JP2007195359A - Charging and discharging control device of secondary battery - Google Patents

Charging and discharging control device of secondary battery Download PDF

Info

Publication number
JP2007195359A
JP2007195359A JP2006012422A JP2006012422A JP2007195359A JP 2007195359 A JP2007195359 A JP 2007195359A JP 2006012422 A JP2006012422 A JP 2006012422A JP 2006012422 A JP2006012422 A JP 2006012422A JP 2007195359 A JP2007195359 A JP 2007195359A
Authority
JP
Japan
Prior art keywords
temperature
limit value
battery
secondary battery
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006012422A
Other languages
Japanese (ja)
Inventor
Kosuke Suzui
康介 鈴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006012422A priority Critical patent/JP2007195359A/en
Publication of JP2007195359A publication Critical patent/JP2007195359A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging and discharging control device capable of functioning equipment such as a motor as well as exploiting the full potential of charging performance and discharging performance of a secondary battery. <P>SOLUTION: A control unit 14 controls the charging and discharging amount of a battery according to a limiting value. That is, when a temperature detected by a temperature sensor 24, or a temperature Tbat reaches the predetermined temperature due to the temperature rise of the battery or a battery unit B0 to Bn, the control unit 14 causes the limiting value to change according to an elapsed time from the point in time when the temperature of the battery reaches the predetermined time. This enables the battery to sufficiently exercise the charging performance and discharging performance within the limiting temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二次電池(バッテリ)の充放電制御装置に関し、特に、車両に搭載される二次電池の充放電制御装置に関する。   The present invention relates to a charge / discharge control device for a secondary battery (battery), and more particularly to a charge / discharge control device for a secondary battery mounted on a vehicle.

近年、電気自動車、ハイブリッド自動車および燃料電池自動車等のように、車両推進用の駆動源としてモータを採用し、このモータを駆動する電力を蓄積する大容量の電池を搭載する自動車が登場している。   In recent years, vehicles such as electric vehicles, hybrid vehicles, and fuel cell vehicles that employ a motor as a driving source for vehicle propulsion and have a large-capacity battery that stores electric power for driving the motor have appeared. .

二次電池では放電や充電を継続させた場合に、発熱に伴う温度上昇が生じることが知られている。電池温度の上昇は電池の性能に影響を及ぼす要因となる。そのため電池の温度をパラメータとして用いて電池の充放電量を制御する方法が従来から用いられている。   In secondary batteries, it is known that when discharging or charging is continued, a temperature rise accompanying heat generation occurs. An increase in battery temperature is a factor that affects battery performance. Therefore, a method of controlling the charge / discharge amount of the battery using the battery temperature as a parameter has been conventionally used.

たとえば特開平11−224697号公報(特許文献1)では、電池の温度が使用上限温度を超えない範囲で電池の出力性能を最大限に利用することが可能な二次電池の制御装置が開示される。この制御装置は、電池の満充電時の出力パワーに対して、現在の放電度合を表わす放電深度を求める。そして、この制御装置は、算出された放電深度に基づいて、電池の出力パワーの制限を開始する温度を求める。ここで、出力制限開始温度よりも電池温度が大きい場合には、制御装置は電池温度に基づいて電池の出力制限値を求める。制御装置は出力制限値に基づいて電池の出力パワーを制限する。よって電池寿命を低下させることなく電池の出力性能を利用することができる。
特開平11−224697号公報 特開平11−187577号公報 特開平9−74605号公報 特開2005−20955号公報
For example, Japanese Patent Application Laid-Open No. 11-224697 (Patent Document 1) discloses a control device for a secondary battery that can make maximum use of the output performance of the battery within a range where the temperature of the battery does not exceed the upper limit temperature of use. The This control device obtains a discharge depth representing the current discharge degree with respect to the output power when the battery is fully charged. And this control apparatus calculates | requires the temperature which starts the restriction | limiting of the output power of a battery based on the calculated depth of discharge. Here, when the battery temperature is higher than the output limit start temperature, the control device obtains the output limit value of the battery based on the battery temperature. The control device limits the output power of the battery based on the output limit value. Therefore, the output performance of the battery can be used without reducing the battery life.
Japanese Patent Application Laid-Open No. 11-224697 JP-A-11-187777 JP-A-9-74605 JP 2005-20955 A

たとえば上述のようなハイブリッド自動車の場合、二次電池の温度が制限開始温度を超えたことに応じて制御装置が二次電池の充放電量を大きく制限したときには、車両推進用の駆動源の動作に影響が生じることが考えられる。想定例を具体的に示すと、たとえば車両を運転するユーザは自己の意図に応じた動力性能が得られないと感じる。このような問題を解決するには、温度上昇に対してできるだけ緩やかに制限値を減少させることが好ましい。   For example, in the case of the hybrid vehicle as described above, when the control device greatly limits the charge / discharge amount of the secondary battery in response to the temperature of the secondary battery exceeding the limit start temperature, the operation of the drive source for vehicle propulsion is performed. It may be possible to affect the Specifically, for example, a user who drives a vehicle feels that the power performance according to his / her intention cannot be obtained. In order to solve such a problem, it is preferable to reduce the limit value as gently as possible with respect to the temperature rise.

一方、二次電池の寿命を低下させる温度(以下「限界温度」と称する)を超えないように二次電池の温度制御を行なう必要がある。温度上昇に対してできるだけ緩やかに制限値を減少し、かつ、二次電池の温度が限界温度を超えないようにするためには、制限値の減少を開始するときの二次電池の温度を限界温度よりも十分低く設定する必要がある。   On the other hand, it is necessary to control the temperature of the secondary battery so as not to exceed a temperature that lowers the life of the secondary battery (hereinafter referred to as “limit temperature”). In order to decrease the limit value as slowly as possible with respect to the temperature rise, and to prevent the secondary battery temperature from exceeding the limit temperature, limit the temperature of the secondary battery when starting to decrease the limit value. It is necessary to set it sufficiently lower than the temperature.

しかしながら二次電池の温度が低い状態から充放電量の制限を開始すると、ある温度において二次電池に実際に入出力される電力が、二次電池の能力に対して大幅に低くなってしまうことが考えられる。このような問題を解決するための方法は、特開平11−224697号公報(特許文献1)には具体的に開示されていない。   However, when limiting the amount of charge / discharge when the secondary battery temperature is low, the power actually input / output to / from the secondary battery at a certain temperature will be significantly lower than the capacity of the secondary battery. Can be considered. A method for solving such a problem is not specifically disclosed in Japanese Patent Laid-Open No. 11-224697 (Patent Document 1).

本発明の目的は、二次電池の充電性能や放電性能を十分に引出しながらモータ等の機器を動作させることが可能な二次電池の充放電制御装置を提供することである。   The objective of this invention is providing the charging / discharging control apparatus of a secondary battery which can operate apparatuses, such as a motor, fully drawing out the charging performance and discharge performance of a secondary battery.

本発明は要約すれば、二次電池の充放電制御装置であって、温度検知部と、制御部とを備える。温度検知部は、二次電池の温度を検知する。制御部は、制限値に従って二次電池の充放電量を制御する。制御部は、温度検知部から送信される二次電池の検知温度が所定温度を超える場合には、検知温度が所定温度に達した時点からの経過時間に従って制限値を変化させる。   In summary, the present invention is a charge / discharge control device for a secondary battery, and includes a temperature detection unit and a control unit. The temperature detection unit detects the temperature of the secondary battery. The control unit controls the charge / discharge amount of the secondary battery according to the limit value. When the detection temperature of the secondary battery transmitted from the temperature detection unit exceeds a predetermined temperature, the control unit changes the limit value according to the elapsed time from the time when the detection temperature reaches the predetermined temperature.

好ましくは、制御部は、経過時間に対して制限値が単調に減少する関数を用いて、制限値を変化させる。   Preferably, the control unit changes the limit value using a function in which the limit value monotonously decreases with respect to the elapsed time.

より好ましくは、制御部は、検知温度が、所定温度よりも低い復帰温度に達したことを検知した場合には、検知温度が復帰温度に達した時点からの経過時間に従って、制限値を増加させる。   More preferably, when the control unit detects that the detected temperature has reached the return temperature lower than the predetermined temperature, the control unit increases the limit value according to the elapsed time from the time when the detected temperature reaches the return temperature. .

好ましくは、制御部は、二次電池の温度と制限値とが対応付けられた関数を用いて、所定の期間ごとに、検知温度に対応する制限値を仮決定する。制御部は、仮決定した制限値である第1の制限値と、現在の制限値である第2の制限値との差の絶対値を求める。制御部は、差の絶対値が所定値以下の場合には、第1の制限値をそのまま用いて第2の制限値を更新する。制御部は、差の絶対値が所定値を上回る場合には、所定値を用いて第1の制限値を補正して、補正後の第1の制限値を用いて第2の制限値を更新する。   Preferably, the control unit temporarily determines a limit value corresponding to the detected temperature for each predetermined period using a function in which the temperature of the secondary battery is associated with the limit value. The control unit obtains an absolute value of a difference between the first limit value that is the temporarily determined limit value and the second limit value that is the current limit value. When the absolute value of the difference is equal to or less than the predetermined value, the control unit updates the second limit value using the first limit value as it is. When the absolute value of the difference exceeds the predetermined value, the control unit corrects the first limit value using the predetermined value, and updates the second limit value using the corrected first limit value. To do.

好ましくは、上述のいずれかの二次電池は、車両を駆動する駆動源に電力を供給する。   Preferably, any of the above-described secondary batteries supplies power to a drive source that drives the vehicle.

本発明によれば、二次電池の充電性能や放電性能を十分に引出しながらモータ等の機器を動作させることが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to operate apparatuses, such as a motor, fully drawing out the charging performance and discharge performance of a secondary battery.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

[実施の形態1]
図1は、実施の形態1に従う二次電池の充放電制御装置の適用例を示す図である。
[Embodiment 1]
FIG. 1 is a diagram showing an application example of a charge / discharge control device for a secondary battery according to the first embodiment.

図1を参照して、実施の形態1に従う二次電池の充放電制御装置は、たとえばハイブリッド自動車に搭載される。   Referring to FIG. 1, the secondary battery charge / discharge control device according to the first embodiment is mounted, for example, in a hybrid vehicle.

ハイブリッド自動車1は、前輪20R,20Lと、後輪22R,22Lと、エンジン2と、プラネタリギヤ16と、デファレンシャルギヤ18と、ギヤ4,6とを含む。   The hybrid vehicle 1 includes front wheels 20R, 20L, rear wheels 22R, 22L, an engine 2, a planetary gear 16, a differential gear 18, and gears 4, 6.

ハイブリッド自動車1は、さらに、車両後方に配置されるバッテリ12と、バッテリ12の出力する直流電力を昇圧する昇圧ユニット32と、昇圧ユニット32との間で直流電力を授受するインバータ36と、プラネタリギヤ16を介してエンジン2の動力を受けて発電を行なうモータジェネレータMG1と、回転軸がプラネタリギヤ16に接続されるモータジェネレータMG2とを含む。インバータ36はモータジェネレータMG1,MG2に接続され交流電力と昇圧回路からの直流電力との変換を行なう。   The hybrid vehicle 1 further includes a battery 12 disposed behind the vehicle, a booster unit 32 that boosts the DC power output from the battery 12, an inverter 36 that transfers DC power between the booster unit 32, and the planetary gear 16. Includes a motor generator MG1 that receives power from the engine 2 to generate power and a motor generator MG2 whose rotating shaft is connected to the planetary gear 16. Inverter 36 is connected to motor generators MG1 and MG2, and converts AC power and DC power from the booster circuit.

プラネタリギヤ16は第1〜第3の回転軸を有する。第1の回転軸はエンジン2に接続され第2の回転軸はモータジェネレータMG1に接続され第3の回転軸はモータジェネレータMG2に接続される。   Planetary gear 16 has first to third rotation shafts. The first rotation shaft is connected to engine 2, the second rotation shaft is connected to motor generator MG1, and the third rotation shaft is connected to motor generator MG2.

この第3の回転軸にはギヤ4が取付けられ、このギヤ4はギヤ6を駆動することによりデファレンシャルギヤ18に動力を伝達する。デファレンシャルギヤ18はギヤ6から受ける動力を前輪20R,20Lに伝達するとともに、前輪20R,20Lの回転力を、ギヤ6,4を介してプラネタリギヤの第3の回転軸に伝達する。   A gear 4 is attached to the third rotating shaft, and the gear 4 drives the gear 6 to transmit power to the differential gear 18. The differential gear 18 transmits the power received from the gear 6 to the front wheels 20R, 20L, and transmits the rotational force of the front wheels 20R, 20L to the third rotating shaft of the planetary gear via the gears 6, 4.

プラネタリギヤ16はエンジン2,モータジェネレータMG1,MG2の間で動力を分割する役割を果たす。すなわちプラネタリギヤ16の3つの回転軸のうちの2つの回転軸の回転が定まれば残る1つの回転軸の回転は自ずと定められる。したがって、エンジン2を最も効率のよい領域で動作させつつ、モータジェネレータMG1の発電量を制御してモータジェネレータMG2を駆動させることにより車速の制御を行ない、全体としてエネルギ効率のよい自動車を実現している。   Planetary gear 16 serves to divide the power between engine 2 and motor generators MG1, MG2. That is, if the rotation of two of the three rotation shafts of the planetary gear 16 is determined, the rotation of the remaining one rotation shaft is naturally determined. Accordingly, the vehicle speed is controlled by controlling the power generation amount of the motor generator MG1 and driving the motor generator MG2 while operating the engine 2 in the most efficient region, thereby realizing an overall energy efficient vehicle. Yes.

直流電源であるバッテリ12は、直流電力を昇圧ユニット32に供給するとともに、昇圧ユニット32からの直流電力によって充電される。バッテリ12は具体的にはリチウムイオン電池であるが、ニッケル水素電池であってもよい。   The battery 12, which is a DC power supply, supplies DC power to the boost unit 32 and is charged with DC power from the boost unit 32. The battery 12 is specifically a lithium ion battery, but may be a nickel metal hydride battery.

昇圧ユニット32はバッテリ12から受ける直流電圧を昇圧し、その昇圧された直流電圧をインバータ36に供給する。インバータ36は供給された直流電圧を交流電圧に変換してエンジン始動時にはモータジェネレータMG1を駆動制御する。また、エンジン始動後にはモータジェネレータMG1が発電した交流電力はインバータ36によって直流に変換されて昇圧ユニット32によってバッテリ12の充電に適切な電圧に変換されバッテリ12が充電される。   Boost unit 32 boosts the DC voltage received from battery 12 and supplies the boosted DC voltage to inverter 36. Inverter 36 converts the supplied DC voltage into AC voltage, and drives and controls motor generator MG1 when the engine is started. Further, after the engine is started, AC power generated by motor generator MG1 is converted to DC by inverter 36 and converted to a voltage suitable for charging battery 12 by boosting unit 32, and battery 12 is charged.

また、インバータ36はモータジェネレータMG2を駆動する。モータジェネレータMG2はエンジン2を補助して前輪20R,20Lを駆動する。制動時には、モータジェネレータは回生運転を行ない、車輪の回転エネルギを電気エネルギに変換する。得られた電気エネルギは、インバータ36および昇圧ユニット32を経由してバッテリ12に戻される。   Inverter 36 drives motor generator MG2. Motor generator MG2 assists engine 2 to drive front wheels 20R and 20L. During braking, the motor generator performs a regenerative operation and converts the rotational energy of the wheels into electric energy. The obtained electric energy is returned to the battery 12 via the inverter 36 and the booster unit 32.

昇圧ユニット32とバッテリ12との間にはシステムメインリレー28,30が設けられ車両非運転時には高電圧が遮断される。   System main relays 28 and 30 are provided between the booster unit 32 and the battery 12, and the high voltage is cut off when the vehicle is not in operation.

バッテリ12は、ハイブリッド自動車1を駆動する駆動源(モータジェネレータMG1,MG2)に電力を供給する組電池である。バッテリ12は、直列に接続された複数の電池ユニットB0〜Bnを含む。   Battery 12 is an assembled battery that supplies power to drive sources (motor generators MG1, MG2) that drive hybrid vehicle 1. The battery 12 includes a plurality of battery units B0 to Bn connected in series.

ハイブリッド自動車1は、さらに、バッテリ12に取付けられる温度センサ24と、電圧センサ26と、温度センサ24および電圧センサ26の出力に応じてエンジン2、インバータ36および昇圧ユニット32を制御する制御部14とを含む。温度センサ24は、バッテリ12の温度Tbatを検知して制御部14に送信する。電圧センサ26は、電池ユニットB0〜Bnのそれぞれの端子間電圧V0〜Vnを検知して制御部14に送信する。また、制御部14は温度センサ24の検知温度(温度Tbat)に基づいてバッテリ12の冷却が必要と判断した場合にはファン27を動作させる。   The hybrid vehicle 1 further includes a temperature sensor 24 attached to the battery 12, a voltage sensor 26, and a control unit 14 that controls the engine 2, the inverter 36, and the boosting unit 32 according to the outputs of the temperature sensor 24 and the voltage sensor 26. including. The temperature sensor 24 detects the temperature Tbat of the battery 12 and transmits it to the control unit 14. The voltage sensor 26 detects the terminal voltages V0 to Vn of the battery units B0 to Bn and transmits them to the control unit 14. Further, the control unit 14 operates the fan 27 when it is determined that the battery 12 needs to be cooled based on the temperature detected by the temperature sensor 24 (temperature Tbat).

制御部14は、制限値に従ってバッテリ12の充放電量を制御する。より詳しく説明すると、制御部14は、温度センサ24の検知温度(温度Tbat)が所定温度を超える場合には、検知温度がその所定温度に達した時点からの経過時間に従って制限値を変化させる。これによりバッテリ12は、限界温度に達することなく十分に充電性能や放電性能を発揮することができる。つまり、バッテリ12の温度が所定温度を超えても、従来よりも多くの電力をバッテリ12に戻したり、従来よりも多くの電力をバッテリ12から取出したりできる。たとえばモータジェネレータの回生運転時には、より多くのエネルギをバッテリ12に戻すことが可能になる。また、ユーザが車両を運転する際には、バッテリからより多くのエネルギを取出すことができるので、車両の挙動への影響をできるだけ小さくすることができる。   The control unit 14 controls the charge / discharge amount of the battery 12 according to the limit value. More specifically, when the detected temperature (temperature Tbat) of the temperature sensor 24 exceeds a predetermined temperature, the control unit 14 changes the limit value according to the elapsed time from when the detected temperature reaches the predetermined temperature. Thereby, the battery 12 can fully exhibit the charging performance and the discharging performance without reaching the limit temperature. That is, even when the temperature of the battery 12 exceeds the predetermined temperature, more power than in the past can be returned to the battery 12, or more power than in the past can be taken out from the battery 12. For example, more energy can be returned to the battery 12 during regenerative operation of the motor generator. Further, when the user drives the vehicle, more energy can be extracted from the battery, so that the influence on the behavior of the vehicle can be minimized.

図2は、図1の制御部14の構成を説明する図である。
図2を参照して、制御部14は、処理部41と、記憶部42と、カウンタ43とを含む。処理部41は制御部14の主要部分であり、温度Tbatに基づいてバッテリ12の充放電量の制限値を決定する。カウンタ43は一定時間ごと(たとえば1秒ごと)にカウント値を増加させたり減少させたりする。記憶部42は、カウント値と制限値との関係を示す関数を記憶する。なお処理部41、記憶部42、およびカウンタ43はハードウェア的に実現されてもよいし、制御部14上で実行されるソフトウェアによって実現されてもよい。
FIG. 2 is a diagram illustrating the configuration of the control unit 14 of FIG.
Referring to FIG. 2, control unit 14 includes a processing unit 41, a storage unit 42, and a counter 43. The processing unit 41 is a main part of the control unit 14 and determines a limit value for the charge / discharge amount of the battery 12 based on the temperature Tbat. The counter 43 increases or decreases the count value at regular time intervals (for example, every second). The storage unit 42 stores a function indicating the relationship between the count value and the limit value. Note that the processing unit 41, the storage unit 42, and the counter 43 may be realized by hardware, or may be realized by software executed on the control unit 14.

処理部41は、温度Tbatが所定温度(以下では温度T0と示す)に達したことを検知するとカウンタ43の動作を開始させる。カウンタ43はたとえば1秒間隔でカウント値を0から増加させる。処理部41はカウンタ43から所定のタイミング(たとえば1秒間隔)でカウント値を取得する。処理部41はカウント値と記憶部42に記憶される関数f(x)とを用いて制限値を決定する。   When the processing unit 41 detects that the temperature Tbat has reached a predetermined temperature (hereinafter referred to as temperature T0), the processing unit 41 starts the operation of the counter 43. The counter 43 increases the count value from 0 at intervals of 1 second, for example. The processing unit 41 acquires a count value from the counter 43 at a predetermined timing (for example, at intervals of 1 second). The processing unit 41 determines a limit value using the count value and the function f (x) stored in the storage unit 42.

この関数f(x)によれば、温度Tbatが温度T0に達してからの経過時間に対して充放電量の制限値が変化する。また、関数f(x)は、経過時間に対して充放電量の制限値が単調に減少するのであれば、様々な関数が適用可能である。以下の例では、関数f(x)は経過時間に対して制限値の変化量を比例させるものとする。   According to this function f (x), the limit value of the charge / discharge amount changes with respect to the elapsed time after the temperature Tbat reaches the temperature T0. As the function f (x), various functions can be applied as long as the limit value of the charge / discharge amount monotonously decreases with respect to the elapsed time. In the following example, it is assumed that the function f (x) makes the change amount of the limit value proportional to the elapsed time.

図3は、図1の制御部14によるバッテリ12の充放電量の制御を説明する図である。
図3を参照して、バッテリの充電や放電が行なわれることでバッテリ12の温度Tbatが温度TAから上昇する。温度Tbatが温度T0に達するまでは、充電量の制限値Win、および放電量の制限値Woutは制限値WAのまま一定である。
FIG. 3 is a diagram illustrating control of the charge / discharge amount of the battery 12 by the control unit 14 of FIG.
Referring to FIG. 3, the temperature Tbat of the battery 12 rises from the temperature TA by charging or discharging the battery. Until the temperature Tbat reaches the temperature T0, the limit value Win of the charge amount and the limit value Wout of the discharge amount remain constant at the limit value WA.

時刻t0において温度Tbatが温度T0に達すると、制御部14は制限値Win,Woutを減少させるとともに図1のファン27を動作させる。上述のように制限値の減少量は時刻t0からの経過時間に比例する。温度Tbatは温度Tmaxまで一旦上昇するが、その後は下降する。温度Tmaxは図1のバッテリ12の限界温度である温度Tlimよりも低い温度である。   When the temperature Tbat reaches the temperature T0 at time t0, the control unit 14 decreases the limit values Win and Wout and operates the fan 27 of FIG. As described above, the reduction amount of the limit value is proportional to the elapsed time from time t0. The temperature Tbat once rises to the temperature Tmax, but then falls. The temperature Tmax is lower than the temperature Tlim, which is the limit temperature of the battery 12 in FIG.

温度Tbatが温度T0から温度Tmaxまで上昇した後に再び温度T0に戻るまで、制御部14は制限値(制限値Win,Wout)を減少させる。時刻t1において温度Tbatが温度T0に達すると、制御部14は時刻t1における制限値WBを用いてバッテリの充放電量を制御する。時刻t1以後、制御部14が用いる制限値は制限値WBのまま一定であるが温度Tbatはさらに下降する。   The controller 14 decreases the limit values (limit values Win and Wout) until the temperature Tbat rises from the temperature T0 to the temperature Tmax and then returns to the temperature T0 again. When temperature Tbat reaches temperature T0 at time t1, control unit 14 controls the charge / discharge amount of the battery using limit value WB at time t1. After time t1, the limit value used by control unit 14 remains constant at limit value WB, but temperature Tbat further decreases.

時刻t2において処理部41は、温度Tbatが温度T0よりも低い温度T1(復帰温度)に達したことを検知する。制御部14は時刻t2からの経過時間に応じて、制限値WBから制限値を増加させる。なお、制限値の増加量は時刻t2からの経過時間に比例する。制限値が制限値WAに達すると、以後、制御部14は制限値WAを用いてバッテリの充放電量を制御する。以後の動作は、上述の時刻t0〜t2の動作と同様である。   At time t2, the processing unit 41 detects that the temperature Tbat has reached a temperature T1 (recovery temperature) lower than the temperature T0. The control unit 14 increases the limit value from the limit value WB according to the elapsed time from the time t2. The increase amount of the limit value is proportional to the elapsed time from time t2. When the limit value reaches the limit value WA, the control unit 14 thereafter controls the charge / discharge amount of the battery using the limit value WA. The subsequent operation is the same as the operation at the above-described times t0 to t2.

時刻t0から時刻t1までの期間は、たとえば数秒から数十秒の間で適切に定められる。またこの期間では図1の制御部14は、たとえばエンジン2の出力とモータの出力との割合を次第に変化させることで車両挙動への影響を小さくさせる。   The period from time t0 to time t1 is appropriately determined, for example, from several seconds to several tens of seconds. Further, during this period, the control unit 14 of FIG. 1 reduces the influence on the vehicle behavior by gradually changing the ratio of the output of the engine 2 and the output of the motor, for example.

図4は、図2の制御部14が行なう制限値の設定を説明するためのフローチャートである。   FIG. 4 is a flowchart for explaining setting of limit values performed by the control unit 14 of FIG.

図4および図2を参照して、処理が開始されると、まずステップS1において処理部41は温度Tbatが温度T0より大きいか否かを判定する。ステップS1において温度Tbatが温度T0よりも大きい場合(ステップS1においてYES)、処理はステップS2に進む。一方、温度Tbatが温度T0以下である場合(ステップS1においてNO)、処理は後述するステップS5に進む。   4 and 2, when the process is started, first, in step S1, processing unit 41 determines whether or not temperature Tbat is higher than temperature T0. If temperature Tbat is higher than temperature T0 in step S1 (YES in step S1), the process proceeds to step S2. On the other hand, when temperature Tbat is equal to or lower than temperature T0 (NO in step S1), the process proceeds to step S5 described later.

ステップS2において、処理部41はカウンタ43から取得したカウント値Cが設定値αより大きいか否かを判定する。カウント値Cが設定値αよりも大きい場合(ステップS2においてYES)、処理はステップS3に進む。一方、カウント値Cが設定値α以下である場合(ステップS2においてNO)、処理は再びステップS1に戻る。   In step S <b> 2, the processing unit 41 determines whether the count value C acquired from the counter 43 is greater than the set value α. If count value C is larger than set value α (YES in step S2), the process proceeds to step S3. On the other hand, when count value C is equal to or smaller than set value α (NO in step S2), the process returns to step S1 again.

ステップS3において、処理部41は記憶部42に記憶される関数f(x)を用いて制限値Win,Woutを決定する。基準時刻(この場合は図3の時刻t0)からの経過時間に比例して関数f(x)の値は減少する。処理部41は変数xにカウント値Cを代入して得られる値f(C)を制限値Win,Woutに設定する。   In step S <b> 3, the processing unit 41 determines the limit values Win and Wout using the function f (x) stored in the storage unit 42. The value of the function f (x) decreases in proportion to the elapsed time from the reference time (in this case, time t0 in FIG. 3). The processing unit 41 sets the value f (C) obtained by substituting the count value C into the variable x as the limit values Win and Wout.

続いてステップS4において、カウンタ43はカウント値Cを増加させる。ステップS4の処理が終了すると、処理は再びステップS1に戻る。   Subsequently, in step S4, the counter 43 increases the count value C. When the process of step S4 ends, the process returns to step S1 again.

続いてステップS5以降の処理を説明する。ステップS5において処理部41は温度Tbatが温度T1より小さいか否かを判定する。ステップS5において温度Tbatが温度T1よりも小さい場合(ステップS5においてYES)、処理はステップS6に進む。一方、ステップS5において温度Tbatが温度T1以上である場合(ステップS5においてNO)、処理は再びステップS1に戻る。   Then, the process after step S5 is demonstrated. In step S5, the processing unit 41 determines whether or not the temperature Tbat is lower than the temperature T1. If temperature Tbat is lower than temperature T1 in step S5 (YES in step S5), the process proceeds to step S6. On the other hand, when temperature Tbat is equal to or higher than temperature T1 in step S5 (NO in step S5), the process returns to step S1 again.

ステップS6において、処理部41はカウンタ43から取得したカウント値Cが0より大きいか否かを判定する。ステップS6においてカウント値Cが0よりも大きい場合(ステップS6においてYES)、処理はステップS7に進む。一方、カウント値Cが0以下である場合(ステップS6においてNO)、処理は再びステップS1に戻る。   In step S <b> 6, the processing unit 41 determines whether the count value C acquired from the counter 43 is greater than zero. If count value C is greater than 0 in step S6 (YES in step S6), the process proceeds to step S7. On the other hand, when count value C is 0 or less (NO in step S6), the process returns to step S1 again.

ステップS7において、制御部14はステップS3と同様にカウント値Cを関数f(x)の変数xに代入して制限値Win、Woutを決定する。続いてステップS8において、カウンタ43はカウント値Cを減少させる。ステップS8の処理が終了すると、処理は再びステップS1に戻る。   In step S7, the control unit 14 determines the limit values Win and Wout by substituting the count value C into the variable x of the function f (x) as in step S3. Subsequently, in step S8, the counter 43 decreases the count value C. When the process of step S8 ends, the process returns to step S1 again.

つまり図2の制御部14はステップS2〜S4の処理を行なうことで制限値Win,Woutを図3の時刻t0からの経過時間に比例して減少させ、ステップS6〜S8の処理を行なうことで制限値Win,Woutを図3の時刻t2からの経過時間に比例して増加させる。   That is, the control unit 14 in FIG. 2 decreases the limit values Win and Wout in proportion to the elapsed time from the time t0 in FIG. 3 by performing the processes in steps S2 to S4, and performs the processes in steps S6 to S8. The limit values Win and Wout are increased in proportion to the elapsed time from time t2 in FIG.

続いて、バッテリの温度のみに従ってバッテリの充放電量を制御する方法と、実施の形態1の制御方法との相違点を説明する。前者の場合には図1の制御部14は、たとえば以下に図示するマップを用いて制限値を変化させる。   Next, differences between the method for controlling the charge / discharge amount of the battery according to only the temperature of the battery and the control method of the first embodiment will be described. In the former case, the control unit 14 in FIG. 1 changes the limit value using, for example, a map shown below.

図5は、バッテリの温度のみに従ってバッテリの充放電量を制御する方法に用いられるマップの例を示す図である。   FIG. 5 is a diagram showing an example of a map used in a method for controlling the charge / discharge amount of a battery according to only the temperature of the battery.

図5を参照して、制限値Winは温度Taを超えると、温度Tbatの上昇に伴って減少する。また、制限値Woutは温度Tbを超えると、温度Tbatの上昇に伴って減少する。温度上昇に対してできるだけ緩やかに制限値を変化させることで車両の挙動への影響を小さくすることができる。よって、温度Ta,Tbはバッテリの寿命を低下させる限界温度よりも十分低い温度に設定される。また、温度Ta,TbについてはTa<Tbとなるように設定される。この理由は、一般的に充電時のほうが放電時よりも温度が大きく上昇しやすいためである。   Referring to FIG. 5, when limit value Win exceeds temperature Ta, it decreases as temperature Tbat increases. Further, when the limit value Wout exceeds the temperature Tb, the limit value Wout decreases as the temperature Tbat increases. By changing the limit value as gently as possible with respect to the temperature rise, the influence on the behavior of the vehicle can be reduced. Therefore, the temperatures Ta and Tb are set to temperatures sufficiently lower than the limit temperature that decreases the life of the battery. The temperatures Ta and Tb are set so that Ta <Tb. This is because the temperature generally tends to increase greatly during charging than during discharging.

以下では、放電時の制限値Winの変化を例に説明する。マップ上の点P1〜P3は温度Tbatの上昇が止まったときのバッテリの温度(すなわち図3の温度Tmax)に対するマップ上の制限値Winを示す。   Hereinafter, a change in the limit value Win during discharge will be described as an example. Points P1 to P3 on the map indicate the limit value Win on the map with respect to the battery temperature (that is, the temperature Tmax in FIG. 3) when the increase in the temperature Tbat stops.

このマップに従って制限値Winを変化させた場合、限界温度に比べてかなり低い温度Taから制限値Winの減少が開始する。またバッテリの温度上昇の速度(単位時間あたりのバッテリの発熱量)が異なると、制限値の変化速度が異なる。これらの理由により、点P1〜P3に示すように、バッテリの温度上昇の速度(単位時間あたりのバッテリの発熱量)が異なると温度Tmaxおよび制限値Winにばらつきが生じることが考えられる。   When the limit value Win is changed according to this map, the decrease of the limit value Win starts from a temperature Ta that is considerably lower than the limit temperature. Further, when the rate of battery temperature rise (the amount of heat generated by the battery per unit time) is different, the rate of change of the limit value is different. For these reasons, as indicated by points P1 to P3, it is considered that the temperature Tmax and the limit value Win vary when the rate of temperature rise of the battery (the amount of heat generated by the battery per unit time) is different.

図6は、図1の制御部14が行なうバッテリ12の充放電制御をより詳細に説明する図である。   FIG. 6 is a diagram for explaining the charge / discharge control of the battery 12 performed by the control unit 14 of FIG. 1 in more detail.

図6を参照して、図1の制御部14は温度上昇の速度によらず温度Tbatが温度T0に達した時点からの経過時間に比例して制限値を制限値WAから減少させる。これによって、温度上昇の速度によらず温度上昇が止まるときの温度Tmaxのばらつきを少なくすることができる。   Referring to FIG. 6, control unit 14 in FIG. 1 decreases the limit value from limit value WA in proportion to the elapsed time from when temperature Tbat reaches temperature T0 regardless of the rate of temperature increase. As a result, it is possible to reduce variations in the temperature Tmax when the temperature increase stops regardless of the temperature increase rate.

よって、実施の形態1によれば限界温度(図3の温度Tlim)と温度上昇が止まったときの電池の温度Tmaxとの差を小さくすることができる。つまり、実施の形態1によれば、バッテリからできるだけ多くのエネルギを取出したり、バッテリにできるだけ多くのエネルギを与えたりしながらバッテリの温度を精度よく管理できる。   Therefore, according to Embodiment 1, the difference between the limit temperature (temperature Tlim in FIG. 3) and the battery temperature Tmax when the temperature increase stops can be reduced. That is, according to the first embodiment, it is possible to accurately manage the temperature of the battery while taking out as much energy as possible from the battery or giving as much energy as possible to the battery.

以上のように実施の形態1によれば、二次電池の温度が所定温度に達してからの経過時間に従って制御部は制限値を変化させるので、二次電池の充電性能や放電性能を十分に引出しながら、モータ等の機器を動作させることができる。   As described above, according to the first embodiment, since the control unit changes the limit value according to the elapsed time after the temperature of the secondary battery reaches the predetermined temperature, the charging performance and the discharging performance of the secondary battery are sufficiently improved. A device such as a motor can be operated while being pulled out.

[実施の形態2]
実施の形態2に従う二次電池の充放電制御装置を含むハイブリッド自動車の構成は図1に示すハイブリッド自動車1の構成と同様である。また、この充放電制御装置に含まれる制御部の構成は図2に示す制御部14の構成と同様である。よって、実施の形態2に従う二次電池の充放電制御装置の構成に関する以後の説明は繰り返さない。
[Embodiment 2]
The configuration of the hybrid vehicle including the secondary battery charge / discharge control device according to the second embodiment is the same as the configuration of hybrid vehicle 1 shown in FIG. Moreover, the structure of the control part contained in this charging / discharging control apparatus is the same as that of the control part 14 shown in FIG. Therefore, the following description regarding the configuration of the secondary battery charge / discharge control device according to the second embodiment will not be repeated.

実施の形態2では図1の制御部14が行なう制限値の設定処理が実施の形態1と異なる。よって、以下では制御部14の処理について説明する。   In the second embodiment, the limit value setting process performed by the control unit 14 of FIG. 1 is different from that of the first embodiment. Therefore, the process of the control unit 14 will be described below.

図7は、実施の形態2に従う二次電池の充放電制御装置が行なう制限値の設定を説明するためのフローチャートである。   FIG. 7 is a flowchart for illustrating setting of limit values performed by the charge / discharge control device for a secondary battery according to the second embodiment.

図7および図2を参照して、処理が開始されると、ステップS11では処理部41は記憶部42を参照して、記憶部42に記憶される「制限中フラグ」がオンになっているか否かを判定する。   Referring to FIGS. 7 and 2, when the process is started, in step S <b> 11, processing unit 41 refers to storage unit 42, and whether the “restricting flag” stored in storage unit 42 is turned on. Determine whether or not.

たとえば制限中フラグは「0」,「1」のいずれかの値を有する。以下では制限中フラグが「0」,「1」のそれぞれの場合、制限中フラグが「オフ」、「オン」であるとする。制限中フラグがオン状態であるとはバッテリの充放電量の制御が行なわれている状態を意味する。つまり、制限中フラグが「オン」である状態とは、図1の温度センサ24による検知温度(温度Tbat)が所定温度(温度T0)以上である状態を意味する。   For example, the restricting flag has a value of “0” or “1”. In the following, it is assumed that the restricting flag is “off” and “on” when the restricting flag is “0” and “1”, respectively. The on-limit flag being in an on state means a state in which the charge / discharge amount of the battery is being controlled. That is, the state where the restricting flag is “ON” means a state in which the temperature detected by the temperature sensor 24 in FIG. 1 (temperature Tbat) is equal to or higher than a predetermined temperature (temperature T0).

ステップS11において制限中フラグがオンのとき(ステップS11においてYES)、処理はステップS12に進む。一方、制限中フラグがオフのとき(ステップS11においてNO)、処理は後述するステップS18に進む。   When the restricting flag is on in step S11 (YES in step S11), the process proceeds to step S12. On the other hand, when the restricting flag is off (NO in step S11), the process proceeds to step S18 described later.

ステップS12において、処理部41は図1の温度センサ24から温度Tbatの値を取得する。記憶部42には温度Tbatと制限値Win,Woutとが対応付けられたマップが記憶される。処理部41はマップを参照して、温度Tbatに対応付けられる制限値Win,Woutを取得する。処理部41は取得した制限値Win,Woutを内部(記憶領域)で一時的に格納する。処理部41の内部で一時的に格納される制限値Win,Woutは、処理部41が温度Tbatから仮決定した制限値(第1の制限値)である。   In step S12, the processing unit 41 acquires the value of the temperature Tbat from the temperature sensor 24 of FIG. The storage unit 42 stores a map in which the temperature Tbat and the limit values Win and Wout are associated with each other. The processing unit 41 refers to the map and acquires the limit values Win and Wout associated with the temperature Tbat. The processing unit 41 temporarily stores the acquired limit values Win and Wout internally (storage area). The limit values Win and Wout temporarily stored in the processing unit 41 are limit values (first limit values) temporarily determined by the processing unit 41 from the temperature Tbat.

図8は、ステップS12での処理に用いられるマップを説明するための図である。
図8を参照して、制限値Win,Woutは温度T0以下では一定の値である。温度Tbatが温度T0から温度Tlimの間では、制限値Win,Woutは温度Tbatの上昇に伴って減少する。
FIG. 8 is a diagram for explaining a map used for the processing in step S12.
Referring to FIG. 8, limit values Win and Wout are constant values at temperature T0 or lower. When the temperature Tbat is between the temperature T0 and the temperature Tlim, the limit values Win and Wout decrease as the temperature Tbat increases.

再び図7および図2を参照しながらステップS12以後の処理について説明する。
ステップS13において処理部41は仮決定した制限値Win,Woutと、バッテリの充放電量の制御に現在用いている制限値(第2の制限値)Win,Woutとのそれぞれの差の絶対値が所定値以下であるか否かを判定する。この差の絶対値が所定値以下の場合(ステップS13においてYES)、ステップS14において、処理部41は仮決定した制限値を現在の制限値Win,Woutに直接代入する。つまりステップS14の処理では、処理部41は仮決定した制限値をそのまま用いて現在の制限値Win,Woutを更新する。
The processes after step S12 will be described with reference to FIGS. 7 and 2 again.
In step S13, the processing unit 41 determines the absolute value of the difference between the temporarily determined limit values Win and Wout and the limit values (second limit values) Win and Wout currently used for controlling the charge / discharge amount of the battery. It is determined whether it is below a predetermined value. When the absolute value of this difference is equal to or smaller than the predetermined value (YES in step S13), in step S14, the processing unit 41 directly substitutes the temporarily determined limit values into the current limit values Win and Wout. That is, in the process of step S14, the processing unit 41 updates the current limit values Win and Wout using the temporarily determined limit values as they are.

一方、仮決定した制限値と現在の制御に用いる制限値との差の絶対値が所定値を上回る場合(ステップS13においてNO)、ステップS15において処理部41は、その所定値を用いて仮決定した制限値を補正する。たとえば、処理部41はマップから取得した制限値に、所定値を加算したり減算したりする。そして処理部41は補正後の制限値を用いて、現在の制限値Win,Woutを更新する。   On the other hand, when the absolute value of the difference between the temporarily determined limit value and the limit value used for the current control exceeds a predetermined value (NO in step S13), in step S15, processing unit 41 temporarily determines using the predetermined value. Correct the limit value. For example, the processing unit 41 adds or subtracts a predetermined value to the limit value acquired from the map. Then, the processing unit 41 updates the current limit values Win and Wout using the corrected limit values.

ステップS14またはステップS15の処理が終了すると、処理はステップS16に進む。ステップS16において、処理部41は図1の温度センサ24からバッテリの温度Tbatの値を取得する。処理部41は温度Tbatが温度T0より低いか否かを判定する。   When the process of step S14 or step S15 ends, the process proceeds to step S16. In step S16, the processing unit 41 acquires the value of the battery temperature Tbat from the temperature sensor 24 of FIG. The processing unit 41 determines whether or not the temperature Tbat is lower than the temperature T0.

温度Tbatが温度T0より低い場合(ステップS16においてYES)、バッテリの充放電時の制限値は一定値である。よって、この場合にはステップS17において処理部41は記憶部42に記憶される制限中フラグをオフにする。ステップS17の処理が終了すると、処理は再びステップS11に戻る。温度Tbatが温度T0以上の場合(ステップS16においてYES)にも、処理は再びステップS11に戻る。   When temperature Tbat is lower than temperature T0 (YES in step S16), the limit value during charging / discharging of the battery is a constant value. Therefore, in this case, the processing unit 41 turns off the restricting flag stored in the storage unit 42 in step S17. When the process of step S17 ends, the process returns to step S11 again. Even when temperature Tbat is equal to or higher than temperature T0 (YES in step S16), the process returns to step S11 again.

続いてステップS18以降の処理について説明する。ステップS18において、処理部41は図1の温度センサ24からバッテリの温度Tbatの値を取得する。処理部41は温度Tbatが温度T0より高いか否かを判定する。   Next, the processing after step S18 will be described. In step S18, the processing unit 41 acquires the value of the battery temperature Tbat from the temperature sensor 24 of FIG. The processing unit 41 determines whether or not the temperature Tbat is higher than the temperature T0.

バッテリの温度上昇が生じると、温度Tbatが温度T0より高くなる。この場合(ステップS18においてYES)、ステップS19において処理部41は記憶部42に記憶される「制限中フラグ」を「オフ」から「オン」に切換える。ステップS19の処理が終了すると、処理は再びステップS11に戻る。以後、処理部41は、上述のステップS12〜S17の処理を実行する。   When the battery temperature rises, the temperature Tbat becomes higher than the temperature T0. In this case (YES in step S18), in step S19, the processing unit 41 switches the “restricting flag” stored in the storage unit 42 from “off” to “on”. When the process of step S19 ends, the process returns to step S11 again. Thereafter, the processing unit 41 executes the processes of steps S12 to S17 described above.

一方、温度Tbatが温度T0以下の場合(ステップS18においてNO)、処理はステップS20に進む。ステップS20において、処理部41は記憶部42に記憶されるマップ(図8のマップ)を参照する。Tbat≦T0であるので、制限値Win,Woutは温度変化に対して一定の値となる。処理部41はマップから取得した制限値を、現在の制限値として直接代入して、この値をバッテリの充放電量の制御に用いる。ステップS20での処理が終了すると、処理は再びステップS11に戻る。   On the other hand, when temperature Tbat is equal to or lower than temperature T0 (NO in step S18), the process proceeds to step S20. In step S20, the processing unit 41 refers to a map (map in FIG. 8) stored in the storage unit. Since Tbat ≦ T0, the limit values Win and Wout are constant values with respect to temperature changes. The processing unit 41 directly substitutes the limit value acquired from the map as the current limit value, and uses this value for controlling the charge / discharge amount of the battery. When the process in step S20 ends, the process returns to step S11 again.

図7のフローチャートで示す処理は、所定の期間ごと(たとえば数秒間隔)で繰り返し行なわれるのでステップS12に示す処理は所定の期間ごとに行なわれる。つまり処理部41は、所定の期間ごとにマップを参照して、温度Tbatに対する制限値Win,Woutを仮決定する。   Since the process shown in the flowchart of FIG. 7 is repeatedly performed at predetermined intervals (for example, at intervals of several seconds), the process shown at step S12 is performed at predetermined intervals. That is, the processing unit 41 temporarily determines the limit values Win and Wout for the temperature Tbat with reference to the map for each predetermined period.

なお、図7のフローチャートでは充電時の制御値と放電時の制御値とが同時に決定されるよう示されるが、図7のフローチャートに従って充電時の制御値を決定する処理と、図7のフローチャートに従って放電時の制御値を決定する処理とが別々に行なわれてもよい。   Although the control value at the time of charging and the control value at the time of discharging are shown to be determined simultaneously in the flowchart of FIG. 7, the process of determining the control value at the time of charging according to the flowchart of FIG. 7 and the flowchart of FIG. The process for determining the control value at the time of discharging may be performed separately.

図9は、実施の形態2に従う二次電池の充放電制御装置の動作をより詳細に説明する図である。   FIG. 9 is a diagram illustrating the operation of the charge / discharge control device for the secondary battery according to the second embodiment in more detail.

図9および図2を参照して、制御部14が記憶するマップに重ねて、制御部14が温度Tbatに応じて設定する制限値Win,Woutの変化の軌跡(破線の矢印)を示す。なお図9のマップは図8のマップと同じである。   With reference to FIGS. 9 and 2, the locus (broken arrows) of changes in limit values Win and Wout set by controller 14 according to temperature Tbat is shown superimposed on a map stored by controller 14. The map in FIG. 9 is the same as the map in FIG.

バッテリの温度Tbatが温度T0を超えた直後は、制御部14が制御に用いる制限値Win,Woutとマップの制限値Win,Woutとの差の絶対値が所定値よりも大きくなるこの場合には図7のフローチャートにおけるステップS15の処理が行なわれる。つまり、制御部14はマップを参照して得た制限値Win,Woutを補正して、補正後の制限値Win,Woutを用いてバッテリの充放電量を制御する。これにより、マップそのものに従って制限値を変化させるよりも温度上昇に対する制限値の変化が緩やかになるため車両の挙動への影響を少なくすることができる。   Immediately after the battery temperature Tbat exceeds the temperature T0, the absolute value of the difference between the limit values Win, Wout used for control by the control unit 14 and the map limit values Win, Wout becomes larger than a predetermined value. The process of step S15 in the flowchart of FIG. 7 is performed. That is, the control unit 14 corrects the limit values Win and Wout obtained by referring to the map, and controls the charge / discharge amount of the battery using the corrected limit values Win and Wout. Thereby, since the change of the limit value with respect to the temperature rise becomes gentler than the limit value is changed according to the map itself, the influence on the behavior of the vehicle can be reduced.

制御部14が上述の処理を繰り返すことで温度Tbatは上昇から下降に転じる。実施の形態1と同様に、実施の形態2では、このときの温度Tbatを従来よりも温度Tlimに近づけることができる。よって実施の形態2ではバッテリからできるだけ多くの電力を取出したり、バッテリにできるだけ多くの電力を戻したりできる。また、実施の形態2ではバッテリの温度を精度よく管理することが可能になる。   When the control unit 14 repeats the above-described processing, the temperature Tbat changes from rising to falling. Similar to the first embodiment, in the second embodiment, the temperature Tbat at this time can be made closer to the temperature Tlim than in the prior art. Therefore, in Embodiment 2, as much power as possible can be taken from the battery, and as much power as possible can be returned to the battery. In the second embodiment, the temperature of the battery can be managed with high accuracy.

バッテリの温度が上昇から下降に転じると、温度Tbatに対する制限値Win,Woutの各々はマップに従う制限値に等しくなる。マップ上の点P11,P21にそれぞれ対応するWout,Winはこのような状態のときに制御部14の制御に用いられる制限値に等しくなる。   When the battery temperature changes from rising to falling, each of the limit values Win and Wout for the temperature Tbat becomes equal to the limit value according to the map. Wout and Win corresponding to the points P11 and P21 on the map are equal to the limit values used for the control of the control unit 14 in this state.

以後、制御部14は制限値Win,Woutを増加させて、各々の制限値を温度T0より低い温度での制限値に戻す。このとき、仮に図9のマップに従って制御部14が制限値in,Woutを変化させた場合には、制限値の減少時の変化に比べて、制限値の増加時の変化が大きくなることが起こり得る。そこで制御部14は制限値の減少時と同様に、図7のフローチャートにおけるステップS15の処理を行なう。つまり制御部14はマップを参照して得た制限値Win,Woutを補正し、補正後の制限値Win,Woutを用いて二次電池の充放電量を制御する。これにより、制御値Wout,Winをできるだけ緩やかに戻すことができる。最終的に制限値Win,Woutはそれぞれマップ上の点P22,P12に到達する。このときの温度Tbatは温度T0よりも低くなる。   Thereafter, the control unit 14 increases the limit values Win and Wout, and returns each limit value to the limit value at a temperature lower than the temperature T0. At this time, if the control unit 14 changes the limit values in and Wout according to the map of FIG. 9, the change when the limit value increases is larger than the change when the limit value decreases. obtain. Therefore, the control unit 14 performs the process of step S15 in the flowchart of FIG. 7 in the same manner as when the limit value is decreased. That is, the control unit 14 corrects the limit values Win and Wout obtained by referring to the map, and controls the charge / discharge amount of the secondary battery using the corrected limit values Win and Wout. Thereby, the control values Wout and Win can be returned as gently as possible. Ultimately, the limit values Win and Wout reach points P22 and P12 on the map, respectively. The temperature Tbat at this time is lower than the temperature T0.

以上のように実施の形態2によれば、仮決定した制限値と、充放電の制御に現在用いる制限値との差の絶対値が所定値を超える場合には、仮決定した制限値を補正して、補正後の制限値を用いてバッテリの充放電量を制御する。よって実施の形態2によれば制限値を時間の経過に対して緩やかに変化させることができるので、二次電池の充電性能や放電性能を十分に引出しながら、モータ等の機器を動作させることができる。   As described above, according to the second embodiment, when the absolute value of the difference between the temporarily determined limit value and the limit value currently used for charge / discharge control exceeds a predetermined value, the temporarily determined limit value is corrected. Then, the charge / discharge amount of the battery is controlled using the corrected limit value. Therefore, according to the second embodiment, the limit value can be changed gradually with the passage of time, so that devices such as a motor can be operated while sufficiently drawing out the charging performance and discharging performance of the secondary battery. it can.

また、実施の形態2によれば、二次電池の温度上昇時に、電池温度を精度よく制御することが可能になる。   Further, according to the second embodiment, it is possible to accurately control the battery temperature when the temperature of the secondary battery rises.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.

実施の形態1に従う二次電池の充放電制御装置の適用例を示す図である。It is a figure which shows the example of application of the charging / discharging control apparatus of the secondary battery according to Embodiment 1. 図1の制御部14の構成を説明する図である。It is a figure explaining the structure of the control part 14 of FIG. 図1の制御部14によるバッテリ12の充放電量の制御を説明する図である。It is a figure explaining control of the charging / discharging amount of the battery 12 by the control part 14 of FIG. 図2の制御部14が行なう制限値の設定を説明するためのフローチャートである。It is a flowchart for demonstrating the setting of the limit value which the control part 14 of FIG. 2 performs. バッテリの温度のみに従ってバッテリの充放電量を制御する方法に用いられるマップの例を示す図である。It is a figure which shows the example of the map used for the method of controlling the charging / discharging amount of a battery only according to the temperature of a battery. 図1の制御部14が行なうバッテリ12の充放電制御をより詳細に説明する図である。It is a figure explaining the charging / discharging control of the battery 12 which the control part 14 of FIG. 1 performs in detail. 実施の形態2に従う二次電池の充放電制御装置が行なう制限値の設定を説明するためのフローチャートである。6 is a flowchart for illustrating setting of limit values performed by a charge / discharge control device for a secondary battery according to a second embodiment. ステップS12での処理に用いられるマップを説明するための図である。It is a figure for demonstrating the map used for the process in step S12. 実施の形態2に従うバッテリの充放電制御装置の動作をより詳細に説明する図である。It is a figure explaining the operation | movement of the charging / discharging control apparatus of the battery according to Embodiment 2 in detail.

符号の説明Explanation of symbols

1 ハイブリッド自動車、2 エンジン、4,6 ギヤ、12 バッテリ、14 制御部、16 プラネタリギヤ、18 デファレンシャルギヤ、20R,20L 前輪、22R,22L 後輪、24 温度センサ、26 電圧センサ、27 ファン、28,30 システムメインリレー、32 昇圧ユニット、36 インバータ、41 処理部、42 記憶部、43 カウンタ、B0〜Bn 電池ユニット、MG1,MG2 モータジェネレータ、P1〜P3,P11,P12,P21,P22 点、S1〜S20 ステップ。   DESCRIPTION OF SYMBOLS 1 Hybrid vehicle, 2 engine, 4,6 gear, 12 battery, 14 control part, 16 planetary gear, 18 differential gear, 20R, 20L front wheel, 22R, 22L rear wheel, 24 temperature sensor, 26 voltage sensor, 27 fan, 28, 30 system main relay, 32 boost unit, 36 inverter, 41 processing unit, 42 storage unit, 43 counter, B0-Bn battery unit, MG1, MG2 motor generator, P1-P3, P11, P12, P21, P22 points, S1- S20 step.

Claims (5)

二次電池の温度を検知する温度検知部と、
制限値に従って前記二次電池の充放電量を制御する制御部とを備え、
前記制御部は、前記温度検知部から送信される前記二次電池の検知温度が所定温度を超える場合には、前記検知温度が前記所定温度に達した時点からの経過時間に従って前記制限値を変化させる、二次電池の充放電制御装置。
A temperature detector for detecting the temperature of the secondary battery;
A control unit for controlling the charge / discharge amount of the secondary battery according to a limit value,
When the detected temperature of the secondary battery transmitted from the temperature detection unit exceeds a predetermined temperature, the control unit changes the limit value according to an elapsed time from when the detected temperature reaches the predetermined temperature. A charge / discharge control device for a secondary battery.
前記制御部は、前記経過時間に対して前記制限値が単調に減少する関数を用いて、前記制限値を変化させる、請求項1に記載の二次電池の充放電制御装置。   The charge / discharge control apparatus for a secondary battery according to claim 1, wherein the control unit changes the limit value using a function that monotonously decreases the limit value with respect to the elapsed time. 前記制御部は、前記検知温度が、前記所定温度よりも低い復帰温度に達したことを検知した場合には、前記検知温度が前記復帰温度に達した時点からの経過時間に従って、前記制限値を増加させる、請求項2に記載の二次電池の充放電制御装置。   When the control unit detects that the detected temperature has reached a return temperature lower than the predetermined temperature, the control unit sets the limit value according to an elapsed time from when the detected temperature reaches the return temperature. The charging / discharging control apparatus of the secondary battery of Claim 2 made to increase. 前記制御部は、前記二次電池の温度と前記制限値とが対応付けられた関数を用いて、所定の期間ごとに、前記検知温度に対応する前記制限値を仮決定して、仮決定した前記制限値である第1の制限値と、現在の前記制限値である第2の制限値との差の絶対値を求め、
前記制御部は、前記差の絶対値が所定値以下の場合には、前記第1の制限値をそのまま用いて前記第2の制限値を更新し、前記差の絶対値が前記所定値を上回る場合には、前記所定値を用いて前記第1の制限値を補正して、補正後の前記第1の制限値を用いて前記第2の制限値を更新する、請求項1に記載の二次電池の充放電制御装置。
The control unit temporarily determines the limit value corresponding to the detected temperature for each predetermined period using a function in which the temperature of the secondary battery and the limit value are associated with each other, and temporarily determines the limit value. Obtaining an absolute value of a difference between the first limit value that is the limit value and the second limit value that is the current limit value;
When the absolute value of the difference is equal to or less than a predetermined value, the control unit updates the second limit value using the first limit value as it is, and the absolute value of the difference exceeds the predetermined value. In the case, the first limit value is corrected using the predetermined value, and the second limit value is updated using the corrected first limit value. Charge / discharge control device for secondary battery.
前記二次電池は、車両を駆動する駆動源に電力を供給する、請求項1から4のいずれか1項に記載の二次電池の充放電制御装置。   The charge / discharge control device for a secondary battery according to claim 1, wherein the secondary battery supplies electric power to a drive source that drives a vehicle.
JP2006012422A 2006-01-20 2006-01-20 Charging and discharging control device of secondary battery Pending JP2007195359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012422A JP2007195359A (en) 2006-01-20 2006-01-20 Charging and discharging control device of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012422A JP2007195359A (en) 2006-01-20 2006-01-20 Charging and discharging control device of secondary battery

Publications (1)

Publication Number Publication Date
JP2007195359A true JP2007195359A (en) 2007-08-02

Family

ID=38450584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012422A Pending JP2007195359A (en) 2006-01-20 2006-01-20 Charging and discharging control device of secondary battery

Country Status (1)

Country Link
JP (1) JP2007195359A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089497A (en) * 2007-09-28 2009-04-23 Mitsubishi Motors Corp Motor torque controller
JP2010088159A (en) * 2008-09-29 2010-04-15 Sanyo Electric Co Ltd Power supply device and electric vehicle
JP2010178446A (en) * 2009-01-28 2010-08-12 Sumitomo Heavy Ind Ltd Hybrid working machine
JP2012070575A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Power regeneration device
JP2013168285A (en) * 2012-02-15 2013-08-29 Toyota Motor Corp Battery system and method for controlling charge/discharge of nonaqueous secondary battery
JP7469219B2 (en) 2020-12-14 2024-04-16 本田技研工業株式会社 Power System

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286068A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Battery pack
JP2003173825A (en) * 2001-09-28 2003-06-20 Mitsumi Electric Co Ltd Secondary battery protector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286068A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Battery pack
JP2003173825A (en) * 2001-09-28 2003-06-20 Mitsumi Electric Co Ltd Secondary battery protector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089497A (en) * 2007-09-28 2009-04-23 Mitsubishi Motors Corp Motor torque controller
JP2010088159A (en) * 2008-09-29 2010-04-15 Sanyo Electric Co Ltd Power supply device and electric vehicle
JP2010178446A (en) * 2009-01-28 2010-08-12 Sumitomo Heavy Ind Ltd Hybrid working machine
JP2012070575A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Power regeneration device
JP2013168285A (en) * 2012-02-15 2013-08-29 Toyota Motor Corp Battery system and method for controlling charge/discharge of nonaqueous secondary battery
JP7469219B2 (en) 2020-12-14 2024-04-16 本田技研工業株式会社 Power System

Similar Documents

Publication Publication Date Title
JP4434302B2 (en) Hybrid vehicle control device and hybrid vehicle
JP5093225B2 (en) Secondary battery control device and vehicle
JP4687654B2 (en) Storage device control device and vehicle
JP4848780B2 (en) Control device for cooling fan
JP4539640B2 (en) Secondary battery input / output control device and vehicle
CN106058362A (en) Vehicle-mounted COOLING SYSTEM FOR SECONDARY BATTERY
EP3020599B1 (en) Vehicle driven by electric motor and control method for vehicle
JP2007195359A (en) Charging and discharging control device of secondary battery
JPH1141714A (en) Controller for electric vehicle
JP5741153B2 (en) Charge control device
US10604159B2 (en) Display device
WO2013145333A1 (en) Internal combustion engine control apparatus and internal combustion engine control method
JP2006278132A (en) Battery charging and discharging control device
US9947971B2 (en) Battery system
JP2004222433A (en) Control device of hybrid vehicle
JP2007186038A (en) Controller of motor drive vehicle
JP2015128955A (en) vehicle
JP5447170B2 (en) Storage device control device and vehicle equipped with the same
JP2008228429A (en) Control device for hybrid vehicle
JP5835095B2 (en) Hybrid vehicle and control method of hybrid vehicle
JP5659941B2 (en) Charge control device
JP4175322B2 (en) vehicle
JP2015147465A (en) hybrid vehicle
JP2018008547A (en) Battery control system of hybrid vehicle
JP2011245969A (en) Device for control of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102