JP2007198892A - Impact detecting sensor - Google Patents

Impact detecting sensor Download PDF

Info

Publication number
JP2007198892A
JP2007198892A JP2006017500A JP2006017500A JP2007198892A JP 2007198892 A JP2007198892 A JP 2007198892A JP 2006017500 A JP2006017500 A JP 2006017500A JP 2006017500 A JP2006017500 A JP 2006017500A JP 2007198892 A JP2007198892 A JP 2007198892A
Authority
JP
Japan
Prior art keywords
electrode plate
detection sensor
deformed
impact detection
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017500A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mori
俊之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006017500A priority Critical patent/JP2007198892A/en
Publication of JP2007198892A publication Critical patent/JP2007198892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact detecting sensor which surely avoids any incorrect judgment, without the need for any tuning operation. <P>SOLUTION: The impact detecting sensor A1, in which a pseudo capacitor is made up of a pair of opposing polar plates to detect an impact by acquiring a change in capacitance when causing current to flow in the pair of polar plates, comprises: a spherical deforming polar plate 2 (deforming plate) which is formed so as to be deformable under an impact force; a spherical fixed polar plate 1 (fixed plate) which is disposed opposite to the spherical deforming polar plate 2; and an impact sensing circuit 6 (capacitance change detecting means) which detects the change in capacitance of the polar plates 1, 2 whose capacitance changes due to the deformation of the spherical deforming polar plate 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、対向する一対の極板を有して擬似コンデンサを構成し、一対の極板に電気を流した際の静電容量の変化を捉えることで衝撃を検知する衝撃検知センサの技術分野に属する。   The present invention relates to a technical field of an impact detection sensor that has a pair of opposing electrode plates to constitute a pseudo capacitor and detects an impact by detecting a change in capacitance when electricity is passed through the pair of electrode plates. Belonging to.

従来の衝撃検知センサとしては、技術の向上に伴い、より信頼性の高いものになりつつあるGセンサ(加速度センサ)が挙げられる。これは、自動車の事故時に衝突を検知し、エアバックを展開するために使用されている。この衝突を検知するセンサには、幾つかのタイプがある。その代表的なものとしては、センサ内部にある接点が衝撃によってスイッチONとされる振り子タイプのものや、一対の極板間に存在する誘電体が衝撃で移動することにより、その静電容量の変化を読み取る静電容量タイプのものなどがある。   As a conventional impact detection sensor, there is a G sensor (acceleration sensor) that is becoming more reliable as technology is improved. This is used to detect a collision in the event of an automobile accident and deploy an airbag. There are several types of sensors that detect this collision. Typical examples include a pendulum type in which the contact point inside the sensor is switched on by an impact, or a dielectric that exists between a pair of electrode plates moves by an impact. There is a capacitance type that reads changes.

前記静電容量タイプのGセンサとしては、エアバックシステムの衝突検出装置として半導体静電容量形の衝突加速度検出器を用いたものや(例えば、特許文献1参照)、所定の一平面に含まれる方向を向いた加速度の大きさを静電容量の変動に基づく電気信号として検出するものが知られている(例えば、特許文献2参照)。
特開平4−292242号公報 特開平9−119943号公報
Examples of the capacitance type G sensor include those using a semiconductor capacitance type collision acceleration detector as a collision detection device of an airbag system (for example, see Patent Document 1), and included in a predetermined plane. What detects the magnitude | size of the acceleration which faced the direction as an electrical signal based on the fluctuation | variation of an electrostatic capacitance is known (for example, refer patent document 2).
JP-A-4-292242 Japanese Patent Laid-Open No. 9-119943

しかしながら、従来の振り子タイプや静電容量タイプのGセンサにあっては、車両に一定以上の衝撃が加わった場合、質量体(重錘体や可動電極等)が所定以上移動すると衝突と判定する。そのため、例えば、悪路走行中に車両の一部が地面に触れたり、縁石に乗り上げたりする等、衝突していない場面でもGセンサにその衝撃が加わった場合には、衝突と判定してエアバックを展開してしまう可能性がある。
これに対し、Gセンサのチューニングにより、その誤判定は最小限に抑えられているが、非常に大きな工数を要するため非効率である。また、車種によっては同じ速度の衝突でも入力Gが変化するため、各車種毎にチューニングを行わなければならない、という問題があった。
However, in a conventional pendulum type or electrostatic capacitance type G sensor, when a certain impact or more is applied to the vehicle, it is determined that the mass body (weight body, movable electrode, etc.) moves more than a predetermined amount as a collision. . Therefore, for example, if the impact is applied to the G sensor even in a non-collision scene such as when a part of the vehicle touches the ground or rides on a curb while driving on a rough road, it is judged as a collision and air There is a possibility of expanding the back.
On the other hand, the erroneous determination is minimized by tuning the G sensor, but it is inefficient because it requires a very large number of man-hours. Further, depending on the vehicle model, the input G changes even in a collision at the same speed, and thus there is a problem that tuning must be performed for each vehicle model.

本発明は、上記問題に着目してなされたもので、チューニングを要さず、衝突誤判定を確実に回避することができる衝撃検知センサを提供することを目的とする。   The present invention has been made paying attention to the above problem, and an object of the present invention is to provide an impact detection sensor that does not require tuning and can reliably avoid erroneous collision determination.

上記目的を達成するため、本発明では、対向する一対の極板を有して擬似コンデンサを構成し、一対の極板に電気を流した際の静電容量の変化を捉えることで衝撃を検知する衝撃検知センサにおいて、
衝撃力により変形可能に形成された変形極板と、
前記変形極板に対向して配置された固定極板と、
前記変形極板の変形により変化する前記両極板間の静電容量の変化を検出する静電容量変化検出手段と、
を備えたことを特徴とする。
In order to achieve the above object, in the present invention, a pseudo capacitor is formed by having a pair of opposing plates, and an impact is detected by capturing a change in capacitance when electricity is passed through the pair of plates. In the impact detection sensor that
A deformed electrode plate formed to be deformable by an impact force;
A fixed electrode plate disposed opposite to the deformed electrode plate;
A capacitance change detecting means for detecting a change in capacitance between the two electrode plates, which is changed by deformation of the deformed electrode plate;
It is provided with.

よって、本発明の衝撃検知センサにあっては、等間隔に保ちながら同心上に固定した相似形状の固定極板と変形極板により構成した一対の極板に電気を流している状態で、変形極板に対し衝撃力が加えられてその形状が変形すると、この変形による静電容量の変化を検出することで、衝撃力の入力が検知される。
すなわち、質量体が所定以上移動すると衝突と判定する従来のGセンサの場合、例えば、悪路走行中に車両の一部が地面に触れたり、縁石に乗り上げたりする等、衝突していない場面でもGセンサにその衝撃が加わった場合には、衝突と誤判定する可能性がある。この誤判定を最小限に抑えるため、適用する各車種毎に非常に大きな工数を要するチューニングを行わなければならない。
これに対し、本発明では、直接加えられた衝撃力によって変形極板が変形しない限り、衝突をしたと判定しないため、チューニング作業を行う必要が無いばかりでなく、高Gが発生しても変形極板の変形に至ることがない悪路走行や縁石乗り上げ等があっても衝撃を誤判定することはない。
この結果、チューニングを要さず、衝突誤判定を確実に回避することができる。
Therefore, in the impact detection sensor of the present invention, deformation is performed in a state where electricity is passed through a pair of electrode plates composed of a fixed electrode plate and a deformed electrode plate that are concentrically fixed while being kept at equal intervals. When an impact force is applied to the electrode plate and its shape is deformed, an input of the impact force is detected by detecting a change in capacitance due to the deformation.
That is, in the case of a conventional G sensor that determines that a collision occurs when the mass moves more than a predetermined amount, for example, even when the vehicle does not collide, such as when a part of the vehicle touches the ground or rides on a curb while traveling on a rough road When the impact is applied to the G sensor, there is a possibility that it is erroneously determined as a collision. In order to minimize this erroneous determination, tuning that requires a very large man-hour must be performed for each vehicle model to be applied.
On the other hand, in the present invention, unless the deformed electrode plate is deformed by the directly applied impact force, it is not determined that the collision has occurred, so that it is not only necessary to perform the tuning operation, but also deformed even if high G occurs. Even if there is a bad road running or curb ride that does not lead to deformation of the electrode plate, the impact is not erroneously determined.
As a result, it is possible to reliably avoid erroneous collision determination without requiring tuning.

以下、本発明の衝撃検知センサを実施するための最良の形態を、図面に示す実施例1〜実施例4に基づいて説明する。   Hereinafter, the best mode for carrying out the impact detection sensor of the present invention will be described based on Examples 1 to 4 shown in the drawings.

まず、構成を説明する。
図1は実施例1の衝撃検知センサを示す全体斜視図、図2は実施例1の衝撃検知センサの衝撃検知回路および衝撃判断回路の一例を示す回路構成図、図3は実施例1の衝撃検知センサが適用されたエアバックシステムを搭載した車両の一例を示す図である。
First, the configuration will be described.
FIG. 1 is an overall perspective view illustrating an impact detection sensor according to a first embodiment, FIG. 2 is a circuit configuration diagram illustrating an example of an impact detection circuit and an impact determination circuit of the impact detection sensor according to the first embodiment, and FIG. It is a figure which shows an example of the vehicle carrying the airbag system to which the detection sensor was applied.

本発明の衝撃検知センサは、対向する一対の極板を有して擬似コンデンサを構成し、一対の極板に電気を流した際の静電容量の変化を捉えることで衝撃を検知する。このため、前記一対の極板を、等間隔に保ちながら同心上に固定した相似形状の固定極板と変形極板により構成し、前記変形極板は、衝撃力により一部でも変形すると静電容量が変化する形状に設定した。以下、具体的な構成を説明する。   The impact detection sensor of the present invention has a pair of opposing electrode plates to form a pseudo capacitor, and detects an impact by capturing a change in capacitance when electricity is passed through the pair of electrode plates. For this reason, the pair of electrode plates are configured by a fixed electrode plate and a deformed electrode plate having similar shapes fixed concentrically while maintaining an equal interval, and the deformed electrode plate is electrostatically deformed even when partly deformed by an impact force. The shape was set to change the capacity. A specific configuration will be described below.

実施例1の衝撃検知センサA1において、前記固定極板と変形極板は、図1に示すように、内部に設定された球体固定極板1と、該球体固定極板1の外部に設定され、球体固定極板1の外周全体を覆う球体変形極板2と、である。そして、前記球体固定極板1と前記球体変形極板2との間に、両極板1,2の間隔を等間隔に保つ絶縁支持部材3を設定している。   In the impact detection sensor A1 according to the first embodiment, the fixed plate and the deformed plate are set inside the sphere fixed plate 1 set inside and outside the sphere fixed plate 1 as shown in FIG. A spherical deformation electrode plate 2 covering the entire outer periphery of the spherical fixed electrode plate 1. An insulating support member 3 is set between the spherical fixed electrode plate 1 and the spherical deformed electrode plate 2 to keep the distance between the two electrode plates 1 and 2 at equal intervals.

前記球体変形極板2は、外力が加わると、その力により容易に変形する導電性を持つ金属薄板により成形される。
前記絶縁支持部材3は、図1に示すように、球体固定極板1と球体変形極板2の共通する中心点Oを通る軸上に配置したもので、この絶縁支持部材3を低強度材により形成した場合には、衝撃検知センサA1の単体で3次元のあらゆる方向からの衝撃を検知できる。また、絶縁支持部材3を高強度材により形成した場合には、部材設定軸方向と部材設定軸直交方向との検知精度が差別化され、部材設定軸方向の衝撃感度が低く、部材設定軸直交方向の衝撃感度が高くなるというように方向別に衝撃感度が変化する。
また、前記球体固定極板1と球体変形極板2との間には、誘電体が充填されている。ここで、「誘電体」とは、電場の中にあると分極して静電誘導作用の媒介をする物質で、例えば、空気、パラフイン、紙、ゴム、絶縁油、ガラス、プラスチック等の絶縁物質をいう。
The spherical deformation electrode plate 2 is formed of a thin metal plate having conductivity that is easily deformed by an external force applied thereto.
As shown in FIG. 1, the insulating support member 3 is arranged on an axis passing through a common center point O of the spherical fixed electrode plate 1 and the spherical deformed electrode plate 2, and the insulating support member 3 is a low-strength material. When formed by the above, it is possible to detect an impact from any three-dimensional direction with the single impact detection sensor A1. Further, when the insulating support member 3 is formed of a high strength material, the detection accuracy between the member setting axis direction and the member setting axis orthogonal direction is differentiated, the impact sensitivity in the member setting axis direction is low, and the member setting axis orthogonal The impact sensitivity changes depending on the direction so that the impact sensitivity of the direction becomes higher.
In addition, a dielectric is filled between the spherical fixed electrode plate 1 and the spherical deformed electrode plate 2. Here, the “dielectric material” is a substance that polarizes when in an electric field and mediates the electrostatic induction action, and for example, an insulating substance such as air, paraffin, paper, rubber, insulating oil, glass, plastic, etc. Say.

実施例1の衝撃検知センサA1において、図2に示すように、前記球体固定極板1と球体変形極板2に、交流を印加する電源4と、前記球体固定極板1と球体変形極板2に印加された電圧を測定する電圧計5と、を有する衝撃検知回路6を接続し、前記衝撃検知回路6での前記電源4の電圧波形と前記電圧計5からの電圧波形とを比較し、電源電圧波形に対し電圧計波形が90度遅れ位相からずれたり、あるいは、ピーク電圧が変化した場合にセンサ本体が衝撃を受けたと判断する衝撃判断回路7を設けている。   In the impact detection sensor A1 of Example 1, as shown in FIG. 2, a power source 4 for applying an alternating current to the spherical fixed plate 1 and the spherical deformed polar plate 2, and the spherical fixed plate 1 and the spherical deformed polar plate. 2 is connected to an impact detection circuit 6 having a voltage meter 5 for measuring the voltage applied to the voltage detector 2, and the voltage waveform of the power source 4 in the impact detection circuit 6 is compared with the voltage waveform from the voltmeter 5. An impact determination circuit 7 is provided for determining that the sensor body has received an impact when the voltmeter waveform deviates from the phase delayed by 90 degrees with respect to the power supply voltage waveform or when the peak voltage changes.

すなわち、衝撃検知センサA1に対して電源4から交流を印加し、衝撃検知センサA1に印加される電圧を測定する。衝撃の入力が無いときは、擬似コンデンサである衝撃検知センサA1は、電源4に対して位相が90度遅れる。この電圧の位相がずれたり、あるいはピーク電圧が変化した場合は、センサ本体が衝撃を受けたと判断する。これが発生する事由としては、球体変形極板2へ衝撃が加わり、その一部が凹むことによって極板間の距離が変化したことが挙げられる。
球体変形極板2の凹みにより何故電圧が変化するかは、下記の式で説明できる。
V=(1/C)∫Idt=(S/εd)∫Idt …(1)
但し、V:極板間電圧、C:静電容量、I:交流電流、S:極板面積、ε:誘電率、d:極板面積である。
上記(1)式で明らかなように、極板面積dの変化により、静電容量Cも変化するため、それに伴い極板間電圧Vも変化することから、衝撃の検知が可能となっている。
That is, an alternating current is applied from the power source 4 to the impact detection sensor A1, and the voltage applied to the impact detection sensor A1 is measured. When no impact is input, the phase of the impact detection sensor A1, which is a pseudo capacitor, is delayed by 90 degrees with respect to the power supply 4. When the phase of this voltage is shifted or the peak voltage is changed, it is determined that the sensor body has received an impact. The reason why this occurs is that an impact is applied to the spherically deformed electrode plate 2 and a part thereof is recessed, whereby the distance between the electrode plates is changed.
The reason why the voltage changes due to the depression of the spherical deformation electrode plate 2 can be explained by the following equation.
V = (1 / C) ∫Idt = (S / εd) ∫Idt (1)
Where V: voltage between electrode plates, C: capacitance, I: alternating current, S: electrode plate area, ε: dielectric constant, d: electrode plate area.
As is clear from the above equation (1), the capacitance C also changes due to the change in the electrode plate area d, and the voltage V between the electrodes changes accordingly, so that the impact can be detected. .

実施例1の衝撃検知センサA1は、車両のエアバックシステムの衝突検出手段として適用し、車両の車外に近い位置に設定した。これは、車体が大きく変形しない限り衝撃検知センサA1が変形する可能性が低下することによる。例えば、図3に示すように、衝撃検知センサA1を車両前方の左右隅位置にそれぞれ設定している。   The impact detection sensor A1 of Example 1 was applied as a collision detection means of a vehicle airbag system, and was set at a position close to the outside of the vehicle. This is because the possibility that the impact detection sensor A1 is deformed is reduced unless the vehicle body is largely deformed. For example, as shown in FIG. 3, the impact detection sensor A1 is set at the left and right corner positions in front of the vehicle.

次に、作用を説明する。
[背景技術について]
近年、衝突時に乗員を安全に保護する乗員保護装置(エアバックやプリクラッシュシートベルト等)を搭載した自動車が急速に普及している。例えば、エアバックシステムについては、運転席エアバック、助手席エアバック、右サイドエアバック、左サイドエアバックを搭載した自動車が既に市販されている。このエアバックシステムにおいて、複数のエアバックを効果的に展開させるため、前面衝突だけでなく、オフセット衝突や車両側方からの衝突等、あらゆる方向からの衝突に対し、精度の高い衝突検知が要求されている。
Next, the operation will be described.
[Background technology]
In recent years, automobiles equipped with an occupant protection device (such as an air bag or a pre-crash seat belt) that safely protects an occupant in the event of a collision are rapidly spreading. For example, as for the airbag system, automobiles equipped with a driver's seat airbag, a passenger seat airbag, a right side airbag, and a left side airbag are already on the market. In order to effectively deploy multiple airbags in this airbag system, high-precision collision detection is required not only for frontal collisions but also for collisions from all directions such as offset collisions and collisions from the side of the vehicle. Has been.

これに対し、従来の振り子タイプや静電容量タイプのGセンサにあっては、車両に一定以上の衝撃が加わった場合、質量体(重錘体や可動電極等)が所定以上移動すると衝突と判定する。そのため、例えば、悪路走行中に車両の一部が地面に触れたり、縁石に乗り上げたりする等、衝突していない場面でもGセンサにその衝撃が加わった場合には、衝突と判定してエアバックを展開してしまう可能性がある。この誤判定を最小限に抑えるため、Gセンサのチューニングが必要であるが、センサチューニングには、非常に大きな工数を要するため非効率である。また、車種によっては同じ速度の衝突でも入力Gが変化するため、各車種毎にチューニングを行わなければならない。   On the other hand, in a conventional pendulum type or electrostatic capacitance type G sensor, when a certain level of impact is applied to the vehicle, if the mass body (weight body, movable electrode, etc.) moves more than a predetermined amount, judge. Therefore, for example, if the impact is applied to the G sensor even in a non-collision scene such as when a part of the vehicle touches the ground or rides on a curb while driving on a rough road, it is judged as a collision and air There is a possibility of expanding the back. In order to minimize this erroneous determination, tuning of the G sensor is necessary, but the sensor tuning is inefficient because it requires a very large number of man-hours. In addition, depending on the vehicle type, the input G changes even in a collision at the same speed, so tuning must be performed for each vehicle type.

さらに、質量体の移動を利用して衝突を検知するGセンサが検知できる方向は、2方向(1方向+その180度反転方向)に限られており、例えば、あらゆる方向からの衝撃を検知するためには、その知りたい方向に対応する個数のGセンサを設置する必要がある。しかしながら、Gセンサは値段が高価であるため、大量に配置することは難しい。   Furthermore, the direction that can be detected by the G sensor that detects the collision by using the movement of the mass body is limited to two directions (one direction + the direction of 180 degree inversion). For example, an impact from any direction is detected. For this purpose, it is necessary to install a number of G sensors corresponding to the desired direction. However, since the G sensor is expensive, it is difficult to arrange it in large quantities.

[衝撃検知作用について]
これに対し、実施例1の衝撃検知センサA1では、一対の極板を、対向配置した球体固定極板1と球体変形極板2により構成することで、チューニングを要さず、衝突誤判定を確実に回避することができるようにした。
[About impact detection]
On the other hand, in the impact detection sensor A1 according to the first embodiment, the pair of electrode plates are configured by the spherical fixed electrode plate 1 and the spherical deformed electrode plate 2 that are disposed to face each other, so that tuning is not required and erroneous collision determination is performed. I was able to avoid it reliably.

すなわち、衝撃検知センサA1の球体固定極板1と球体変形極板2に対しては、衝撃検知回路6の電源4から交流が印加され、衝撃検知センサA1に印加される電圧が衝撃検知回路6の電圧計5により測定される。そして、衝撃の入力が無いときは、擬似コンデンサである衝撃検知センサA1は、電源4の交流位相に対して電圧計5により測定される位相が90度遅れる。
この状態で、球体変形極板2が衝撃により凹むと、一定間隔に保っていた球体固定極板1と球体変形極板2の距離が変化し、電源交流位相と電圧計測定位相がずれたり、あるいはピーク電圧が変化する。したがって、この位相ずれやピーク電圧の変化を衝撃判断回路7により捉えることで、センサ本体が衝撃を受けたと検知することができる。
That is, an alternating current is applied from the power source 4 of the impact detection circuit 6 to the spherical fixed electrode plate 1 and the spherical deformation electrode plate 2 of the impact detection sensor A1, and the voltage applied to the impact detection sensor A1 is the impact detection circuit 6. The voltmeter 5 is used for measurement. When no impact is input, the phase measured by the voltmeter 5 of the impact detection sensor A1, which is a pseudo capacitor, is delayed by 90 degrees with respect to the AC phase of the power supply 4.
In this state, when the spherical deformation electrode plate 2 is dented by an impact, the distance between the spherical fixed electrode plate 1 and the spherical deformation electrode plate 2 kept at a constant interval changes, and the power supply AC phase and the voltmeter measurement phase shift. Or the peak voltage changes. Therefore, it is possible to detect that the sensor body has received an impact by capturing the phase shift and the change in the peak voltage by the impact determination circuit 7.

上記のように、実施例1の衝撃検知センサA1では、球体変形極板2が変形しない限り、衝突をしたと判定しないため、チューニング作業を行う必要が無いばかりでなく、高Gが発生しても変形極板の変形に至ることがない悪路走行や縁石乗り上げ等があっても衝撃を誤判定することはない。   As described above, in the impact detection sensor A1 according to the first embodiment, unless the spherical deformation electrode plate 2 is deformed, it is not determined that the collision has occurred. Even if there is a bad road running or curb ride that does not lead to deformation of the deformed electrode plate, the impact is not misjudged.

実施例1の衝撃検知センサA1において、前記固定極板と変形極板は、内部に設定された球体固定極板1と、該球体固定極板1の外部に設定され、球体固定極板1の外周全体を覆う球体変形極板2と、であり、前記球体固定極板1と前記球体変形極板2との間に、両極板1,2の間隔を等間隔に保つ絶縁支持部材3を設定した。
このため、部品点数が少なく、構造がシンプルであるため、製作が容易であり、低コストにより衝撃検知センサA1を製造することができる。
また、両極板1,2の間隔を等間隔に保つ絶縁支持部材3を低強度材により形成することで、衝撃検知センサA1の単体で3次元のあらゆる方向からの衝撃を検知できる。
さらに、両極板1,2の間隔を等間隔に保つ絶縁支持部材3を高強度材により形成することで、部材設定軸方向と部材設定軸直交方向との検知精度が差別化され、部材設定軸方向の衝撃感度が低く、部材設定軸直交方向の衝撃感度が高くなるというように方向別に衝撃感度を変化させることもできる。
なお、方向別の衝撃感度に変化を持たせることは、球体変形極板2の一部を厚く変形しにくくしたり、両極板1,2の内部を複数の室に画成し、充填する誘電体の物質を一部変更することによっても可能である。
In the impact detection sensor A1 according to the first embodiment, the fixed plate and the deformed plate are set inside the sphere fixed plate 1 and the outside of the sphere fixed plate 1. An insulating support member 3 that keeps the distance between the two electrode plates 1 and 2 at an equal interval between the spherical fixed electrode plate 1 and the spherical deformed electrode plate 2. did.
For this reason, since the number of parts is small and the structure is simple, manufacture is easy, and the impact detection sensor A1 can be manufactured at low cost.
Further, by forming the insulating support member 3 that keeps the distance between the bipolar plates 1 and 2 at an equal interval from a low-strength material, the impact detection sensor A1 can detect an impact from any three-dimensional direction.
Furthermore, by forming the insulating support member 3 that keeps the distance between the bipolar plates 1 and 2 at an equal interval with a high-strength material, the detection accuracy between the member setting axis direction and the member setting axis orthogonal direction is differentiated, and the member setting axis The impact sensitivity can be changed for each direction such that the impact sensitivity in the direction is low and the impact sensitivity in the direction orthogonal to the member setting axis is high.
It should be noted that changing the impact sensitivity depending on the direction makes it difficult to deform a part of the spherical deformation electrode plate 2 thickly, or defines the interior of the bipolar plates 1 and 2 in a plurality of chambers to fill the dielectric. It is also possible by changing part of the body material.

実施例1の衝撃検知センサA1において、前記球体固定極板1と球体変形極板2に、交流を印加する電源4と、前記球体固定極板1と球体変形極板2に印加された電圧を測定する電圧計5と、を有する衝撃検知回路6を接続し、前記衝撃検知回路6での前記電源4の電圧波形と前記電圧計5からの電圧波形とを比較し、電源電圧波形に対し電圧計波形が90度遅れ位相からずれたり、あるいは、ピーク電圧が変化した場合にセンサ本体が衝撃を受けたと判断する衝撃判断回路7を設けた。
このため、簡単な衝撃検知回路6と、位相ずれ、あるいは、ピーク電圧の変化を判断するだけの容易な衝撃判断回路7により、精度良く、センサ本体が衝撃を受けたことを検知することができる。
In the impact detection sensor A1 of the first embodiment, a power supply 4 for applying an alternating current to the spherical fixed plate 1 and the spherical deformed polar plate 2, and a voltage applied to the spherical fixed plate 1 and the spherical deformed polar plate 2 are used. An impact detection circuit 6 having a voltmeter 5 to be measured, and the voltage waveform of the power supply 4 in the impact detection circuit 6 is compared with the voltage waveform from the voltmeter 5, and the voltage is compared with the power supply voltage waveform. An impact judgment circuit 7 is provided for judging that the sensor body has received an impact when the measured waveform deviates from the phase delayed by 90 degrees or the peak voltage changes.
For this reason, it is possible to accurately detect that the sensor body has received an impact by the simple impact detection circuit 6 and the impact determination circuit 7 that can easily detect a phase shift or a change in peak voltage. .

[車両適用時の設置場所について]
実施例1の衝撃検知センサA1は、回りの部品がセンサ本体にぶつかったりすることで変形されない限り、衝突したと判断しない。例えば、車両の金属ボディの近く等、車外に近ければ近いほど、軽度の衝突(小さな凹み)であっても、衝撃検知センサA1の球体変形極板2がそれによって変形すれば検知可能である。逆に、エンジンコンパートメント(=エンジンルーム)中央付近に設置すると、車体がそれだけ大きく変形しない限り、衝撃検知センサA1も変形する可能性が低下するため、衝突を検知することは少なくなる、言い換えると、軽度の衝突は検知しなくなる。よって、検知したい衝突の形態をによって衝撃検知センサA1の設置場所を変えれば、より効率良く衝突を見極めることが可能である。
[Installation location when the vehicle is applied]
The impact detection sensor A1 according to the first embodiment does not determine that a collision has occurred unless the surrounding parts collide with the sensor body and are deformed. For example, the closer to the outside of the vehicle, such as near the metal body of the vehicle, the lighter collision (small dent) can be detected if the spherical deformation electrode plate 2 of the impact detection sensor A1 is deformed thereby. Conversely, if installed near the center of the engine compartment (= engine room), the impact detection sensor A1 will be less likely to be deformed unless the car body is deformed that much. Minor collisions will not be detected. Therefore, if the installation location of the impact detection sensor A1 is changed depending on the form of the collision to be detected, it is possible to determine the collision more efficiently.

図3に従来技術のセンサを実施例1の衝撃検知センサA1と入れ替えた場合の衝突検知範囲を比較した図を示す。この場合、実施例1の衝撃検知センサA1は、検知可能な範囲が従来技術のセンサによる検知可能な範囲の倍近くになることが分かる。
なお、図3の方法で、センサを使用する場合、実施例1の球形タイプの衝撃検知センサA1、もしくは、実施例4の半球タイプの衝撃検知センサA4を設置するのが最も有効であると考えられる。
FIG. 3 shows a comparison of collision detection ranges when the sensor of the prior art is replaced with the impact detection sensor A1 of the first embodiment. In this case, it can be seen that the impact detection sensor A1 of the first embodiment has a detectable range that is nearly double that detectable by the conventional sensor.
When using the sensor in the method of FIG. 3, it is considered most effective to install the spherical impact detection sensor A1 of the first embodiment or the hemispherical impact detection sensor A4 of the fourth embodiment. It is done.

上記のように、実施例1の衝撃検知センサA1において、車両のエアバックシステムの衝突検出手段として適用し、車両の車外に近い位置に設定した。
このため、車体を小さく変形させる軽度の衝突時であっても、車体の変形に伴って衝撃検知センサA1の球体変形極板2が凹み変形して、精度良く衝突を検知することができる。
As described above, the impact detection sensor A1 of Example 1 was applied as a collision detection means of a vehicle airbag system, and was set at a position close to the outside of the vehicle.
For this reason, even during a mild collision that deforms the vehicle body to a small extent, the spherical deformation electrode plate 2 of the impact detection sensor A1 is recessed and deformed with the deformation of the vehicle body, and the collision can be detected with high accuracy.

実施例1の衝撃検知センサA1において、前記車両への設定位置は、車両前方の左右隅位置にそれぞれ設定した。
このため、従来技術のセンサによる検知可能な範囲に比べ、倍近くの広い範囲にわたる車両衝突を検知することができる。言い換えると、同じ衝突範囲を検知しようとする場合、センサの数を半分、あるいは、半分以下に減らすことも可能である。
In the impact detection sensor A1 of Example 1, the set position on the vehicle was set to the left and right corner positions in front of the vehicle.
For this reason, it is possible to detect a vehicle collision over a wide range that is nearly double as compared with a range that can be detected by a sensor of the prior art. In other words, if the same collision range is to be detected, the number of sensors can be reduced to half or less than half.

次に、効果を説明する。
実施例1の衝撃検知センサにあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the impact detection sensor of the first embodiment, the effects listed below can be obtained.

(1) 対向する一対の極板を有して擬似コンデンサを構成し、一対の極板に電気を流した際の静電容量の変化を捉えることで衝撃を検知する衝撃検知センサにおいて、衝撃力により変形可能に形成された球体変形極板2(変形極板)と、前記球体変形極板2に対向して配置された球体固定極板1(固定極板)と、前記球体変形極板2の変形により変化する前記両極板1,2間の静電容量の変化を検出する衝撃検知回路6(静電容量変化検出手段)と、を備えたため、チューニングを要さず、衝突誤判定を確実に回避することができる。   (1) In an impact detection sensor that has a pair of opposing electrode plates to form a pseudo capacitor and detects an impact by detecting changes in capacitance when electricity is passed through the pair of electrode plates, The deformed spherical deformed plate 2 (deformed plate), the fixed spherical plate 1 (fixed polar plate) disposed opposite to the deformed spherical plate 2, and the deformed spherical plate 2 Shock detection circuit 6 (capacitance change detecting means) that detects a change in capacitance between the two and two electrode plates 1 and 2 that changes due to deformation of the electrode plate. Can be avoided.

(2) 前記一対の極板を構成する球体変形極板2(変形極板)と球体固定極板1(固定極板)は、等間隔に保ちながら同心上に固定した相似形状であり、かつ、前記球体変形極板2は、衝撃力により一部でも変形すると静電容量が変化する形状に設定したため、変形極板がカバーする板面領域に対する入力であれば、あらゆる方向からの衝撃を検知することができる。   (2) The spherical deformable electrode plate 2 (deformed electrode plate) and the spherical fixed electrode plate 1 (fixed electrode plate) constituting the pair of electrode plates have a similar shape fixed concentrically while maintaining an equal interval; The spherical deformable electrode plate 2 is set to have a shape in which the capacitance changes when even a part of the deformed electrode plate is deformed by an impact force. Therefore, if the input is to the plate surface area covered by the deformed electrode plate, an impact from any direction is detected. can do.

(3) 前記衝撃検知回路6(静電容量変化検出手段)は、前記両極板に電圧を印加する電源4(電圧印加手段)と、両極板間の静電容量の変化により変化する前記両極板間の電圧を検出する電圧計5(電圧検出手段)と、で構成されているため、きわめて簡単な構成にて静電容量の変化を検出することができる。   (3) The impact detection circuit 6 (capacitance change detecting means) includes a power source 4 (voltage applying means) for applying a voltage to the bipolar plates, and the bipolar plates that change due to changes in capacitance between the bipolar plates. Therefore, it is possible to detect a change in capacitance with a very simple configuration.

(4) 前記衝撃検知回路6(静電容量変化検出手段)は、前記電源4(電圧印加手段)の電圧波形と前記電圧計5(電圧検出手段)からの電圧波形とを比較し、電源電圧波形に対し電圧計波形が90度遅れ位相からずれたり、あるいは、ピーク電圧が変化した場合にセンサ本体が衝撃を受けたと判断する衝撃判断回路7を有するため、位相ずれ、あるいは、ピーク電圧の変化を判断するだけの簡単な衝撃判断回路7により、精度良く、センサ本体が衝撃を受けたことを検知することができる。   (4) The impact detection circuit 6 (capacitance change detection means) compares the voltage waveform of the power supply 4 (voltage application means) with the voltage waveform from the voltmeter 5 (voltage detection means) to determine the power supply voltage. Since the voltmeter waveform deviates from the phase delayed by 90 degrees with respect to the waveform, or when the peak voltage changes, the sensor main body has an impact judging circuit 7 for judging that the sensor body has undergone an impact. It is possible to accurately detect that the sensor body has received an impact by the simple impact judgment circuit 7 that simply judges the above.

(5) 車両のエアバックシステムの衝突検出手段として適用し、車両の車外に近い位置に設定したため、車体を小さく変形させる軽度の衝突時であっても、車体の変形に伴って衝撃検知センサA1の球体変形極板2が凹み変形して、精度良く衝突を検知することができる。   (5) Since it is applied as a collision detection means for the airbag system of a vehicle and is set at a position close to the outside of the vehicle, the impact detection sensor A1 is accompanied by the deformation of the vehicle body even at the time of a slight collision that deforms the vehicle body slightly. The spherical deformation electrode plate 2 is deformed in a concave manner, and a collision can be detected with high accuracy.

(6) 前記車両への設定位置は、車両前方の左右隅位置にそれぞれ設定したため、従来技術のセンサによる検知可能な範囲に比べ、倍近くの広い範囲にわたる車両衝突を検知することができるし、同じ衝突範囲を検知しようとする場合、センサの数を半分、あるいは、半分以下に減らすことも可能である。   (6) Since the set position to the vehicle is set at the left and right corner positions in front of the vehicle, it is possible to detect a vehicle collision over a wide range that is nearly double compared to the range that can be detected by the sensor of the prior art, When trying to detect the same collision range, the number of sensors can be reduced to half or less than half.

(7) 前記固定極板と変形極板は、内部に設定された球体固定極板1と、該球体固定極板1の外部に設定され、球体固定極板1の外周全体を覆う球体変形極板2と、であり、前記球体固定極板1と前記球体変形極板2との間に、両極板1,2の間隔を等間隔に保つ絶縁支持部材3を設定したため、低コストにより衝撃検知センサA1を製造することができると共に、衝撃検知センサA1の単体で3次元のあらゆる方向からの衝撃を検知することもできるし、方向別に衝撃感度を変化させることもできる。   (7) The fixed electrode plate and the deformed electrode plate are a spherical fixed electrode plate 1 set inside, and a spherical deformed electrode that is set outside the fixed ball plate 1 and covers the entire outer periphery of the fixed ball plate 1. Since the insulating support member 3 is set between the sphere fixed electrode plate 1 and the sphere deformed electrode plate 2 so as to keep the distance between the two electrode plates 1 and 2 equal to each other. The sensor A1 can be manufactured, and the impact detection sensor A1 alone can detect impacts from all three dimensions, and the impact sensitivity can be changed for each direction.

実施例2は、固定極板と変形極板を、実施例1の球形タイプに代え、円環状タイプ(リング形状タイプあるいはトラック形状タイプ)とした例である。   The second embodiment is an example in which the fixed electrode plate and the deformed electrode plate are replaced with the spherical type of the first embodiment and an annular type (ring shape type or track shape type).

まず、構成を説明する。
図4は実施例2の衝撃検知センサを示す全体斜視図である。
実施例2の衝撃検知センサA2において、前記固定極板と変形極板は、図4に示すように、内部に設定された円環状固定極板21と、該円環状固定極板21の外部に設定され、円環状固定極板21の外周全体を覆う円環状変形極板22と、である。そして、前記円環状固定極板21と前記円環状変形極板22との間に、両極板21,22の間隔を等間隔に保つ絶縁支持部材23を設定している。実施例2では、楕円環状を示しているが、円環状でも長円状(トラック状)としても良い。なお、他の構成は実施例1と同様である。
First, the configuration will be described.
FIG. 4 is an overall perspective view showing the impact detection sensor of the second embodiment.
In the impact detection sensor A2 according to the second embodiment, the fixed plate and the deformed plate are arranged inside an annular fixed plate 21 set inside and outside the annular fixed plate 21 as shown in FIG. An annular deformed electrode plate 22 that is set and covers the entire outer periphery of the annular fixed electrode plate 21. An insulating support member 23 is set between the annular fixed electrode plate 21 and the annular deformed electrode plate 22 to keep the distance between the two electrode plates 21 and 22 at an equal interval. In the second embodiment, an elliptical ring shape is shown, but an annular shape or an oval shape (track shape) may be used. Other configurations are the same as those in the first embodiment.

次に、作用を説明すると、実施例1の衝撃検知センサA1では、単体で3次元のあらゆる方向からの衝撃を検知することが可能であるのに対し、実施例2の衝撃検知センサA2は、X軸方向とY軸方向の2次元の360度方向の衝撃を検知できるが、Z軸方向の衝撃を検知できない点で異なる。なお、他の作用は、実施例1と同様である。   Next, the operation will be described. While the impact detection sensor A1 of the first embodiment can detect a shock from any three-dimensional direction alone, the impact detection sensor A2 of the second embodiment Two-dimensional 360-degree impact in the X-axis direction and Y-axis direction can be detected, but the point that the impact in the Z-axis direction cannot be detected. Other functions are the same as those in the first embodiment.

次に、効果を説明する。
実施例2の衝撃検知センサA2にあっては、実施例1の(1)〜(6)の効果に加えて、下記の効果を得ることができる。
Next, the effect will be described.
In the impact detection sensor A2 of the second embodiment, the following effects can be obtained in addition to the effects (1) to (6) of the first embodiment.

(8) 前記固定極板と変形極板は、内部に設定された円環状固定極板21と、該円環状固定極板21の外部に設定され、円環状固定極板21の外周全体を覆う円環状変形極板22と、であり、前記円環状固定極板21と前記円環状変形極板22との間に、両極板21,22の間隔を等間隔に保つ絶縁支持部材23を設定したため、実施例1の衝撃検知センサA1に比べ、さらに低コストに衝撃検知センサA2を製造することができると共に、衝撃検知センサA2の単体で2次元全周方向からの衝撃を検知することもできるし、2次元方向別に衝撃感度を変化させることもできる。   (8) The fixed plate and the deformed plate are set inside the annular fixed plate 21 and outside the fixed plate 21 and cover the entire outer periphery of the fixed plate 21. An insulating support member 23 is set between the annular fixed electrode plate 21 and the annular deformed electrode plate 22 to keep the distance between the two electrode plates 21 and 22 equal. Compared to the impact detection sensor A1 of the first embodiment, the impact detection sensor A2 can be manufactured at a lower cost, and the impact detection sensor A2 can detect the impact from the two-dimensional circumferential direction alone. The impact sensitivity can be changed for each two-dimensional direction.

実施例3は、固定極板と変形極板を、実施例1の球形タイプに代え、方形状タイプ(直方体形状タイプあるいは立方体形状タイプ)とした例とした例である。   Example 3 is an example in which the fixed electrode plate and the deformed electrode plate are replaced with the spherical type of Example 1 and a rectangular type (rectangular shape type or cubic shape type).

まず、構成を説明する。
図5は実施例3の衝撃検知センサを示す全体斜視図である。
実施例3の衝撃検知センサA3において、前記固定極板と変形極板は、図5に示すように、内部に設定された方形状固定極板31と、該方形状固定極板31の外部に設定され、方形状固定極板31の外周全体を覆う方形状変形極板32と、である。そして、前記方形状固定極板31と前記方形状変形極板32との間に、両極板31,32の間隔を等間隔に保つ絶縁支持部材33を8本設定している。実施例3では、直方体形状を示しているが、勿論、立方体形状としても良い。
First, the configuration will be described.
FIG. 5 is an overall perspective view showing the impact detection sensor of the third embodiment.
In the impact detection sensor A3 according to the third embodiment, the fixed plate and the deformed plate are arranged in a rectangular fixed plate 31 set inside and outside the fixed plate 31 as shown in FIG. A rectangular deformation electrode plate 32 that is set and covers the entire outer periphery of the rectangular fixed electrode plate 31. Between the rectangular fixed electrode plate 31 and the rectangular deformed electrode plate 32, eight insulating support members 33 are set to keep the distance between the two electrode plates 31, 32 at an equal interval. In the third embodiment, a rectangular parallelepiped shape is shown, but of course, a cubic shape may be used.

そして、前記方形状固定極板31は、車載部品を収容する外側ケースを流用している。なお、他の構成は実施例1と同様である。   The rectangular fixed electrode plate 31 uses an outer case that accommodates in-vehicle components. Other configurations are the same as those in the first embodiment.

次に、作用を説明すると、実施例1の衝撃検知センサA1では、単体で3次元のあらゆる方向からの衝撃を検知することが可能であるのに対し、実施例3の衝撃検知センサA3は、X軸方向とY軸方向とZ軸方向の衝撃感度が最も高く、絶縁支持部材33が設定された斜め8方向の衝撃感度が最も低くなるというように、3次元のあらゆる方向からの衝撃を検知することが可能であるが、方向別に衝撃感度が変化する点で異なる。   Next, the operation will be described. In the impact detection sensor A1 of the first embodiment, it is possible to detect a shock from any three-dimensional direction alone, whereas the impact detection sensor A3 of the third embodiment Detects impacts from any three-dimensional direction so that the impact sensitivity in the X-axis direction, Y-axis direction, and Z-axis direction is the highest, and the impact sensitivity in the eight diagonal directions with the insulating support member 33 set is the lowest. It is possible to do this, but it differs in that the impact sensitivity varies with the direction.

そして、本発明は、車載部品を完全に覆ってしまうことが可能であるため、衝突時に特に保護が必要な部品には非常に有効である。この場合、車載部品は、形状的に方形状のケースに覆われている部品が多く、実施例3の衝撃検知センサA3の場合、形状的に最も効果を発揮できることになる。この点に着目し、実施例3の衝撃検知センサA3では、方形状固定極板31として、車載部品を収容する外側ケースを流用することで、車載部品の衝突破損からの保護を達成している。なお、他の作用は、実施例1と同様である。   Since the present invention can completely cover the on-vehicle component, it is very effective for a component that particularly needs to be protected during a collision. In this case, many on-vehicle components are covered with a rectangular case in shape, and the impact detection sensor A3 of Example 3 can exhibit the most effective shape. Focusing on this point, in the impact detection sensor A3 of the third embodiment, the outer case that houses the in-vehicle component is used as the rectangular fixed plate 31 to achieve protection from collision damage of the in-vehicle component. . Other functions are the same as those in the first embodiment.

次に、効果を説明する。
実施例3の衝撃検知センサA3にあっては、実施例1の(1)〜(6)の効果に加えて、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the impact detection sensor A3 of the third embodiment, in addition to the effects (1) to (6) of the first embodiment, the effects listed below can be obtained.

(9) 前記固定極板と変形極板は、内部に設定された方形状固定極板31と、該方形状固定極板31の外部に設定され、方形状固定極板31の外周全体を覆う方形状変形極板32と、であり、前記方形状固定極板31と前記方形状変形極板32との間に、両極板31,32の間隔を等間隔に保つ絶縁支持部材33を設定したため、低コストにより衝撃検知センサA3を製造することができると共に、衝撃検知センサA3の単体で方向別に衝撃感度を変化させながら3次元のあらゆる方向からの衝撃を検知することができる。   (9) The fixed plate and the deformed plate are set to the inside of the rectangular fixed plate 31 set inside and the outside of the fixed plate 31 of the rectangular shape, and cover the entire outer periphery of the fixed plate 31 of rectangular shape. Because the insulating support member 33 is set between the rectangular fixed electrode plate 31 and the rectangular deformed electrode plate 32 to keep the distance between the two electrode plates 31 and 32 equal. The impact detection sensor A3 can be manufactured at a low cost, and the impact from any three-dimensional direction can be detected while changing the impact sensitivity for each direction with the impact detection sensor A3 alone.

(10) 前記方形状固定極板31は、車載部品を収容する外側ケースであるため、部品の共用化を図りながら、車載部品を方形状変形極板32により覆うことで衝突破損から保護することができる。加えて、車載部品を車両のどの場所に設置しても、変形すれば検知可能となることで、レイアウト自由度を増加させることができる。   (10) Since the rectangular fixed plate 31 is an outer case that accommodates in-vehicle components, the in-vehicle components are protected from collision damage by covering the in-vehicle components with the rectangular deformed electrode plate 32 while sharing the components. Can do. In addition, it is possible to increase the degree of freedom of layout by enabling detection if the vehicle-mounted component is installed at any location of the vehicle if it is deformed.

実施例4は、固定極板と変形極板を、実施例1の球形タイプに代え、半球形状タイプとした例である。   The fourth embodiment is an example in which the fixed electrode plate and the deformed electrode plate are replaced with the spherical type of the first embodiment and a hemispherical type is used.

まず、構成を説明する。
図6は実施例4の衝撃検知センサを示す全体斜視図である。
実施例4の衝撃検知センサA4において、前記固定極板と変形極板は、図6に示すように、内部に設定された半球状固定極板41と、該半球状固定極板41の外部に設定され、半球状固定極板の外周全体を覆う半球状変形極板42と、である。そして、前記半球状固定極板41と前記半球状変形極板42とは、両極板41,42を等間隔に保つ台座部材43に設定されている。
First, the configuration will be described.
FIG. 6 is an overall perspective view showing the impact detection sensor of the fourth embodiment.
In the impact detection sensor A4 of the fourth embodiment, the fixed plate and the deformed plate are arranged on the inside of a hemispherical fixed plate 41 set inside and outside the hemispherical fixed plate 41, as shown in FIG. A hemispherical deformed electrode plate 42 that is set and covers the entire outer periphery of the hemispherical fixed electrode plate. The hemispherical fixed electrode plate 41 and the hemispherical deformed electrode plate 42 are set to a pedestal member 43 that keeps the electrode plates 41 and 42 at equal intervals.

この実施例4の衝撃検知センサA4において、半球状固定極板41と半球状変形極板42と台座部材43との構成要素は、下記の態様の何れかとする。
(a)半球状固定極板41と半球状変形極板42と台座部材43とをセンサ構成部材とし、車体パネルとは独立に構成して、車体パネルに設置する。
(b)半球状固定極板41と台座部材43を、半球状の凸部または凹部を形成した車両の車体パネルとし、半球状変形極板42のみを付加する。つまり、車両の金属ボディによる車体パネルをセンサの1つの極板とみなし、半球状固定極板41と台座部材43として有効に活用する。
(c)台座部材43を、車両の車体パネルとし、半球状固定極板41と半球状変形極板42とを付加する。つまり、車両の金属ボディによる車体パネルをセンサの台座部材43として活用し、車体への埋め込みや突出により設置する。
なお、他の構成は実施例1と同様である。
In the impact detection sensor A4 of the fourth embodiment, the constituent elements of the hemispherical fixed electrode plate 41, the hemispherical deformed electrode plate 42, and the base member 43 are any of the following modes.
(a) The hemispherical fixed electrode plate 41, the hemispherical deformed electrode plate 42, and the pedestal member 43 are used as sensor constituent members, configured independently of the vehicle body panel, and installed on the vehicle body panel.
(b) The hemispherical fixed electrode plate 41 and the pedestal member 43 are vehicle body panels in which hemispherical convex portions or concave portions are formed, and only the hemispherical deformed electrode plate 42 is added. That is, the vehicle body panel formed of the metal body of the vehicle is regarded as one electrode plate of the sensor, and is effectively used as the hemispherical fixed electrode plate 41 and the base member 43.
(c) The base member 43 is a vehicle body panel of the vehicle, and a hemispherical fixed electrode plate 41 and a hemispherical deformed electrode plate 42 are added. That is, a vehicle body panel made of a metal body of the vehicle is used as the sensor base member 43 and is installed by being embedded in or protruding from the vehicle body.
Other configurations are the same as those in the first embodiment.

次に、作用を説明すると、実施例1の衝撃検知センサA1では、単体で3次元のあらゆる方向からの衝撃を検知することが可能であるのに対し、実施例4の衝撃検知センサA4は、X軸とZ軸とで形成される平面のY軸正方向からの衝撃感度が最も高く、入力方向がY軸正方向からずれ、X軸やZ軸に近づくにしたがって衝撃感度が徐々に低くなるというように、3次元の半球方向からの衝撃を検知することが可能であるが、入力方向がY軸正方向から方向がずれることで衝撃感度が変化する点で異なる。   Next, the operation will be described. The impact detection sensor A1 of the first embodiment can detect a shock from any three-dimensional direction alone, whereas the impact detection sensor A4 of the fourth embodiment The impact sensitivity from the positive Y-axis direction of the plane formed by the X-axis and the Z-axis is the highest, the input direction is shifted from the positive Y-axis direction, and the impact sensitivity gradually decreases as it approaches the X-axis or Z-axis. As described above, it is possible to detect an impact from the three-dimensional hemispherical direction, but the point that the impact sensitivity changes due to the input direction deviating from the positive direction of the Y-axis is different.

そして、実施例4の衝撃検知センサA4の場合、実施例1〜4の場合のように、一対の極板を等間隔に保つ部材として絶縁支持部材を要さず、半球状固定極板41と半球状変形極板42とを等間隔に保つ部材が、平板状の台座部材43であるため、車体パネルとの部品共用化が可能になる。
この点に着目し、実施例4の衝撃検知センサA4では、半球状固定極板41と台座部材43を、半球状の凸部または凹部を形成した車両の車体パネルにより構成することができ、この場合、2つのセンサ部品の削減することが可能である。また、台座部材43を、車両の車体パネルにより構成することができ、この場合、1つのセンサ部品の削減をすることが可能である。なお、他の作用は、実施例1と同様である。
In the case of the impact detection sensor A4 of the fourth embodiment, as in the case of the first to fourth embodiments, an insulating support member is not required as a member for keeping a pair of electrode plates at equal intervals. Since the member that keeps the hemispherical deformed electrode plate 42 at equal intervals is the flat base member 43, it is possible to share parts with the vehicle body panel.
Focusing on this point, in the impact detection sensor A4 of the fourth embodiment, the hemispherical fixed electrode plate 41 and the pedestal member 43 can be configured by a vehicle body panel in which a hemispherical convex portion or concave portion is formed. In this case, it is possible to reduce two sensor parts. Moreover, the base member 43 can be comprised by the vehicle body panel of a vehicle, and it is possible to reduce one sensor component in this case. Other functions are the same as those in the first embodiment.

次に、効果を説明する。
実施例4の衝撃検知センサA4にあっては、実施例1の(1)〜(6)の効果に加えて、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the impact detection sensor A4 of the fourth embodiment, in addition to the effects (1) to (6) of the first embodiment, the effects listed below can be obtained.

(11) 前記固定極板と変形極板は、図6に示すように、内部に設定された半球状固定極板41と、該半球状固定極板41の外部に設定され、半球状固定極板の外周全体を覆う半球状変形極板42と、であり、前記半球状固定極板41と前記半球状変形極板42とは、両極板41,42を等間隔に保つ台座部材43に設定したため、低コストにより衝撃検知センサA4を製造することができると共に、入力方向により衝撃感度が変化するものの、衝撃検知センサA4の単体で3次元の半球方向からの衝撃を検知することができる。   (11) The fixed plate and the deformed plate are, as shown in FIG. 6, a hemispherical fixed plate 41 set inside and a hemispherical fixed plate set outside the hemispherical fixed plate 41. A hemispherical deformed electrode plate 42 covering the entire outer periphery of the plate, and the hemispherical fixed electrode plate 41 and the hemispherical deformed electrode plate 42 are set to a pedestal member 43 that keeps the two electrode plates 41, 42 at equal intervals. Therefore, the impact detection sensor A4 can be manufactured at a low cost, and the impact from the three-dimensional hemisphere direction can be detected by the single impact detection sensor A4, although the impact sensitivity changes depending on the input direction.

(12) 前記半球状固定極板41と台座部材43は、半球状の凸部または凹部を形成した車両の車体パネルであるため、個別のセンサが不要であり、2つのセンサ部品を削減しながら、半球状変形極板42を車外に向けることで、車外のどの方向からの衝突でも検知することが可能である。   (12) Since the hemispherical fixed electrode plate 41 and the pedestal member 43 are vehicle body panels formed with hemispherical convex portions or concave portions, separate sensors are unnecessary, and two sensor parts are reduced. The collision from any direction outside the vehicle can be detected by directing the hemispherical deformed electrode plate 42 to the outside of the vehicle.

(13) 前記台座部材43は、車両の車体パネルであるため、個別のセンサが不要であり、1つのセンサ部品を削減しながら、半球状変形極板42を車外に向けることで、車外のどの方向からの衝突でも検知することが可能である。   (13) Since the pedestal member 43 is a vehicle body panel, a separate sensor is not required, and the hemispherical deformation electrode plate 42 is directed to the outside of the vehicle while reducing one sensor component. It is possible to detect even a collision from the direction.

以上、本発明の衝撃検知センサを実施例1〜実施例4に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As mentioned above, although the impact detection sensor of this invention has been demonstrated based on Example 1-Example 4, it is not restricted to these Examples about a concrete structure, Each claim of a claim Design changes and additions are allowed without departing from the gist of the invention.

実施例1〜実施例4では、等間隔に保ちながら同心上に固定した相似形状の固定極板と変形極板により構成した好ましい例を示したが、両極板の間隔は多少変化しても、また、同心上に固定したものではなくても、さらに、相似形状ではなくても良い。要するに、一対の固定極板と変形極板とを対向配置し、変形極板が衝撃力により変形すると極板間の距離が変化し、静電容量が変化するものであれば本発明に含まれる。   In Examples 1 to 4, a preferred example in which a fixed electrode plate and a deformed electrode plate having similar shapes fixed concentrically while maintaining an equal interval was shown, but even if the interval between the two electrode plates changes slightly, Moreover, it may not be fixed concentrically, and may not be a similar shape. In short, a pair of fixed electrode plate and deformed electrode plate are arranged to face each other, and when the deformed electrode plate is deformed by an impact force, the distance between the electrode plates is changed, and the capacitance is included in the present invention. .

実施例1では、固定極板と変形極板として球体極板とする例を示し、実施例2では、固定極板と変形極板として円環状極板とする例を示し、実施例3では、固定極板と変形極板として方形状極板とする例を示し、実施例4では、固定極板と変形極板として半球状極板とする例を示した。
例えば、実施例1の場合、車体に設定する部分のみを一部平面化しても良い。
例えば、実施例2の場合、衝撃感度に方向性を持たせるように平面部と曲面部とを組み合わせてリング形状としても良い。
例えば、実施例3の場合、中心Oと通る平面で2分割し、台座部材に対し2つの極板を固定するようにしても良い。
例えば、実施例4の場合、多面体による半球形状としても良い。
Example 1 shows an example of a spherical electrode plate as a fixed electrode plate and a deformed electrode plate, Example 2 shows an example of an annular electrode plate as a fixed electrode plate and a deformed electrode plate, An example in which a rectangular plate is used as the fixed plate and the deformed plate is shown. In Example 4, an example in which a hemispherical plate is used as the fixed plate and the deformed plate is shown.
For example, in the case of the first embodiment, only a portion set to the vehicle body may be partially planarized.
For example, in the case of Example 2, it is good also as a ring shape combining a plane part and a curved surface part so that directionality may be given to impact sensitivity.
For example, in the case of Example 3, it may be divided into two by a plane passing through the center O, and two electrode plates may be fixed to the base member.
For example, in the case of Example 4, it is good also as a hemispherical shape by a polyhedron.

実施例1〜4では、エアバックシステムを搭載した車両に適用される衝撃検知センサの例を示したが、エアバックシステム以外にも、例えば、車載されるエアバックシステム以外の乗員保護装置の衝撃検知センサとして、また、地震により変形や破損に至る構造物の衝撃検知センサ等にも適用することができる。   In Examples 1-4, although the example of the impact detection sensor applied to the vehicle carrying an airbag system was shown, other than an airbag system, for example, the impact of an occupant protection device other than an in-vehicle airbag system As a detection sensor, it can also be applied to an impact detection sensor of a structure that is deformed or damaged by an earthquake.

実施例1の衝撃検知センサを示す全体斜視図である。1 is an overall perspective view showing an impact detection sensor of Example 1. FIG. 実施例1の衝撃検知センサの衝撃検知回路および衝撃判断回路の一例を示す図である。It is a figure which shows an example of the impact detection circuit of the impact detection sensor of Example 1, and an impact determination circuit. 実施例1の衝撃検知センサが適用されたエアバックシステムを搭載した車両の一例を示す図である。It is a figure which shows an example of the vehicle carrying the airbag system to which the impact detection sensor of Example 1 was applied. 実施例2の衝撃検知センサを示す全体斜視図である。It is a whole perspective view which shows the impact detection sensor of Example 2. FIG. 実施例3の衝撃検知センサを示す全体斜視図である。It is a whole perspective view which shows the impact detection sensor of Example 3. 実施例4の衝撃検知センサを示す全体斜視図である。It is a whole perspective view which shows the impact detection sensor of Example 4.

符号の説明Explanation of symbols

A1 衝撃検知センサ
1 球体固定極板(固定極板)
2 球体変形極板(変形極板)
3 絶縁支持部材
4 電源(電圧印加手段)
5 電圧計(電圧検出手段)
6 衝撃検知回路(静電容量変化検出手段)
7 衝撃判断回路
A2 衝撃検知センサ
21 円環状固定極板(固定極板)
22 円環状変形極板(変形極板)
23 絶縁支持部材
A3 衝撃検知センサ
31 方形状固定極板(固定極板)
32 方形状変形極板(変形極板)
33 絶縁支持部材
A4 衝撃検知センサ
41 半球状固定極板(固定極板)
42 半球状変形極板(変形極板)
43 台座部材
A1 Impact detection sensor 1 Sphere fixed plate (fixed plate)
2 Spherical deformation electrode plate (deformation electrode plate)
3 Insulation support member 4 Power supply (voltage application means)
5 Voltmeter (voltage detection means)
6 Impact detection circuit (Capacitance change detection means)
7 Impact judgment circuit
A2 Impact detection sensor 21 Annular fixed plate (fixed plate)
22 Toroidal deformed plate (deformed plate)
23 Insulation support member
A3 Impact detection sensor 31 Rectangular fixed plate (fixed plate)
32 Rectangular deformation electrode plate (deformation electrode plate)
33 Insulation support member
A4 Impact detection sensor 41 Hemispherical fixed plate (fixed plate)
42 Hemispherical deformed plate (deformed plate)
43 Base member

Claims (14)

対向する一対の極板を有して擬似コンデンサを構成し、一対の極板に電気を流した際の静電容量の変化を捉えることで衝撃を検知する衝撃検知センサにおいて、
衝撃力により変形可能に形成された変形極板と、
前記変形極板に対向して配置された固定極板と、
前記変形極板の変形により変化する前記両極板間の静電容量の変化を検出する静電容量変化検出手段と、
を備えたことを特徴とする衝撃検知センサ。
In an impact detection sensor that detects a shock by detecting a change in capacitance when electricity is passed through a pair of electrode plates, a pseudo capacitor having a pair of electrode plates facing each other,
A deformed electrode plate formed to be deformable by an impact force;
A fixed electrode plate disposed opposite to the deformed electrode plate;
A capacitance change detecting means for detecting a change in capacitance between the two electrode plates, which is changed by deformation of the deformed electrode plate;
An impact detection sensor comprising:
請求項1に記載された衝撃検知センサにおいて、
前記一対の極板を構成する変形極板と固定極板は、等間隔に保ちながら同心上に固定した相似形状であり、かつ、前記変形極板は、衝撃力により一部でも変形すると静電容量が変化する形状に設定したことを特徴とする衝撃検知センサ。
The impact detection sensor according to claim 1,
The deformed electrode plate and the fixed electrode plate constituting the pair of electrode plates have a similar shape fixed concentrically while maintaining an equal interval, and the deformed electrode plate is electrostatically deformed even when partly deformed by an impact force. An impact detection sensor characterized by having a shape that changes its capacity.
請求項1または請求項2に記載された衝撃検知センサにおいて、
前記静電容量変化検出手段は、前記両極板に電圧を印加する電圧印加手段と、両極板間の静電容量の変化により変化する前記両極板間の電圧を検出する電圧を検出する電圧検出手段と、で構成されることを特徴とする衝撃検知センサ。
In the impact detection sensor according to claim 1 or 2,
The capacitance change detecting means includes a voltage applying means for applying a voltage to the bipolar plates, and a voltage detecting means for detecting a voltage for detecting a voltage between the bipolar plates that changes due to a change in capacitance between the bipolar plates. And an impact detection sensor.
請求項3に記載された衝撃検知センサにおいて、
前記静電容量変化検出手段は、前記電圧印加手段の電圧波形と前記電圧検出手段の電圧波形とを比較し、印加電圧波形に対し検出電圧波形が90度遅れ位相からずれたり、あるいは、ピーク電圧が変化した場合にセンサ本体が衝撃を受けたと判断する衝撃判断回路を有することを特徴とする衝撃検知センサ。
In the impact detection sensor according to claim 3,
The capacitance change detecting means compares the voltage waveform of the voltage applying means with the voltage waveform of the voltage detecting means, and the detected voltage waveform is shifted from the phase delayed by 90 degrees with respect to the applied voltage waveform, or the peak voltage An impact detection sensor comprising: an impact determination circuit that determines that the sensor body has received an impact when a change occurs.
請求項1乃至4の何れか1項に記載された衝撃検知センサにおいて、
車両のエアバックシステムの衝突検出手段として適用し、車両の車外に近い位置に設定したことを特徴とする衝撃検知センサ。
In the impact detection sensor according to any one of claims 1 to 4,
An impact detection sensor which is applied as a collision detection means of a vehicle airbag system and is set at a position near the outside of the vehicle.
請求項5に記載された衝撃検知センサにおいて、
前記車両への設定位置は、車両前方の左右隅位置の少なくとも一方の位置であることを特徴とする衝撃検知センサ。
The impact detection sensor according to claim 5,
The impact detection sensor, wherein the set position on the vehicle is at least one of left and right corner positions in front of the vehicle.
請求項1乃至6の何れか1項に記載された衝撃検知センサにおいて、
前記固定極板と変形極板は、内部に設定された球体固定極板と、該球体固定極板の外部に設定され、球体固定極板の外周全体を覆う球体変形極板と、であり、
前記球体固定極板と前記球体変形極板との間に、両極板の間隔を等間隔に保つ絶縁支持部材を設定したことを特徴とする衝撃検知センサ。
The impact detection sensor according to any one of claims 1 to 6,
The fixed electrode plate and the deformed electrode plate are a sphere fixed electrode plate set inside, and a sphere deformed electrode plate set outside the sphere fixed electrode plate and covering the entire outer periphery of the sphere fixed electrode plate,
An impact detection sensor characterized in that an insulating support member is set between the spherical fixed electrode plate and the spherical deformed electrode plate to keep the distance between the two electrode plates at an equal interval.
請求項1乃至6の何れか1項に記載された衝撃検知センサにおいて、
前記固定極板と変形極板は、内部に設定された円環状固定極板と、該円環状固定極板の外部に設定され、円環状固定極板の外周全体を覆う円環状変形極板と、であり、
前記円環状固定極板と前記円環状変形極板との間に、両極板の間隔を等間隔に保つ絶縁支持部材を設定したことを特徴とする衝撃検知センサ。
The impact detection sensor according to any one of claims 1 to 6,
The fixed plate and the deformed plate are an annular fixed plate that is set inside, and an annular deformed plate that is set outside the annular fixed plate and covers the entire outer periphery of the annular fixed plate. , And
An impact detection sensor characterized in that an insulating support member is set between the annular fixed electrode plate and the annular deformed electrode plate to keep the distance between the two electrode plates at an equal interval.
請求項1乃至6の何れか1項に記載された衝撃検知センサにおいて、
前記固定極板と変形極板は、内部に設定された方形状固定極板と、該方形状固定極板の外部に設定され、方形状固定極板の外周全体を覆う方形状変形極板と、であり、
前記方形状固定極板と前記方形状変形極板との間に、両極板の間隔を等間隔に保つ絶縁支持部材を設定したことを特徴とする衝撃検知センサ。
The impact detection sensor according to any one of claims 1 to 6,
The fixed electrode plate and the deformed electrode plate are a rectangular fixed electrode plate set inside, and a rectangular deformed electrode plate set outside the rectangular fixed electrode plate and covering the entire outer periphery of the rectangular fixed electrode plate, , And
An impact detection sensor, wherein an insulating support member is set between the rectangular fixed electrode plate and the rectangular deformed electrode plate to keep the distance between the two electrode plates at an equal interval.
請求項9に記載された衝撃検知センサにおいて、
前記方形状固定極板は、車載部品を収容する外側ケースであることを特徴とする衝撃検知センサ。
In the impact detection sensor according to claim 9,
The impact detection sensor according to claim 1, wherein the rectangular fixed electrode plate is an outer case for housing a vehicle-mounted component.
請求項1乃至6の何れか1項に記載された衝撃検知センサにおいて、
前記固定極板と変形極板は、内部に設定された半球状固定極板と、該半球状固定極板の外部に設定され、半球状固定極板の外周全体を覆う半球状変形極板と、であり、
前記半球状固定極板と前記半球状変形極板とは、両極板を等間隔に保つ台座部材に設定したことを特徴とする衝撃検知センサ。
The impact detection sensor according to any one of claims 1 to 6,
The fixed plate and the deformed plate are a semispherical fixed plate set inside, and a hemispherical deformed plate set outside the hemispheric fixed plate and covering the entire outer periphery of the hemispheric fixed plate , And
The impact detection sensor according to claim 1, wherein the hemispherical fixed electrode plate and the hemispherical deformed electrode plate are set as a pedestal member that keeps both electrode plates at equal intervals.
請求項11に記載された衝撃検知センサにおいて、
前記半球状固定極板と前記台座部材は、半球状の凸部または凹部を形成した車両の車体パネルであることを特徴とする衝撃検知センサ。
The impact detection sensor according to claim 11,
The impact detection sensor according to claim 1, wherein the hemispherical fixed electrode plate and the pedestal member are vehicle body panels formed with hemispherical convex portions or concave portions.
請求項11に記載された衝撃検知センサにおいて、
前記台座部材は、車両の車体パネルであることを特徴とする衝撃検知センサ。
The impact detection sensor according to claim 11,
The impact detection sensor, wherein the pedestal member is a vehicle body panel.
対向する一対の極板を有して擬似コンデンサを構成し、一対の極板に電気を流した際の静電容量の変化を捉えることで衝撃を検知する衝撃検知センサにおいて、
前記一対の極板を、対向配置した固定極板と変形極板により構成し、
前記固定極板と前記変形極板により構成した一対の極板に電気を流している状態で、変形極板に対し衝撃力が加えられてその形状が変形すると、この変形による静電容量の変化を検出することで、衝撃力の入力を検知することを特徴とする衝撃検知センサ。
In an impact detection sensor that detects a shock by detecting a change in capacitance when electricity is passed through a pair of electrode plates, a pseudo capacitor having a pair of electrode plates facing each other,
The pair of electrode plates is constituted by a fixed electrode plate and a deformed electrode plate arranged to face each other,
When electricity is applied to a pair of electrode plates composed of the fixed electrode plate and the deformed electrode plate, when an impact force is applied to the deformed electrode plate and its shape is deformed, the capacitance changes due to the deformation. An impact detection sensor that detects an input of an impact force by detecting the impact.
JP2006017500A 2006-01-26 2006-01-26 Impact detecting sensor Pending JP2007198892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017500A JP2007198892A (en) 2006-01-26 2006-01-26 Impact detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017500A JP2007198892A (en) 2006-01-26 2006-01-26 Impact detecting sensor

Publications (1)

Publication Number Publication Date
JP2007198892A true JP2007198892A (en) 2007-08-09

Family

ID=38453640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017500A Pending JP2007198892A (en) 2006-01-26 2006-01-26 Impact detecting sensor

Country Status (1)

Country Link
JP (1) JP2007198892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018707A (en) * 2008-07-10 2010-01-28 Mitsui Chemicals Inc Resin composition and molded product composed of the composition
CN102442550A (en) * 2010-09-16 2012-05-09 东京毅力科创株式会社 Transfer device, processing system, control method of transfer device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018707A (en) * 2008-07-10 2010-01-28 Mitsui Chemicals Inc Resin composition and molded product composed of the composition
CN102442550A (en) * 2010-09-16 2012-05-09 东京毅力科创株式会社 Transfer device, processing system, control method of transfer device
KR101373466B1 (en) 2010-09-16 2014-03-14 도쿄엘렉트론가부시키가이샤 Transfer device, processing system, control method of transfer device, and computer-readable storage medium
US8882429B2 (en) 2010-09-16 2014-11-11 Tokyo Electron Limited Transfer device, processing system, control method of transfer device, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
US6023664A (en) Vehicle crash sensing system
EP1916529B1 (en) Deformation sensor
US8794067B2 (en) Double-axis rotation rate sensor
US8058993B2 (en) Capacitive detection systems and methods
US5684456A (en) Tilt-sensor
JP4830475B2 (en) Vehicle collision load measuring device and vehicle collision object determination device using the same
JP2006281990A (en) Occupant detection system
CN109843654A (en) Airbag apparatus and vehicle
JP4065886B2 (en) Control device and method for monitoring the function of a control device for occupant protection means in an automobile
US5821419A (en) Micromechanical sensor unit for detecting acceleration
CN101160530A (en) Impact sensor system for pedestrian protection
JP2002514986A (en) Vehicle occupant sensors
KR101896078B1 (en) Capacitive Sensing Device and System for In-Vehicle
US20110006788A1 (en) Occupant classification system for vehicle
US7391224B2 (en) Sensor arrangement
WO2006035688A1 (en) Method and device for detecting acceleration, acceleration sensor module, and tire
JP2007198892A (en) Impact detecting sensor
JPH04248468A (en) Shock-sensing device
JP2009300364A (en) Side-impact detecting apparatus
JPH11242052A (en) Semiconductor acceleration sensor
US9568337B2 (en) Rotation state detection device
US20180111574A1 (en) Occupant protection device
US8786419B2 (en) Method for controlling a device and a device for controlling the device
CN104023496A (en) Electronic control unit used for vehicle
Swingler MEMS for passenger safety in automotive vehicles