JP2007196538A - Hollow structure - Google Patents

Hollow structure Download PDF

Info

Publication number
JP2007196538A
JP2007196538A JP2006018387A JP2006018387A JP2007196538A JP 2007196538 A JP2007196538 A JP 2007196538A JP 2006018387 A JP2006018387 A JP 2006018387A JP 2006018387 A JP2006018387 A JP 2006018387A JP 2007196538 A JP2007196538 A JP 2007196538A
Authority
JP
Japan
Prior art keywords
shell body
hollow structure
molded product
energy supply
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018387A
Other languages
Japanese (ja)
Inventor
Yoshitoku Ishima
良徳 石間
Yuichi Hatano
祐一 畑野
Yasuharu Odachi
泰治 大立
Motoo Makino
基生 槙野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yushin Precision Equipment Co Ltd
Yushin Seiki KK
Original Assignee
Yushin Precision Equipment Co Ltd
Yushin Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yushin Precision Equipment Co Ltd, Yushin Seiki KK filed Critical Yushin Precision Equipment Co Ltd
Priority to JP2006018387A priority Critical patent/JP2007196538A/en
Publication of JP2007196538A publication Critical patent/JP2007196538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate variations in product precision by simplifying a structure, and to reduce weight by securing predetermined rigidity. <P>SOLUTION: A swing arm 2 for mounting a molded article as a hollow structure 1 comprises: a shell body 3 having a closed cross-section structure with no joint or mating surface; a reinforcing rib 4 which is elongated in the width direction and provided in a hollow part 3a in the shell body 3 in such a manner as to continue into the shell body 3; and a charging passage 7 for charging a negative-pressure supply tube 6 (operating-energy supply system) to an operation part such as a molded-article suction-holding part 5 which is connected to the shell body 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、中空構造物に係り、たとえば、樹脂成形機に搭載された成形品取出機の成形品取出しアームなどに好適な中空構造物に関するものである。   The present invention relates to a hollow structure, for example, a hollow structure suitable for a molded product take-out arm of a molded product take-out machine mounted on a resin molding machine.

樹脂成形機に搭載された成形品取出機の成形品取出しアームは、その先端部に装着している成形品把持部を、樹脂成形機の成形部位と成形機外の解放位置との間を高速で進退させて、成形品の取出し時間を短縮できるように構成することが要求される。そのため、所定の剛性を確保し、かつ、軽量化を達成しなければならない。このことから、従来では、成形品取出しアームの素材としてアルミニウムなどの非鉄金属製の押出型材が用いられていた。この押出型材によれば、継ぎ目および合わせ面を有していない閉断面構造のシェル本体によって所定の剛性を確保し、その内部に中空部が形成されることによって軽量化を達成するとともに、補強リブを形成することでより一層剛性を高めることができる。   The molded product take-out arm of the molded product take-out machine mounted on the resin molding machine allows the molded product gripping part attached to the tip of the molding machine to move between the molding site of the resin molding machine and the release position outside the molding machine at high speed. Therefore, it is required to make it possible to shorten the time for taking out the molded product. For this reason, it is necessary to ensure a predetermined rigidity and achieve weight reduction. For this reason, conventionally, a non-ferrous metal extrusion mold material such as aluminum has been used as a material for the molded product take-out arm. According to this extruded mold material, a predetermined rigidity is secured by the shell body having a closed cross-section structure that does not have a seam and a mating surface, and the hollow portion is formed therein, thereby reducing the weight and reinforcing ribs. By forming, rigidity can be further increased.

ところが、補強リブの形成は、成形品取出しアームの長手方向にのびる中実のもののみに制限され、幅方向にのびる補強リブの形成は不可能である。そのため、同一横断面積を有する閉断面構造のシェル本体の単位長さの重量に対する補強リブが占める重量の割合は、幅方向にのびる補強リブを長手方向に所定の間隔を隔てて形成した構造のものよりも大きくなって、成形品取出しアームの重量を不必要に増大させるおそれがある。また、成形品取出しアームの先端部に設けられる成形品把持部、成形品把持部の姿勢を制御する姿勢制御装置、成形品把持部による成形品の把持状態を検出するセンサーなどの作動部に、作動エネルギーを供給する流体供給管や導電ケーブルなどの作動エネルギー供給系を装入するための装入通路を形成するためには、成形品取出しアーム専用の押し出しまたは引き抜き用の金型設備が必要になる。当然、前記作動エネルギー供給系を閉断面構造のシェル本体内の中空部に直に装入することによって、成形品取出しアーム専用の押し出しまたは引き抜き用の金型設備を不要にすることは可能である。しかし、作動エネルギー供給系を直に中空部に装入すると、シェル本体の内面と作動エネルギー供給系との摩擦や作動エネルギー供給系同士の摩擦が複合的に発生し、これが反復することになって、作動エネルギー供給系を比較的短期間で損傷させることになる。したがって、作動エネルギー供給系を閉断面構造のシェル本体内の中空部に直に装入する構造は、これを採用することができない。   However, the formation of the reinforcing rib is limited to only a solid one extending in the longitudinal direction of the molded product take-out arm, and it is impossible to form the reinforcing rib extending in the width direction. Therefore, the ratio of the weight of the reinforcing rib to the weight of the unit length of the shell body of the closed cross-sectional structure having the same cross-sectional area is the structure in which the reinforcing rib extending in the width direction is formed at a predetermined interval in the longitudinal direction. May increase the weight of the molded product take-out arm unnecessarily. In addition, the operation part such as a molded product gripping part provided at the tip of the molded product take-off arm, a posture control device for controlling the posture of the molded product gripping part, a sensor for detecting the gripping state of the molded product by the molded product gripping part, In order to form a loading passage for loading a working energy supply system such as a fluid supply pipe or a conductive cable that supplies working energy, a mold equipment for extrusion or extraction for exclusive use of the molded product take-out arm is required. Become. Of course, it is possible to eliminate the need for a mold equipment for pushing or pulling out the molded product take-out arm by directly inserting the operating energy supply system into the hollow portion in the shell body having a closed cross-sectional structure. . However, when the operating energy supply system is directly inserted into the hollow portion, friction between the inner surface of the shell body and the operating energy supply system and friction between the operating energy supply systems occur in a complex manner, and this is repeated. The operating energy supply system will be damaged in a relatively short period of time. Therefore, the structure in which the operating energy supply system is directly inserted into the hollow portion in the shell body having the closed cross-sectional structure cannot be adopted.

前述したように、成形品の取出し時間を短縮するとともに、成形品把持位置や解放位置での負荷イナーシャを低減して停止位置の精度を高めるのに好適な成形品取出しアームとして、正面形状を略く字状にした旋回アームが使用される。正面形状を略く字状に屈曲させることで、樹脂成形機の可動金型を固定金型に対して正確に接離させるための案内機能を備えているタイバーに干渉することなくアームを旋回作動させることができる。このような旋回アームを前記アルミニウムなどの非鉄金属製の押出型材によって造るためには、直線状の閉断面シェル本体をく字状に屈曲させる煩雑な工程が必要であるばかりか、旋回アームの製品精度にバラツキが生じやすい難点を有している。   As described above, the front shape of the molded product removal arm that is suitable for shortening the molded product take-off time and reducing the load inertia at the molded product gripping position and the release position to improve the accuracy of the stop position A square arm is used. By bending the front shape into a roughly square shape, the arm can be swiveled without interfering with the tie bar, which has a guide function for accurately moving the movable mold of the resin molding machine to and from the fixed mold. Can be made. In order to make such a swivel arm using an extruded mold made of non-ferrous metal such as aluminum, not only a complicated process of bending a straight closed cross-section shell body into a square shape is necessary, but also a swivel arm product. There is a problem that the accuracy is likely to vary.

一方、基端部と先端部との間に至るチューブを内蔵した発泡樹脂製コア材と、該発泡樹脂製コア材の外面に被覆形成される繊維強化樹脂体とからなり、前記チューブ内にチャック部に接続される各種ケーブルを収容可能にした成形品取出し機の旋回アームが提案されている(たとえば、特許文献1)。   On the other hand, it comprises a foamed resin core material having a tube built between the base end portion and the distal end portion, and a fiber reinforced resin body coated on the outer surface of the foamed resin core material. A swivel arm of a molded product take-out machine that can accommodate various cables connected to a section has been proposed (for example, Patent Document 1).

特開2005−161688号公報。Japanese Patent Application Laid-Open No. 2005-161688.

前記特許文献1に記載されている旋回アームは、発泡スチレン樹脂や発泡ウレタン樹脂などの発泡樹脂により旋回アームとほぼ一致するく字形で、内部には基端部から先端部に至る貫通孔を設けた発泡樹脂製コア材を形成し、前記貫通孔には耐熱性で可撓性を有するチューブを前記コア材の基端部から先端部にわたって挿通する。そして、発泡樹脂製コア材の外面に、カーボン繊維布やガラス繊維布などの強化繊維布にエポキシ樹脂などの熱硬化性樹脂を含浸した熱硬化性樹脂含有強化繊維布を所望の厚さで積層して巻き付けた後に、金型内にセットして加圧および加熱しながら熱硬化性樹脂を熱硬化させることにより繊維強化樹脂体を被覆形成したものである。   The swivel arm described in Patent Document 1 has a square shape that substantially matches the swivel arm by foamed resin such as foamed styrene resin or foamed urethane resin, and has a through hole extending from the base end to the tip. A core material made of foamed resin is formed, and a heat-resistant and flexible tube is inserted into the through-hole from the proximal end portion to the distal end portion of the core material. And on the outer surface of the core material made of foamed resin, a reinforcing fiber cloth containing a thermosetting resin impregnated with a thermosetting resin such as an epoxy resin in a reinforcing fiber cloth such as a carbon fiber cloth or a glass fiber cloth is laminated at a desired thickness. After being wound, the fiber-reinforced resin body is coated and formed by thermosetting the thermosetting resin while being set in a mold and pressurized and heated.

前記特許文献1に記載されている旋回アームによれば、所定の剛性を確保することで凹みによる外観不良を防止し、ケーブルなどの装着作業を円滑に行うことができるとともに、軽量化を達成できる。しかし、構造が複雑であるばかりか、熱硬化性樹脂含有強化繊維布を所望の厚さで積層して巻き付けなければならない煩雑な作業が必要である上に、旋回アームの製品精度にバラツキが生じやすい難点を有している。   According to the swivel arm described in Patent Document 1, it is possible to prevent a defective appearance due to a dent by ensuring a predetermined rigidity, and to smoothly carry out a mounting operation of a cable or the like, and to achieve a reduction in weight. . However, not only is the structure complicated, but also the complicated work of laminating and winding the thermosetting resin-containing reinforcing fiber cloth with a desired thickness is required, and the product accuracy of the swivel arm varies. There are easy difficulties.

本発明は、このような問題を解決するものであって、その目的とするところは、構造簡単にして製品精度にバラツキがなく、しかも、所定の剛性を確保し、軽量化を達成することができる中空構造物を提供することにある。   The present invention solves such a problem, and the object of the present invention is to simplify the structure so that there is no variation in product accuracy, and to ensure a predetermined rigidity and achieve weight reduction. An object of the present invention is to provide a hollow structure.

本発明の中空構造物は、継ぎ目および合わせ面を有していない閉断面構造のシェル本体と、このシェル本体に連続して該シェル本体内部の中空部に設けられた少なくとも幅方向にのびる補強リブおよびシェル本体に連結される作動部への作動エネルギー供給系を装入する装入通路を備えていることを特徴とするものである。   A hollow structure according to the present invention includes a shell main body having a closed cross-sectional structure having no seam and a mating surface, and a reinforcing rib extending continuously in the hollow direction inside the shell main body and extending at least in the width direction. And a charging passage for charging an operating energy supply system to the operating part connected to the shell body.

これによれば、閉断面構造のシェル本体によって所定の剛性を確保することができ、シェル本体の内部に中空部が設けられていることによって軽量化を達成できる。また、少なくとも幅方向にのびる補強リブによってシェル本体を補強し、その剛性をより一層高めることができる。さらに、補強リブおよび装入通路を中空部に設けた簡単な構造の閉断面構造のシェル本体は、たとえば、積層造型法によって高精度に成形できる。   According to this, a predetermined rigidity can be ensured by the shell body having a closed cross-sectional structure, and weight reduction can be achieved by providing the hollow portion inside the shell body. Further, the shell main body can be reinforced by the reinforcing rib extending at least in the width direction, and the rigidity can be further increased. Furthermore, the shell body having a simple cross-sectional structure in which the reinforcing rib and the charging passage are provided in the hollow portion can be formed with high accuracy by, for example, a lamination molding method.

本発明の中空構造物は、前記閉断面構造のシェル本体に前記装入通路に通じる作動エネルギー供給系の入口と、作動エネルギー供給系の出口を設けている。これによると、シェル本体に連結される作動部への作動エネルギー供給系を前記入口から出口にかけて挿通することで、作動エネルギー供給系を前記装入通路に容易に装入して保護することができる。これにより、閉断面構造のシェル本体の内面と作動エネルギー供給系との摩擦および作動エネルギー供給系同士の摩擦を回避して、作動エネルギー供給系の延命を達成し耐久性を向上させることができる。   In the hollow structure of the present invention, the shell body having the closed cross-sectional structure is provided with an inlet of an operating energy supply system that communicates with the charging passage and an outlet of the operating energy supply system. According to this, the operating energy supply system can be easily inserted into the charging passage and protected by inserting the operating energy supply system to the operating portion connected to the shell body from the inlet to the outlet. . Accordingly, friction between the inner surface of the shell body having a closed cross-sectional structure and the operating energy supply system and friction between the operating energy supply systems can be avoided, the life of the operating energy supply system can be extended, and durability can be improved.

本発明の中空構造物は、前記作動エネルギー供給系が、電力供給用の導電ケーブルと流体供給用の配管とからなる。これによると、作動部を電動モーターあるいは油圧モータ、水圧モータ、エアーモータもしくはエアーシリンダ、吸盤式または挟み式の把持部などで構成できる。   In the hollow structure of the present invention, the operating energy supply system includes a conductive cable for power supply and piping for fluid supply. According to this, the operation part can be constituted by an electric motor or a hydraulic motor, a hydraulic motor, an air motor or an air cylinder, a suction cup type or a pinching type gripping part.

本発明の中空構造物は、成形品取出機に装備される成形品取出しアームであることが好ましい。これによると、所定の剛性を確保し、軽量化を達成するとともに、構造が簡単で高精度の成形品取出しアームを提供できる。   The hollow structure of the present invention is preferably a molded product take-out arm equipped in a molded product take-out machine. According to this, it is possible to secure a predetermined rigidity, achieve weight reduction, and provide a molded product take-out arm with a simple structure and high accuracy.

本発明によれば、閉断面構造のシェル本体によって所定の剛性を確保することができるとともに、中空部が設けられていることによって軽量化を達成できる。また、少なくとも幅方向にのびる補強リブによってシェル本体を補強し、その剛性をより一層高めることができる。さらに、補強リブおよび装入通路を中空部に設けた簡単な構造の閉断面構造のシェル本体は、たとえば、積層造型法によってバラツキのない高精度のものを容易に成形することができる。   According to the present invention, a predetermined rigidity can be ensured by the shell body having a closed cross-sectional structure, and weight reduction can be achieved by providing the hollow portion. Further, the shell main body can be reinforced by the reinforcing rib extending at least in the width direction, and the rigidity can be further increased. Furthermore, the shell body having a simple closed cross-sectional structure in which the reinforcing rib and the charging passage are provided in the hollow portion can be easily molded with high accuracy without variation by, for example, a lamination molding method.

以下、本発明に係る中空構造物の一実施形態を図面にしたがって説明する。
図1は本発明に係る中空構造物の一実施形態を示す全体正面図、図2は図1の拡大左側面図、図3は図1のA−A線に沿う拡大断面図、図4は図1のB−B線に沿う拡大断面図、図5は図1のC−C拡大矢視図、図6は図1のD−D拡大矢視図である。
Hereinafter, an embodiment of a hollow structure according to the present invention will be described with reference to the drawings.
1 is an overall front view showing an embodiment of a hollow structure according to the present invention, FIG. 2 is an enlarged left side view of FIG. 1, FIG. 3 is an enlarged sectional view taken along line AA of FIG. 1 is an enlarged cross-sectional view taken along line BB in FIG. 1, FIG. 5 is a CC enlarged arrow view of FIG. 1, and FIG. 6 is a DD enlarged arrow view of FIG.

これらの図において、中空構造物1は成形品取出機に装備される成形品取出し用の旋回アーム2からなり、継ぎ目および合わせ面を有していない閉断面構造で正面形状が略く字状のシェル本体3と、このシェル本体3に連続して該シェル本体3内部の中空部3aに設けられた幅方向にのびる2本の補強リブ4およびシェル本体3の先端部に設けた一つの作動部として機能する成形品吸着把持部5に負圧を供給する負圧供給チューブ6が装入される第1装入通路7を備えているとともに、この第1装入通路7に並行して、たとえば、シェル本体3の先端部に作動部として機能する挟み式の成形品把持部(図示省略)が設けられる場合に、該成形品把持部に正圧を供給する正圧供給チューブ(図示省略)が装入される第2装入通路8と、シェル本体3の先端部に作動部として機能する姿勢制御装置(図示省略)や成形品把持部による成形品の把持状態検出センサー(図示省略)などが設けられる場合に、これらに電力を供給する導電ケーブル(図示省略)が装入される第3装入通路9とを備えている。   In these drawings, the hollow structure 1 is composed of a swivel arm 2 for taking out a molded product equipped in a molded product take-out machine, and has a closed cross-sectional structure having no seam and a mating surface, and the front shape is substantially letter-shaped. A shell main body 3, two reinforcing ribs 4 extending in the width direction provided in a hollow portion 3 a inside the shell main body 3, and one actuating portion provided at the tip of the shell main body 3 In addition to the first charging passage 7 in which a negative pressure supply tube 6 for supplying a negative pressure to the molded product suction gripping portion 5 that functions as the first charging passage 7 is inserted, When a sandwich-type molded product gripping portion (not shown) that functions as an operating portion is provided at the tip of the shell body 3, a positive pressure supply tube (not shown) that supplies positive pressure to the molded product gripping portion is provided. Second charging passage 8 to be charged and shell book 3 is provided with a posture control device (not shown) that functions as an operating part, a molded product gripping state detection sensor (not shown), etc. provided at the tip of the conductive cable (not shown) And a third charging passage 9 in which is omitted).

第1,第2,第3装入通路7,8,9は、シェル本体3の基部から先端部にかけてシェル本体3に一致して略く字状にのびる断面略H字形のリブ7a,8a,9aを介してシェル本体3に連続するように中空部3aに設けられ、軽量化を図った補強縦リブとして機能する。また、第1,第2,第3装入通路7,8,9には、シェル本体3の基部側で開口する入口7b,8b,9bとシェル本体3の先端部側で開口する出口7c,8c,9cが設けてある。このため、負圧供給チューブ6は、第1装入通路7の入口7bから出口7cに挿通することで第1装入通路7に装入できるとともに、その先端部を成形品吸着把持部5に接続することにより第1の作動エネルギー供給系を構成できる。また、前記正圧供給チューブは、第2装入通路8の入口8bから出口8cに挿通することで第2装入通路8に装入できるとともに、その先端部を前記挟み式の成形品把持部に接続することにより第2の作動エネルギー供給系を構成でき、前記導電ケーブルは、第3装入通路9の入口9bから出口9cに挿通することで第3装入通路9に装入できるとともに、その先端部を前記姿勢制御装置や成形品の把持状態検出センサーなどに接続することにより第3の作動エネルギー供給系を構成できる。   The first, second, and third charging passages 7, 8, and 9 are ribs 7a, 8a, It is provided in the hollow portion 3a so as to be continuous with the shell main body 3 through 9a, and functions as a reinforcing vertical rib for reducing weight. The first, second, and third charging passages 7, 8, and 9 include inlets 7b, 8b, and 9b that open on the base side of the shell body 3, and outlets 7c that open on the distal end side of the shell body 3. 8c and 9c are provided. For this reason, the negative pressure supply tube 6 can be inserted into the first charging passage 7 by being inserted from the inlet 7b of the first charging passage 7 to the outlet 7c, and the tip portion thereof can be inserted into the molded product suction gripping portion 5. The first operating energy supply system can be configured by connecting. Further, the positive pressure supply tube can be inserted into the second charging passage 8 by being inserted from the inlet 8b of the second charging passage 8 to the outlet 8c, and the tip end portion of the positive pressure supply tube can be inserted into the sandwich-type molded product gripping portion. A second operating energy supply system can be configured by connecting to the conductive cable, and the conductive cable can be inserted into the third charging passage 9 by being inserted from the inlet 9b to the outlet 9c of the third charging passage 9, A third operating energy supply system can be configured by connecting the tip portion to the posture control device or a gripping state detection sensor of the molded product.

前記構成によれば、閉断面構造のシェル本体3によって所定の剛性を確保することができ、シェル本体3の内部に中空部3aが設けられていることによって軽量化を達成できる。また、シェル本体3の幅方向にのびる補強リブ4とシェル本体3に沿ってのびるH字形のリブ7a,8a,9aによってシェル本体3を補強し、その剛性をより一層高めることができる。さらに、負圧供給チューブ6を第1装入通路7に、正圧供給チューブを第2装入通路8に、導電ケーブルを第3装入通路9に各別に分離して装入できるので、シェル本体3の内面と負圧供給チューブ6、正圧供給チューブおよび導電ケーブルとの摩擦や負圧供給チューブ6、正圧供給チューブおよび導電ケーブル同士の摩擦を回避して、これら作動エネルギー供給系の延命を達成し耐久性を向上させることができる。   According to the said structure, predetermined | prescribed rigidity can be ensured with the shell main body 3 of a closed cross-section structure, and weight reduction can be achieved by providing the hollow part 3a in the inside of the shell main body 3. FIG. Further, the shell body 3 can be reinforced by the reinforcing ribs 4 extending in the width direction of the shell body 3 and the H-shaped ribs 7a, 8a, 9a extending along the shell body 3, and the rigidity thereof can be further enhanced. Furthermore, the negative pressure supply tube 6 can be separately charged into the first charging passage 7, the positive pressure supply tube can be separately charged into the second charging passage 8, and the conductive cable can be separately charged into the third charging passage 9. Avoiding friction between the inner surface of the main body 3 and the negative pressure supply tube 6, the positive pressure supply tube and the conductive cable and friction between the negative pressure supply tube 6, the positive pressure supply tube and the conductive cable, and extending the life of these operating energy supply systems. Can be achieved and durability can be improved.

前記構成の中空構造物1である旋回アーム2は、たとえば、感光性樹脂を用いて立体的な構造物を成形する光造形法による一体成形によって成形することができる。   The swivel arm 2 that is the hollow structure 1 having the above-described configuration can be formed by, for example, integral molding by an optical modeling method in which a three-dimensional structure is formed using a photosensitive resin.

積層造形法の一例である光造形法は、おおよそ、モデリング工程と、編集工程と、造形工程とからなる。光造形法の一例としては、まず、3次元CADシステムによって、立体形状に設計された中空構造物1の三次元データを作成する(モデリング工程)。   An optical modeling method, which is an example of a layered modeling method, roughly includes a modeling process, an editing process, and a modeling process. As an example of stereolithography, first, three-dimensional data of the hollow structure 1 designed in a three-dimensional shape is created by a three-dimensional CAD system (modeling process).

つぎに、前記3次元データをコンピュータにより高さ方向に等間隔で水平方向で切断して輪切りの断面データ群を作成する(編集工程)。   Next, the three-dimensional data is cut in a horizontal direction at equal intervals in the height direction by a computer to create a cross-section data group of a circular cut (editing step).

一方、液状の光硬化性樹脂を満たしたタンクの液面より少し下の位置にテーブル面をセットし、前記輪切りの断面データ群に応じて沿って順次テーブル面を下降させながらレーザビ−ムを液面に走査させる操作を反復することによって中空構造物1である旋回アーム2を成形することができる(造形工程)。   On the other hand, the table surface is set at a position slightly below the liquid surface of the tank filled with the liquid photo-curing resin, and the laser beam is liquidated while lowering the table surface sequentially according to the cross-section data group of the ring slice. The revolving arm 2 that is the hollow structure 1 can be formed by repeating the operation of scanning the surface (modeling process).

光硬化性樹脂としては、ポリエステルアクリレート、ポリウレタンアクリレート、ノボラック型エポキシ樹脂、ビスフエノール型エポキシ樹脂などが使用され、これらの樹脂にアセトフェノン系、ベンゾイル系、ベンジルケタール系あるいはケント系の光開始剤が添加される。またレーザビ−ムとしては、He−Cdレーザ、アルゴンレーザ、クリプトンレーザ、などの紫外線レーザや、キセノンランプ、水銀ランプなどの紫外線ランプなどが使用される。   Polyester acrylate, polyurethane acrylate, novolac type epoxy resin, bisphenol type epoxy resin, etc. are used as the photocurable resin, and acetophenone type, benzoyl type, benzyl ketal type or Kent type photoinitiator is added to these resins Is done. As the laser beam, an ultraviolet laser such as a He—Cd laser, an argon laser or a krypton laser, an ultraviolet lamp such as a xenon lamp or a mercury lamp, or the like is used.

また、前記構成の中空構造物1である旋回アーム2は、熱可塑性粉末材料を炭酸ガスレーザーの熱で、一層一層焼結(融着)しながら立体的な構造物を成形するレーザー焼結法による一体成形によって成形することもできる。   In addition, the swivel arm 2 that is the hollow structure 1 having the above-described structure is a laser sintering method in which a three-dimensional structure is formed while further sintering (fusion) the thermoplastic powder material with the heat of a carbon dioxide gas laser. It can also be molded by integral molding.

積層造型法の一例であるレーザー焼結法についての工程は光造型法と同じく、おおよそ、モデリング工程と、編集工程と、造形工程とからなる。光造形法の一例としては、まず、3次元CADシステムによって、立体形状に設計された中空構造物1の三次元データを作成する(モデリング工程)。   The process for the laser sintering method, which is an example of the laminated molding method, is roughly composed of a modeling process, an editing process, and a modeling process, as in the optical molding process. As an example of stereolithography, first, three-dimensional data of the hollow structure 1 designed in a three-dimensional shape is created by a three-dimensional CAD system (modeling process).

つぎに、前記3次元データをコンピュータにより高さ方向に等間隔で水平方向で切断して輪切りの断面データ群を作成する(編集工程)。   Next, the three-dimensional data is cut in a horizontal direction at equal intervals in the height direction by a computer to create a cross-section data group of a circular cut (editing step).

一方、均一な積層を可能にする断面形状を有し、上部またはサイドにある材料タンクからプラットフォームに、一層毎にリコータが移動し一層分の熱可塑性粉末材料を卷くと同時に均一な平面を形成し、リコーディングが済むと、レーザーが一層分の形状断面を塗りつぶして焼結させる。一層分の焼結が済むと、プラットフォームを一層下げて(プラットフォーム下降)、再びリコーディングを行う(造型工程)。   On the other hand, it has a cross-sectional shape that enables uniform lamination, and the recoater moves from the material tank on the top or side to the platform for each layer so as to spread a layer of thermoplastic powder material and at the same time form a uniform plane After recoding, the laser fills and sinters the shape cross section for one layer. When the sintering for one layer is completed, the platform is further lowered (the platform is lowered), and recoding is performed again (molding process).

熱可塑性粉末材料としては、ナイロン、グラス入りナイロン、ポリスチレンなどが使用される。また、樹脂材料以外のブロンズ系合金、鉄系合金などの金属材料も適している。   As the thermoplastic powder material, nylon, glass-filled nylon, polystyrene or the like is used. Further, metal materials such as bronze alloys and iron alloys other than resin materials are also suitable.

本発明に係る中空構造物の一実施形態を示す全体正面図である。It is a whole front view showing one embodiment of the hollow structure concerning the present invention. 図1の拡大左側面図である。FIG. 2 is an enlarged left side view of FIG. 1. 図1のA−A線に沿う拡大断面図である。It is an expanded sectional view which follows the AA line of FIG. 図1のB−B線に沿う拡大断面図である。It is an expanded sectional view which follows the BB line of FIG. 図1のC−C拡大矢視図である。It is CC expanded arrow line view of FIG. 図1のD−D拡大矢視図である。FIG. 2 is a DD enlarged arrow view of FIG. 1.

符号の説明Explanation of symbols

1 中空構造物
2 旋回アーム
3 閉断面構造のシェル本体
3a 中空部
4 幅方向にのびる補強リブ
5 成形品吸着把持部(作動部)
6 負圧供給チューブ(流体供給管、作動エネルギー供給系)
7 第1装入通路(装入通路)
7a 入口
7b 出口
8 第2装入通路(装入通路)
8a 入口
8b 出口
9 第3装入通路(装入通路)
9a 入口
9b 出口
DESCRIPTION OF SYMBOLS 1 Hollow structure 2 Revolving arm 3 Shell body of closed cross-section structure 3a Hollow part 4 Reinforcing rib extending in the width direction 5 Molded product adsorption gripping part (actuation part)
6 Negative pressure supply tube (fluid supply tube, operating energy supply system)
7 First charging passage (charging passage)
7a Inlet 7b Outlet 8 Second charging passage (charging passage)
8a Inlet 8b Outlet 9 Third charging path (charging path)
9a entrance 9b exit

Claims (4)

継ぎ目および合わせ面を有していない閉断面構造のシェル本体と、このシェル本体に連続して該シェル本体内部の中空部に設けられた少なくとも幅方向にのびる補強リブおよびシェル本体に連結される作動部への作動エネルギー供給系を装入する装入通路が備わっていることを特徴とする中空構造物。   A shell body having a closed cross-section structure having no seam and a mating surface, and at least a reinforcing rib provided in a hollow portion inside the shell body and extending in the width direction continuously to the shell body, and an operation coupled to the shell body A hollow structure comprising a charging passage for charging an operating energy supply system to a section. 請求項1に記載の中空構造物において、
前記閉断面構造のシェル本体には、前記装入通路に通じる作動エネルギー供給系の入口と、作動エネルギー供給系の出口が設けられていることを特徴とする中空構造物。
The hollow structure according to claim 1,
A hollow structure characterized in that the shell body having the closed cross-sectional structure is provided with an inlet of an operating energy supply system leading to the charging passage and an outlet of the operating energy supply system.
請求項1または請求項2に記載の中空構造物において、
前記作動エネルギー供給系が、電力供給用の導電ケーブルと、流体供給用の配管とからなることを特徴とする中空構造物。
In the hollow structure according to claim 1 or 2,
A hollow structure characterized in that the operating energy supply system comprises a conductive cable for power supply and piping for fluid supply.
請求項1、請求項2または請求項3に記載の中空構造物において、
中空構造物が成形品取出機に装備される成形品取出しアームであることを特徴とする中空構造物。
In the hollow structure according to claim 1, claim 2, or claim 3,
A hollow structure characterized in that the hollow structure is a molded product take-out arm mounted on a molded product take-out machine.
JP2006018387A 2006-01-27 2006-01-27 Hollow structure Pending JP2007196538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018387A JP2007196538A (en) 2006-01-27 2006-01-27 Hollow structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018387A JP2007196538A (en) 2006-01-27 2006-01-27 Hollow structure

Publications (1)

Publication Number Publication Date
JP2007196538A true JP2007196538A (en) 2007-08-09

Family

ID=38451615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018387A Pending JP2007196538A (en) 2006-01-27 2006-01-27 Hollow structure

Country Status (1)

Country Link
JP (1) JP2007196538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513686A (en) * 2016-11-15 2020-05-14 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Electronic module and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020513686A (en) * 2016-11-15 2020-05-14 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Electronic module and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP3119588B1 (en) Method and apparatus for fabricating a composite object
JP5618834B2 (en) Consumable assemblies used in laminated deposition systems by extrusion
KR20190110523A (en) Additive manufacturing system
JP3699359B2 (en) Variable lamination high-speed modeling method and high-speed modeling apparatus using linear thermal cutting system
US10766802B2 (en) Flexible 3D freeform techniques
US11065782B2 (en) Method for casting a construction element
US9168697B2 (en) Additive manufacturing system with extended printing volume, and methods of use thereof
US8070473B2 (en) System for building three-dimensional objects containing embedded inserts, and method of use thereof
US9370792B2 (en) Production method for a paint plant component and corresponding paint plant component
JP6425222B2 (en) Powder material supply device of three-dimensional modeling device
JP2011173425A (en) Reinforced node structural part reinforced by core of expandable material and finished product molding method
US20140052287A1 (en) Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
US11247367B2 (en) 3D-printed tooling shells
US20240359401A1 (en) Flexible 3D Freeform Techniques
CN105270599A (en) Collapsible, coiled mandrel
JP2007196538A (en) Hollow structure
JP6765360B2 (en) Structure manufacturing method and structure
CN111225784A (en) Movable molded assembly for use with additive manufacturing
US20110049754A1 (en) Methods of Creating Soft Formed Hoses and Molds
JP2024506301A (en) Semi-automated laser-guided mechanism for applying paste beads in the joining process for the fabrication of wind turbine blades
KR100961515B1 (en) Apparatus for manufacturing multi-wall pipe
ES2890473B2 (en) DEVICE AND METHOD FOR CONTINUOUS FORMING OF RIGID COMPOSITE TUBES OF VARIABLE GEOMETRY
KR20230012195A (en) Apparatus and Method for 3D Printing
CN114083648A (en) Alloy building template for assembly type building
JP2010167460A (en) Core molding die