JP2007194038A - Flow distribution plate for fuel cell - Google Patents

Flow distribution plate for fuel cell Download PDF

Info

Publication number
JP2007194038A
JP2007194038A JP2006010107A JP2006010107A JP2007194038A JP 2007194038 A JP2007194038 A JP 2007194038A JP 2006010107 A JP2006010107 A JP 2006010107A JP 2006010107 A JP2006010107 A JP 2006010107A JP 2007194038 A JP2007194038 A JP 2007194038A
Authority
JP
Japan
Prior art keywords
wall surface
flow path
distribution plate
gas flow
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006010107A
Other languages
Japanese (ja)
Inventor
Takeshi Sha
剛 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006010107A priority Critical patent/JP2007194038A/en
Publication of JP2007194038A publication Critical patent/JP2007194038A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow distribution plate for a fuel cell advantageous to separate water present in a gas passage as apart as possible from a membrane electrode assembly, and to enhance exhausting ability of water in the gas passage. <P>SOLUTION: In the cross section along the vertical direction, at least a part of a gas passage 3A is equipped with a bottom wall surface 30 forming the bottom of the gas passage 3A of the flow distribution plate 2 arranged along the up and down direction, a ceiling wall surface 32 facing the bottom wall surface 30, and a standing wall surface 34 formed along the crossing direction to the bottom wall surface 30 and the ceiling wall surface 32 so as to face the membrane electrode assembly 1. The bottom wall surface 30 is descended and inclined toward the gravity direction (arrow G direction) with separation from the membrane electrode assembly 1 in the direction (arrow E direction) crossing to the vertical direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は膜電極接合体に対面するガス流路をもつ燃料電池用配流板に関する。   The present invention relates to a fuel cell distribution plate having a gas flow channel facing a membrane electrode assembly.

特許文献1には、上下方向に沿って配置されているセパレータとも呼ばれる配流板を、これの厚み方向に積層した燃料電池が開示されている。この配流板は、膜電極接合体に対面するガス流路をもつ。燃料電池では発電反応により水が生成される。配流板のガス流路に反応ガスを効率よく供給するためには、水を配流板のガス流路から効率よく排出させることが好ましい。液体としての水が配流板のガス流路に存在するとき、ガス流路を流れる反応ガスにより、水は配流板のガス流路の下流側に押し出されて排出される。   Patent Document 1 discloses a fuel cell in which flow distribution plates called separators arranged in the vertical direction are stacked in the thickness direction. This flow distribution plate has a gas flow path facing the membrane electrode assembly. In a fuel cell, water is generated by a power generation reaction. In order to efficiently supply the reaction gas to the gas flow path of the flow distribution plate, it is preferable to efficiently drain water from the gas flow path of the flow distribution plate. When water as a liquid exists in the gas flow path of the flow distribution plate, the water is pushed out and discharged to the downstream side of the gas flow path of the flow distribution plate by the reaction gas flowing through the gas flow path.

特許文献1では、図5に示すように、配流板は、断面で三角形状をなすガス流路3Xを有する。ガス流路3Xは底壁面30Xおよび天井壁面32Xを備える。ガス流路3Xの奥部36Xは鋭角状とされている。ここで、ガス流路3Xの底壁面30Xは、鉛直方向(矢印Y方向)と交差する方向(矢印E方向)において、膜電極接合体1Xから離間するにつれて、つまり矢印E1方向に向かうにつれて、重力方向(矢印G方向)に向けて下降傾斜している。この結果、底壁面30Xは、ガス流路3Xに存在する水をガス流路3Xの底壁面30Xに沿って、つまり矢印E1方向に沿って、重力方向(矢印G方向)に流下させ、膜電極接合体1Xからできるだけ離間させて、ガス流路3Xの奥部36Xに移行させることができる。   In Patent Document 1, as shown in FIG. 5, the flow distribution plate includes a gas flow path 3 </ b> X having a triangular shape in cross section. The gas flow path 3X includes a bottom wall surface 30X and a ceiling wall surface 32X. The back portion 36X of the gas flow path 3X is formed into an acute angle. Here, the bottom wall surface 30X of the gas flow path 3X is separated from the membrane electrode assembly 1X in the direction (arrow E direction) intersecting the vertical direction (arrow Y direction), that is, as it moves toward the arrow E1 direction, gravity is increased. Inclined downward in the direction (arrow G direction). As a result, the bottom wall surface 30X causes the water present in the gas flow path 3X to flow down in the direction of gravity (arrow G direction) along the bottom wall surface 30X of the gas flow path 3X, that is, along the arrow E1 direction. It is possible to move to the inner portion 36X of the gas flow path 3X as far as possible from the joined body 1X.

更に、特許文献2では、ガス流路に傾斜面を形成した配流板が開示されている。このガス流路の傾斜面は、膜電極接合体に近づくにつれて下降傾斜している。
特開平10−172585号公報 特開2005−108789号公報
Furthermore, Patent Document 2 discloses a flow distribution plate in which an inclined surface is formed in a gas flow path. The inclined surface of the gas flow channel is inclined downward as it approaches the membrane electrode assembly.
JP-A-10-172585 JP 2005-108789 A

上記した特許文献1に係る燃料電池によれば、ガス流路3Xは断面で三角形状をなす。このため、ガス流路3Xのうち鋭角形状の奥部36Xにおいては、底壁面30Xおよび天井壁面32Xにおける摩擦の影響が大きくなり、反応ガスの摩擦抵抗が増加する。故に、ガス流路3Xの鋭角形状の奥部36Xでは、ガス流路3Xの開口37X側(即ち、膜電極接合体1Xに対面する側)に比較して、摩擦抵抗により反応ガスの流速がかなり低下するおそれがある。反応ガスの流速が低下すると、ガス流路3Xの開口37X側よりも、ガス流路3の奥部36Xでは、水をガス流路3Xの下流側に押し出して排出させる能力が低下するおそれがある。   According to the fuel cell according to Patent Document 1 described above, the gas flow path 3X has a triangular shape in cross section. For this reason, in the deep corner portion 36X of the gas flow path 3X, the influence of friction on the bottom wall surface 30X and the ceiling wall surface 32X increases, and the frictional resistance of the reaction gas increases. Therefore, in the acute-angled deep part 36X of the gas flow path 3X, the flow rate of the reaction gas is considerably higher due to frictional resistance than the opening 37X side of the gas flow path 3X (that is, the side facing the membrane electrode assembly 1X). May decrease. When the flow rate of the reaction gas is decreased, the ability to push water out of the gas flow path 3X downstream from the opening 36X side of the gas flow path 3X and to discharge the water may decrease. .

更に、ガス流路3Xの奥部36Xは断面で鋭角形状であるため、奥部36Xにおいては表面張力が増加する。このため、奥部36Xに存在する水は、ガス流路3Xの開口37X側に存在する水に比較して、表面張力等の影響を受け易くなる。従って、ガス流路3Xの鋭角形状の奥部36Xに存在する水は、その位置にホールドされ易くなる。この結果、反応ガスがガス流路3Xに流れるとしても、水がガス流路3Xの下流側に向けて押し出されにくくなるおそれがある。このため、配流板2Xのガス流路3Xにおける水の排出性の向上には限界がある。   Furthermore, since the back portion 36X of the gas flow path 3X has an acute angle shape in cross section, the surface tension increases in the back portion 36X. For this reason, the water present in the inner portion 36X is more easily affected by the surface tension or the like than the water present on the opening 37X side of the gas flow path 3X. Therefore, the water present in the acute-angled deep portion 36X of the gas flow path 3X is easily held at that position. As a result, even if the reaction gas flows into the gas flow path 3X, there is a possibility that water will not be pushed out toward the downstream side of the gas flow path 3X. For this reason, there is a limit in improving the water discharge performance in the gas flow path 3X of the flow distribution plate 2X.

更に、特許文献2に係る配流板によれば、ガス流路の傾斜面は、膜電極接合体に近づくにつれて下降傾斜しているため、ガス流路に存在する水は膜電極接合体に向けて流下する。この結果、水と膜電極接合体とが接触する面積が増加する。故に、反応ガスと膜電極接合体とが接触する頻度が低くなり、反応ガスの反応効率の向上には限界があった。   Furthermore, according to the flow distribution plate according to Patent Document 2, since the inclined surface of the gas flow path is inclined downward as it approaches the membrane electrode assembly, water present in the gas flow path is directed toward the membrane electrode assembly. Flow down. As a result, the area where water and the membrane electrode assembly come into contact increases. Therefore, the frequency of contact between the reaction gas and the membrane electrode assembly is reduced, and there is a limit to improving the reaction efficiency of the reaction gas.

本発明は上記した実情に鑑みてなされたものであり、ガス流路に存在する水を膜電極接合体からできるだけ離間させると共に、配流板のガス流路における水の排出性を向上させるのに有利な燃料電池用配流板を提供することを課題とする。   The present invention has been made in view of the above-described circumstances, and is advantageous in separating water existing in the gas flow path as far as possible from the membrane electrode assembly and improving the water discharge performance in the gas flow path of the flow distribution plate. An object of the present invention is to provide a fuel flow distributor plate.

本発明に係る燃料電池用配流板は、上下方向に沿って配置されており、燃料電池の膜電極接合体に対向する対向表面と対向表面に開口する溝状のガス流路とを有する燃料電池用配流板において、配流板の厚み方向かつ鉛直方向に沿った断面図で、ガス流路の少なくとも一部は、上下方向に沿って配置される配流板のガス流路の底を形成する底壁面と、底壁面に対向する天井壁面と、膜電極接合体に対面するように底壁面および天井壁面に対して交差する方向に沿って形成された立壁面とを備えており、
底壁面は、鉛直方向と交差する方向において、膜電極接合体から離間するにつれて重力方向に向けて下降傾斜していることを特徴とする。
The fuel cell distribution plate according to the present invention is disposed along the vertical direction, and has a facing surface facing the membrane electrode assembly of the fuel cell and a groove-shaped gas flow channel opening in the facing surface. In the flow distribution plate for use, in the cross-sectional view along the thickness direction and the vertical direction of the flow distribution plate, at least a part of the gas flow path forms a bottom wall surface that forms the bottom of the gas flow path of the flow distribution plate arranged along the vertical direction And a ceiling wall surface facing the bottom wall surface, and a standing wall surface formed along a direction intersecting the bottom wall surface and the ceiling wall surface so as to face the membrane electrode assembly,
The bottom wall surface is inclined downward in the direction of gravity as it is separated from the membrane electrode assembly in a direction intersecting the vertical direction.

本発明によれば、前述したように、ガス流路の底壁面は、膜電極接合体から離間するにつれて重力方向に向けて下降傾斜している。このため液体としての水がガス流路に存在するときであっても、その水をガス流路の底壁面に沿って重力方向に流下させることができる。即ち、液体としての水を膜電極接合体からできるだけ離間させることができる。この結果、液体としての水が膜電極接合体を覆う面積が低減される。よって、反応ガスと膜電極接合体との接触確率が向上し、反応ガスの反応効率が向上する。   According to the present invention, as described above, the bottom wall surface of the gas flow path is inclined downward in the direction of gravity as the distance from the membrane electrode assembly increases. For this reason, even when water as a liquid is present in the gas flow path, the water can flow down in the direction of gravity along the bottom wall surface of the gas flow path. That is, water as a liquid can be separated from the membrane electrode assembly as much as possible. As a result, the area where the water as the liquid covers the membrane electrode assembly is reduced. Therefore, the contact probability between the reaction gas and the membrane electrode assembly is improved, and the reaction efficiency of the reaction gas is improved.

本発明によれば、ガス流路が底壁面および天井壁面を備えると共に立壁面を備えているため、ガス流路の奥部において底壁面と天井壁面との隙間間隔を確保できる。従って、ガス流路の奥部の流路幅を確保することができる。従って、ガス流路の奥部において、底壁面および天井壁面における摩擦の影響、あるいは、底壁面と天井壁面との間における表面張力等の影響が低減される。従って、水がガス流路の奥部にホールドされにくくなり、水がガス流路の下流側に向けて流れ易くなる利点が得られる。   According to the present invention, since the gas flow path includes the bottom wall surface and the ceiling wall surface, and also includes the standing wall surface, a clearance gap between the bottom wall surface and the ceiling wall surface can be secured at the back of the gas flow path. Therefore, it is possible to secure the flow path width at the back of the gas flow path. Therefore, the influence of the friction on the bottom wall surface and the ceiling wall surface, or the influence of the surface tension between the bottom wall surface and the ceiling wall surface, etc. is reduced in the inner part of the gas flow path. Therefore, it is difficult to hold water in the back of the gas flow path, and there is an advantage that water can easily flow toward the downstream side of the gas flow path.

本発明によれば、ガス流路が底壁面および天井壁面を備えると共に立壁面を備えているため、ガス流路の奥部の流路幅を大きく確保することができる。このため、ガス流路に水が存在するとき、その水をガス流路の底壁面に沿って重力方向に流下させ、膜電極接合体からできるだけ離間させてガス流路の奥部に移行させることができる。このため、反応ガスと膜電極接合体との接触確率が向上し、反応ガスの反応効率が向上する。   According to the present invention, since the gas flow path includes the bottom wall surface and the ceiling wall surface and the standing wall surface, a large flow path width at the back of the gas flow path can be ensured. For this reason, when water is present in the gas flow path, the water is caused to flow down in the direction of gravity along the bottom wall surface of the gas flow path, and is moved as far as possible from the membrane electrode assembly to the back of the gas flow path. Can do. For this reason, the contact probability between the reaction gas and the membrane electrode assembly is improved, and the reaction efficiency of the reaction gas is improved.

更に本発明によれば、前述したように、ガス流路が底壁面および天井壁面を備えると共に立壁面を備えているため、ガス流路の奥部の流路幅を大きく確保することができる。従って、ガス流路の底壁面および天井壁面における摩擦の影響、あるいは、底壁面と天井壁面との間における表面張力等の影響が低減される。従って、水がガス流路の奥部にホールドされにくくなり、水がガス流路の下流側に向けて流れ易くなる利点が得られる。このため配流板のガス流路における水の排出性を向上させるのに有利となる。   Furthermore, according to the present invention, as described above, since the gas flow path includes the bottom wall surface and the ceiling wall surface and the standing wall surface, a large flow path width at the back of the gas flow path can be ensured. Therefore, the influence of friction on the bottom wall surface and the ceiling wall surface of the gas flow path, or the influence of surface tension or the like between the bottom wall surface and the ceiling wall surface is reduced. Therefore, it is difficult to hold water in the back of the gas flow path, and there is an advantage that water can easily flow toward the downstream side of the gas flow path. For this reason, it becomes advantageous to improve the discharge property of the water in the gas flow path of the flow distribution plate.

配流板は、上下方向に沿って配置されている。従って複数の配流板は横方向に沿って積層される。配流板は、燃料電池の膜電極接合体に対向する対向表面と対向表面に開口するガス流路とを有する。配流板の材質は炭素系でも金属系でも良い。   The flow distribution plate is disposed along the vertical direction. Accordingly, the plurality of flow distribution plates are stacked along the lateral direction. The flow distribution plate has a facing surface facing the membrane electrode assembly of the fuel cell and a gas flow path opening in the facing surface. The material of the flow distribution plate may be carbon or metal.

配流板の厚み方向かつ鉛直方向に沿った断面図において、ガス流路の少なくとも一部は、上下方向に沿って配置される配流板のガス流路の底を形成する底壁面と、底壁面に対向する天井壁面と、膜電極接合体に対面するように底壁面および天井壁面に対して交差する方向に沿って形成された立壁面とを備えている。底壁面は、鉛直方向と交差する方向において、膜電極接合体から離間するにつれて重力方向に向けて下降傾斜している。   In the cross-sectional view along the thickness direction and the vertical direction of the flow distribution plate, at least a part of the gas flow path is formed on the bottom wall surface that forms the bottom of the gas flow path of the flow distribution plate arranged along the vertical direction. The ceiling wall surface which opposes, and the standing wall surface formed along the direction which cross | intersects with respect to a bottom wall surface and a ceiling wall surface so that a membrane electrode assembly may be faced. The bottom wall surface is inclined downward in the direction of gravity as it is separated from the membrane electrode assembly in a direction intersecting the vertical direction.

本発明によれば、天井壁面は、鉛直方向と交差する方向において、膜電極接合体から離間するにつれて重力方向に向けて下降傾斜している形態が例示される。この場合、ガス流路の流路断面積を小さくするのに有利となり、ガス流路を流れる反応ガスの流速が確保される。ここで、図1に例示するように、配流板の対向表面と底壁面との交差角度をθ1とし、配流板の対向表面の延長線と天井壁面との交差角度をθ2とするとき、θ1はθ2よりも大きく(θ1>θ2)設定されている形態が例示される。   According to the present invention, the form in which the ceiling wall surface is inclined downward in the direction of gravity as it is separated from the membrane electrode assembly in the direction intersecting the vertical direction is exemplified. In this case, it is advantageous for reducing the cross-sectional area of the gas flow path, and the flow velocity of the reaction gas flowing through the gas flow path is ensured. Here, as illustrated in FIG. 1, when the intersection angle between the facing surface and the bottom wall surface of the flow distribution plate is θ1, and when the intersection angle between the extension line of the facing surface of the flow distribution plate and the ceiling wall surface is θ2, θ1 is A configuration in which it is set larger than θ2 (θ1> θ2) is exemplified.

本発明によれば、図1に例示するように、ガス流路の流路幅のうち、膜電極接合体に対して最も近い部分の流路幅をD1とし、膜電極接合体に対して最も遠い部分の流路幅をD2とするとき、D1はD2よりも大きく(D1>D2)設定されている形態が例示される。この場合、ガス流路の流路断面積を小さくしてガス流路を流れる反応ガスの流速を速くしつつも、ガス流路を流れる反応ガスと膜電極接合体との接触面積を増加させ反応ガスの反応確率を増加させるのに有利となる。   According to the present invention, as illustrated in FIG. 1, among the channel widths of the gas channel, the channel width of the portion closest to the membrane electrode assembly is set to D1, and the most to the membrane electrode assembly. When the flow path width of a distant part is set to D2, the form which D1 is set larger than D2 (D1> D2) is illustrated. In this case, the reaction area is increased by increasing the contact area between the reaction gas flowing in the gas flow path and the membrane electrode assembly, while reducing the cross-sectional area of the gas flow path to increase the flow velocity of the reaction gas flowing through the gas flow path. This is advantageous for increasing the gas reaction probability.

なお本発明の対象となる配流板としては、酸化剤極用の配流板でも良いし、燃料極用の配流板でも良い。但し、燃料電池の発電反応により酸化剤極において水が生成し易いため、酸化剤極用の配流板に特に有効である。   In addition, as a flow distribution plate used as the object of the present invention, a flow distribution plate for an oxidant electrode or a flow distribution plate for a fuel electrode may be used. However, since water is easily generated at the oxidant electrode due to the power generation reaction of the fuel cell, it is particularly effective for the flow distribution plate for the oxidant electrode.

以下、本発明に係る実施例1について図1および図2を参照しつつ説明する。本実施例に係る高分子型の燃料電池は、図1に模式的に示すように、膜電極接合体1と、酸化剤ガスを供給するセパレータとも呼ばれる配流板2と、燃料ガスを供給するセパレータとも呼ばれる配流板2Fとを厚み方向に積層して形成されている。膜電極接合体1は、高分子型の固体電解質膜10と、固体電解質膜10の厚み方向に積層された燃料極11(アノード)および酸化剤極12(カソード)とを備えている。燃料極11は、固体電解質膜10に対面する触媒層11aと、配流板2Fに対面するガス拡散層11bとで形成されている。酸化剤極12は酸化剤ガス(一般的には空気)が供給されるものであり、固体電解質膜10に対面する触媒層12aと、配流板2に対面するガス拡散層12bとで形成されている。ガス拡散層11b,12bは、ガス透過性および導電性を有するように、炭素繊維等の集合体で形成されている。燃料ガス用の配流板2Fは、ガス流路300をもつ。ガス流路300は、ガス流路300の底を形成する底壁面301と、底壁面301に対向する天井壁面320と、膜電極接合体1の燃料極11に対面する立壁面340とを備えている。   A first embodiment according to the present invention will be described below with reference to FIGS. As schematically shown in FIG. 1, a polymer fuel cell according to the present embodiment includes a membrane electrode assembly 1, a flow distribution plate 2 also called a separator that supplies an oxidant gas, and a separator that supplies a fuel gas. It is formed by laminating a flow distribution plate 2F also called a thickness direction. The membrane electrode assembly 1 includes a polymer solid electrolyte membrane 10 and a fuel electrode 11 (anode) and an oxidant electrode 12 (cathode) laminated in the thickness direction of the solid electrolyte membrane 10. The fuel electrode 11 is formed of a catalyst layer 11a facing the solid electrolyte membrane 10 and a gas diffusion layer 11b facing the flow distribution plate 2F. The oxidant electrode 12 is supplied with an oxidant gas (generally air), and is formed by a catalyst layer 12 a facing the solid electrolyte membrane 10 and a gas diffusion layer 12 b facing the flow distribution plate 2. Yes. The gas diffusion layers 11b and 12b are formed of aggregates such as carbon fibers so as to have gas permeability and conductivity. The fuel gas distribution plate 2 </ b> F has a gas flow path 300. The gas channel 300 includes a bottom wall surface 301 that forms the bottom of the gas channel 300, a ceiling wall surface 320 that faces the bottom wall surface 301, and a standing wall surface 340 that faces the fuel electrode 11 of the membrane electrode assembly 1. Yes.

配流板2は配流板2Fと共に上下方向に沿って縦型に配置されており、カーボン系材料または耐食性が良い金属で形成されている。図1に示すように、配流板2は、膜電極接合体1の酸化剤極12に対向する対向表面20と、対向表面20に開口するように対向表面20に溝状に形成されたガス流路3とを有する。   The flow distribution plate 2 is arranged vertically along with the flow distribution plate 2F in the vertical direction, and is formed of a carbon-based material or a metal having good corrosion resistance. As shown in FIG. 1, the flow distributor 2 includes a counter surface 20 facing the oxidant electrode 12 of the membrane electrode assembly 1 and a gas flow formed in a groove shape on the counter surface 20 so as to open to the counter surface 20. Road 3.

図2は配流板2の正面図を模式的に示す。図2に示すように、ガス流路3は、反応ガスとしての酸化剤ガスを供給する供給孔3iから、酸化剤オフガスを吐出する吐出孔3oに向けてSの字形状または逆Sの字形状に延設されている。供給孔3iから供給された酸化剤ガスがガス流路3に沿って吐出孔3oに向けて流れる。ここで、ガス流路3は、横方向に沿って流れるガス流路3Aと、縦方向に沿って流れるガス流路3Cとをもつ。ガス流路3Cは配流板2において縦方向に沿っているため、重力を利用した水の排出性は確保される。ガス流路3Aは配流板2において横方向に沿って流れるため、ガス流路3Cの場合よりも水の排出性を高めることが要請される。   FIG. 2 schematically shows a front view of the flow distributor 2. As shown in FIG. 2, the gas flow path 3 has an S shape or an inverted S shape from a supply hole 3i for supplying an oxidant gas as a reaction gas toward a discharge hole 3o for discharging an oxidant off gas. It is extended to. The oxidant gas supplied from the supply hole 3i flows along the gas flow path 3 toward the discharge hole 3o. Here, the gas flow path 3 has a gas flow path 3A flowing along the horizontal direction and a gas flow path 3C flowing along the vertical direction. Since the gas flow path 3C is along the vertical direction in the flow distribution plate 2, the water discharge property using gravity is ensured. Since the gas flow path 3A flows along the horizontal direction in the flow distribution plate 2, it is required to enhance the water discharge performance compared to the case of the gas flow path 3C.

図1は、配流板2の厚み方向に沿ってかつ配流板2の鉛直方向に沿って切断した断面図を示す。図1は配流板2および配流板2Fの厚みを示す断面図である。また、図1は、配流板2のうち反応ガスが横方向に流れるガス流路3A付近の断面図を示す。図1に示すように、反応ガスが横方向に流れるガス流路3Aは、配流板2のガス流路3Aの底を形成する底壁面30と、底壁面30に対向する天井壁面32と、膜電極接合体1の酸化剤極12に対面する立壁面34とを備えている。図1に示すように、ガス流路3Aは断面で非三角形状とされており、底壁面30および天井壁面32は非平行状態である。立壁面34は、底壁面30および天井壁面32に対して交差する方向に沿って形成されている。なお、立壁面34は、配流板2の対向表面20に沿っており、対向表面20に対してほぼ平行とされているが、これに限られるものではない。   FIG. 1 shows a cross-sectional view taken along the thickness direction of the flow distribution plate 2 and along the vertical direction of the flow distribution plate 2. FIG. 1 is a cross-sectional view showing the thickness of the flow distribution plate 2 and the flow distribution plate 2F. FIG. 1 shows a cross-sectional view of the vicinity of the gas flow path 3 </ b> A through which the reaction gas flows in the lateral direction in the flow distribution plate 2. As shown in FIG. 1, the gas flow path 3 </ b> A through which the reaction gas flows laterally includes a bottom wall surface 30 that forms the bottom of the gas flow path 3 </ b> A of the flow distributor 2, a ceiling wall surface 32 that faces the bottom wall surface 30, and a membrane And an upstanding wall surface 34 facing the oxidant electrode 12 of the electrode assembly 1. As shown in FIG. 1, the gas flow path 3A has a non-triangular shape in cross section, and the bottom wall surface 30 and the ceiling wall surface 32 are in a non-parallel state. The standing wall surface 34 is formed along a direction intersecting the bottom wall surface 30 and the ceiling wall surface 32. In addition, although the standing wall surface 34 is along the opposing surface 20 of the flow distribution plate 2, and is made substantially parallel with respect to the opposing surface 20, it is not restricted to this.

図1において矢印E方向は、鉛直方向(矢印Y方向)と直交する方向を示す。ガス流路3Aの底壁面30は、膜電極接合体1の酸化剤極12のガス拡散層12bから離間するにつれて、つまり矢印E1方向に向かうにつれて、重力方向(矢印G方向)に向けて下降傾斜している。   In FIG. 1, an arrow E direction indicates a direction orthogonal to the vertical direction (arrow Y direction). The bottom wall surface 30 of the gas flow path 3A is inclined downward toward the direction of gravity (arrow G direction) as the distance from the gas diffusion layer 12b of the oxidant electrode 12 of the membrane electrode assembly 1 increases, that is, toward the arrow E1 direction. is doing.

このため、液体としての水Wが配流板2のガス流路3Aに存在するとき、その水をガス流路3Aの底壁面30に沿って、つまり矢印E1方向(配流板2の厚み方向において配流板2の対向表面20から離間する方向)に沿って、重力方向(矢印G方向)に流下させることができる。即ち、膜電極接合体1の酸化剤極12のガス拡散層12bの表面から、水をできるだけ矢印E1方向に離間させて遠ざけるのに有利である。この結果、配流板2のガス流路3Aに水が存在するとき、その水が膜電極接合体1の酸化剤極12を覆う面積が低減される。従って、反応ガスである酸化剤ガスと膜電極接合体1の酸化剤極12との接触確率が向上し、酸化剤ガスの反応効率が向上し、燃料電池の発電効率が向上する。   For this reason, when water W as a liquid is present in the gas flow path 3A of the flow distribution plate 2, the water is distributed along the bottom wall surface 30 of the gas flow path 3A, that is, in the direction of arrow E1 (in the thickness direction of the flow distribution plate 2). It is possible to flow down in the direction of gravity (in the direction of arrow G) along the direction away from the opposing surface 20 of the plate 2. That is, it is advantageous to keep water away from the surface of the gas diffusion layer 12b of the oxidant electrode 12 of the membrane electrode assembly 1 as far as possible in the direction of the arrow E1. As a result, when water is present in the gas flow path 3A of the flow distribution plate 2, the area of the water covering the oxidant electrode 12 of the membrane electrode assembly 1 is reduced. Therefore, the contact probability between the oxidant gas, which is a reactive gas, and the oxidant electrode 12 of the membrane electrode assembly 1 is improved, the reaction efficiency of the oxidant gas is improved, and the power generation efficiency of the fuel cell is improved.

本実施例によれば、図1に示すように、ガス流路3Aが底壁面30および天井壁面32を備えると共に立壁面34を備えているため、ガス流路3Aの奥部36において底壁面30と天井壁面32との隙間間隔を大きくできる。この結果、図1に示すように、図5に示す従来技術1の場合に比較して、ガス流路3Aの奥部36の流路幅D2を大きめにできる。このため、ガス流路3Aの奥部36において、底壁面30および天井壁面32における摩擦の影響、表面張力等の影響を小さくできる。その理由としては、底壁面30と天井壁面32との隙間間隔が狭い方がここを流れる流体の摩擦の影響や表面張力の影響が大きくなり、底壁面30と天井壁面32との隙間間隔が広い方がここを流れる流体の摩擦の影響や表面張力の影響が小さくなるためである。   According to the present embodiment, as shown in FIG. 1, the gas flow path 3A includes the bottom wall surface 30 and the ceiling wall surface 32, and also includes the standing wall surface 34. Therefore, the bottom wall surface 30 in the inner portion 36 of the gas flow path 3A. And the gap between the ceiling wall surface 32 can be increased. As a result, as shown in FIG. 1, the flow path width D <b> 2 of the back portion 36 of the gas flow path 3 </ b> A can be made larger than in the case of the related art 1 shown in FIG. 5. For this reason, in the back part 36 of 3 A of gas flow paths, the influence of the friction in the bottom wall surface 30 and the ceiling wall surface 32, surface tension, etc. can be made small. The reason is that the narrower the gap between the bottom wall 30 and the ceiling wall 32, the greater the influence of the friction of the fluid flowing therethrough and the influence of the surface tension, and the wider the gap between the bottom wall 30 and the ceiling wall 32. This is because the influence of the friction of the fluid flowing here and the influence of the surface tension are reduced.

このように本実施例によれば、ガス流路3Aの奥部36において、ここを流れる流体の摩擦や表面張力等の影響が小さくなる。このためガス流路3Aの奥部36においてもガスが流れ易くなり、更に、表面張力で水が奥部36にホールドされることが抑制される。ひいては、水がガス流路3Aにおいてこれの下流側に向けてガスと共に流れ易くなる利点が得られる。   As described above, according to the present embodiment, the influence of friction, surface tension, and the like of the fluid flowing therethrough is reduced in the inner portion 36 of the gas flow path 3A. For this reason, it becomes easy for gas to flow also in the back portion 36 of the gas flow path 3A, and water is suppressed from being held in the back portion 36 due to surface tension. As a result, the advantage that water easily flows with the gas toward the downstream side of the gas flow path 3A can be obtained.

ところで、底壁面30を矢印E1方向に向かうにつれて重力方向(矢印G方向)に向けて下降傾斜させるとともに、天井壁面32を矢印E1方向に向かうにつれて、重力方向(矢印G方向)と反対方向に向けて上昇傾斜させる流路構造も考えられる。この場合、ガス流路3Aの流路断面積が増加して、ガス流路3Aを流れる反応ガスの流速が低下する。   By the way, the bottom wall surface 30 is inclined downward in the direction of gravity (arrow G direction) as it goes in the direction of arrow E1, and the ceiling wall surface 32 is directed in the opposite direction to the direction of gravity (arrow G direction) as it goes in the direction of arrow E1. It is also possible to use a channel structure that is inclined upward. In this case, the flow path cross-sectional area of the gas flow path 3A increases, and the flow rate of the reaction gas flowing through the gas flow path 3A decreases.

この点本実施例によれば、図1に示すように、底壁面30および天井壁面32の双方は、鉛直方向(矢印Y方向)と交差する方向(矢印E方向)において、膜電極接合体1の酸化剤極12から離間するにつれて、つまり矢印E1方向に向かうにつれて、重力方向(矢印G方向)に向けて下降傾斜している。このため、ガス流路3Aの流路断面積を小さくして、ガス流路3Aを流れる反応ガスの流速を速くするのに有利となる。ここで、前述したようにガス流路3Aを流れる反応ガスの流速が高くなると、ガス流路3Aに残留する水をガス流路3Aの下流側に押し出して排出させるのに有利となる。   In this respect, according to the present embodiment, as shown in FIG. 1, both the bottom wall surface 30 and the ceiling wall surface 32 are in the direction (arrow E direction) intersecting the vertical direction (arrow Y direction). As the distance from the oxidant electrode 12 increases, that is, as it goes in the direction of the arrow E1, it is inclined downward in the direction of gravity (the direction of the arrow G). For this reason, it is advantageous to reduce the flow path cross-sectional area of the gas flow path 3A and increase the flow rate of the reaction gas flowing through the gas flow path 3A. Here, as described above, when the flow rate of the reaction gas flowing through the gas flow path 3A is increased, it is advantageous to push the water remaining in the gas flow path 3A to the downstream side of the gas flow path 3A to be discharged.

本実施例によれば、鉛直方向に沿った断面図(図1)みると、配流板2の対向表面20と底壁面30との交差角度をθ1とし、配流板2の対向表面20の延長線と天井壁面32との交差角度をθ2とすると、θ1はθ2よりも大きく(θ1>θ2)設定されている。このような構造が採用されているため、水を底壁面30に沿って重力方向に矢印E1方向に沿って流下させつつ、ガス流路3Aの流路断面積を小さくでき、ガス流路3Aを流れる反応ガスである酸化剤ガスの流速を速くするのに有利である。なお、図1においてθ1およびθ2は90度以下の鋭角とされている。   According to this embodiment, when the sectional view along the vertical direction (FIG. 1) is viewed, the intersection angle between the facing surface 20 of the flow distribution plate 2 and the bottom wall surface 30 is θ1, and the extension line of the counter surface 20 of the flow distribution plate 2 And θ1 is set to be larger than θ2 (θ1> θ2), where θ2 is the intersection angle between the ceiling wall surface 32 and the ceiling wall surface 32. Since such a structure is adopted, the flow passage cross-sectional area of the gas flow passage 3A can be reduced while flowing the water along the bottom wall surface 30 in the direction of gravity along the arrow E1 direction. This is advantageous for increasing the flow rate of the oxidizing gas which is the flowing reaction gas. In FIG. 1, θ1 and θ2 are acute angles of 90 degrees or less.

また本実施例によれば、ガス流路3Aの流路幅のうち、膜電極接合体1の酸化剤極12に対して最も近い開口37の部分の流路幅をD1とし、膜電極接合体1の酸化剤極12に対して最も遠い部分、つまりガス流路3Aの奥部36の流路幅をD2とするとき、D1はD2よりも大きく(D1>D2)設定されている。このため、ガス流路3Aを流れる酸化剤ガス(反応ガス)と膜電極接合体1の酸化剤極12との接触面積を増加させつつ、ガス流路3Aの流路断面積を小さくして酸化剤ガスの流速を速めるのに有利とされる。   Further, according to the present embodiment, among the channel widths of the gas channel 3A, the channel width of the portion of the opening 37 closest to the oxidant electrode 12 of the membrane electrode assembly 1 is D1, and the membrane electrode assembly When the flow path width of the farthest part of one oxidant electrode 12, that is, the depth 36 of the gas flow path 3A is D2, D1 is set to be larger than D2 (D1> D2). For this reason, while increasing the contact area between the oxidant gas (reactive gas) flowing through the gas flow path 3A and the oxidant electrode 12 of the membrane electrode assembly 1, the cross-sectional area of the gas flow path 3A is reduced to oxidize. It is advantageous to increase the flow rate of the agent gas.

なお、セパレータ2のガス流路3Aを形成する一例としては、ガス流路3Aを成形する成形凸部をもつプレス押圧型を用い、ガス流路3Aを成形する成形凸部を底壁面30に対して平行な方向に離型させることにより、ガス流路3Aを形成できる。   As an example of forming the gas flow path 3A of the separator 2, a press pressing die having a molding convex part for molding the gas flow path 3A is used, and the molding convex part for molding the gas flow path 3A is formed on the bottom wall surface 30. The gas flow path 3A can be formed by releasing the molds in parallel directions.

図3は実施例2を示す。本実施例は実施例1と基本的には同様の構成、同様の作用効果を有する。但し、酸化剤極12用の配流板2の他に、燃料極11用の配流板2Fが本発明の対象とされている。図3は、配流板2,2Fの厚み方向に沿ったかつ鉛直方向に沿った断面図を示す。図3に示すように、実施例1と同様に、配流板2のガス流路3Aは、底壁面30と、底壁面30に対向する天井壁面32と、立壁面34とを備えている。   FIG. 3 shows a second embodiment. The present embodiment basically has the same configuration and the same function and effect as the first embodiment. However, in addition to the flow distribution plate 2 for the oxidant electrode 12, the flow distribution plate 2F for the fuel electrode 11 is an object of the present invention. FIG. 3 shows a cross-sectional view along the thickness direction of the flow distribution plates 2 and 2F and along the vertical direction. As shown in FIG. 3, similarly to the first embodiment, the gas flow path 3 </ b> A of the flow distribution plate 2 includes a bottom wall surface 30, a ceiling wall surface 32 facing the bottom wall surface 30, and a standing wall surface 34.

以下、実施例1と異なる部分を中心として説明する。燃料極11用の配流板2Fにおいて、ガス流路3Aは、配流板2のガス流路3Aの底を形成する底壁面30と、底壁面30に対向する天井壁面32と、膜電極接合体1の燃料極11に対面する立壁面34とを備えている。立壁面34は、底壁面30および天井壁面32に対して交差する方向に沿って形成されている。   Hereinafter, a description will be given centering on differences from the first embodiment. In the flow distribution plate 2F for the fuel electrode 11, the gas flow path 3A includes a bottom wall surface 30 that forms the bottom of the gas flow path 3A of the flow distribution plate 2, a ceiling wall surface 32 that faces the bottom wall surface 30, and the membrane electrode assembly 1. And a standing wall 34 facing the fuel electrode 11. The standing wall surface 34 is formed along a direction intersecting the bottom wall surface 30 and the ceiling wall surface 32.

本実施例においても、鉛直方向に沿った断面図(図3)みると、配流板2Fの対向表面20と底壁面30との交差角度をθ1’とし、配流板2Fの対向表面20の延長線と天井壁面32との交差角度をθ2’とすると、θ1’はθ2’よりも大きく(θ1’>θ2’)設定されている。   Also in the present embodiment, when the sectional view along the vertical direction (FIG. 3) is viewed, the intersection angle between the facing surface 20 of the flow distribution plate 2F and the bottom wall surface 30 is θ1 ′, and the extension line of the facing surface 20 of the flow distribution plate 2F. And θ1 ′ is set to be larger than θ2 ′ (θ1 ′> θ2 ′).

このような本実施例によれば、ガス流路3Aの流路幅のうち、膜電極接合体1の燃料極11に対して最も近い部分の流路幅をD1’とし、膜電極接合体1の燃料極11に対して最も遠い部分、つまりガス流路3Aの奥部36の流路幅をD2’とするとき、D1’はD2’よりも大きく(D1’>D2’)設定されている。   According to such a present Example, among the channel widths of the gas channel 3A, the channel width of the portion closest to the fuel electrode 11 of the membrane electrode assembly 1 is D1 ′, and the membrane electrode assembly 1 D1 ′ is set to be larger than D2 ′ (D1 ′> D2 ′), where D2 ′ is the farthest part of the fuel electrode 11, that is, the flow path width of the inner portion 36 of the gas flow path 3A. .

本実施例においても、実施例1と同様に、燃料極11用の配流板2Fにおいて、液体としての水がガス流路3Aに存在するときであっても、その水をガス流路3Aの底壁面30に沿って、つまり矢印E2方向に沿って、重力方向(矢印G方向)に流下させることができる。即ち、液体としての水を膜電極接合体1の燃料極11のガス拡散層11bからできるだけ離間させることができる。この結果、反応ガスである燃料ガスと膜電極接合体1の燃料極11との接触確率が向上し、燃料ガスの反応効率が向上し、発電効率が向上する。   In the present embodiment, similarly to the first embodiment, in the flow distribution plate 2F for the fuel electrode 11, even when water as a liquid is present in the gas flow path 3A, the water is supplied to the bottom of the gas flow path 3A. It can be made to flow down in the gravity direction (arrow G direction) along the wall surface 30, that is, along the arrow E2 direction. That is, water as a liquid can be separated from the gas diffusion layer 11 b of the fuel electrode 11 of the membrane electrode assembly 1 as much as possible. As a result, the contact probability between the fuel gas, which is the reaction gas, and the fuel electrode 11 of the membrane electrode assembly 1 is improved, the reaction efficiency of the fuel gas is improved, and the power generation efficiency is improved.

更に、配流板2Fにおいても、ガス流路3Aが底壁面30および天井壁面32を備えると共に立壁面34を備えている。従って、ガス流路3Aの奥部36の流路幅D2’を確保できる。故に、ガス流路3Aの奥部36において、底壁面30および天井壁面32における摩擦の影響、あるいは、底壁面30と天井壁面32との間における表面張力等の影響を小さくできる。従って、水がガス流路3Aの奥部36にホールドされにくくなり、水がガス流路3Aの下流側に向けて流れ易くなる利点が得られる。   Further, also in the flow distribution plate 2F, the gas flow path 3A includes the bottom wall surface 30 and the ceiling wall surface 32, and the standing wall surface 34. Therefore, the flow path width D2 'of the inner portion 36 of the gas flow path 3A can be secured. Therefore, the influence of friction on the bottom wall surface 30 and the ceiling wall surface 32 or the influence of surface tension between the bottom wall surface 30 and the ceiling wall surface 32 can be reduced in the inner portion 36 of the gas flow path 3A. Therefore, it is difficult for water to be held in the inner portion 36 of the gas flow path 3A, and there is an advantage that water can easily flow toward the downstream side of the gas flow path 3A.

図4は実施例3を示す。本実施例は実施例1と基本的には同様の構成、同様の作用効果を有する。図4は、配流板2,2Fの厚み方向に沿ったかつ鉛直方向に沿った断面図を示す。ガス流路3Aは、上下方向に沿って配置される配流板2のガス流路3Aの底を形成する底壁面30と、底壁面30に対向する天井壁面32と、膜電極接合体1に対面する立壁面34Bとを備えている。立壁面34Bは、底壁面30および天井壁面32に対して交差する方向に沿って形成されているが、膜電極接合体1から遠ざかる方向に凹むように、断面で円弧凹状をなしている。断面で円弧凹状であれば、断面での角部が低減されるので、ガス流路3Aにおける水や反応ガスの摩擦抵抗が一層小さくなる。   FIG. 4 shows a third embodiment. The present embodiment basically has the same configuration and the same function and effect as the first embodiment. FIG. 4 shows a cross-sectional view along the thickness direction of the flow distribution plates 2 and 2F and along the vertical direction. 3 A of gas flow paths face the bottom wall surface 30 which forms the bottom of the gas flow path 3A of the flow distribution board 2 arrange | positioned along an up-down direction, the ceiling wall surface 32 which opposes the bottom wall surface 30, and the membrane electrode assembly 1. Standing wall surface 34B. The standing wall surface 34 </ b> B is formed along a direction intersecting the bottom wall surface 30 and the ceiling wall surface 32, but has an arc concave shape in cross section so as to be recessed in a direction away from the membrane electrode assembly 1. If the arc is concave in the cross section, the corners in the cross section are reduced, so that the frictional resistance of water and reaction gas in the gas flow path 3A is further reduced.

その他、本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。例えば、ガス流路3Aは、反応ガスを横方向に流しつつも上方向又は下方向に流すように、斜め横方向に沿って延設されている形態でも良い。上記した記載から次の思想も把握できる。   In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications without departing from the scope of the invention. For example, the gas channel 3 </ b> A may be configured to extend along the oblique lateral direction so that the reactive gas flows in the lateral direction but flows upward or downward. The following idea can also be grasped from the above description.

(付記項1)膜電極接合体と、ガス流路をもつ燃料用配流板と、ガス流路をもつ酸化剤ガス用配流板とを厚み方向に積層した燃料電池であって、酸化剤ガス用配流板および/または燃料用配流板において、配流板の厚み方向に沿ったかつ鉛直方向に沿った断面図で、前記ガス流路の少なくとも一部は、上下方向に沿って配置される前記配流板の前記ガス流路の底を形成する底壁面と、前記底壁面に対向する天井壁面と、前記膜電極接合体に対面するように前記底壁面および前記天井壁面に対して交差する方向に沿って形成された立壁面とを備えており、前記底壁面は、鉛直方向と交差する方向において、前記膜電極接合体から離間するにつれて重力方向に向けて下降傾斜していることを特徴とする燃料電池。 (Additional Item 1) A fuel cell in which a membrane electrode assembly, a fuel flow distribution plate having a gas flow path, and an oxidant gas flow distribution plate having a gas flow path are stacked in the thickness direction. In the flow distribution plate and / or the fuel flow distribution plate, the flow distribution plate is a cross-sectional view along the thickness direction of the flow distribution plate and along the vertical direction, and at least a part of the gas flow path is disposed along the vertical direction. A bottom wall surface forming the bottom of the gas flow path, a ceiling wall surface facing the bottom wall surface, and a direction intersecting the bottom wall surface and the ceiling wall surface so as to face the membrane electrode assembly A fuel cell, wherein the bottom wall surface is inclined downward in the direction of gravity as it is separated from the membrane electrode assembly in a direction intersecting the vertical direction. .

本発明は例えば車両用、定置用、電気機器用、電子機器用、携帯用の燃料電池システムに利用できる。   The present invention can be used in, for example, fuel cell systems for vehicles, stationary devices, electric devices, electronic devices, and portable devices.

実施例1に係り、燃料電池の要部の断面図である。FIG. 3 is a cross-sectional view of the main part of the fuel cell according to Example 1; 配流板の正面図である。It is a front view of a distribution board. 実施例2に係り、燃料電池の要部の断面図である。FIG. 6 is a cross-sectional view of the main part of the fuel cell according to Example 2. 実施例3に係り、燃料電池の要部の断面図である。FIG. 10 is a cross-sectional view of the main part of the fuel cell according to Example 3. 従来技術に係り、燃料電池の要部の断面図である。It is sectional drawing of the principal part of a fuel cell concerning a prior art.

符号の説明Explanation of symbols

1は膜電極接合体、2は配流板、3,3Aはガス流路、30は底壁面、32は天井壁面、34は立壁面を示す。   1 is a membrane electrode assembly, 2 is a flow distribution plate, 3 and 3A are gas flow paths, 30 is a bottom wall surface, 32 is a ceiling wall surface, and 34 is a standing wall surface.

Claims (5)

上下方向に沿って配置されており、燃料電池の膜電極接合体に対向する対向表面と前記対向表面に開口する溝状のガス流路とを有する燃料電池用配流板において、
前記配流板の厚み方向かつ鉛直方向に沿った断面図で、前記ガス流路の少なくとも一部は、
上下方向に沿って配置される前記配流板の前記ガス流路の底を形成する底壁面と、前記底壁面に対向する天井壁面と、前記膜電極接合体に対面するように前記底壁面および前記天井壁面に対して交差する方向に沿って形成された立壁面とを備えており、
前記底壁面は、鉛直方向と交差する方向において、前記膜電極接合体から離間するにつれて重力方向に向けて下降傾斜していることを特徴とする燃料電池用配流板。
In the fuel cell distribution plate, which is disposed along the vertical direction and has a facing surface facing the membrane electrode assembly of the fuel cell and a groove-like gas flow channel opening in the facing surface,
In a sectional view along the thickness direction and the vertical direction of the flow distribution plate, at least a part of the gas flow path,
The bottom wall surface forming the bottom of the gas flow path of the flow distribution plate disposed along the vertical direction, the ceiling wall surface facing the bottom wall surface, the bottom wall surface and the membrane electrode assembly so as to face each other And a standing wall formed along a direction intersecting the ceiling wall,
The fuel cell distribution plate according to claim 1, wherein the bottom wall surface is inclined downward in the direction of gravity as it is separated from the membrane electrode assembly in a direction intersecting the vertical direction.
請求項1において、前記配流板の厚み方向かつ鉛直方向に沿った断面図で、前記天井壁面は前記膜電極接合体から離間するにつれて重力方向に向けて下降傾斜していることを特徴とする燃料電池用配流板。   2. The fuel according to claim 1, wherein the ceiling wall surface is downwardly inclined toward the gravitational direction as the distance from the membrane electrode assembly is a cross-sectional view along the thickness direction and the vertical direction of the flow distribution plate. Battery distribution plate. 請求項1または2において、前記配流板の厚み方向かつ鉛直方向に沿った断面図で、前記配流板の前記対向表面と前記底壁面との交差角度をθ1とし、前記配流板の前記対向表面の延長線と前記天井壁面との交差角度をθ2とするとき、θ1はθ2よりも大きく(θ1>θ2)設定されていることを特徴とする燃料電池用配流板。   3. The cross-sectional view along the thickness direction and the vertical direction of the flow distribution plate according to claim 1 or 2, wherein an intersecting angle between the facing surface of the flow distribution plate and the bottom wall surface is θ1, and A fuel cell distribution plate, wherein θ1 is set to be larger than θ2 (θ1> θ2) when an intersection angle between the extension line and the ceiling wall surface is θ2. 請求項1〜3のうちのいずれか一項において、鉛直方向に沿った断面図で、前記ガス流路の流路幅のうち、前記膜電極接合体に対して最も近い部分の流路幅をD1とし、前記膜電極接合体に対して最も遠い部分の流路幅をD2とするとき、D1はD2よりも大きく(D1>D2)設定されていることを特徴とする燃料電池用配流板。   The cross-sectional view along the vertical direction according to any one of claims 1 to 3, wherein the flow path width of the portion closest to the membrane electrode assembly is selected from the flow path widths of the gas flow paths. A fuel cell distribution plate, wherein D1 is set to be greater than D2 (D1> D2), where D1 is a flow path width of a portion farthest from the membrane electrode assembly. 請求項1〜4のうちのいずれか一項において、酸化剤極用および/または燃料極用に用いられることを特徴とする燃料電池用配流板。   5. The fuel cell flow distributor plate according to claim 1, wherein the fuel cell flow distributor plate is used for an oxidant electrode and / or a fuel electrode.
JP2006010107A 2006-01-18 2006-01-18 Flow distribution plate for fuel cell Pending JP2007194038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010107A JP2007194038A (en) 2006-01-18 2006-01-18 Flow distribution plate for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010107A JP2007194038A (en) 2006-01-18 2006-01-18 Flow distribution plate for fuel cell

Publications (1)

Publication Number Publication Date
JP2007194038A true JP2007194038A (en) 2007-08-02

Family

ID=38449578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010107A Pending JP2007194038A (en) 2006-01-18 2006-01-18 Flow distribution plate for fuel cell

Country Status (1)

Country Link
JP (1) JP2007194038A (en)

Similar Documents

Publication Publication Date Title
US8735015B2 (en) Fuel cell
JP6958523B2 (en) Fuel cell
JP7346777B2 (en) Bipolar plate for electrochemical systems
JP7025311B2 (en) Fuel cell
JP2006252803A (en) Fuel cell
US10193165B2 (en) Separator and fuel cell
JP7155364B2 (en) Gas-liquid separator for fuel cells
JP6663553B2 (en) Fuel cell
JP5365162B2 (en) Fuel cell
WO2014039048A1 (en) Reactant flow channel configuration to facilitate water removal
US20130004876A1 (en) Fuel cell stack
JP6123730B2 (en) Fuel cell
JP2016146313A (en) Bipolar plate and direct methanol fuel cell
JP2007194038A (en) Flow distribution plate for fuel cell
JP2014229366A (en) Fuel cell
JP5385033B2 (en) Fuel cell
KR101932803B1 (en) Separator, and Fuel cell stack comprising the same
KR20180069953A (en) Multiple perforation plate for separator of fuel cell
JP2008293728A (en) Gas passage composing member
JP2008153095A (en) Fuel cell separator and fuel battery cell
JP6403099B2 (en) Fuel cell module
JP2007194041A (en) Fuel cell
JP6645765B2 (en) Fuel cell stack
KR102131950B1 (en) Polymer electrolyte membrane fuel cell
KR20200028072A (en) Fuel cell stack