JP2007198259A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine Download PDF

Info

Publication number
JP2007198259A
JP2007198259A JP2006017761A JP2006017761A JP2007198259A JP 2007198259 A JP2007198259 A JP 2007198259A JP 2006017761 A JP2006017761 A JP 2006017761A JP 2006017761 A JP2006017761 A JP 2006017761A JP 2007198259 A JP2007198259 A JP 2007198259A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
output
way catalyst
catalyst device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017761A
Other languages
Japanese (ja)
Inventor
Norihisa Nakagawa
徳久 中川
Takahiko Fujiwara
孝彦 藤原
Taiga Hagimoto
大河 萩本
Junichi Kako
純一 加古
Naoto Kato
直人 加藤
Shuntaro Okazaki
俊太郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006017761A priority Critical patent/JP2007198259A/en
Publication of JP2007198259A publication Critical patent/JP2007198259A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To release almost all the oxygen adsorbed in a three-way catalyst device by an O<SB>2</SB>storage capacity by enriching control immediately after fuel cut in an air-fuel ratio control device of an internal combustion engine controlling a combustion air-fuel ratio to a desired air-fuel ratio according to the output of an air-fuel ratio sensor on the upstream side of the three-way catalyst device. <P>SOLUTION: The output of the air-fuel ratio sensor on the upstream side of the three-way catalyst device is corrected by a differential term due to a variation in output of an oxygen sensor on the downstream side of the three-way catalyst device. The correction of the output of the air-fuel ratio sensor by a differential term is prohibited or suppressed (step 102) until the oxygen adsorbed into the three-way catalyst device by the O<SB>2</SB>storage capacity is determined to be almost all released by the enriching control immediately after the fuel cut (step 105). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の空燃比制御装置に関する。   The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine.

機関排気系に排気ガスの空燃比に応じてリニアに出力が変化する空燃比センサを配置し、この空燃比センサの出力に基づき燃焼空燃比を所望空燃比に制御することが提案されている。機関排気系には、一般的に、排気ガスを浄化するための三元触媒装置が配置されている。三元触媒装置は、排気ガスの空燃比が理論空燃比近傍である時に排気ガスを良好に浄化するものであるために、一般的に、三元触媒装置に流入した排気ガスの空燃比が理論空燃比よりリーンである時には余剰分の酸素を吸蔵し、三元触媒装置に流入した排気ガスの空燃比が理論空燃比よりリッチである時には不足分の酸素を放出し、三元触媒装置内の排気ガスの空燃比を理論空燃比近傍とするO2ストレージ能力を有している。 It has been proposed that an air-fuel ratio sensor whose output varies linearly according to the air-fuel ratio of exhaust gas is disposed in the engine exhaust system, and the combustion air-fuel ratio is controlled to a desired air-fuel ratio based on the output of this air-fuel ratio sensor. Generally, a three-way catalyst device for purifying exhaust gas is arranged in the engine exhaust system. Since the three-way catalyst device purifies exhaust gas well when the air-fuel ratio of the exhaust gas is close to the stoichiometric air-fuel ratio, in general, the air-fuel ratio of the exhaust gas flowing into the three-way catalyst device is theoretically When the air-fuel ratio is leaner, the excess oxygen is stored, and when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst device is richer than the stoichiometric air-fuel ratio, the insufficient oxygen is released, It has an O 2 storage capability in which the air-fuel ratio of the exhaust gas is close to the theoretical air-fuel ratio.

それにより、燃焼空燃比を検出するための空燃比センサは、検出する排気ガスの空燃比が三元触媒装置のO2ストレージ能力により影響されないように、三元触媒装置の上流側に配置されている。ところで、空燃比センサによる空燃比制御を正確なものとするためには、三元触媒装置の下流側に、排気ガスの空燃比が理論空燃比近傍である時に出力が急変する酸素センサを配置し、O2ストレージ能力によって変化が緩やかにされる酸素センサの出力に基づき、空燃比センサの出力のリッチ側又はリーン側へのずれを補正するようにしている。 Thereby, the air-fuel ratio sensor for detecting the combustion air-fuel ratio is arranged upstream of the three-way catalyst device so that the air-fuel ratio of the detected exhaust gas is not influenced by the O 2 storage capacity of the three-way catalyst device. Yes. By the way, in order to make the air-fuel ratio control by the air-fuel ratio sensor accurate, an oxygen sensor whose output changes suddenly when the air-fuel ratio of the exhaust gas is close to the stoichiometric air-fuel ratio is disposed downstream of the three-way catalyst device. The deviation of the output of the air-fuel ratio sensor to the rich side or the lean side is corrected based on the output of the oxygen sensor whose change is moderated by the O 2 storage capability.

酸素センサの出力に基づく空燃比センサの出力の補正は、一般的に、目標空燃比を理論空燃比とする運転において、酸素センサの理論空燃比に対応する基準出力と酸素センサの実際の出力との偏差に基づく比例項と、この偏差の積算値に基づく積分項とを使用するものである。積分項は、空燃比センサの出力の最近の傾向的なずれを補正するものであり、比例項は、積分項により補正された空燃比センサの出力の今回のずれを補正するものである。積分項は、例えば、設定回数の酸素センサの偏差が算出された時を更新時期とし、空燃比センサの現状に合うように更新される。   The correction of the output of the air-fuel ratio sensor based on the output of the oxygen sensor is generally performed by the reference output corresponding to the theoretical air-fuel ratio of the oxygen sensor and the actual output of the oxygen sensor in the operation where the target air-fuel ratio is the stoichiometric air-fuel ratio. The proportional term based on the deviation and the integral term based on the integrated value of the deviation are used. The integral term corrects the recent trending deviation of the output of the air-fuel ratio sensor, and the proportional term corrects the current deviation of the output of the air-fuel ratio sensor corrected by the integral term. For example, the integral term is updated so as to match the current state of the air-fuel ratio sensor with the update time as the time when the deviation of the oxygen sensor for the set number of times is calculated.

ところで、内燃機関において、燃料消費を低減するために、フューエルカットが機関減速時毎のように頻繁に行われるようになっている。フューエルカットが実施されると、三元触媒装置には、排気ガスとして空気が流入することとなり、空気中の多量の酸素がO2ストレージ能力によって三元触媒装置に吸蔵されてしまう。排気ガスの空燃比が理論空燃比よりリーンとなってもリッチとなっても排気ガスの良好な浄化を可能とするためには、三元触媒装置には、O2ストレージ能力による最大吸蔵可能酸素量の約半分に相当する所望量の酸素を吸蔵しておくことが好ましい。それにより、一般的には、フューエルカット直後において、フューエルカット中に所望量を超えて吸蔵された酸素を放出させて所望量の酸素しか吸蔵されていないようにするために、燃焼空燃比をリッチにするリッチ化制御が実施される。 By the way, in an internal combustion engine, in order to reduce fuel consumption, fuel cut is frequently performed every time the engine is decelerated. When the fuel cut is performed, air flows into the three-way catalyst device as exhaust gas, and a large amount of oxygen in the air is occluded in the three-way catalyst device by the O 2 storage capability. In order to enable good purification of exhaust gas even when the air-fuel ratio of the exhaust gas becomes leaner or richer than the stoichiometric air-fuel ratio, the three-way catalyst device has a maximum storable oxygen with O 2 storage capacity It is preferable to store a desired amount of oxygen corresponding to about half of the amount. Thus, in general, immediately after the fuel cut, the combustion air-fuel ratio is made rich in order to release the oxygen stored in excess of the desired amount during the fuel cut so that only the desired amount of oxygen is stored. The enrichment control is performed.

フューエルカット中及びリッチ化制御中には、理論空燃比を基準とした酸素センサの出力の偏差は、当然のごとく大きな絶対値を有し、意味のない値となる。フューエルカット中には空燃比制御は不必要であるが、リッチ化制御中には、燃焼空燃比を所望リッチ空燃比とする空燃比制御が必要であり、この空燃比制御において、積分項により空燃比センサの出力の補正を実施して、比例項による空燃比センサの出力の補正は禁止することが提案されている(例えば、特許文献1参照)。   During fuel cut and enrichment control, the deviation of the output of the oxygen sensor with respect to the theoretical air-fuel ratio has a large absolute value as a matter of course and becomes a meaningless value. Air-fuel ratio control is not required during fuel cut, but air-fuel ratio control is required to make the combustion air-fuel ratio the desired rich air-fuel ratio during enrichment control. It has been proposed to correct the output of the fuel ratio sensor and prohibit the correction of the output of the air fuel ratio sensor by the proportional term (see, for example, Patent Document 1).

特開2005−61356JP2005-61356 特開2000−105834JP 2000-105834 A

ところで、酸素センサの出力変化の大きさに応じた微分項により空燃比センサの出力をさらに補正することも提案されている。前述の背景技術では、リッチ化制御によりO2ストレージ能力の最大吸蔵可能酸素量の約半分まで吸蔵された酸素を放出させるものであり、このリッチ化制御中には、酸素センサの出力は、リーンを示す値で推移して大きく変化することはない。それにより、微分項に関する記載はないが、微分項による補正を実施しても、酸素センサの出力変化が小さいために微分項の絶対値も小さくなり、特に問題はない。 By the way, it has also been proposed to further correct the output of the air-fuel ratio sensor by a differential term corresponding to the magnitude of the output change of the oxygen sensor. In the above-described background art, oxygen stored to about half of the maximum storable oxygen amount of O 2 storage capacity is released by the enrichment control. During this enrichment control, the output of the oxygen sensor is lean. It does not change greatly with the value indicating. Thereby, although there is no description regarding the differential term, even if the correction by the differential term is performed, since the change in the output of the oxygen sensor is small, the absolute value of the differential term is also small, and there is no particular problem.

しかしながら、リッチ化制御において、O2ストレージ能力により三元触媒装置に吸蔵されている酸素を全て放出させる場合には、リッチ化制御の末期において、酸素センサの出力は、リーンを示す値からリッチを示す値へ急激に変化し、この時に、微分項により空燃比センサの出力が補正されると、燃焼空燃比は大幅にリーン側へ補正されて、吸蔵酸素を十分に放出させることができないことがある。 However, in the enrichment control, when all of the oxygen stored in the three-way catalyst device is released by the O 2 storage capability, the output of the oxygen sensor at the end of the enrichment control is reduced from the value indicating lean. If the output of the air-fuel ratio sensor is corrected by the differential term at this time, the combustion air-fuel ratio is greatly corrected to the lean side, and the stored oxygen cannot be released sufficiently. is there.

従って、本発明の目的は、三元触媒装置の上流側の空燃比センサの出力に基づき燃焼空燃比を所望空燃比に制御する内燃機関の空燃比制御装置において、フューエルカット直後のリッチ化制御によりO2ストレージ能力により三元触媒装置に吸蔵されている酸素をほぼ全て放出させることを可能とすることである。 Accordingly, an object of the present invention is to provide an enrichment control immediately after a fuel cut in an air-fuel ratio control apparatus for an internal combustion engine that controls the combustion air-fuel ratio to a desired air-fuel ratio based on the output of the air-fuel ratio sensor upstream of the three-way catalyst device. It is possible to release almost all the oxygen stored in the three-way catalyst device by the O 2 storage capability.

本発明による請求項1に記載の内燃機関の空燃比制御装置は、機関排気系の三元触媒装置の上流側に配置されて排気ガスの空燃比に対応して出力が変化する空燃比センサと、機関排気系の前記三元触媒装置の下流側に配置されて排気ガスの空燃比が理論空燃比近傍の時に出力が急激に変化する酸素センサとを具備し、前記空燃比センサの出力に基づき燃焼空燃比を所望空燃比に制御する内燃機関の空燃比制御装置において、前記空燃比センサの出力は、前記酸素センサの出力変化に基づく微分項により補正され、フューエルカット直後のリッチ化制御においてO2ストレージ能力により前記三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断されるまでは、前記微分項による前記空燃比センサの出力の補正を禁止又は抑制することを特徴とする。 An air-fuel ratio control apparatus for an internal combustion engine according to claim 1 of the present invention is provided on the upstream side of a three-way catalyst device of an engine exhaust system, and an air-fuel ratio sensor whose output changes in accordance with the air-fuel ratio of exhaust gas, An oxygen sensor disposed downstream of the three-way catalyst device of the engine exhaust system and having an output that changes abruptly when the air-fuel ratio of the exhaust gas is close to the stoichiometric air-fuel ratio, and based on the output of the air-fuel ratio sensor In an air-fuel ratio control apparatus for an internal combustion engine that controls a combustion air-fuel ratio to a desired air-fuel ratio, the output of the air-fuel ratio sensor is corrected by a differential term based on a change in the output of the oxygen sensor, and O in rich control immediately after a fuel cut. until the oxygen occluded in the three way catalytic converter by 2 storage capability is determined to be substantially all released, to prohibit or suppress the correction of the output of the air-fuel ratio sensor according to the differential term And butterflies.

本発明による請求項2に記載の内燃機関の空燃比制御装置は、請求項1に記載の内燃機関の空燃比制御装置において、前記三元触媒装置の劣化状態に基づき決定された期間がリッチ化制御開始から経過した時に、フューエルカット直後のリッチ化制御においてO2ストレージ能力により前記三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断することを特徴とする。 The air-fuel ratio control apparatus for an internal combustion engine according to claim 2 according to the present invention is the air-fuel ratio control apparatus for internal combustion engine according to claim 1, wherein the period determined based on the deterioration state of the three-way catalyst apparatus is enriched. When the control is started, it is determined that almost all of the oxygen stored in the three-way catalyst device is released by the O 2 storage capability in the enrichment control immediately after the fuel cut.

本発明による請求項3に記載の内燃機関の空燃比制御装置は、請求項1に記載の内燃機関の空燃比制御装置において、前記酸素センサの出力が、設定リッチ空燃比に対応する値となった時に、フューエルカット直後のリッチ化制御においてO2ストレージ能力により前記三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断することを特徴とする。 The air-fuel ratio control apparatus for an internal combustion engine according to claim 3 according to the present invention is the air-fuel ratio control apparatus for internal combustion engine according to claim 1, wherein the output of the oxygen sensor has a value corresponding to the set rich air-fuel ratio. In the enrichment control immediately after the fuel cut, it is determined that almost all of the oxygen stored in the three-way catalyst device is released by the O 2 storage capability.

本発明による請求項1に記載の内燃機関の空燃比制御装置によれば、フューエルカット直後のリッチ化制御においてO2ストレージ能力により三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断されるまでは、微分項による空燃比センサの出力の補正を禁止又は抑制するようになっており、それにより、リッチ化制御の末期において酸素センサの出力がリーンを示す値からリッチを示す値へ急激に変化しても、この時に、微分項による空燃比センサの出力の補正は禁止又は抑制されているために、燃焼空燃比が大きくリーン側へ補正されるようなことはなく、リッチ化制御により三元触媒装置の吸蔵酸素をほぼ全て放出させることができる。 According to the air-fuel ratio control device for an internal combustion engine according to claim 1 of the present invention, it is determined that almost all of the oxygen stored in the three-way catalyst device has been released by the O 2 storage capability in the enrichment control immediately after the fuel cut. Until then, the correction of the output of the air-fuel ratio sensor by the differential term is prohibited or suppressed, so that at the end of the enrichment control, the output of the oxygen sensor suddenly changes from a value indicating lean to a value indicating rich. Even at this time, since the correction of the output of the air-fuel ratio sensor by the differential term is prohibited or suppressed at this time, the combustion air-fuel ratio is not greatly corrected to the lean side, and the rich control is performed. Almost all of the stored oxygen in the three-way catalyst device can be released.

本発明による請求項2に記載の内燃機関の空燃比制御装置によれば、請求項1に記載の内燃機関の空燃比制御装置において、三元触媒装置の劣化状態に基づき決定された期間がリッチ化制御開始から経過した時に、フューエルカット直後のリッチ化制御においてO2ストレージ能力により三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断するようになっており、三元触媒装置の劣化状態によりO2ストレージ能力が変化しても確実に三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断することができる。 According to the air-fuel ratio control apparatus for an internal combustion engine according to claim 2 of the present invention, the period determined based on the deterioration state of the three-way catalyst apparatus is rich in the air-fuel ratio control apparatus for the internal combustion engine according to claim 1. When the control is started, it is determined that almost all of the oxygen stored in the three-way catalyst device has been released by the O 2 storage capability in the enrichment control immediately after the fuel cut. Even if the O 2 storage capacity changes depending on the state, it can be reliably determined that almost all of the oxygen stored in the three-way catalyst device has been released.

本発明による請求項3に記載の内燃機関の空燃比制御装置によれば、請求項1に記載の内燃機関の空燃比制御装置において、酸素センサの出力が、設定リッチ空燃比に対応する値となった時に、フューエルカット直後のリッチ化制御においてO2ストレージ能力により三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断するようになっており、三元触媒装置の劣化状態によりO2ストレージ能力が変化しても確実に三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断することができる。 According to the air-fuel ratio control apparatus for an internal combustion engine according to claim 3 of the present invention, in the air-fuel ratio control apparatus for internal combustion engine according to claim 1, the output of the oxygen sensor is a value corresponding to the set rich air-fuel ratio. since the time, it is adapted to determine the oxygen occluded in the three-way catalytic converter is nearly all released by the O 2 storage capability in enriching control immediately after the fuel cut, O 2 due to the deterioration state of the three-way catalytic converter Even if the storage capacity changes, it can be reliably determined that almost all of the oxygen stored in the three-way catalyst device has been released.

図1は機関排気系を示す概略図であり、1は三元触媒装置であり、2は三元触媒装置1の上流側に配置された空燃比センサであり、3は三元触媒装置1の下流側に配置された酸素センサである。空燃比センサ2及び酸素センサ3は、いずれも排気ガス中の酸素濃度に応じて出力電圧が変化するものであり、空燃比センサ2は排気ガスの空燃比に対応して出力がリニアに変化するリニア出力型であり、酸素センサ3は排気ガスの空燃比が理論空燃比近傍である時に出力が急激に変化するステップ出力型である。   FIG. 1 is a schematic diagram showing an engine exhaust system, in which 1 is a three-way catalyst device, 2 is an air-fuel ratio sensor disposed upstream of the three-way catalyst device 1, and 3 is a three-way catalyst device 1. It is an oxygen sensor arranged on the downstream side. The air-fuel ratio sensor 2 and the oxygen sensor 3 both have an output voltage that changes according to the oxygen concentration in the exhaust gas, and the air-fuel ratio sensor 2 changes its output linearly corresponding to the air-fuel ratio of the exhaust gas. It is a linear output type, and the oxygen sensor 3 is a step output type in which the output changes abruptly when the air-fuel ratio of the exhaust gas is near the stoichiometric air-fuel ratio.

本発明による空燃比制御装置は、空燃比センサ2の出力に基づき燃焼空燃比を所望空燃比にフィードバック制御するものである。空燃比センサ2は、三元触媒装置1の上流側に配置されて、常に未浄化の排気ガスに晒されているために、出力の信頼性がそれほど高くなく、出力がリッチ側又はリーン側へずれることがある。それにより、三元触媒装置1の下流側に配置されて、未浄化の排気ガスに晒されることなく、また、一般的に、排気ガスの空燃比がリッチであるかリーンであるかを検出するのに使用され、出力の信頼性の高い酸素センサ3の出力に基づき、空燃比センサの出力を補正するようにしている。   The air-fuel ratio control apparatus according to the present invention feedback-controls the combustion air-fuel ratio to a desired air-fuel ratio based on the output of the air-fuel ratio sensor 2. Since the air-fuel ratio sensor 2 is arranged upstream of the three-way catalyst device 1 and is always exposed to unpurified exhaust gas, the output reliability is not so high, and the output goes to the rich side or the lean side. It may shift. Thereby, it is arrange | positioned in the downstream of the three-way catalyst apparatus 1, and generally detects whether the air-fuel ratio of exhaust gas is rich or lean, without being exposed to unpurified exhaust gas. The output of the air-fuel ratio sensor is corrected based on the output of the oxygen sensor 3 that is used for this purpose and has high output reliability.

燃焼空燃比のフィードバック制御に使用される空燃比センサ2の出力Vは、目標燃焼空燃比を理論空燃比とする運転時において、以下のように補正されて出力V’とされる。
V’=V+P+I+D
ここで、Pは理論空燃比に対する基準出力(例えば、0.5ボルト)と酸素センサ3の実際の出力との偏差dに所定ゲインPgを乗算した比例項であり、Iは設定回数の偏差dの積算値に所定ゲインIgを乗算した積分項であり、Dは酸素センサ3の出力変化vi−vi-1に所定ゲインDgを乗算した微分項である。こうして、積分項Iは、空燃比センサ2の出力の現在の傾向的なずれを補正するものとなり、比例項Pは、積分項Iにより補正された空燃比センサ2の出力の現在のずれを補正するものとなり、微分項Dは、酸素センサ3の出力変化を無くすように空燃比センサ2の出力を補正するものとなる。このように補正された空燃比センサ2の出力V’に基づき排気ガスの空燃比を正確に推定し、燃焼空燃比が理論空燃比となるように、エアフローメータにより検出される吸入空気量に対して燃料噴射量をフィードバック補正することとなる。
The output V of the air-fuel ratio sensor 2 used for the feedback control of the combustion air-fuel ratio is corrected as described below to an output V ′ during operation in which the target combustion air-fuel ratio is the stoichiometric air-fuel ratio.
V ′ = V + P + I + D
Here, P is a proportional term obtained by multiplying a deviation d between a reference output (for example, 0.5 volts) with respect to the theoretical air-fuel ratio and an actual output of the oxygen sensor 3 by a predetermined gain Pg, and I is a deviation d of the set number of times. Is an integral term obtained by multiplying the integrated value by a predetermined gain Ig, and D is a differential term obtained by multiplying the output change v i -vi -1 of the oxygen sensor 3 by the predetermined gain Dg. In this way, the integral term I corrects the current tendency shift of the output of the air-fuel ratio sensor 2, and the proportional term P corrects the current shift of the output of the air-fuel ratio sensor 2 corrected by the integral term I. Therefore, the differential term D corrects the output of the air-fuel ratio sensor 2 so as to eliminate the change in the output of the oxygen sensor 3. Based on the output V ′ of the air / fuel ratio sensor 2 corrected in this way, the air / fuel ratio of the exhaust gas is accurately estimated, and the intake air amount detected by the air flow meter is adjusted so that the combustion air / fuel ratio becomes the stoichiometric air / fuel ratio. Thus, the fuel injection amount is feedback corrected.

本空燃比制御装置は、内燃機関の燃焼空燃比を理論空燃比(ストイキ)に制御するものであるが、図2のタイムチャートに示すように、機関減速時等に燃料消費を低減するためにフューエルカットF/Cが実施される時には、もちろん、燃料噴射が停止されるために空燃比制御は実施されない。フューエルカットF/C中には、酸素を多量に含む空気が排気ガスとして三元触媒装置1へ流入するために、三元触媒装置1には、O2ストレージ能力の最大吸蔵可能酸素量まで酸素が吸蔵されてしまう。それにより、そのままでは、フューエルカット後において、燃焼空燃比が理論空燃比よりリーンとなった時には、三元触媒装置1は余剰の酸素を良好に吸蔵することができず、NOXの浄化能力が低下してしまう。 The present air-fuel ratio control apparatus controls the combustion air-fuel ratio of the internal combustion engine to the stoichiometric air-fuel ratio (stoichiometric). However, as shown in the time chart of FIG. 2, in order to reduce fuel consumption during engine deceleration, etc. When the fuel cut F / C is performed, of course, the fuel injection is stopped, so that the air-fuel ratio control is not performed. In the fuel cut F / C, air containing a large amount of oxygen flows into the three-way catalyst device 1 as exhaust gas, and therefore the three-way catalyst device 1 has oxygen up to the maximum storable oxygen amount of O 2 storage capacity. Will be occluded. Thus, as it is, when the combustion air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio after the fuel cut, the three-way catalyst device 1 cannot store excess oxygen well, and the NO x purification capability is improved. It will decline.

従って、フューエルカットF/C直後には、燃焼空燃比を所望リッチ空燃比に制御し、フューエルカット中に三元触媒装置1に吸蔵された酸素をほぼ全て放出させ、燃焼空燃比がリーンとなる時に備えることが好ましい。このフューエルカットF/C直後のリッチ化制御が完了すれば、目標燃焼空燃比を理論空燃比とするストイキ制御が開始される。   Therefore, immediately after the fuel cut F / C, the combustion air-fuel ratio is controlled to the desired rich air-fuel ratio, and almost all of the oxygen stored in the three-way catalyst device 1 is released during the fuel cut, so that the combustion air-fuel ratio becomes lean. It is sometimes preferable to prepare. When the enrichment control immediately after the fuel cut F / C is completed, the stoichiometric control with the target combustion air-fuel ratio as the stoichiometric air-fuel ratio is started.

酸素センサ3の理論空燃比に対する基準出力と酸素センサ3の実際の出力との偏差dは、フューエルカット中及びその直後のリッチ化制御中においては、算出することができず、必然的に、リッチ化制御において、空燃比センサ2の出力を比例項Pにより補正することはできない。また、リッチ化制御中において、空燃比センサ2の出力を積分項Iにより補正して燃焼空燃比を所望リッチ空燃比に制御することが好ましい。   The deviation d between the reference output of the oxygen sensor 3 with respect to the stoichiometric air-fuel ratio and the actual output of the oxygen sensor 3 cannot be calculated during the fuel cut and during the enrichment control immediately thereafter. In the control, the output of the air-fuel ratio sensor 2 cannot be corrected by the proportional term P. Further, during the enrichment control, it is preferable to control the combustion air-fuel ratio to the desired rich air-fuel ratio by correcting the output of the air-fuel ratio sensor 2 with the integral term I.

また、フューエルカット直後のリッチ化制御の当初は、酸素センサ3の出力はリーンを示す値(0ボルト近傍)を推移して大きく変化しないために、微分項Dの絶対値は小さくなり、微分項Dによる補正を実施しても特に問題はない。しかしながら、リッチ化制御の末期となると、三元触媒装置1の吸蔵酸素量は僅かとなり、酸素センサ3の出力は、リーンを示す値(0ボルト近傍)から理論空燃比を示す値(0.5ボルト)を超えてリッチを示す値へ急激に変化し、この時に、微分項Dによる補正が実施されていると、微分項Dは空燃比センサ2の出力を大幅にリーン側へ補正してしまう。それにより、燃焼空燃比は、所望リッチ空燃比からリーン空燃比へ急激に変更され、フューエルカット中に三元触媒装置1に吸蔵された酸素を十分に放出させることができなくなると共に、燃焼空燃比の大幅な変更に伴って比較的大きなトルクショックが発生する。   In addition, at the beginning of the enrichment control immediately after the fuel cut, the output of the oxygen sensor 3 changes to a value indicating lean (near 0 volts) and does not change greatly, so the absolute value of the differential term D becomes small, and the differential term There is no particular problem even if correction by D is performed. However, at the end of the enrichment control, the stored oxygen amount of the three-way catalyst device 1 becomes small, and the output of the oxygen sensor 3 is a value indicating the stoichiometric air-fuel ratio (0.5) from a value indicating lean (near 0 volts). If the correction by the differential term D is performed at this time, the differential term D significantly corrects the output of the air-fuel ratio sensor 2 to the lean side. . As a result, the combustion air-fuel ratio is suddenly changed from the desired rich air-fuel ratio to the lean air-fuel ratio, so that the oxygen stored in the three-way catalyst device 1 during the fuel cut cannot be sufficiently released, and the combustion air-fuel ratio A relatively large torque shock is generated with a significant change in.

本空燃比制御装置は、図3に示す第一フローチャートによりリッチ化制御により三元触媒装置に吸蔵された酸素をほぼ全て放出されるようにしている。先ず、ステップ101において、フューエルカット直後のリッチ化制御中であるか否かが判断される。この判断が否定される時にはステップ105へ進み、以下に説明される微分項補正禁止中であるか否かが判断されるが、通常のストイキ制御中の場合は、この判断は否定されてそのまま終了する。一方、フューエルカット直後のリッチ化制御中である時には、ステップ101の判断が肯定され、ステップ102において、微分項Dによる空燃比センサ2の出力の補正は禁止される。次いで、ステップ103において、酸素センサ3の出力が理論空燃比に対応する値(0.5ボルト)に達したか否かが判断される。この判断が否定される時にはそのまま終了するが、ステップ103の判断が肯定される時には、リッチ化制御によって三元触媒装置1に吸蔵されている酸素はほぼ全て放出されたとして、ステップ104において、リッチ化制御を完了し、目標空燃比を理論空燃比とするストイキ制御が開始される。それと同時に、比例項Pによる空燃比センサ2の出力の補正も開始される。   This air-fuel ratio control apparatus is configured to release almost all of the oxygen stored in the three-way catalyst apparatus by the enrichment control according to the first flowchart shown in FIG. First, in step 101, it is determined whether or not enrichment control is being performed immediately after fuel cut. When this determination is negative, the routine proceeds to step 105, where it is determined whether the differential term correction described below is prohibited or not. If the normal stoichiometric control is being performed, this determination is negative and the process ends as it is. To do. On the other hand, when the enrichment control is being performed immediately after the fuel cut, the determination in step 101 is affirmed, and in step 102, the correction of the output of the air-fuel ratio sensor 2 by the differential term D is prohibited. Next, at step 103, it is determined whether or not the output of the oxygen sensor 3 has reached a value (0.5 volts) corresponding to the stoichiometric air-fuel ratio. When this determination is denied, the processing is terminated as it is. However, when the determination at step 103 is affirmed, it is assumed that almost all of the oxygen stored in the three-way catalyst device 1 is released by the enrichment control. The stoichiometric control is completed and the target air-fuel ratio is set to the stoichiometric air-fuel ratio. At the same time, correction of the output of the air-fuel ratio sensor 2 by the proportional term P is also started.

次いで、ステップ105において、微分項Dによる空燃比センサ2の出力の補正が禁止されているか否かが判断される。リッチ化制御完了直後は、ステップ102において微分項Dによる補正は禁止されているために、ステップ105の判断は肯定されてステップ106へ進む。ステップ106において、酸素センサ3の出力が理論空燃比より僅かにリッチな空燃比に対応する値(0.6ボルト)に達したか否かが判断される。この判断が否定される時にはそのまま終了するが、この時には、ステップ101及び105を通り、再びステップ106の判断となり、この流れはステップ106の判断が肯定されるまで繰り返される。ステップ106の判断が肯定されると、ステップ107において、微分項Dによる空燃比センサ2の出力の補正の禁止が解除される。それにより、三元触媒装置1に吸蔵されている酸素がほぼ全て放出されるまでリッチ化制御において燃焼空燃比はリッチ空燃比に維持され、酸素の放出が不十分となることは防止される。もちろん、酸素センサ3の出力が理論空燃比に対応する値(0.5ボルト)に達すれば、三元触媒装置1に吸蔵されている酸素はほぼ全て放出されており、この時に微分項Dによる補正の禁止を解除するようにしても良い。   Next, at step 105, it is determined whether correction of the output of the air-fuel ratio sensor 2 by the differential term D is prohibited. Immediately after completion of the enrichment control, correction by the differential term D is prohibited in step 102, so the determination in step 105 is affirmed and the routine proceeds to step 106. In step 106, it is determined whether or not the output of the oxygen sensor 3 has reached a value (0.6 volts) corresponding to an air / fuel ratio slightly richer than the stoichiometric air / fuel ratio. When this determination is denied, the process is terminated as it is. At this time, the process passes through steps 101 and 105, and the determination becomes step 106 again. This flow is repeated until the determination of step 106 is affirmed. If the determination in step 106 is affirmed, in step 107, the prohibition of correction of the output of the air-fuel ratio sensor 2 by the differential term D is canceled. As a result, the combustion air-fuel ratio is maintained at the rich air-fuel ratio in the enrichment control until almost all of the oxygen stored in the three-way catalyst device 1 is released, and oxygen release is prevented from becoming insufficient. Of course, if the output of the oxygen sensor 3 reaches a value (0.5 volts) corresponding to the stoichiometric air-fuel ratio, almost all of the oxygen stored in the three-way catalyst device 1 is released, and at this time, the differential term D The prohibition of correction may be canceled.

図2に示すように、酸素センサ3の出力が理論空燃比に対応する値(0.5ボルト)に達した時にリッチ化制御が完了して目標空燃比を理論空燃比とするストイキ制御が開始されるが、それと同時に理論空燃比近傍の排気ガスが三元触媒装置1へ流入することはなく、酸素センサ3の出力は、リッチ化制御を完了する直前のリッチ空燃比の排気ガスによって理論空燃比より僅かにリッチを示す値(約0.6ボルト)まで変化し、その後、酸素センサ3の出力は理論空燃比の排気ガスが三元触媒装置1へ流入して理論空燃比を示す値近傍で推移する。   As shown in FIG. 2, when the output of the oxygen sensor 3 reaches a value (0.5 volts) corresponding to the stoichiometric air-fuel ratio, the enrichment control is completed and the stoichiometric control that sets the target air-fuel ratio to the stoichiometric air-fuel ratio is started. However, at the same time, the exhaust gas near the stoichiometric air-fuel ratio does not flow into the three-way catalyst device 1, and the output of the oxygen sensor 3 is the theoretical air-fuel ratio exhaust gas just before the rich control is completed. It changes to a value that is slightly richer than the fuel ratio (approximately 0.6 volts), and then the output of the oxygen sensor 3 is in the vicinity of a value that indicates the stoichiometric air-fuel ratio when exhaust gas of the stoichiometric air-fuel ratio flows into the three-way catalyst device It changes in.

それにより、リッチ化制御の完了(酸素センサ3の出力が0.5ボルトとなった時)と同時に微分項Dによる空燃比センサ2の出力の補正を開始すると、その後の酸素センサ3の出力のリッチ側への変化により空燃比センサ2の出力は大きくリーン側へ補正され、燃焼空燃比の大幅な変更によって比較的大きなトルクショックが発生してしまう。それにより、本フローチャートでは、酸素センサ3の出力が理論空燃比より僅かにリッチな設定リッチ空燃比に対応する値(0.6ボルト)に達するまで、微分項Dによる補正の禁止を解除しないようにしている。   As a result, when the correction of the output of the air-fuel ratio sensor 2 by the differential term D is started simultaneously with the completion of the enrichment control (when the output of the oxygen sensor 3 becomes 0.5 volts), the output of the subsequent oxygen sensor 3 Due to the change to the rich side, the output of the air-fuel ratio sensor 2 is greatly corrected to the lean side, and a relatively large torque shock occurs due to a significant change in the combustion air-fuel ratio. Accordingly, in this flowchart, the prohibition of correction by the differential term D is not canceled until the output of the oxygen sensor 3 reaches a value (0.6 volts) corresponding to the set rich air-fuel ratio that is slightly richer than the theoretical air-fuel ratio. I have to.

図4は、図3の第一フローチャートに代えて実施される第二フローチャートを示している。第一フローチャートとの違いについてのみ以下に説明する。第二フローチャートでは、リッチ化制御が開始されると、ステップ203において、図5に示すマップに基づき、三元触媒装置1の現在の劣化程度によって微分項Dによる補正禁止期間t1を設定するようになっている。この補正禁止期間t1は、リッチ化制御が開始されてから酸素センサ3の出力が理論空燃比より僅かにリッチな設定リッチ空燃比に対応する値(0.6ボルト)に達するまでの時間であり、この時間は、三元触媒装置1が劣化するほどO2ストレージ能力が低下するために短くなる。 FIG. 4 shows a second flowchart implemented in place of the first flowchart of FIG. Only the differences from the first flowchart will be described below. In the second flowchart, when the enrichment control is started, in step 203, based on the map shown in FIG. 5, the correction prohibition period t1 based on the differential term D is set according to the current degree of deterioration of the three-way catalyst device 1. It has become. This correction prohibition period t1 is the time from when the enrichment control is started until the output of the oxygen sensor 3 reaches a value (0.6 volts) corresponding to the set rich air-fuel ratio that is slightly richer than the theoretical air-fuel ratio. This time is shortened because the O 2 storage capacity decreases as the three-way catalyst device 1 deteriorates.

ステップ207では、リッチ化制御が開始されてからの経過時間tが補正禁止期間t1に達したか否かが判断され、この判断が肯定される時に、微分項Dによる空燃比センサ2の出力の補正禁止を解除するようになっている。それにより、図3の第一フローチャートと同様な効果を得ることができる。   In step 207, it is determined whether or not the elapsed time t from the start of the enrichment control has reached the correction prohibition period t1, and when this determination is affirmative, the output of the air-fuel ratio sensor 2 by the differential term D is determined. The prohibition of correction is cancelled. Thereby, the same effect as the first flowchart of FIG. 3 can be obtained.

前述の第一及び第二フローチャートにおいて、酸素センサ3の出力が理論空燃比に対応する値となった時にリッチ化制御を完了するようにしたが、もちろん、三元触媒装置1の劣化程度に応じてリッチ化制御期間を設定し、リッチ化制御開始からこの期間が経過した時にリッチ化制御を完了するようにしても良い。三元触媒装置1の劣化程度により決定されるリッチ化制御期間は、同じ劣化程度により決定される前述の補正禁止期間t1より僅かに短くなる。   In the first and second flowcharts described above, the enrichment control is completed when the output of the oxygen sensor 3 reaches a value corresponding to the stoichiometric air-fuel ratio. Of course, depending on the degree of deterioration of the three-way catalyst device 1 Then, the enrichment control period may be set, and the enrichment control may be completed when this period has elapsed since the start of the enrichment control. The enrichment control period determined by the degree of deterioration of the three-way catalyst device 1 is slightly shorter than the above-described correction prohibition period t1 determined by the same degree of deterioration.

第一及び第二フローチャートにおいて、微分項Dによる空燃比センサの出力の補正を禁止することに代えて、例えば、微分項DのゲインDgを非常に小さくして算出される微分項Dの絶対値も非常に小さくし、微分項Dによる空燃比センサの出力の補正を抑制するようにしても良い。   In the first and second flowcharts, instead of prohibiting correction of the output of the air-fuel ratio sensor by the differential term D, for example, the absolute value of the differential term D calculated by making the gain Dg of the differential term D very small Also, the correction of the output of the air-fuel ratio sensor by the differential term D may be suppressed.

本発明による空燃比制御装置が制御する内燃機関の排気系を示す概略図である。It is the schematic which shows the exhaust system of the internal combustion engine which the air-fuel ratio control apparatus by this invention controls. 目標空燃比及び酸素センサ出力の変化を示すタイムチャートである。It is a time chart which shows the change of a target air fuel ratio and an oxygen sensor output. 本発明による空燃比制御装置により実施される第一フローチャートである。It is a 1st flowchart implemented by the air fuel ratio control apparatus by this invention. 本発明による空燃比制御装置により実施される第二フローチャートである。It is a 2nd flowchart implemented by the air fuel ratio control apparatus by this invention. 微分項補正禁止期間を決定するためのマップである。It is a map for determining a differential term correction prohibition period.

符号の説明Explanation of symbols

1 三元触媒装置
2 空燃比センサ
3 酸素センサ
1 Three-way catalyst device 2 Air-fuel ratio sensor 3 Oxygen sensor

Claims (3)

機関排気系の三元触媒装置の上流側に配置されて排気ガスの空燃比に対応して出力が変化する空燃比センサと、機関排気系の前記三元触媒装置の下流側に配置されて排気ガスの空燃比が理論空燃比近傍の時に出力が急激に変化する酸素センサとを具備し、前記空燃比センサの出力に基づき燃焼空燃比を所望空燃比に制御する内燃機関の空燃比制御装置において、前記空燃比センサの出力は、前記酸素センサの出力変化に基づく微分項により補正され、フューエルカット直後のリッチ化制御においてO2ストレージ能力により前記三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断されるまでは、前記微分項による前記空燃比センサの出力の補正を禁止又は抑制することを特徴とする内燃機関の空燃比制御装置。 An air-fuel ratio sensor disposed upstream of the engine exhaust system three-way catalyst device and having an output varying in accordance with the air-fuel ratio of the exhaust gas, and an exhaust gas disposed downstream of the engine exhaust system three-way catalyst device An air-fuel ratio control apparatus for an internal combustion engine, comprising: an oxygen sensor whose output changes abruptly when the air-fuel ratio of gas is close to the theoretical air-fuel ratio, and controlling the combustion air-fuel ratio to a desired air-fuel ratio based on the output of the air-fuel ratio sensor The output of the air-fuel ratio sensor is corrected by a differential term based on the output change of the oxygen sensor, and almost all of the oxygen stored in the three-way catalyst device is released by the O 2 storage capability in the enrichment control immediately after the fuel cut. The air-fuel ratio control apparatus for an internal combustion engine is characterized by prohibiting or suppressing the correction of the output of the air-fuel ratio sensor by the differential term until it is determined that it has been. 前記三元触媒装置の劣化状態に基づき決定された期間がリッチ化制御開始から経過した時に、フューエルカット直後のリッチ化制御においてO2ストレージ能力により前記三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。 When the period determined based on the deterioration state of the three-way catalyst device has elapsed since the start of the enrichment control, almost all of the oxygen stored in the three-way catalyst device by the O 2 storage capability in the enrichment control immediately after the fuel cut is performed. 2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the air-fuel ratio control apparatus determines that it has been released. 前記酸素センサの出力が、設定リッチ空燃比に対応する値となった時に、フューエルカット直後のリッチ化制御においてO2ストレージ能力により前記三元触媒装置に吸蔵された酸素がほぼ全て放出されたと判断することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。 When the output of the oxygen sensor becomes a value corresponding to the set rich air-fuel ratio, it is determined that substantially all of the oxygen stored in the three-way catalyst device has been released by the O 2 storage capability in the enrichment control immediately after the fuel cut. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein:
JP2006017761A 2006-01-26 2006-01-26 Air-fuel ratio control device of internal combustion engine Pending JP2007198259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017761A JP2007198259A (en) 2006-01-26 2006-01-26 Air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017761A JP2007198259A (en) 2006-01-26 2006-01-26 Air-fuel ratio control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007198259A true JP2007198259A (en) 2007-08-09

Family

ID=38453104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017761A Pending JP2007198259A (en) 2006-01-26 2006-01-26 Air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007198259A (en)

Similar Documents

Publication Publication Date Title
JP3941828B2 (en) Air-fuel ratio control device for internal combustion engine
JP4835497B2 (en) Air-fuel ratio control device for internal combustion engine
JP4877246B2 (en) Air-fuel ratio control device for internal combustion engine
US7243487B2 (en) Control apparatus for internal combustion engine
JP4292909B2 (en) Air-fuel ratio control device for internal combustion engine
JP4438681B2 (en) Air-fuel ratio control device for internal combustion engine
US7225609B2 (en) Control apparatus for internal combustion engine
JP5338974B2 (en) Exhaust gas purification device for internal combustion engine
JP2007198246A (en) Air-fuel ratio control device of internal combustion engine
JP2009002170A (en) Air-fuel ratio control device for internal combustion engine
JP2009167944A (en) Fuel injection control device for internal combustion engine
JP2006250065A (en) Air fuel ratio control device
JP2007198259A (en) Air-fuel ratio control device of internal combustion engine
JP2007218267A (en) Air/fuel ratio control device of internal combustion engine
JP4888365B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007032438A (en) Air-fuel ratio control device for internal combustion engine
JP5077047B2 (en) Control device for internal combustion engine
JP2009299541A (en) Exhaust emission control device for internal combustion engine
JP2013036439A (en) Air-fuel ratio control device of internal combustion engine
JP2009293510A (en) Catalyst diagnosis device
JP2006194202A (en) Air/fuel ratio control device for internal combustion engine
JP4254652B2 (en) Control device for internal combustion engine
JP2004176612A (en) Exhaust emission control device for internal combustion engine
JP4345462B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009299659A (en) Deterioration determination device for exhaust emission control catalyst