JP2007197639A - Normal temperature curable accelerator for japanese lacquer and normal temperature curable japanese lacquer clay composition using the same - Google Patents

Normal temperature curable accelerator for japanese lacquer and normal temperature curable japanese lacquer clay composition using the same Download PDF

Info

Publication number
JP2007197639A
JP2007197639A JP2006020779A JP2006020779A JP2007197639A JP 2007197639 A JP2007197639 A JP 2007197639A JP 2006020779 A JP2006020779 A JP 2006020779A JP 2006020779 A JP2006020779 A JP 2006020779A JP 2007197639 A JP2007197639 A JP 2007197639A
Authority
JP
Japan
Prior art keywords
acid
lacquer
temperature curable
room temperature
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006020779A
Other languages
Japanese (ja)
Inventor
Shigeo Hirose
重雄 廣瀬
Masahiro Funabashi
正弘 船橋
Osamu Watabe
修 渡部
Katsumi Takeuchi
克己 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Fukushima Prefecture
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Fukushima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Fukushima Prefecture filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006020779A priority Critical patent/JP2007197639A/en
Publication of JP2007197639A publication Critical patent/JP2007197639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suitable curable accelerator for Japanese lacquer by imparting water solubility to chitosan while retaining curing acceleration action on Japanese lacquer by leaving an amino group of chitosan as much as possible. <P>SOLUTION: The normal temperature curable accelerator is composed of a water-soluble chitosan in which parts of amino groups existing therein are neutralized with oxycarboxylic acid such as glycolic acid, lactic acid, α-oxylactic acid, malic acid, α-oxyglutaric acid, citric acid or glyceric acid. Pulp, kaolin, etc., is used as a filler. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な漆用常温硬化促進剤及びそれを漆及びフィラーの混合物に配合した常温硬化性漆粘土組成物に関するものである。   The present invention relates to a novel room temperature curing accelerator for lacquer and a room temperature curable lacquer clay composition obtained by blending it with a mixture of lacquer and filler.

漆は、うるしはぜの分泌物を原料として得られるウルシオールを主成分とし、酸化酵素ラッカーゼを含有する液であって、湿気を有する空気中でラッカーゼの触媒作用によるウルシオールの酸化重合により、自然乾燥して化学的に安定で美麗な塗膜を形成するため、天然塗料として、もっぱら工芸用塗装に広く用いられている。   Lacquer is a liquid containing urushiol obtained from the secretions of sea urchin seeds as a main component and containing oxidase laccase, and by oxidative polymerization of urushiol by the catalytic action of laccase in the air with moisture, Since it is naturally dried to form a chemically stable and beautiful coating film, it is widely used as a natural paint exclusively for craft painting.

ところで、上記のラッカーゼの作用が強く発現するのは、温度25〜35℃、相対湿度(RH)70〜80%の条件下であり、相対湿度が高いほど乾燥は速く、相対湿度が60%以下では乾燥は遅くなるし、また温度が20℃以下では乾燥速度が低下し、15℃以下では漆は乾燥しないことが知られている。
このため、漆の乾燥は、高湿度雰囲気の恒温室中で行われるが、このような高湿度条件下でも乾燥速度は比較的遅く、完全に乾燥した塗膜を形成するには、1〜5月を要するのが普通である。
By the way, the action of the above laccase is strongly expressed under conditions of a temperature of 25 to 35 ° C. and a relative humidity (RH) of 70 to 80%. The higher the relative humidity, the faster the drying and the relative humidity is 60% or less. It is known that drying is slowed down, and that the drying speed decreases when the temperature is 20 ° C. or lower, and the lacquer does not dry when the temperature is 15 ° C. or lower.
For this reason, lacquer is dried in a temperature-controlled room with a high humidity atmosphere, but the drying speed is relatively slow even under such high humidity conditions. It usually takes months.

このため、通常は、pHを調整したり、アミン類のような硬化促進剤を添加して乾燥時間を短縮させている。このような硬化促進剤としては、これまでにタンパク質加水分解質(特許文献1、2参照)、炭化水素分子鎖の主鎖又は分枝鎖の末端にアミノ基もち、そのアミノ基に隣接する直鎖炭素数が2以上の反応基を有する化合物(特許文献3参照)、2個以上の炭素原子からなる炭素鎖の末端に2個のアミノ基をもつジアミン化合物(特許文献4参照)などが提案されている。   For this reason, the drying time is usually shortened by adjusting the pH or adding a curing accelerator such as amines. Such curing accelerators have so far been protein hydrolysates (see Patent Documents 1 and 2), an amino group at the end of the main chain or branched chain of a hydrocarbon molecular chain, and a direct adjoining amino group. A compound having a reactive group having 2 or more chain carbon atoms (see Patent Document 3), a diamine compound having two amino groups at the end of a carbon chain composed of 2 or more carbon atoms (see Patent Document 4), etc. Has been.

他方において、キチンを脱アセチル化して得られるキトサンは、グルコサミンから成る塩基性多糖類であり、多数のアミノ基をもつもので、漆の硬化促進剤として有望であるが、水に不溶のため、そのままでは利用することができない。また、このキトサンのアミノ基を有機酸の塩の形に変換すれば水に溶解しやすくなることも知られているが(特許文献5参照)、このようにして水に易溶性になるまで有機酸を反応させると、存在する遊離アミノ基が減少し、漆の硬化促進作用が低下するという問題を生じる。   On the other hand, chitosan obtained by deacetylating chitin is a basic polysaccharide composed of glucosamine, which has many amino groups and is promising as a hardening accelerator for lacquer, but is insoluble in water, It cannot be used as it is. It is also known that the chitosan amino group can be easily dissolved in water if converted into a salt form of an organic acid (see Patent Document 5). When the acid is reacted, there is a problem that the free amino groups present are reduced and the hardening promoting action of lacquer is reduced.

特開平11−116896号公報(特許請求の範囲その他)JP-A-11-116896 (Claims and others) 特開平11−256108号公報(特許請求の範囲その他)JP 11-256108 A (claims and others) 特開2002−3720号公報(特許請求の範囲その他)JP 2002-3720 A (Claims and others) 特開2003−238811号公報(特許請求の範囲その他)Japanese Patent Laying-Open No. 2003-238811 (Claims and others) 特開平4−122702号公報(特許請求の範囲その他)JP-A-4-122702 (Claims and others)

本発明は、キトサンのアミノ基をできるだけ多く残して漆に対する硬化促進作用を保持させながら、かつキトサンに水溶性を付与することにより、好適な漆の硬化促進剤を提供することを目的としてなされたものである。   The present invention was made for the purpose of providing a suitable lacquer hardening accelerator by leaving as many amino groups of chitosan as possible while retaining the hardening accelerating action on lacquer and imparting water solubility to chitosan. Is.

本発明者らは、キトサンを水溶性に変性することについて種々研究を重ねた結果、キトサン中のアミノ基をオキシカルボン酸により部分的に中和することにより、漆を基剤とする塑性造形材料の常温硬化促進剤として好適な水溶性キトサンが得られることを見出し、この知見に基づいて本発明をなすに至った。   As a result of various studies on the modification of chitosan to water solubility, the present inventors have partially neutralized the amino group in chitosan with oxycarboxylic acid, thereby forming a plastic molding material based on lacquer. It was found that a water-soluble chitosan suitable as a room temperature curing accelerator was obtained, and the present invention was made based on this finding.

すなわち、本発明は、その中に存在するアミノ基の一部がオキシカルボン酸で中和された水溶性キトサンから成る漆用常温硬化促進剤、及び(A)漆基剤と(B)フィラーと(C)その中に存在するアミノ基の一部がオキシカルボン酸で中和された水溶性キトサンを含有することを特徴とする常温硬化性漆粘土組成物を提供するものである。   That is, the present invention relates to a room temperature curing accelerator for lacquer composed of water-soluble chitosan in which some of the amino groups present therein are neutralized with oxycarboxylic acid, and (A) a lacquer base and (B) a filler, (C) The present invention provides a room temperature curable lacquer clay composition characterized by containing water-soluble chitosan in which a part of amino groups present therein is neutralized with oxycarboxylic acid.

本発明において、キトサン中のアミノ基の一部を中和するために用いるオキシカルボン酸としては、例えばグリコール酸、乳酸、ヒドロアクリル酸、α‐オキシ‐酪酸、β‐オキシ‐酪酸、α‐オキシイソ酪酸、α‐オキシ‐n‐吉草酸のようなモノオキシモノカルボン酸や、タルトロン酸、リンゴ酸、α‐オキシグルタル酸、β‐オキシグルタル酸のようなモノオキシジカルボン酸や、クエン酸のようなモノオキシトリカルボン酸やグリセリン酸のようなジオキシモノカルボン酸などを挙げることができる。
これらのオキシカルボン酸によるキトサンのアミノ基の中和は、キトサン中に存在するアミノ基の30〜60%、好ましくは40〜50%が中和される割合で行うのがよい。中和率が30%未満ではキトサンが十分に水に溶解しないし、また中和率が60%よりも多いと漆の硬化促進作用が低下する。
In the present invention, examples of the oxycarboxylic acid used for neutralizing a part of the amino group in chitosan include glycolic acid, lactic acid, hydroacrylic acid, α-oxy-butyric acid, β-oxy-butyric acid, α-oxyiso Monooxymonocarboxylic acids such as butyric acid, α-oxy-n-valeric acid, monooxydicarboxylic acids such as tartronic acid, malic acid, α-oxyglutaric acid, β-oxyglutaric acid, and citric acid And dioxymonocarboxylic acids such as monooxytricarboxylic acid and glyceric acid.
Neutralization of the amino group of chitosan with these oxycarboxylic acids should be carried out at a rate at which 30 to 60%, preferably 40 to 50% of the amino groups present in the chitosan are neutralized. If the neutralization rate is less than 30%, chitosan is not sufficiently dissolved in water, and if the neutralization rate is more than 60%, the hardening acceleration effect of lacquer decreases.

このキトサン中のアミノ基の中和反応は、例えばキトサン粉末を水中に分散させ、所望の中和率に相当する量のオキシカルボン酸を加え、かきまぜることによって行われる。この中和反応は、室温においても十分に進行するが、所望ならば50〜80℃の温度に加熱して行うこともできる。   The neutralization reaction of the amino group in chitosan is performed, for example, by dispersing chitosan powder in water, adding an amount of oxycarboxylic acid corresponding to a desired neutralization rate, and stirring. This neutralization reaction proceeds sufficiently even at room temperature, but can be carried out by heating to a temperature of 50 to 80 ° C. if desired.

このようにして得られた硬化促進剤は、通常漆基剤に対し、0.01〜20質量%の割合で添加されるが、所望ならばさらに多く用いてもよい。この添加量が0.01質量%未満では十分な硬化促進効果が得られない。   The curing accelerator thus obtained is usually added at a ratio of 0.01 to 20% by mass with respect to the lacquer base, but more may be used if desired. If this addition amount is less than 0.01% by mass, a sufficient curing accelerating effect cannot be obtained.

次に、本発明の常温硬化性漆粘土組成物は、(A)漆基剤と(B)フィラーと(C)上記の硬化促進剤とを含有することを特徴とするものである。
(A)成分の漆基剤としては、生漆を低温でクロメて水分を除去した精製漆(スグロメ漆)と水酸化鉄などを加えて黒く精製した黒漆(黒呂色漆)、各種顔料を配合して着色した彩漆のいずれも用いることができる。
Next, the room temperature curable lacquer clay composition of the present invention contains (A) a lacquer base, (B) a filler, and (C) the curing accelerator.
As the lacquer base of the component (A), refined lacquer (sugurome lacquer) from raw lacquer removed at low temperature to remove water, black lacquer (Kuroro lacquer) purified by adding iron hydroxide, etc., various pigments Any of the colored lacquer blended and colored can be used.

また、(B)成分のフィラーとしては、無機質フィラー又は有機質フィラーのいずれを用いてもよく、無機質フィラーとしては、例えば陶土、タルク、ガラス粉末、セラミックス粉末、金属粉末、シラスバルーン、カーボンブラックなどを、有機質フィラーとしては、例えば合成樹脂粉末、セルロース粉末などを挙げることができるが、特に好ましいのはパルプのような天然繊維である。   In addition, as the filler of the component (B), either an inorganic filler or an organic filler may be used. Examples of the inorganic filler include porcelain clay, talc, glass powder, ceramic powder, metal powder, shirasu balloon, and carbon black. Examples of the organic filler include synthetic resin powder and cellulose powder, and natural fibers such as pulp are particularly preferable.

これらのフィラーは、通常漆基剤に対し、質量比7:3ないし3:7の割合で用いることができるが、塑性造形性が失われない範囲であれば、適宜増減することができる。
この常温硬化性漆粘土組成物には、所望に応じさらにアルコール類、芳香族炭化水素、テレピン油などを加えることもできる。
These fillers can be used in a mass ratio of 7: 3 to 3: 7 with respect to the lacquer base, but can be appropriately increased or decreased as long as the plastic formability is not lost.
If desired, alcohols, aromatic hydrocarbons, turpentine oil, and the like can be added to the room temperature curable lacquer clay composition.

本発明の常温硬化性漆粘土組成物は、各種の造形用材料として好適である。   The room temperature curable lacquer clay composition of the present invention is suitable as various modeling materials.

本発明によれば、漆に対して良好な相容性を有し、かつ優れた硬化促進効果を示す漆用硬化促進剤が提供される。   According to the present invention, there is provided a curing accelerator for lacquer that has good compatibility with lacquer and exhibits an excellent curing acceleration effect.

次に実施例により本発明を実施するための最良の形態を説明するが、これにより本発明はなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described by way of examples. However, the present invention is not limited to these examples.

キトサン粉末2gを水100mlに分散させ、これに、キトサン中のアミノ基に対し0.5当量に相当する量のグリコール酸を添加し、室温で1時間撹拌することにより、キトサンのアミノ基の50%がグリコール酸で中和された水溶性キトサンの水溶液を調整した。   By dispersing 2 g of chitosan powder in 100 ml of water and adding glycolic acid in an amount corresponding to 0.5 equivalent to the amino groups in chitosan and stirring at room temperature for 1 hour, 50 amino acids of chitosan were added. An aqueous solution of water-soluble chitosan neutralized with glycolic acid was prepared.

実施例1におけるグリコール酸の代りに、乳酸をキトサン中のアミノ基に対し0.5当量に相当する量で用い、実施例1と同様に操作して、キトサンのアミノ基の50%が乳酸で中和された水溶性キトサンの水溶液を調製した。   In place of glycolic acid in Example 1, lactic acid was used in an amount corresponding to 0.5 equivalent to the amino group in chitosan, and the same operation as in Example 1 was carried out, and 50% of the amino group of chitosan was lactic acid. An aqueous solution of neutralized water-soluble chitosan was prepared.

実施例1におけるグリコール酸の代りに、リンゴ酸をキトサン中のアミノ基に対し0.6当量に相当する量で用い、実施例1と同様に操作してキトサンのアミノ基の60%がリンゴ酸で中和された水溶性キトサンの水溶液を調製した。   Instead of glycolic acid in Example 1, malic acid was used in an amount corresponding to 0.6 equivalents relative to the amino group in chitosan, and 60% of the amino group of chitosan was malic acid by operating in the same manner as in Example 1. An aqueous solution of water-soluble chitosan neutralized with 1 was prepared.

実施例1で得たキトサン水溶液を、製漆200g、製紙パルプ100g及びシラスバルーン20gの混合物中に加え、1時間練り混ぜることにより、常温硬化性漆粘土組成物を得た。この組成物について示差走査熱量測定(DSC)を行ったところ、30℃、72時間における硬化総発熱量は75.08mJ/mgであった。これは、未加工のキトサン固体を添加した場合のほぼ4倍であり、常温硬化促進効果が著しく改善されたことを示す。
次に、この組成物を室温で3日間放置して硬化した硬化物について曲げ弾性率及び強度を測定したところ、それぞれ1.90GPa及び17.6MPaであった。
The aqueous chitosan aqueous solution obtained in Example 1 was added to a mixture of 200 g of lacquer, 100 g of paper pulp and 20 g of shirasu balloon, and kneaded for 1 hour to obtain a room temperature curable lacquer clay composition. When differential scanning calorimetry (DSC) was performed on this composition, the total calorific value for curing at 30 ° C. for 72 hours was 75.08 mJ / mg. This is almost 4 times as much as when the raw chitosan solid was added, indicating that the room temperature curing acceleration effect was remarkably improved.
Next, the flexural modulus and strength of the cured product obtained by allowing the composition to stand for 3 days at room temperature were measured and found to be 1.90 GPa and 17.6 MPa, respectively.

比較例
実施例4におけるグリコール酸で中和したキトサン水溶液の代りに、グリコール酸処理を行わないキトサンの水分散液を用い、同様にして常温硬化性漆粘土組成物を調製した。
この組成物について実施例4と同様にして示差走査熱量測定(DSC)を行ったところ、30℃、72時間における硬化総発熱量は17.87mJ/mgであった。また、この硬化物を常温で大気中に3日間放置して得た硬化物について、その弾性率及び強度を測定したところ、それぞれ1.62GPa及び17.2MPaであった。
Comparative Example Instead of the chitosan aqueous solution neutralized with glycolic acid in Example 4, an aqueous dispersion of chitosan not subjected to glycolic acid treatment was used to prepare a room temperature curable lacquer clay composition.
This composition was subjected to differential scanning calorimetry (DSC) in the same manner as in Example 4. As a result, the total calorific value at 30 ° C. for 72 hours was 17.87 mJ / mg. Further, the elastic modulus and strength of the cured product obtained by leaving the cured product in the atmosphere at room temperature for 3 days were 1.62 GPa and 17.2 MPa, respectively.

従来の漆粘土と同様、各種の造形物の製作材料として利用することができる。
Like conventional lacquer clay, it can be used as a production material for various shaped objects.

Claims (9)

その中に存在するアミノ基の一部がオキシカルボン酸で中和された水溶性キトサンから成る漆用常温硬化促進剤。   A room temperature curing accelerator for lacquer composed of water-soluble chitosan in which some of the amino groups present therein are neutralized with oxycarboxylic acid. その中に存在するアミノ基の30〜60%がオキシカルボン酸で中和された水溶性キトサンから成る請求項1記載の漆用常温硬化促進剤。   The room temperature curing accelerator for lacquers according to claim 1, comprising 30 to 60% of amino groups present therein in water-soluble chitosan neutralized with oxycarboxylic acid. オキシカルボン酸がグリコール酸、乳酸、α‐オキシ酪酸、リンゴ酸、α‐オキシグルタル酸、クエン酸及びグリセリン酸の中から選ばれた少なくとも1種である請求項1又は2記載の漆用常温硬化促進剤。   The room temperature curing for lacquer according to claim 1 or 2, wherein the oxycarboxylic acid is at least one selected from glycolic acid, lactic acid, α-oxybutyric acid, malic acid, α-oxyglutaric acid, citric acid and glyceric acid. Accelerator. (A)漆基剤と(B)フィラーと(C)その中に存在するアミノ基の一部がオキシカルボン酸で中和された水溶性キトサンを含有することを特徴とする常温硬化性漆粘土組成物。   (A) A lacquer base, (B) a filler, and (C) water-soluble chitosan in which a part of an amino group present therein is neutralized with an oxycarboxylic acid, Composition. (C)成分の含有量が(A)成分100質量部に基づき0.1〜20質量部である請求項4記載の常温硬化性漆粘土組成物。   (C) Content of a component is 0.1-20 mass parts based on 100 mass parts of (A) component, The normal temperature curable lacquer clay composition of Claim 4. オキシカルボン酸がグリコール酸、乳酸、α‐オキシ酪酸、リンゴ酸、α‐オキシグルタル酸、クエン酸及びグリセリン酸の中から選ばれた少なくとも1種である請求項4又は5記載の常温硬化性漆粘土組成物。   6. The room temperature curable lacquer according to claim 4, wherein the oxycarboxylic acid is at least one selected from glycolic acid, lactic acid, α-oxybutyric acid, malic acid, α-oxyglutaric acid, citric acid and glyceric acid. Clay composition. フィラーが繊維状物質及び無機質フィラーの中から選ばれた少なくとも1種である請求項4ないし6のいずれかに記載の常温硬化性漆粘土組成物。   The room temperature curable lacquer clay composition according to any one of claims 4 to 6, wherein the filler is at least one selected from fibrous substances and inorganic fillers. 繊維状物質がパルプである請求項7記載の常温硬化性漆粘土組成物。   The room temperature curable lacquer clay composition according to claim 7, wherein the fibrous substance is pulp. 無機質フィラーが陶土である請求項7記載の常温硬化性漆粘土組成物。   The room temperature curable lacquer clay composition according to claim 7, wherein the inorganic filler is porcelain clay.
JP2006020779A 2006-01-30 2006-01-30 Normal temperature curable accelerator for japanese lacquer and normal temperature curable japanese lacquer clay composition using the same Pending JP2007197639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020779A JP2007197639A (en) 2006-01-30 2006-01-30 Normal temperature curable accelerator for japanese lacquer and normal temperature curable japanese lacquer clay composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020779A JP2007197639A (en) 2006-01-30 2006-01-30 Normal temperature curable accelerator for japanese lacquer and normal temperature curable japanese lacquer clay composition using the same

Publications (1)

Publication Number Publication Date
JP2007197639A true JP2007197639A (en) 2007-08-09

Family

ID=38452551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020779A Pending JP2007197639A (en) 2006-01-30 2006-01-30 Normal temperature curable accelerator for japanese lacquer and normal temperature curable japanese lacquer clay composition using the same

Country Status (1)

Country Link
JP (1) JP2007197639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031971A1 (en) * 2011-08-31 2015-03-23 地方独立行政法人東京都立産業技術研究センター Molding material and molded body using the same
JPWO2013031969A1 (en) * 2011-08-31 2015-03-23 地方独立行政法人東京都立産業技術研究センター MATERIAL FOR MOLDING, METHOD FOR PRODUCING THE SAME, AND COMPRESSION MOLDED BODY USING THE MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031971A1 (en) * 2011-08-31 2015-03-23 地方独立行政法人東京都立産業技術研究センター Molding material and molded body using the same
JPWO2013031969A1 (en) * 2011-08-31 2015-03-23 地方独立行政法人東京都立産業技術研究センター MATERIAL FOR MOLDING, METHOD FOR PRODUCING THE SAME, AND COMPRESSION MOLDED BODY USING THE MATERIAL

Similar Documents

Publication Publication Date Title
Mariana et al. A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends
Zhang et al. High performance and multifunctional protein-based adhesive produced via phenol-amine chemistry and mineral reinforcement strategy inspired by arthropod cuticles
Fernandes et al. Novel transparent nanocomposite films based on chitosan and bacterial cellulose
Boarino et al. Uniformly dispersed poly (lactic acid)-grafted lignin nanoparticles enhance antioxidant activity and UV-barrier properties of poly (lactic acid) packaging films
KR102017363B1 (en) Biodegradable material made of biological components
Cao et al. Bioinspired mineral–organic hybridization strategy to produce a green high performance soybean meal based adhesive
UA85166C2 (en) Process for preparing a hyperbranched polymer, hyperbranched polymer, use thereof, mixture and composition based thereon
Wang et al. Novel gelatin-based eco-friendly adhesive with a hyperbranched cross-linked structure
Zhang et al. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry
Gu et al. Multiple hydrogen bonding enables strong, tough, and recyclable soy protein films
El-Sakhawy et al. Carboxymethyl cellulose acetate butyrate: A review of the preparations, properties, and applications
WO2007073039A1 (en) Natural binder for binding natural powder and manufacturing method thereof
JP6510209B2 (en) Resin composition for coating composition heating and drying damping composition
KR20140122115A (en) Coating product and coating method for the same
Cai et al. High-performance adhesives formulated from soy protein isolate and bio-based material hybrid for plywood production
Ni et al. Cross-linked entanglement of aldehyde and amine-functionalized nanocellulose reinforced with biomineralization to produce an all-bio-based adhesive
Liu et al. Hybrid HNTs-kenaf fiber modified soybean meal-based adhesive with PTGE for synergistic reinforcement of wet bonding strength and toughness
Zeng et al. A tough bio-adhesive inspired by pearl layer and arthropod cuticle structure with desirable water resistance, flame-retardancy, and antibacterial property
JP2007197639A (en) Normal temperature curable accelerator for japanese lacquer and normal temperature curable japanese lacquer clay composition using the same
JP2019094460A (en) Metal salt-containing cellulose nanofiber
Li et al. Integration of aromatic polyurea and dialdehyde cellulose as high-performance hybrid resin adhesives for bonding wood
Liu et al. Bioinspired water-retaining and strong soybean flour-based adhesive for efficient preparation of plywood
Fan et al. In situ injectable poly (γ‐glutamic acid) based biohydrogel formed by enzymatic crosslinking
Liu et al. Preparation of strong, water retention, and multifunctional soybean flour-based adhesive inspired by lobster shells and milk skin
Kumar Effect of water-mediated arylation time on the properties of soy protein films