共振器A1を励振させるためには、ループアンテナに限らず、マイクロストリップライン、ストリップライン、コプレナーライン、スロットライン及びNRDガイドを採用してもよい。
(First dielectric constant measurement method)
The first dielectric constant measuring method of the present invention will be described with reference to FIG.
First, an open-ended half-wave resonator A1 shown in FIG. 1 is prepared as a measurement sample.
Then, the both-end open half-wave resonator A1 is excited using, for example, a microwave of 3 to 30 GHz to measure the resonance frequency and no-load Q value of the both-end open half-wave resonator. As shown in FIG. 1, a half-wave resonator A1 having both ends open is excited by a loop antenna 6 formed at the tip of one coaxial cable 5, and detected by the loop antenna 6 formed at the tip of the other coaxial cable 5. The resonance frequency f 0 and the no-load Q value Qu are measured with a measuring instrument such as a network analyzer. In order to excite both-end open half-wave resonator A1, not only a loop antenna but also a microstrip line, strip line, coplanar line, slot line, and NRD guide may be employed.

ここで、両端開放形半波長共振器A1の放射損が無視できない場合には、図2に示すように、両端開放形半波長共振器A1を囲むように遮蔽導体7を設置することが望ましい。この遮蔽導体7としては、箱形、中空矩形構造などが好適である。   Here, when the radiation loss of the open-ended half-wave resonator A1 cannot be ignored, it is desirable to install the shielding conductor 7 so as to surround the open-ended half-wave resonator A1, as shown in FIG. As this shielding conductor 7, a box shape, a hollow rectangular structure, etc. are suitable.

その後、共振周波数fより誘電体薄層(試料層)1の比誘電率ε’を算出し、無負荷Q値Qより誘電体薄層(試料層)1の誘電正接tanδを算出する。以下、これらの誘電定数の算出方法について説明する。 Then, calculated from the resonance frequency f 0 the dielectric thin layer (sample layer) dielectric constant of 1 epsilon ', dielectric thin layer than the unloaded Q value Q u (sample layer) calculates a dielectric loss tangent tan [delta. Hereinafter, a method for calculating these dielectric constants will be described.

ここで、誘電体薄層(試料層)1の比誘電率の算出のためには、想定される範囲で比誘電率と共振周波数の関係をFEM等の数値解析で求めておき、この関係を適当な関数で近似し、この近似関数と共振周波数の測定値から比誘電率を算出する。また、導体の導電率、誘電体薄層(試料層)1の誘電正接の算出のためには、共振器の形状因子Gや誘電体試料の電界エネルギー集中率PeをFEM等で計算し、このG、Peと無負荷Q値の測定値から試料の誘電正接を算出する。   Here, in order to calculate the relative dielectric constant of the dielectric thin layer (sample layer) 1, the relationship between the relative dielectric constant and the resonance frequency is obtained by numerical analysis such as FEM within an assumed range. Approximation with an appropriate function, and the relative dielectric constant is calculated from this approximate function and the measured value of the resonance frequency. In order to calculate the conductivity of the conductor and the dielectric loss tangent of the dielectric thin layer (sample layer) 1, the resonator form factor G and the electric field energy concentration rate Pe of the dielectric sample are calculated by FEM, etc. The dielectric loss tangent of the sample is calculated from the measured values of G and Pe and the unloaded Q value.

まず、両端開放形半波長共振器A1の共振周波数fの測定値から、有限要素法(FEM)やモードマッチング法などの数値解析により、誘電体薄層(試料層)1の比誘電率ε’を求める。ここでは有限要素法を用いる場合について述べる。 First, the relative dielectric constant ε of the thin dielectric layer (sample layer) 1 is measured from the measured value of the resonance frequency f 0 of the open-ended half-wavelength resonator A1 by numerical analysis such as the finite element method (FEM) or the mode matching method. Ask for '. Here, the case where the finite element method is used will be described.

図1で示される両端開放形半波長共振器A1の共振周波数fは、誘電体薄層(試料層)1の比誘電率ε’、厚さT、誘電体支持層2の比誘電率ε’s、厚さTs、ストリップ導体3とグランド導体4の厚さTc、ストリップ導体3の幅Wc、長さLc、グランド導体4で囲まれる導体非形成領域の幅Wo、ストリップ導体3の長軸方向における各端部がグランド導体4と積層方向から見て重なり合う領域の長さ(ストリップ導体3の長軸方向の長さ)Lr、Llの関数となっている。従って、T、ε’s、Ts、Tc、Wc、Lc、Wo、Lr、Llを測定値、あるいは設計値に固定し、誘電体薄層(試料層)1の比誘電率ε’を予想される範囲で数点設定し、対応する共振周波数fを有限要素法で計算する。これらの計算結果から、共振周波数fと比誘電率ε’の関係を適当な関数で近似した近似式と共振周波数fの測定値とから、比誘電率ε’を計算する。 The resonant frequency f 0 of the open-ended half-wave resonator A 1 shown in FIG. 1 is that the dielectric constant ε ′ of the dielectric thin layer (sample layer) 1, the thickness T, and the dielectric constant ε of the dielectric support layer 2. 's, thickness Ts, thickness Tc of strip conductor 3 and ground conductor 4, width Wc and length Lc of strip conductor 3, width Wo of a conductor non-formation region surrounded by ground conductor 4, major axis of strip conductor 3 The length of the region where each end in the direction overlaps the ground conductor 4 when viewed from the stacking direction (the length of the strip conductor 3 in the major axis direction) is a function of Lr and Ll. Therefore, T, ε's, Ts, Tc, Wc, Lc, Wo, Lr, Ll are fixed to measured values or design values, and the dielectric constant ε 'of the dielectric thin layer (sample layer) 1 is expected. Several points are set within a range, and the corresponding resonance frequency f 0 is calculated by the finite element method. From these calculation results, the relative dielectric constant ε ′ is calculated from an approximate expression that approximates the relationship between the resonant frequency f 0 and the relative dielectric constant ε ′ with an appropriate function and the measured value of the resonant frequency f 0 .

次に、無負荷Q値Qの測定値から、誘電体薄層(試料層)1の誘電正接tanδを下記の式1により求める。

Figure 2007198975
Next, the dielectric loss tangent tan δ of the dielectric thin layer (sample layer) 1 is obtained from the measured value of the no-load Q value Q u by the following formula 1.
Figure 2007198975

上記の式1において、μは導体の透磁率であり、非磁性導体では、μは真空の透磁率μ=4π×10−7H/mに等しい。Pは誘電体薄層(試料層)1内の電界エネルギーの集中率、Pesは誘電体支持層2内の電界エネルギーの集中率、Gは両端開放形半波長共振器A1の形状因子であり、例えば文献「J. Krupka, K. Derzakowski, A. Abramowicz, M.E. Tobar and R.G. Geyer, “Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials,” IEEE Trans. Microwave Theory Tech., vol. 47, pp.752-759, June 1999」に記載されている。また、tanδsは誘電体支持層2の誘電正接である。 In Equation 1 above, μ is the magnetic permeability of the conductor, and for a non-magnetic conductor, μ is equal to the vacuum magnetic permeability μ 0 = 4π × 10 −7 H / m. Pe is the concentration factor of the electric field energy in the dielectric thin layer (sample layer) 1, Pes is the concentration factor of the electric field energy in the dielectric support layer 2, and G is the form factor of the open-ended half-wave resonator A1. For example, the literature “J. Krupka, K. Derzakowski, A. Abramowicz, ME Tobar and RG Geyer,“ Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials, ”IEEE Trans. Microwave Theory Tech , vol. 47, pp.752-759, June 1999 ”. Further, tan δs is a dielectric loss tangent of the dielectric support layer 2.

なお、電界エネルギーの集中率は、両端開放形半波長共振器A1に蓄えられる電界エネルギーに対する、個々の部分に蓄えられる電界エネルギーの分率として定義される。PとPesは下記の式2および式3で与えられる。 The concentration ratio of the electric field energy is defined as a fraction of the electric field energy stored in each part with respect to the electric field energy stored in the open-ended half-wave resonator A1. Pe and Pes are given by Equation 2 and Equation 3 below.

また、両端開放形半波長共振器A1の形状因子であるGは、下記の式4で与えられる。

Figure 2007198975
Further, G, which is the shape factor of the open both-end half-wave resonator A1, is given by the following equation 4.
Figure 2007198975

Figure 2007198975
Figure 2007198975

Figure 2007198975
Figure 2007198975

式2乃至式4は、有限要素法(FEM)やモードマッチング法などの数値解析法により求める。そして、計算されたPe、es、Gと、別法による導電率σの測定値や文献値、さらに別法によるtanδの測定値や文献値を式1に代入し、tanδを求める。 Expressions 2 to 4 are obtained by a numerical analysis method such as a finite element method (FEM) or a mode matching method. The calculated P e, P es, and G, the measured value and literature values of the conductivity due to alternative sigma, a further measurement values and literature values for tan [delta s by alternative into Equation 1 to obtain the tan [delta.

σを求める別法としては「A. Nakayama, Y. Terashi, H. Uchimura and, A. Fukuura, “Conductivity measurement at the interface between the sintered conductor and dielectric substrate at microwave frequencies,” IEEE Trans. Microwave Theory Tech., vol. MTT-50, No.7, pp. 1665-1674, July 2002. 」が望ましい。また、tanδを求める別法としてはJIS−R1641:2002が望ましい。 Another method for obtaining σ is “A. Nakayama, Y. Terashi, H. Uchimura and, A. Fukuura,“ Conductivity measurement at the interface between the sintered conductor and dielectric substrate at microwave frequencies, ”IEEE Trans. Microwave Theory Tech. , vol. MTT-50, No.7, pp. 1665-1674, July 2002. " As another method for obtaining the tanδ s JIS-R1641: 2002 it is preferable.

(第二の誘電定数測定方法)
本発明の第二の誘電定数測定方法を、図1および図3に基づいて説明する。
先ず、測定試料として、図1に示すような両端開放形半波長共振器A1と、図3に示すような図1に示す両端開放形半波長共振器A1とは環状のグランド導体4で囲まれる導体非形成領域の面積が異なる両端開放形半波長共振器A2とを作製する。なお、導体非形成領域とは環状のグランド導体4の内周で表される領域であって、図1(a)および図3(a)に一点鎖線で示される領域である。
(Second dielectric constant measurement method)
The second dielectric constant measuring method of the present invention will be described with reference to FIGS.
First, as a measurement sample, both ends open half-wave resonator A1 as shown in FIG. 1 and both ends open half-wave resonator A1 shown in FIG. 1 as shown in FIG. 3 are surrounded by an annular ground conductor 4. An open-ended half-wave resonator A2 having a different conductor non-forming area is manufactured. The conductor non-formation region is a region represented by the inner periphery of the annular ground conductor 4, and is a region indicated by a one-dot chain line in FIGS. 1 (a) and 3 (a).

測定に際しては、第一の誘電定数測定方法と同様に、一方の同軸ケーブル5の先端に形成されたループアンテナ6で共振器を励振し、他方のループアンテナ6で検波し、ネットワークアナライザー等の測定器で図1に示す両端開放形半波長共振器A1の共振周波数fと無負荷Q値Qを測定するとともに図3に示す両端開放形半波長共振器A2の共振周波数fと無負荷Q値Qを測定する。 At the time of measurement, similarly to the first dielectric constant measurement method, a resonator is excited by a loop antenna 6 formed at the tip of one coaxial cable 5, and detected by the other loop antenna 6, and measured by a network analyzer or the like. vessel at the resonance frequency f 1 and the resonance frequency f 2 and unloaded unloaded Q value across the open-type half-wavelength resonator A2 shown in FIG. 3 as well as measuring the Q 1 across an open type half-wavelength resonator A1 shown in FIG. 1 to measure the Q value Q 2.

次に誘電定数の算出方法について説明する。まず、共振器の共振周波数f、fの測定値から、有限要素法(FEM)やモードマッチング法などの数値解析により、それぞれの共振器における誘電体薄層試料1の比誘電率ε’を求める。図1で示される両端開放形半波長共振器A1の共振周波数fは、上記の通り、誘電体薄層試料1の比誘電率ε’、厚さT、支持層2の比誘電率ε’s、厚さTs、ストリップ導体3とグランド導体4の厚さTc、ストリップ導体3の幅Wc、長さLc、グランド導体4開口部の幅Wo、ストリップ導体3の長さ方向における各端部がグランド導体4と上下方向に重なり合う長さ(電極長さ)Lr、Llの関数となっている。従って、T、ε’s、Ts、Tc、Wc、Lc、Wo、Lr、Llを測定値、あるいは設計値に固定し、試料層1の比誘電率ε’を予想される範囲で数点設定し、対応する共振周波数fを有限要素法で計算する。同様にして、共振周波数fの測定値から、両端開放形半波長共振器A2の誘電体薄層(試料層)1の比誘電率ε’を計算する。 Next, a method for calculating the dielectric constant will be described. First, from the measured values of the resonance frequencies f 1 and f 2 of the resonator, the relative permittivity ε ′ of the dielectric thin layer sample 1 in each resonator is obtained by numerical analysis such as a finite element method (FEM) or a mode matching method. Ask for. The resonance frequency f 1 of the open-ended half-wave resonator A1 shown in FIG. 1 is as described above, the relative dielectric constant ε ′ of the dielectric thin layer sample 1, the thickness T, and the relative dielectric constant ε ′ of the support layer 2. s, thickness Ts, strip conductor 3 and ground conductor 4 thickness Tc, strip conductor 3 width Wc, length Lc, ground conductor 4 opening width Wo, and strip conductor 3 lengthwise end portions This is a function of lengths (electrode lengths) Lr and Ll overlapping with the ground conductor 4 in the vertical direction. Therefore, T, ε's, Ts, Tc, Wc, Lc, Wo, Lr, Ll are fixed to measured values or design values, and the relative dielectric constant ε ′ of the sample layer 1 is set at several points within the expected range. Then, the corresponding resonance frequency f 1 is calculated by the finite element method. Similarly, to calculate from the measured values of the resonance frequency f 2, the dielectric thin layer of open-ended shaped half-wavelength resonator A2 (sample layer) dielectric constant of 1 epsilon '.

次に、無負荷Q値Q、Qの測定値から、導体の導電率σと誘電体薄層(試料層)1の誘電正接tanδを式1により求める。有限要素法(FEM)やモードマッチング法などの数値解析により、それぞれの共振器について、式2、3、4で与えられるP、Pes、Gを求め、これを式1に代入する。これによって得られた連立方程式を解くことにより、導体の導電率σと誘電体薄層(試料層)1の誘電正接tanδを求めることができる。 Next, the electrical conductivity σ of the conductor and the dielectric loss tangent tan δ of the dielectric thin layer (sample layer) 1 are obtained from the measured values of the no-load Q values Q 1 and Q 2 using Equation 1. The numerical analysis such as the finite element method (FEM) and mode matching method for each of the resonators, P e, P es given by Equation 2, 3, 4, seek G, Substituting this in Equation 1. By solving the simultaneous equations thus obtained, the electrical conductivity σ of the conductor and the dielectric loss tangent tan δ of the dielectric thin layer (sample layer) 1 can be obtained.

(第三の誘電定数測定方法)
本発明の第三の誘電定数測定方法を、図1および図4に基づいて説明する。
先ず、測定試料として、図1に示すような両端開放形半波長共振器A1と、図4に示すような図1に示す両端開放形半波長共振器A1における環状のグランド導体にかえてベタグランド導体41とした両端開放形マイクロストリップライン共振器A3を作製する。
(Third dielectric constant measurement method)
A third dielectric constant measuring method of the present invention will be described with reference to FIGS.
First, as a measurement sample, a solid ground is used instead of the open-ended half-wave resonator A1 as shown in FIG. 1 and the annular ground conductor in the open-ended half-wave resonator A1 shown in FIG. A microstrip line resonator A3 having both ends open as a conductor 41 is manufactured.

測定に際しては、第一および第二の誘電定数測定方法と同様に、一方の同軸ケーブル5の先端に形成されたループアンテナ6で共振器を励振し、他方のループアンテナ6で検波し、ネットワークアナライザー等の測定器で図1に示す両端開放形半波長共振器A1の共振周波数fと無負荷Q値Qを測定するとともに図4に示す両端開放形マイクロストリップライン共振器A3の共振周波数fと無負荷Q値Qを測定する。 At the time of measurement, similarly to the first and second dielectric constant measurement methods, a resonator is excited by a loop antenna 6 formed at the tip of one coaxial cable 5, and detected by the other loop antenna 6, and then a network analyzer. the resonance frequency f of the open ends form the microstrip line resonator A3 of the measuring instrument with measuring the resonance frequency f 3 and the unloaded Q value Q 3 of open-ended shaped half-wavelength resonator A1 shown in FIG. 1 and the like shown in FIG. 4 4 and no-load Q value Q 4 are measured.

誘電定数の算出方法については、第二の誘電定数測定方法で記載した算出方法と同様であって、第二の誘電定数測定方法で記載した算出方法における共振周波数fおよびfをfおよびfに置換するとともに、第二の誘電定数測定方法で記載した算出方法における無負荷Q値QおよびQをQおよびQに変更して計算すればよい。 The calculation method of the dielectric constant is the same as the calculation method described in the second dielectric constant measurement method, and the resonance frequencies f 1 and f 2 in the calculation method described in the second dielectric constant measurement method are set to f 3 and with substituting f 4, the unloaded Q value Q 1 and Q 2 may be calculated by changing the Q 3 and Q 4 in the calculation method described in the second dielectric constant measurement method.

なお、本発明の誘電定数測定方法においては、異なる温度の雰囲気下で測定することで、共振周波数及び無負荷Q値の温度依存性を容易に測定することができるため、導体の導電率、誘電体試料の比誘電率及び誘電正接の温度依存性を得ることができる。また、本発明の誘電定数測定方法においては、ストリップ導体とグランド導体との間に容易に直流電圧を印加することで、誘電体薄層試料の比誘電率及び誘電正接の直流電界依存性を得ることもできる。   In the dielectric constant measurement method of the present invention, the temperature dependency of the resonance frequency and the no-load Q value can be easily measured by measuring under different temperature atmospheres. The temperature dependence of the relative permittivity and dielectric loss tangent of the body sample can be obtained. Further, in the dielectric constant measuring method of the present invention, the direct current voltage is easily applied between the strip conductor and the ground conductor, thereby obtaining the direct-current electric field dependence of the relative dielectric constant and dielectric loss tangent of the dielectric thin layer sample. You can also.

本発明の測定方法に用いられる両端開放形半波長共振器を示すもので、(a)は上から見た平面図、(b)と(c)は断面図である。1 shows a double-ended open half-wave resonator used in the measurement method of the present invention, where (a) is a plan view seen from above, and (b) and (c) are cross-sectional views. 両端開放形半波長共振器に遮蔽導体を設けた構造を説明するための説明図である。It is explanatory drawing for demonstrating the structure which provided the shielding conductor in the both-ends open type half wavelength resonator. 本発明の測定方法に用いられる両端開放形半波長共振器の他の例を示すもので、(a)は上から見た平面図、(b)と(c)は断面図である。The other example of the open both-ends type half wave resonator used for the measuring method of the present invention is shown, (a) is a top view seen from the top, and (b) and (c) are sectional views. 本発明の測定方法に用いられる両端開放形マイクロストリップライン共振器を示すもので、(a)は上から見た平面図、(b)と(c)は断面図である。1 shows a microstrip line resonator with open ends used in the measurement method of the present invention, (a) is a plan view seen from above, and (b) and (c) are sectional views.

符号の説明Explanation of symbols

1・・・誘電体薄層(試料層)
2・・・誘電体支持層
3・・・ストリップ導体
4・・・グランド導体
41・・・ベタグランド導体
5・・・同軸ケーブル
6・・・ループアンテナ
7・・・遮蔽導体
A1、A2・・・両端開放形半波長共振器
A3・・・両端開放形マイクロストリップライン共振器
1 ... Dielectric thin layer (sample layer)
2 ... Dielectric support layer 3 ... Strip conductor 4 ... Ground conductor 41 ... Solid ground conductor 5 ... Coaxial cable 6 ... Loop antenna 7 ... Shielding conductors A1, A2,. -Open-end half-wave resonator A3 ... Open-end microstrip line resonator

Claims (4)

誘電体薄層の一方の面に矩形状のストリップ導体を設けるとともに、前記誘電体薄層の他方の面に環状のグランド導体を設け、前記ストリップ導体の長軸方向における少なくとも一方の端部と前記グランド導体の一部とが積層方向から見て重なり合うように配置されていることを特徴とする両端開放形半波長共振器。 A rectangular strip conductor is provided on one surface of the thin dielectric layer, an annular ground conductor is provided on the other surface of the thin dielectric layer, and at least one end in the major axis direction of the strip conductor and the An open-ended half-wave resonator, wherein a part of a ground conductor is disposed so as to overlap when viewed from the stacking direction. 請求項1に記載の両端開放形半波長共振器を励振させて共振周波数および無負荷Q値の少なくともいずれか一方を測定し、前記共振周波数および前記無負荷Q値の少なくともいずれか一方の測定値から前記誘電体薄層の厚さ方向における誘電定数を算出することを特徴とする誘電定数測定方法。 The at least one of a resonance frequency and an unloaded Q value is measured by exciting the open-ended half-wave resonator according to claim 1, and a measured value of at least one of the resonance frequency and the unloaded Q value. A dielectric constant measuring method, comprising: calculating a dielectric constant in a thickness direction of the dielectric thin layer from 請求項1に記載の両端開放形半波長共振器からなり前記環状のグランド導体で囲まれる導体非形成領域の面積が異なる第一の両端開放形半波長共振器と第二の両端開放形半波長共振器とを励振させて前記第一の両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定するとともに前記第二の両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定し、前記共振周波数fおよび前記共振周波数fと前記無負荷Q値Qおよび前記無負荷Q値Qの少なくともいずれか一方の測定値から前記誘電体薄層の厚さ方向における誘電定数を算出することを特徴とする誘電定数測定方法。 A first open-ended half-wave resonator and a second open-ended half-wavelength comprising the open-ended half-wave resonator according to claim 1 and having different conductor non-formation areas surrounded by the annular ground conductor. The resonator is excited to measure at least one of a resonance frequency f 1 and an unloaded Q value Q 1 of the first open-ended half-wave resonator and the open-ended second half-wave resonator And measuring at least one of the resonance frequency f 2 and the no-load Q value Q 2 , and at least one of the resonance frequency f 1, the resonance frequency f 2 , the no-load Q value Q 1, and the no-load Q value Q 2 A dielectric constant measuring method, wherein a dielectric constant in a thickness direction of the dielectric thin layer is calculated from any one of the measured values. 請求項1に記載の両端開放形半波長共振器と該両端開放形半波長共振器の前記環状のグランド導体に代えてベタグランド導体を設けてなる両端開放形マイクロストリップライン共振器とを励振させて前記両端開放形半波長共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定するとともに前記両端開放形マイクロストリップライン共振器の共振周波数fおよび無負荷Q値Qの少なくともいずれか一方を測定し、前記共振周波数fおよび前記共振周波数fと前記無負荷Q値Qおよび前記無負荷Q値Qの少なくともいずれか一方の測定値から前記誘電体薄層の厚さ方向における誘電定数を算出することを特徴とする誘電定数測定方法。 An open-ended half-wave resonator according to claim 1 and an open-ended microstrip line resonator provided with a solid ground conductor in place of the annular ground conductor of the open-ended half-wave resonator. the resonance frequency f 3 and unloaded Q value resonant frequency of the open-ended type microstrip line resonator with measuring at least one of Q 3 f 4 and the unloaded Q value Q of the open-ended type half-wavelength resonator Te At least one of the resonance frequency f 3, the resonance frequency f 4 , the unloaded Q value Q 3, and the measured value of at least one of the unloaded Q value Q 4. A dielectric constant measuring method comprising calculating a dielectric constant in a thickness direction of a layer.
JP2006019576A 2006-01-27 2006-01-27 Dielectric constant measurement method Expired - Fee Related JP4776382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019576A JP4776382B2 (en) 2006-01-27 2006-01-27 Dielectric constant measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019576A JP4776382B2 (en) 2006-01-27 2006-01-27 Dielectric constant measurement method

Publications (2)

Publication Number Publication Date
JP2007198975A true JP2007198975A (en) 2007-08-09
JP4776382B2 JP4776382B2 (en) 2011-09-21

Family

ID=38453717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019576A Expired - Fee Related JP4776382B2 (en) 2006-01-27 2006-01-27 Dielectric constant measurement method

Country Status (1)

Country Link
JP (1) JP4776382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070549A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Dielectric material evaluation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111304A (en) * 2000-09-27 2002-04-12 Sharp Corp Slit-loaded filter
JP2005151165A (en) * 2003-11-14 2005-06-09 Murata Mfg Co Ltd High-frequency resonance circuit, and oscillator using the same
JP2005308716A (en) * 2004-03-24 2005-11-04 Kyocera Corp Measuring method for electromagnetic physical property value

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111304A (en) * 2000-09-27 2002-04-12 Sharp Corp Slit-loaded filter
JP2005151165A (en) * 2003-11-14 2005-06-09 Murata Mfg Co Ltd High-frequency resonance circuit, and oscillator using the same
JP2005308716A (en) * 2004-03-24 2005-11-04 Kyocera Corp Measuring method for electromagnetic physical property value

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070549A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Dielectric material evaluation device
JP7011806B2 (en) 2017-10-06 2022-01-27 国立研究開発法人産業技術総合研究所 Dielectric material evaluation device

Also Published As

Publication number Publication date
JP4776382B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4628116B2 (en) Conductivity measurement method
Karami et al. A modified rectangular resonant cavity utilizing frequency selective coupled end‐plate for dielectric constant measurement by perturbation technique
Rasoulzadeh et al. Thickness measurement of thin layers with double E-shaped slots loaded in a microstrip line
JP4776382B2 (en) Dielectric constant measurement method
JP2000046756A (en) Method for measuring conductivity of metal layer interface
JP4530907B2 (en) Method for measuring dielectric properties of dielectric thin films
JP4518680B2 (en) Dielectric constant measurement method
JP4436724B2 (en) Dielectric constant measurement method and coaxial resonator
JP4373902B2 (en) Method for measuring electromagnetic properties
Yoshikawa et al. Measurements of complex permittivity at millimeter-wave frequencies with an end-loaded cavity resonator
JP4035024B2 (en) Dielectric constant measurement method
JP4726395B2 (en) Electrical property value measurement method
JP4530951B2 (en) Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator
JP5216727B2 (en) Thin film evaluation method
JP3735501B2 (en) Method for measuring conductivity of metal layer
JP4698244B2 (en) Method for measuring electromagnetic properties
JP4065766B2 (en) Dielectric constant measurement method
JP3210769B2 (en) Apparatus and method for measuring dielectric constant
JP4423180B2 (en) Electromagnetic property measurement method
JP4467418B2 (en) Dielectric constant measurement method
JP4157387B2 (en) Electrical property measurement method
JP3825299B2 (en) Dielectric constant measurement method
JP3561141B2 (en) Measurement method of linear expansion coefficient
JP7011806B2 (en) Dielectric material evaluation device
JP5451509B2 (en) Thickness measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees