JP2007194030A - Vacuum-resisting multipole penetration connector and manufacturing method of the same - Google Patents

Vacuum-resisting multipole penetration connector and manufacturing method of the same Download PDF

Info

Publication number
JP2007194030A
JP2007194030A JP2006009957A JP2006009957A JP2007194030A JP 2007194030 A JP2007194030 A JP 2007194030A JP 2006009957 A JP2006009957 A JP 2006009957A JP 2006009957 A JP2006009957 A JP 2006009957A JP 2007194030 A JP2007194030 A JP 2007194030A
Authority
JP
Japan
Prior art keywords
vacuum
connector
insulator
resistant
insulators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006009957A
Other languages
Japanese (ja)
Other versions
JP4287859B2 (en
Inventor
Katsunori Iguchi
克紀 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Teli Corp
Original Assignee
Toshiba Teli Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Teli Corp filed Critical Toshiba Teli Corp
Priority to JP2006009957A priority Critical patent/JP4287859B2/en
Publication of JP2007194030A publication Critical patent/JP2007194030A/en
Application granted granted Critical
Publication of JP4287859B2 publication Critical patent/JP4287859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive vacuum-resisting multipole penetration connector usable in a high-vacuum environment, and high in versatility; and to provide a manufacturing method of the same. <P>SOLUTION: This vacuum-resisting multipole penetration connector 14 is manufactured through processes of: applying an epoxy-based adhesive 145 to one-side insulator 141 on the side of a camera body; inserting pin contacts 143, ... with flanges into a plurality of holes (a), ... of the insulator 141 with the adhesive 145 applied thereto; and filling the epoxy-based adhesive 145 between the insulators 141 and 142 and between the pin contacts 143, ... and the insulators 141 and 142 by inserting the pin contacts 143, ... inserted into the holes (a), ... of the insulator 141 into the holes (a), ... of the other-side insulator 142 to tightly fit the pair of insulators 141 and 142 to each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高真空環境下で用いられる耐真空用多極貫通コネクタおよび同コネクタの製造方法に関する。   The present invention relates to a vacuum-resistant multipolar through connector used in a high vacuum environment and a method of manufacturing the connector.

さらに本発明は、真空環境に置かれた筐体内に設けられ大気環境で動作するCCDを前記真空環境で回路接続する際に適用して好適な耐真空用多極貫通コネクタに関する。   Furthermore, the present invention relates to a vacuum-resistant multipolar through connector that is suitable for use in circuit connection in a vacuum environment of a CCD that is provided in a housing placed in a vacuum environment and that operates in an atmospheric environment.

大気側と真空側を隔離するコネクタには高い機密性が要求される。例えば真空環境内にて耐真空用テレビカメラを用いる際に、カメラには、ケーブルと接続するためのコネクタの準備が必要であるが、真空環境下では「金属素材および樹脂材からの放出ガス」「嵌め合い隙間からのリークガス」に対してそれぞれ防止策が必要となることから、一般に流通しているコネクタを使用することはできない。一方、耐真空用として使用可能な密封型の特殊なハーメチックコネクタも存在するが、多極のものは外形が大きく、小型カメラへの取付には不向きであり、またグラスシールのため、高価でかつ取付に密封溶接を必要とする等の問題があることから、実用性に乏しいという問題があった。
特開平10−189091号公報
A connector that separates the atmosphere side and the vacuum side requires high confidentiality. For example, when using a vacuum-resistant TV camera in a vacuum environment, the camera needs to be prepared with a connector for connecting to the cable, but in a vacuum environment, "gas released from metal and resin materials" Since it is necessary to take preventive measures against “leakage gas from the fitting gap”, it is not possible to use a connector that is generally distributed. On the other hand, there is a special hermetic connector that can be used for vacuum resistance, but the multi-pole connector has a large outer shape and is unsuitable for mounting on a small camera. Since there is a problem such as requiring sealing welding for mounting, there is a problem that the practicality is poor.
Japanese Patent Laid-Open No. 10-189091

上述したように、従来では、大気側と真空側を隔離する高い機密性が要求される多極コネクタに、安価で汎用性の高いものが存在しないという問題があった。   As described above, conventionally, there has been a problem that there is no inexpensive and highly versatile multipolar connector that requires high confidentiality to separate the atmosphere side and the vacuum side.

本発明は上記実情に鑑みなされたもので、高真空環境下で用いることのできる、安価で汎用性の高い耐真空用多極貫通コネクタおよび同コネクタの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an inexpensive and versatile vacuum-resistant multipolar through connector that can be used in a high vacuum environment and a method for manufacturing the connector.

本発明は、大気側と真空側を隔離する耐真空用多極貫通コネクタであって、複数の孔を有する一対のインシュレータと、前記インシュレータの孔を貫通した複数のピンコンタクトと、前記インシュレータ相互の間に充填された接着剤とを具備したことを特徴とする。   The present invention is a vacuum-resistant multipolar through connector that separates the atmosphere side and the vacuum side, and includes a pair of insulators having a plurality of holes, a plurality of pin contacts penetrating the holes of the insulator, and a mutual connection between the insulators. And an adhesive filled in between.

また、本発明は、真空環境に置かれた筐体内に設けられ大気環境で動作するCCDを前記真空環境で回路接続する耐真空用多極貫通コネクタであって、前記筐体内に露出する面を有する第1のインシュレータと、前記筐体外に露出する面を有する第2のインシュレータと、前記第1、第2のインシュレータの前記各面に設けられた複数の孔を貫通して前記インシュレータに立設された複数のピンコンタクトと、前記前記第1、第2のインシュレータの相互の間に充填されたエポキシ系接着剤とを具備したことを特徴とする。   The present invention is also a vacuum-resistant multi-pole through connector for connecting a CCD operating in an atmospheric environment provided in a housing placed in a vacuum environment in the vacuum environment, the surface exposed in the housing being A first insulator having a surface, a second insulator having a surface exposed to the outside of the housing, and a plurality of holes provided in each surface of the first and second insulators, and standing on the insulator And a plurality of pin contacts, and an epoxy adhesive filled between the first and second insulators.

また、本発明は、大気側と真空側を隔離する耐真空用多極貫通コネクタの製造方法であって、複数のピンコンタクトが貫通する孔を有した一対のインシュレータのうち、一方のインシュレータの他方のインシュレータと重ね合わせる面にエポキシ系接着剤を塗布する第1の工程と、前記接着剤が塗布されたインシュレータの孔に鍔つきのピンコンタクトを嵌挿する第2の工程と、前記一方のインシュレータの前記孔に嵌挿されたピンコンタクトを前記他方のインシュレータの前記孔に嵌挿して、前記一対のインシュレータを密着させ、前記一対のインシュレータ間および前記ピンコンタクトと前記インシュレータとの間に前記エポキシ系接着剤を充填させる第3の工程とを具備したことを特徴とする。   Further, the present invention is a method for manufacturing a vacuum-resistant multi-pole through connector that separates the atmosphere side and the vacuum side, and among the pair of insulators having holes through which a plurality of pin contacts penetrates, the other of the one insulator A first step of applying an epoxy-based adhesive on a surface to be overlapped with the insulator, a second step of inserting a pinned pin contact into a hole of the insulator to which the adhesive is applied, and a step of The pin contact inserted into the hole is inserted into the hole of the other insulator to closely contact the pair of insulators, and the epoxy-based adhesion between the pair of insulators and between the pin contact and the insulator And a third step of filling the agent.

高真空環境下で用いることのできる、安価で汎用性の高い耐真空用多極貫通コネクタを提供することができる。   It is possible to provide an inexpensive and versatile vacuum-resistant multipolar through connector that can be used in a high vacuum environment.

以下図面を参照して本発明の実施形態を説明する。
本発明の実施形態に係る耐真空用多極貫通コネクタを用いたカメラ装置全体の構成を図1に示す。
本発明の実施形態に係る耐真空用カメラ10は、10−6[Pa]程度の高真空環境にある真空チャンバー(例えば真空室)1の内部に於いて、耐真空用可撓性複合ケーブル20を用いることにより、真空室1内で任意の位置および姿勢制御による被検査体(被写体)2の観察(監視)が可能な構造としている。上記耐真空用カメラ10と、耐真空用可撓性複合ケーブル20との接続インタフェースに本発明に係る耐真空用多極貫通コネクタが用いられる。また、本発明に係る耐真空用多極貫通コネクタは上記耐真空用可撓性複合ケーブル20を接続する真空室の接続口(フランジ部)にも適用可能な構造としている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the overall configuration of a camera apparatus using a vacuum-resistant multipolar through connector according to an embodiment of the present invention.
The vacuum-resistant camera 10 according to the embodiment of the present invention includes a vacuum-resistant flexible composite cable 20 in a vacuum chamber (for example, a vacuum chamber) 1 in a high vacuum environment of about 10 −6 [Pa]. By using this, it is possible to observe (monitor) the object to be inspected (subject) 2 by arbitrary position and posture control in the vacuum chamber 1. The vacuum-resistant multipolar through connector according to the present invention is used for the connection interface between the vacuum-resistant camera 10 and the vacuum-resistant flexible composite cable 20. Further, the vacuum-resistant multipolar through connector according to the present invention has a structure applicable to a connection port (flange portion) of a vacuum chamber to which the vacuum-resistant flexible composite cable 20 is connected.

この耐真空用可撓性複合ケーブル20を用いた耐真空用カメラ10により、真空室1内に於いて、被検査体(被写体)2の位置合わせ、アライメント調整等、被検査体近傍での自由な位置取り、角度設定を可能にした観察用テレビカメラを実現可能にしている。また、電気的特性は一般用カメラと同等でありながら、10−6[Pa]程度の高真空環境下に於いても真空環境へのガス放出がほぼゼロのカメラケーブル付耐真空用カメラを実現している。この耐真空用カメラを実現するため、耐真空用カメラ10、および耐真空用可撓性複合ケーブル20は、それぞれ真空度10−6[Pa]の高真空に晒されても安定に動作し、かつ真空空間への不純物放出(不要ガス放出)を最小限に抑えた構造および材料構成としている。 The vacuum-resistant camera 10 using the vacuum-resistant flexible composite cable 20 can freely position the object to be inspected (subject) 2 in the vacuum chamber 1 and adjust the alignment in the vicinity of the object to be inspected. This makes it possible to realize a TV camera for observation that allows easy positioning and angle setting. In addition, while realizing the same electrical characteristics as a general-purpose camera, a vacuum-proof camera with a camera cable that emits almost no gas into the vacuum environment even in a high vacuum environment of about 10 −6 [Pa] is realized. is doing. In order to realize this vacuum-resistant camera, the vacuum-resistant camera 10 and the vacuum-resistant flexible composite cable 20 operate stably even when exposed to a high vacuum with a degree of vacuum of 10 −6 [Pa]. In addition, the structure and the material structure are such that the emission of impurities (unnecessary gas emission) to the vacuum space is minimized.

真空室1には、耐真空用可撓性複合ケーブル20の接続インタフェースをもつ貫通コネクタ30を備えた密閉構造のフランジ40が設けられる。真空室1内に置かれた耐真空用カメラ10は、耐真空用可撓性複合ケーブル20、およびフランジ40に設けられた貫通コネクタ30を介して真空室1の外部(大気側)に設けられた制御器50に回路接続される。フランジ40は真空室1の規格および寸法に準じた形状および強度とする。貫通コネクタ30は気密性の高い構造とする。制御器50は、耐真空用カメラ10に設けられた撮像素子に駆動信号を送出し、撮像素子の出力信号に従う映像信号を外部へ出力する。   The vacuum chamber 1 is provided with a flange 40 having a sealed structure including a through connector 30 having a connection interface for the vacuum-resistant flexible composite cable 20. The vacuum-resistant camera 10 placed in the vacuum chamber 1 is provided outside (atmosphere side) of the vacuum chamber 1 via a vacuum-resistant flexible composite cable 20 and a through connector 30 provided on the flange 40. The controller 50 is connected to the circuit. The flange 40 has a shape and strength in accordance with the standard and dimensions of the vacuum chamber 1. The through connector 30 has a highly airtight structure. The controller 50 sends a drive signal to the image sensor provided in the vacuum resistant camera 10 and outputs a video signal according to the output signal of the image sensor to the outside.

真空室1内に設けられる耐真空用カメラ10は、撮像素子を収容したカメラ筐体と、撮像素子に結像するレンズを装着するレンズマウントと、撮像素子を回路接続する耐真空用多極貫通コネクタおよびこのコネクタを覆うジャケットとを有し、レンズマウントおよびコネクタジャケットを隔壁にカメラ筐体を密閉した構造としている。これにより真空域内に於いてカメラ筐体に収容された撮像素子は大気側の環境に置かれる。   A vacuum-resistant camera 10 provided in the vacuum chamber 1 includes a camera housing that houses an imaging device, a lens mount that mounts a lens that forms an image on the imaging device, and a vacuum-proof multipolar penetration that connects the imaging device to a circuit. A connector and a jacket covering the connector, and the camera housing is hermetically sealed with a lens mount and a connector jacket as partition walls. As a result, the image pickup device accommodated in the camera housing is placed in the atmosphere on the atmosphere side in the vacuum region.

耐真空用カメラ10の真空中に晒される外筐は、真空中に於いてガス放出が非常に少ない金属材料を用いて構成される。ここでは耐真空用カメラ10の外筐を構成する、カメラ筐体、レンズマウント、ジャケットをすべてステンレス鋼を用いて構成している。この耐真空用カメラ10の具体的な構造については図4乃至図11を参照して後述する。   The outer casing exposed to the vacuum of the vacuum resistant camera 10 is configured using a metal material that emits very little gas in the vacuum. Here, the camera casing, the lens mount, and the jacket constituting the outer casing of the vacuum resistant camera 10 are all made of stainless steel. The specific structure of the vacuum resistant camera 10 will be described later with reference to FIGS.

真空室1内に設けられる耐真空用可撓性複合ケーブル20は、本発明の実施形態に係る耐真空用多極貫通コネクタ(図7乃至図11の符号14参照)に接続される信号ケーブルを構成するもので、真空中での不純物放出を最小限に抑える材料と構造を採用し、定インピーダンスの信号線(同軸芯線)を含んだ多芯ケーブル構造によりカメラ信号(CCD直接駆動信号)の理想的伝送を可能にしている。   A vacuum-resistant flexible composite cable 20 provided in the vacuum chamber 1 is a signal cable connected to a vacuum-resistant multipolar through connector (see reference numeral 14 in FIGS. 7 to 11) according to an embodiment of the present invention. It is composed of materials and structures that minimize the emission of impurities in a vacuum, and is ideal for camera signals (CCD direct drive signals) with a multicore cable structure that includes constant impedance signal lines (coaxial core lines). Transmission is possible.

この耐真空用可撓性複合ケーブル20の断面構造を図2および図3に示し、ケーブルコネクタを設けた同ケーブルを図8に示している。   2 and 3 show the cross-sectional structure of the vacuum-resistant flexible composite cable 20, and FIG. 8 shows the same cable provided with a cable connector.

耐真空用可撓性複合ケーブル20は、真空中において線間および芯線に空気溜まりが生じないよう、また不要ガスが放出されないよう線材および製法を考慮して製造されるもので、図2および図3に示すように、編組シールド21cを外皮とし、フッ素系樹脂を中心導体21aの絶縁材21bとした同軸芯線21,21,…と、フッ素系樹脂を導体22aの絶縁材および外皮22bとした他の芯線22,22,…とを撚り合わせて編組管23に通した後、前記編組管23内で前記同軸芯線21,21,…と、他の芯線22,22,…との撚りを戻して各芯線間を粗密にし、ベーキング処理を施すことにより製造される。なお、上記各芯線21,22は、柔軟性を保ち、かつ長期間の使用に耐えるよう、内部導体21a,22aに撚り線を用いた可撓性ケーブル構造であり、大気中で用いられる通常の可撓性ケーブルとほぼ同様の可撓性を有している。また、上記各芯線21,22の絶縁材21b,22bにフッ素系樹脂を用い、各芯線21,22の導体21a,22a、編組シールド21c、編組管23に銀メッキ線を用いて真空中に不要ガスを放出しない材料構成としている。また、上記ベーキングの処理では、約200℃で十数時間乃至数十時間の真空ベーキングを行い、樹脂内の不要なガス成分を除去する。   The vacuum-resistant flexible composite cable 20 is manufactured in consideration of the wire and the manufacturing method so as not to cause air accumulation between the wires and the core wire in a vacuum and to prevent unnecessary gas from being released. As shown in FIG. 3, the coaxial core wires 21, 21,. Are twisted together and passed through the braided tube 23, and then the twists of the coaxial core wires 21, 21,... And the other core wires 22, 22,. Manufactured by making the gap between the core wires dense and baking. Each of the core wires 21 and 22 has a flexible cable structure using a stranded wire for the internal conductors 21a and 22a so as to maintain flexibility and withstand long-term use. It has almost the same flexibility as a flexible cable. Also, fluorine resin is used for the insulating materials 21b and 22b of the core wires 21 and 22, and the conductors 21a and 22a, the braided shield 21c, and the braided tube 23 of the core wires 21 and 22 are silver plated wires. The material composition does not release gas. In the baking process, vacuum baking is performed at about 200 ° C. for 10 to several tens hours to remove unnecessary gas components in the resin.

このようにして製造した耐真空用可撓性複合ケーブル20は、樹脂絶縁のケーブルであり、ケーブル自体が非常に柔らかに撓ることから、大気中において使用される一般的なカメラケーブルと同様な可撓性を実現でき、被写体に合わせた真空室1内でのカメラの移動、ハンドリングが自由に行える。このようなケーブル構造により、経済的に有利な構成で、電気的特性は、一般用のカメラケーブルと同等でありながら、10−6[Pa]に於いても真空環境へのガス放出がほぼゼロの耐真空用可撓性カメラケーブルが実現できる。 The vacuum-resistant flexible composite cable 20 manufactured in this way is a resin-insulated cable, and the cable itself bends very softly, so that it is similar to a general camera cable used in the atmosphere. Flexibility can be realized, and the camera can be freely moved and handled in the vacuum chamber 1 according to the subject. With such a cable structure, an economically advantageous configuration and electrical characteristics are equivalent to those of a general-purpose camera cable, but gas emission to the vacuum environment is almost zero even at 10 −6 [Pa]. The vacuum resistant flexible camera cable can be realized.

上記した耐真空用可撓性複合ケーブル20の一端には、図4および図8に示すように、耐真空用カメラ10の筐体に設けられた耐真空用多極貫通コネクタ(図7乃至図11の符号14参照)に結合するケーブルコネクタ28が設けられ、他端には、フランジ40の貫通コネクタ30に結合するケーブルコネクタが設けられる。   As shown in FIGS. 4 and 8, one end of the vacuum resistant flexible composite cable 20 is provided with a vacuum resistant multipolar through connector (FIGS. 7 to 7) provided in the housing of the vacuum resistant camera 10. 11 is provided with a cable connector 28 that is coupled to the through connector 30 of the flange 40 at the other end.

上記した耐真空用可撓性複合ケーブル20とともに真空室1内に設けられる耐真空用カメラ10の各部の組み立て構造を図4乃至図11に示している。耐真空用カメラ10全体の外観構造を図4に示し、耐真空用カメラ10のカメラヘッド部の組み立て構造を図5および図6に示し、耐真空用多極貫通コネクタおよびこのコネクタを覆うジャケット部の取付構造を図7および図8に示し、耐真空用多極貫通コネクタの組み立て構造を図9乃至図11に示している。   The assembled structure of each part of the vacuum resistant camera 10 provided in the vacuum chamber 1 together with the above-described vacuum resistant flexible composite cable 20 is shown in FIGS. The external appearance structure of the vacuum resistant camera 10 is shown in FIG. 4, the assembly structure of the camera head portion of the vacuum resistant camera 10 is shown in FIGS. 5 and 6, and a vacuum resistant multipolar through connector and a jacket portion covering this connector 7 and FIG. 8, and the assembly structure of the vacuum-proof multi-pole through connector is shown in FIGS.

真空室1内に設けられる耐真空用カメラ10は、図4乃至図8に示すように、撮像素子(この実施形態ではCCD)で構成したカメラ本体11を収容するカメラ筐体12と、撮像素子に結像するレンズを装着するレンズマウント13と、撮像素子を回路接続する耐真空用多極貫通コネクタ14およびこの貫通コネクタ14を覆うコネクタジャケット(コネクタケース)15とを有して構成される。   As shown in FIGS. 4 to 8, the vacuum-resistant camera 10 provided in the vacuum chamber 1 includes a camera housing 12 that houses a camera body 11 that is configured by an image sensor (CCD in this embodiment), and an image sensor. A lens mount 13 for mounting a lens for imaging, a vacuum-resistant multi-pole through connector 14 for connecting an image pickup device in a circuit, and a connector jacket (connector case) 15 for covering the through connector 14.

さらにカメラ筐体12の外周部には、図4に示すように、真空室1内において、耐真空用カメラ10を図示しないカメラ移動機構(マニピュレータ)に装着するためのクランプ金具18が取り付けられる。この図4では、コネクタジャケット15内に設けられた耐真空用多極貫通コネクタ14に、耐真空用可撓性複合ケーブル20の一端に設けたケーブルコネクタ28が嵌着された状態を例示している。   Further, as shown in FIG. 4, a clamp fitting 18 for attaching the vacuum-resistant camera 10 to a camera moving mechanism (manipulator) (not shown) is attached to the outer peripheral portion of the camera housing 12. FIG. 4 illustrates a state where the cable connector 28 provided at one end of the vacuum resistant flexible composite cable 20 is fitted to the vacuum resistant multipolar through connector 14 provided in the connector jacket 15. Yes.

これら耐真空用カメラ10の外筐を構成するカメラ筐体12、レンズマウント13、およびコネクタジャケット15と、クランプ金具18、およびケーブルコネクタ28の外筐等、真空域に晒される金属材部分は、それぞれステンレス鋼により構成される。なお、図ではレンズマウント13に装着されるレンズおよびレンズケースを示していないが、レンズマウント13に装着されるレンズケースについてもステンレス鋼により構成される。   The metal parts exposed to the vacuum region, such as the camera housing 12, the lens mount 13, and the connector jacket 15, the clamp metal fitting 18, and the outer housing of the cable connector 28 that constitute the outer casing of the vacuum-resistant camera 10, Each is made of stainless steel. Although the lens and the lens case attached to the lens mount 13 are not shown in the drawing, the lens case attached to the lens mount 13 is also made of stainless steel.

図5および図6に示すように、レンズマウント13の撮像面部13bに、機密保持用のOリング133、フロントガラス134、スリップ板135を配置してガラス押さえ132を撮像面部13bに螺合することで、レンズマウント13にフロントガラス134が取着される。さらにレンズマウント13の撮像面部13bに、図6に示すように、レンズケース(図示せず)を装着するためのマウントアダプタ136を螺合し締め付けねじで固定することにより、レンズマウント13にマウントアダプタ136が取着される。このレンズマウント13を撮像面側からみた取付状態を図6(b)に示している。   As shown in FIGS. 5 and 6, an O-ring 133 for maintaining confidentiality, a windshield 134, and a slip plate 135 are arranged on the imaging surface portion 13b of the lens mount 13, and the glass presser 132 is screwed to the imaging surface portion 13b. Thus, the windshield 134 is attached to the lens mount 13. Further, as shown in FIG. 6, a mount adapter 136 for mounting a lens case (not shown) is screwed onto the imaging surface portion 13b of the lens mount 13 and fixed with a tightening screw. 136 is attached. FIG. 6B shows an attachment state when the lens mount 13 is viewed from the imaging surface side.

図5及び図6に示すように、カメラ本体11をレンズマウント13のカメラ装着部13aに嵌挿し、カメラ押さえ131をレンズマウント13に螺合して、レンズマウント13のカメラ装着部13aにカメラ本体11を装着した後、図7に示すように、レンズマウント13の筐体接合部13cに、機密保持用のOリング137を介在して、筒状カメラ筐体12の一端をねじ止めし、カメラ本体11の周囲にカメラ筐体12を取り付けることにより、耐真空用カメラ10のカメラヘッド部が構成される。さらに、図7および図8に示すように、カメラ筐体12の他端に、機密保持用のOリング151を介在して、耐真空用多極貫通コネクタ14を設けたコネクタジャケット15をねじ止めし、カメラ筐体12にコネクタジャケット15を取着することにより、カメラ筐体12を密閉構造にした耐真空用カメラ10が構成される。なお、図7に示す符号19は、耐真空用カメラ10内でカメラ本体11と耐真空用多極貫通コネクタ14とを回路接続する内部配線である。   As shown in FIGS. 5 and 6, the camera body 11 is inserted into the camera mounting portion 13 a of the lens mount 13, the camera holder 131 is screwed into the lens mount 13, and the camera body is attached to the camera mounting portion 13 a of the lens mount 13. 7, as shown in FIG. 7, one end of the cylindrical camera housing 12 is screwed to the housing joint portion 13 c of the lens mount 13 with an O-ring 137 for maintaining confidentiality interposed therebetween. By attaching the camera housing 12 around the main body 11, the camera head portion of the vacuum resistant camera 10 is configured. Further, as shown in FIGS. 7 and 8, a connector jacket 15 provided with a vacuum-resistant multi-pole through connector 14 is screwed to the other end of the camera housing 12 with an O-ring 151 for maintaining confidentiality interposed therebetween. Then, by attaching the connector jacket 15 to the camera housing 12, the vacuum resistant camera 10 in which the camera housing 12 is sealed is configured. Reference numeral 19 shown in FIG. 7 is an internal wiring that connects the camera body 11 and the vacuum-proof multipolar through connector 14 in the vacuum-proof camera 10.

コネクタジャケット15に設けられる耐真空用多極貫通コネクタ14は、図9乃至図11に示すように、複数の孔a,…を有する一対のインシュレータ141,142と、このインシュレータ141,142の孔a,…を貫通した複数のピンコンタクト143,…と、インシュレータ141,142の相互の間に充填された接着剤145とにより構成される。インシュレータ141,142は、ポリエーテル・エーテル・ケトン(PEEK)樹脂により成形される。ピンコンタクト143,…には、金メッキ若しくはSn、Zn成分を含まない無電解ニッケルメッキが施されている。接着剤145には二液混合型エポキシ系接着剤が用いられる。   As shown in FIGS. 9 to 11, the vacuum-resistant multipolar through connector 14 provided in the connector jacket 15 includes a pair of insulators 141, 142 having a plurality of holes a, and holes a of the insulators 141, 142. ,... And a plurality of pin contacts 143... And an adhesive 145 filled between the insulators 141 and 142. The insulators 141 and 142 are formed of a polyether ether ketone (PEEK) resin. The pin contacts 143,... Are plated with gold or electroless nickel that does not contain Sn and Zn components. As the adhesive 145, a two-component mixed epoxy adhesive is used.

この耐真空用多極貫通コネクタ14は、複数のピンコンタクトが貫通する孔を有した一対のインシュレータ141,142のうち、カメラ本体側の一方のインシュレータ141にエポキシ系接着剤145を塗布する第1の工程と、接着剤145が塗布されたインシュレータ141の孔a,…に、鍔つきのピンコンタクト143,…を嵌挿する第2の工程と、インシュレータ141の孔a,…に嵌挿されたピンコンタクト143,…を他方のインシュレータ142の孔a,…に嵌挿して、一対のインシュレータ141,142を密着させ、一対のインシュレータ141,142の間、およびピンコンタクト143,…とインシュレータ141,142との間にエポキシ系接着剤145を充填させる第3の工程と、ピンコンタクト143,…に付着した接着剤145およびインシュレータ141,142の周部から食み出た接着剤145を除去し、接着剤145を硬化させる第4の工程とを経ることによって製造される。   This vacuum-resistant multipolar through connector 14 is a first one in which an epoxy adhesive 145 is applied to one insulator 141 on the camera body side of a pair of insulators 141 and 142 having holes through which a plurality of pin contacts penetrate. , The second step of inserting pinned pin contacts 143 into the holes a of the insulator 141 coated with the adhesive 145, and the pins inserted into the holes a of the insulator 141. The contacts 143 are inserted into the holes a of the other insulator 142 so that the pair of insulators 141 and 142 are brought into close contact with each other, and between the pair of insulators 141 and 142 and between the pin contacts 143 and the insulators 141 and 142. The third step of filling the epoxy adhesive 145 between the pins and the pin contacts 143. The adhesive 145 exiting run off from the peripheral portion of the adhesive 145 and the insulator 141 and 142 was removed, is prepared by passing through a fourth step of curing the adhesive 145.

上記一対のインシュレータ141,142のうち、カメラ本体側の一方のインシュレータ141には、図9に示すように、他方のインシュレータ142と接合する面側に凹陥部Aが形成され、この凹陥部Aの底部にピンコンタクト取付用の複数の孔a,…が設けられている。凹陥部Aには高い鍔部Bと、低い鍔部Cが形成され、鍔部Cが、上記凹陥部Aに塗布した接着剤145の余剰分の逃げ溝となる。   Of the pair of insulators 141 and 142, one insulator 141 on the camera body side is formed with a recessed portion A on the surface side to be joined to the other insulator 142 as shown in FIG. A plurality of holes a for attaching pin contacts are provided at the bottom. The recessed part A is formed with a high collar part B and a low collar part C, and the collar part C serves as a relief groove for an excess of the adhesive 145 applied to the concave part A.

上記第1の工程では、インシュレータ141の凹陥部Aに、鍔部Cを超える程度の高さまで接着剤145を塗布する。   In the first step, the adhesive 145 is applied to the recessed portion A of the insulator 141 to a height that exceeds the flange portion C.

上記第2の工程では、インシュレータ141の凹陥部Aの底部に設けられた孔a,…に、鍔つきのピンコンタクト143,…を嵌挿する。   In the second step, pinned pin contacts 143,... Are inserted into holes a,... Provided in the bottom of the recessed portion A of the insulator 141.

上記第3の工程では、ピンコンタクト143,…を他方のインシュレータ142の孔a,…に嵌挿して、一対のインシュレータ141,142を密着させることにより、一対のインシュレータ141,142の間、およびピンコンタクト143,…とインシュレータ141,142との間にエポキシ系接着剤145が充填されるが、この際、余剰接着剤が鍔部Cを逃げ溝にしてインシュレータ141,142の周部から食み出る。この食み出た接着剤145を上記第4工程で拭き取る。さらに第4の工程では、図11に示すように、耐真空用可撓性複合ケーブル20に接続して用いるケーブルコネクタ28を利用して、一対のインシュレータ141,142の間、およびピンコンタクト143,…とインシュレータ141,142との間の各間隙に充填されたエポキシ系接着剤145を硬化させる。これにより、後に嵌着されるケーブルコネクタ28に馴染んだ、円滑に脱着可能な耐真空用多極貫通コネクタ14が製造できる。   In the third step, the pin contacts 143,... Are inserted into the holes a,... Of the other insulator 142 and the pair of insulators 141, 142 are brought into close contact with each other. The epoxy adhesive 145 is filled between the contacts 143,... And the insulators 141, 142. At this time, the excess adhesive protrudes from the peripheral portions of the insulators 141, 142 using the flange C as a relief groove. . The protruding adhesive 145 is wiped off in the fourth step. Further, in the fourth step, as shown in FIG. 11, the cable connector 28 used by being connected to the vacuum-resistant flexible composite cable 20 is used to connect between the pair of insulators 141 and 142 and the pin contacts 143 and 143. The epoxy adhesive 145 filled in the gaps between the insulators 141 and 142 is cured. As a result, the vacuum-resistant multipolar through connector 14 that can be smoothly attached and detached, which is familiar with the cable connector 28 to be fitted later, can be manufactured.

このような製造工程を経て図11に示すような耐真空用多極貫通コネクタ14が製造される。
この耐真空用多極貫通コネクタ14のインシュレータ周部にエポキシ系接着剤を塗布し、耐真空用多極貫通コネクタ14を、図7および図8に示すように、コネクタジャケット15のコネクタ装着部15aに嵌挿して、コネクタ押さえ153をコネクタ装着部15aに螺合することにより、耐真空用多極貫通コネクタ14とコネクタ装着部15aとの間隙にエポキシ系接着剤が充填された状態で耐真空用多極貫通コネクタ14がコネクタジャケット15に取着される。
Through such a manufacturing process, the vacuum-proof multipolar through connector 14 as shown in FIG. 11 is manufactured.
An epoxy adhesive is applied to the insulator peripheral portion of the vacuum-resistant multipolar through connector 14, and the vacuum resistant multipolar through connector 14 is connected to the connector mounting portion 15a of the connector jacket 15 as shown in FIGS. And the connector holder 153 is screwed into the connector mounting portion 15a, so that the gap between the vacuum-resistant multipolar through connector 14 and the connector mounting portion 15a is filled with an epoxy adhesive. The multipolar through connector 14 is attached to the connector jacket 15.

これにより真空側と大気側とを耐真空用多極貫通コネクタ14で隔離したコネクタジャケット15が構成される。なお、上記した耐真空用多極貫通コネクタ14の構造は、耐真空用カメラ10の貫通コネクタだけでなく、例えば密閉構造のフランジ40に設けられた貫通コネクタ30にも適用することができる。   As a result, a connector jacket 15 is formed in which the vacuum side and the atmosphere side are separated by the vacuum-resistant multipolar through connector 14. Note that the structure of the vacuum-resistant multipolar through connector 14 described above can be applied not only to the through connector of the vacuum resistant camera 10, but also to the through connector 30 provided on the flange 40 having a sealed structure, for example.

上記した耐真空用可撓性複合ケーブル20を用いた耐真空用カメラ10を真空域内の監視・観察用カメラとして用いることにより、真空域内における被検査体(被写体)の位置合わせ、アライメント調整等、被検査体近傍での自由な位置取り、角度設定を可能にした、経済的に有利な構成の監視・観察用テレビカメラを実現することができる。この耐真空用可撓性複合ケーブル20を用いた耐真空用カメラ10は、例えば、真空成膜装置(成膜蒸着、スパッタリングなど)やその他の真空設備など各種の産業用真空装置に適用できる。   By using the vacuum-resistant camera 10 using the above-described vacuum-resistant flexible composite cable 20 as a monitoring / observation camera in the vacuum region, alignment of the object to be inspected (subject) in the vacuum region, alignment adjustment, etc. It is possible to realize a monitoring / observation television camera having an economically advantageous configuration that enables free positioning and angle setting in the vicinity of the object to be inspected. The vacuum-resistant camera 10 using the vacuum-resistant flexible composite cable 20 can be applied to various industrial vacuum apparatuses such as a vacuum film forming apparatus (deposition deposition, sputtering, etc.) and other vacuum equipment.

上記した実施形態では、耐真空用カメラ10の外筐を構成する、カメラ本体12、レンズマウント13、ジャケット15をすべてステンレス鋼を用いて構成しているが、真空中に於いてガス放出が非常に少ない、例えばアルミニウム等の金属材料を用いて構成することも可能である。   In the above-described embodiment, the camera body 12, the lens mount 13, and the jacket 15 that constitute the outer casing of the vacuum resistant camera 10 are all made of stainless steel. For example, it is possible to use a metal material such as aluminum.

また、上記耐真空用可撓性複合ケーブル20に照明用配線を設け、上記耐真空用多極貫通コネクタ14に照明用配線のピンコンタクトを設け、上記レンズマウント13にLED設けることで、照明機能をもつ耐真空用カメラ10を提供することができる。   Further, an illumination function is provided by providing illumination wiring on the vacuum-resistant flexible composite cable 20, providing pin contacts of illumination wiring on the vacuum-resistant multipolar through connector 14, and providing LEDs on the lens mount 13. It is possible to provide a vacuum-resistant camera 10 having

本発明の実施形態に係る耐真空用多極貫通コネクタを用いた耐真空用カメラの構成を示すブロック図。1 is a block diagram showing the configuration of a vacuum resistant camera using a vacuum resistant multipolar through connector according to an embodiment of the present invention. 上記実施形態に係る耐真空用多極貫通コネクタに用いられる耐真空用可撓性複合ケーブルの断面構造を示す図。The figure which shows the cross-section of the vacuum-resistant flexible composite cable used for the vacuum-proof multipolar penetration connector which concerns on the said embodiment. 上記図2に示す耐真空用可撓性複合ケーブルに含まれる同軸芯線の断面構造を示す図。The figure which shows the cross-section of the coaxial core wire contained in the flexible composite cable for vacuum resistance shown in the said FIG. 上記実施形態に係る耐真空用カメラの外観構造を示す図。The figure which shows the external appearance structure of the camera for vacuum resistant which concerns on the said embodiment. 上記実施形態に係る耐真空用カメラのカメラヘッド部の組立構造を示す図。The figure which shows the assembly structure of the camera head part of the vacuum-resistant camera which concerns on the said embodiment. 上記実施形態に係る耐真空用カメラのカメラヘッド部の組立構造を示す図。The figure which shows the assembly structure of the camera head part of the vacuum-resistant camera which concerns on the said embodiment. 上記実施形態に係る耐真空用カメラの組立構造を示す図。The figure which shows the assembly structure of the vacuum-resistant camera which concerns on the said embodiment. 上記実施形態に係る耐真空用カメラの組立構造を示す図。The figure which shows the assembly structure of the vacuum-resistant camera which concerns on the said embodiment. 上記実施形態に係る耐真空用多極貫通コネクタの組立構造を示す図。The figure which shows the assembly structure of the multipolar penetration connector for vacuum resistance which concerns on the said embodiment. 上記実施形態に係る耐真空用多極貫通コネクタの組立構造を示す図。The figure which shows the assembly structure of the multipolar penetration connector for vacuum resistance which concerns on the said embodiment. 上記実施形態に係る耐真空用多極貫通コネクタの外観構造を示す図。The figure which shows the external appearance structure of the multipolar penetration connector for vacuum resistance which concerns on the said embodiment.

符号の説明Explanation of symbols

1…真空チャンバー(例えば真空室)、2…被検査体(被写体)、10…耐真空用カメラ、11…カメラ本体(CCDユニット)、12…カメラ筐体、13…レンズマウント、14…耐真空用多極貫通コネクタ、15…コネクタジャケット(コネクタケース)、15a…コネクタ装着部、18…クランプ金具、20…耐真空用可撓性複合ケーブル、28…ケーブルコネクタ、30…貫通コネクタ、40…フランジ、50…制御器、141,142…インシュレータ、143…ピンコンタクト、145…接着剤(二液混合型エポキシ系接着剤)、153…コネクタ押さえ、A…凹陥部、B…高い鍔部、C…低い鍔部。   DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber (for example, vacuum chamber), 2 ... Test object (subject), 10 ... Vacuum resistant camera, 11 ... Camera body (CCD unit), 12 ... Camera housing, 13 ... Lens mount, 14 ... Vacuum resistant Multi-pole through connector, 15 ... Connector jacket (connector case), 15a ... Connector mounting portion, 18 ... Clamp fitting, 20 ... Flexible composite cable for vacuum resistance, 28 ... Cable connector, 30 ... Through connector, 40 ... Flange , 50 ... Controller, 141, 142 ... Insulator, 143 ... Pin contact, 145 ... Adhesive (two-component mixed epoxy adhesive), 153 ... Connector press, A ... Recessed part, B ... High collar, C ... Low buttocks.

Claims (10)

大気側と真空側を隔離する耐真空用多極貫通コネクタであって、
複数の孔を有する一対のインシュレータと、
前記インシュレータの孔を貫通した複数のピンコンタクトと、
前記インシュレータ相互の間に充填された接着剤と
を具備したことを特徴とする耐真空用多極貫通コネクタ。
A multi-pole through connector for vacuum resistance that separates the atmosphere side and the vacuum side,
A pair of insulators having a plurality of holes;
A plurality of pin contacts penetrating through the holes of the insulator;
An anti-vacuum multipolar through connector having an adhesive filled between the insulators.
少なくとも一方のインシュレータは、凹陥部を有し、この凹陥部に前記接着剤を充填したことを特徴とする請求項1記載の耐真空用多極貫通コネクタ。   2. The vacuum-resistant multipolar through connector according to claim 1, wherein at least one of the insulators has a recessed portion, and the recessed portion is filled with the adhesive. 前記凹陥部の底部に前記複数のピンコンタクトが貫通する複数の孔を設けたことを特徴とする請求項2記載の耐真空用多極貫通コネクタ。   3. The vacuum-resistant multipolar through connector according to claim 2, wherein a plurality of holes through which the plurality of pin contacts penetrates are provided at the bottom of the recessed portion. 前記接着剤は二液混合型エポキシ系接着剤であることを特徴とする請求項3記載の耐真空用多極貫通コネクタ。   The vacuum-resistant multipolar through connector according to claim 3, wherein the adhesive is a two-component mixed epoxy adhesive. 前記ピンコンタクトは金メッキ若しくは無電解ニッケルメッキされていることを特徴とする請求項4記載の耐真空用多極貫通コネクタ。   5. The multipolar through connector for vacuum resistance according to claim 4, wherein the pin contact is plated with gold or electroless nickel. 前記インシュレータは、ポリエーテル・エーテル・ケトン樹脂により成形したことを特徴とする請求項5記載の耐真空用多極貫通コネクタ。   6. The vacuum-resistant multipolar through connector according to claim 5, wherein the insulator is formed of a polyether / ether / ketone resin. 真空環境に置かれた筐体内に設けられ大気環境で動作するCCDを前記真空環境で回路接続する耐真空用多極貫通コネクタであって、
前記筐体内に露出する面を有する第1のインシュレータと、
前記筐体外に露出する面を有する第2のインシュレータと、
前記第1、第2のインシュレータの前記各面に設けられた複数の孔を貫通して前記インシュレータに立設された複数のピンコンタクトと、
前記前記第1、第2のインシュレータの相互の間に充填されたエポキシ系接着剤と
を具備したことを特徴とする耐真空用多極貫通コネクタ。
A multi-pole through connector for vacuum resistance that connects a circuit that operates in an atmospheric environment provided in a vacuum environment and operates in an atmospheric environment.
A first insulator having a surface exposed in the housing;
A second insulator having a surface exposed outside the housing;
A plurality of pin contacts erected on the insulator through a plurality of holes provided on the respective surfaces of the first and second insulators;
An anti-vacuum multipolar through connector having an epoxy adhesive filled between the first and second insulators.
前記第1のインシュレータは、凹陥部を有し、前記凹陥部の底部に前記複数のピンコンタクトが貫通する複数の孔を有して、前記凹陥部に前記接着剤が充填されることを特徴とする請求項7記載の耐真空用多極貫通コネクタ。   The first insulator has a recessed portion, and has a plurality of holes through which the plurality of pin contacts penetrate at the bottom of the recessed portion, and the recessed portion is filled with the adhesive. The multipolar through connector for vacuum resistance according to claim 7. 大気側と真空側を隔離する耐真空用多極貫通コネクタの製造方法であって、
複数のピンコンタクトが貫通する孔を有した一対のインシュレータのうち、一方のインシュレータの他方のインシュレータと重ね合わせる面にエポキシ系接着剤を塗布する第1の工程と、
前記接着剤が塗布されたインシュレータの孔に鍔つきのピンコンタクトを嵌挿する第2の工程と、
前記一方のインシュレータの前記孔に嵌挿されたピンコンタクトを前記他方のインシュレータの前記孔に嵌挿して、前記一対のインシュレータを密着させ、前記一対のインシュレータ間および前記ピンコンタクトと前記インシュレータとの間に前記エポキシ系接着剤を充填させる第3の工程と
を具備したことを特徴とする耐真空用多極貫通コネクタの製造方法。
A method for manufacturing a vacuum-resistant multi-pole through connector that separates the atmosphere side and the vacuum side,
A first step of applying an epoxy-based adhesive to a surface of one insulator that overlaps the other insulator of the pair of insulators having a hole through which a plurality of pin contacts pass;
A second step of inserting a pinned pin contact into the hole of the insulator coated with the adhesive;
A pin contact inserted into the hole of the one insulator is inserted into the hole of the other insulator to closely contact the pair of insulators, and between the pair of insulators and between the pin contact and the insulator. And a third step of filling the epoxy-based adhesive with a vacuum-resistant multi-pole through connector manufacturing method.
前記一対のインシュレータに立設した前記ピンコンタクトを、後に嵌着されるケーブルコネクタに仮嵌着させて前記エポキシ系接着剤を硬化させる第4の工程をさらに具備したことを特徴とする請求項7記載の耐真空用多極貫通コネクタの製造方法。   8. The method according to claim 7, further comprising a fourth step of temporarily fitting the pin contacts erected on the pair of insulators to a cable connector to be fitted later to cure the epoxy adhesive. The manufacturing method of the vacuum-proof multipolar penetration connector of description.
JP2006009957A 2006-01-18 2006-01-18 Vacuum resistant camera and method for manufacturing vacuum resistant multi-pole through connector used for vacuum resistant camera Expired - Fee Related JP4287859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009957A JP4287859B2 (en) 2006-01-18 2006-01-18 Vacuum resistant camera and method for manufacturing vacuum resistant multi-pole through connector used for vacuum resistant camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009957A JP4287859B2 (en) 2006-01-18 2006-01-18 Vacuum resistant camera and method for manufacturing vacuum resistant multi-pole through connector used for vacuum resistant camera

Publications (2)

Publication Number Publication Date
JP2007194030A true JP2007194030A (en) 2007-08-02
JP4287859B2 JP4287859B2 (en) 2009-07-01

Family

ID=38449572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009957A Expired - Fee Related JP4287859B2 (en) 2006-01-18 2006-01-18 Vacuum resistant camera and method for manufacturing vacuum resistant multi-pole through connector used for vacuum resistant camera

Country Status (1)

Country Link
JP (1) JP4287859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361206A (en) * 2011-06-27 2012-02-22 北京新风机械厂 Glue-filling solid-sealing method of micro-rectangular pressing-connection electric connector insertion piece of elastic insertion pin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361206A (en) * 2011-06-27 2012-02-22 北京新风机械厂 Glue-filling solid-sealing method of micro-rectangular pressing-connection electric connector insertion piece of elastic insertion pin

Also Published As

Publication number Publication date
JP4287859B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US6305975B1 (en) Electrical connector feedthrough to low pressure chamber
US8816196B2 (en) Pressure balanced connector termination
US7798847B2 (en) Inner conductor sealing insulator for coaxial connector
US20100201794A1 (en) Image pickup apparatus and endoscope having the same
TW200820520A (en) Flexible RF seal for coaxial cable connector
WO2011142322A1 (en) Cable connection structure and endoscope device
US11374343B2 (en) Method of preventing moisture intrusion through the cable exit of an enclosure comprising terminals
JP4192181B2 (en) Vacuum resistant camera
US8298008B2 (en) Mounting assembly and cable assembly
JP4287859B2 (en) Vacuum resistant camera and method for manufacturing vacuum resistant multi-pole through connector used for vacuum resistant camera
JP2020154304A (en) Structure of endoscope device
JP2007007429A (en) Imaging device
JP5154480B2 (en) Current introduction structure
US10980408B2 (en) Medical camera head and medical camera apparatus
JP4224495B2 (en) Method for producing flexible composite cable for vacuum resistance and flexible composite cable for vacuum resistance
JP3207130B2 (en) Electronic endoscope
CN107428013B (en) Power supply assembly
JPH10262927A (en) Endoscope image pickup device
JPS6265010A (en) Endoscope
US6818826B2 (en) Fixing structure of signal cable
JP2011024800A (en) Endoscope
CN111769398A (en) Vacuum-penetrating type high-pressure quick-inserting device
JP4976956B2 (en) Electronic endoscope
JP7183323B2 (en) Plug connection for video endoscope, video endoscope and method for manufacturing the plug connection
JP2902654B2 (en) Electrical connector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees