JP2007193276A - Optical compensation film, polarizing plate and liquid crystal display apparatus - Google Patents

Optical compensation film, polarizing plate and liquid crystal display apparatus Download PDF

Info

Publication number
JP2007193276A
JP2007193276A JP2006013836A JP2006013836A JP2007193276A JP 2007193276 A JP2007193276 A JP 2007193276A JP 2006013836 A JP2006013836 A JP 2006013836A JP 2006013836 A JP2006013836 A JP 2006013836A JP 2007193276 A JP2007193276 A JP 2007193276A
Authority
JP
Japan
Prior art keywords
group
film
anisotropic layer
liquid crystal
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006013836A
Other languages
Japanese (ja)
Inventor
Akinobu Ushiyama
章伸 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006013836A priority Critical patent/JP2007193276A/en
Publication of JP2007193276A publication Critical patent/JP2007193276A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical compensation film which fully demonstrates optical compensation ability without spoiling frontal contrast of a liquid crystal display apparatus. <P>SOLUTION: The optical compensation film contains at least a 1st optical anisotropic layer and a 2nd optical anisotropic layer. In-plane retardation of the 1st optical anisotropic layer is 0 to 10 nm and retardation in a thickness direction is -400 to -80 nm. In-plane retardation of the 2nd optical anisotropic layer is 20 to 150 nm and retardation in the thickness direction is 100 to 300 nm. The optical compensation film satisfies a relational formula (1): 0<Hz(B+L)<1.0%, a relational formula (2): 0<Hz(B)<1.0% and a relational formula (3): Hz(B+L)/Hz(B)<1.3, wherein Hz(B)(%) denotes haze of the 2nd optical anisotropic layer and Hz(B+L)(%) denotes haze of a laminated body constituted of the 1st optical anisotropic layer and the 2nd optical anisotropic layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は液晶表示装置の技術分野に関し、特にIPSモードやFFSモードの液晶表示装置等に関する。また、本発明は、IPSモード等の液晶表示装置の表示特性の改善、特に視野角の拡大に寄与する光学補償フィルム、及びそれを用いた偏光板に関する。   The present invention relates to the technical field of liquid crystal display devices, and more particularly, to IPS mode and FFS mode liquid crystal display devices and the like. The present invention also relates to an optical compensation film that contributes to improvement in display characteristics of a liquid crystal display device such as an IPS mode, in particular, an increase in viewing angle, and a polarizing plate using the same.

液晶表示装置としては、2枚の直交した偏光板の間に、ネマチック液晶をツイスト配列させた液晶層を挟み、電界を基板に対して垂直な方向にかける方式、いわゆるTNモードが広く用いられている。この方式では、黒表示時に液晶が基板に対して立ち上がるために、斜めから見ると液晶性化合物による複屈折が発生し、光漏れが起こる。この問題に対して、液晶性化合物がハイブリッド配向したフィルムを用いることで、液晶セルを光学的に補償し、この光漏れを防止する方式が実用化されている。しかし、液晶性化合物を用いても液晶セルを問題なく完全に光学的に補償することは非常に難しく、画面下方向での諧調反転が抑えきれないという問題を生じていた。   As a liquid crystal display device, a so-called TN mode, in which a liquid crystal layer in which nematic liquid crystal is twisted and arranged between two orthogonal polarizing plates, and an electric field is applied in a direction perpendicular to the substrate is widely used. In this method, since the liquid crystal rises with respect to the substrate during black display, birefringence due to the liquid crystalline compound occurs when viewed from an oblique direction, and light leakage occurs. In order to solve this problem, a system in which a liquid crystal cell is optically compensated and a light leakage is prevented by using a film in which liquid crystal compounds are hybrid-aligned has been put into practical use. However, even if a liquid crystal compound is used, it is very difficult to completely optically compensate the liquid crystal cell without any problem, resulting in a problem that gradation reversal in the lower direction of the screen cannot be suppressed.

かかる問題を解決するため、横電界を液晶に対して印加する、いわゆるIPSモードやFFSモードによる液晶表示装置や、誘電率異方性が負の液晶を垂直配向してパネル内に形成した突起やスリット電極によって配向分割した垂直配向(VA)モードが提案され、実用化されている。近年、これらのパネルはモニター用途に留まらず、テレビ用途として開発が進められており、それに伴って画面の輝度が大きく向上してきている。このため、これらの動作モードで従来問題とされていなっかった、黒表示時の対角位斜め入射方向での僅かな光漏れが表示品質の低下の原因として顕在化してきた。   In order to solve such a problem, a liquid crystal display device using a so-called IPS mode or FFS mode in which a lateral electric field is applied to the liquid crystal, a protrusion formed in the panel by vertically aligning a liquid crystal having a negative dielectric anisotropy, A vertical alignment (VA) mode in which alignment is divided by a slit electrode has been proposed and put into practical use. In recent years, these panels have been developed not only for monitor applications but also for TV applications, and screen brightness has been greatly improved accordingly. For this reason, slight light leakage in the diagonally oblique incidence direction during black display, which has not been considered as a problem in these operation modes, has become apparent as a cause of deterioration in display quality.

この色調や黒表示の視野角を改善する手段の一つとして、液晶層と偏光板の間に複屈折特性を有する光学補償材料を配置することがIPSやFFSモードにおいても検討されている。例えば、傾斜時の液晶層のレタデーションの増減を補償する作用を有する光軸を互いに直交した複屈折媒体を基板と偏光板との間に配置することで、白表示又は中間調表示を斜め方向から直視した場合の色付きが改善できることが開示されている(特許文献1参照)。また、負の固有複屈折を有するスチレン系ポリマーやディスコティック液晶性化合物からなる光学補償フィルムを使用した方法(特許文献2、3、4参照)や光学補償フィルムとして複屈折が正で光学軸がフィルムの面内にある膜と複屈折が正で光学軸がフィルムの法線方向にある膜とを組み合わせる方法(特許文献5参照)、レタデーションが二分の一波長の二軸性の光学補償シートを使用する方法(特許文献6参照)、偏光板の保護膜として負のレタデーションを有する膜を使い、この表面に正のレタデーションを有する光学補償層を設ける方式(特許文献7参照)が提案されている。   As one means for improving the color tone and the viewing angle of black display, disposing an optical compensation material having birefringence characteristics between the liquid crystal layer and the polarizing plate is also studied in the IPS and FFS modes. For example, by arranging a birefringent medium having an optical axis orthogonal to each other to compensate for increase / decrease in retardation of the liquid crystal layer at the time of inclination between the substrate and the polarizing plate, white display or halftone display can be performed from an oblique direction. It has been disclosed that coloring in direct viewing can be improved (see Patent Document 1). In addition, as a method using an optical compensation film made of a styrene polymer having a negative intrinsic birefringence or a discotic liquid crystalline compound (see Patent Documents 2, 3, and 4), the optical compensation film has a positive birefringence and an optical axis. A method of combining a film in the plane of a film with a film having a positive birefringence and an optical axis in the normal direction of the film (see Patent Document 5), a biaxial optical compensation sheet having a retardation of half a wavelength A method of using (see Patent Document 6) and a method of using a film having a negative retardation as a protective film of a polarizing plate and providing an optical compensation layer having a positive retardation on this surface (see Patent Document 7) have been proposed. .

特開平9−80424号公報Japanese Patent Laid-Open No. 9-80424 特開平10−54982号公報Japanese Patent Laid-Open No. 10-54982 特開平11−202323号公報JP-A-11-202323 特開平9−292522号公報Japanese Patent Laid-Open No. 9-292522 特開平11−133408号公報JP 11-133408 A 特開平11−305217号公報JP-A-11-305217 特開平10−307291号公報JP-A-10-307291

本発明は前記諸問題に鑑みなされたものであって、液晶表示装置、特にIPSモードやFFSモードの液晶表示装置、の正面コントラストを低下させることなく、斜め方向、例えば60°からの漏れ光及び色み変化の軽減に寄与する光学補償フィルム及び偏光板を提供することを課題とする。また、本発明は、黒輝度が低く、正面コントラスト比が改善された液晶表示装置、特にIPSモードの液晶表示装置を提供することを課題とする。   The present invention has been made in view of the above-mentioned problems, and it does not reduce front contrast of a liquid crystal display device, particularly a liquid crystal display device in an IPS mode or an FFS mode, and leaks light from an oblique direction, for example, 60 °. It is an object of the present invention to provide an optical compensation film and a polarizing plate that contribute to the reduction of color change. Another object of the present invention is to provide a liquid crystal display device with low black luminance and an improved front contrast ratio, particularly an IPS mode liquid crystal display device.

前記課題を解決するための手段は以下の通りである。
[1] 少なくとも第1の光学異方性層及び第2の光学異方性層を含み、該第1の光学異方性層の面内のレタデーションが0〜10nmであり、厚さ方向のレタデーションが−400〜−80nmであり、該第2の光学異方性層の面内のレタデーションが20〜150nmであり、厚さ方向のレタデーションが100〜300nmである光学補償フィルムであって、該第2の光学異方性層のヘイズをHz(B)(%)とし、さらに該第1の光学異方性層と該第2の光学異方性層の積層体からなるヘイズをHz(B+L)(%)とすると、下記関係式(1)〜(3)を満足する光学補償フィルム:
(1) 0<Hz(B+L)<1.0%
(2) 0<Hz(B)<1.0%
(3) Hz(B+L)/Hz(B)<1.3。
Means for solving the above-mentioned problems are as follows.
[1] It includes at least a first optical anisotropic layer and a second optical anisotropic layer, the in-plane retardation of the first optical anisotropic layer is 0 to 10 nm, and the retardation in the thickness direction Is an optical compensation film having an in-plane retardation of the second optically anisotropic layer of 20 to 150 nm and a retardation in the thickness direction of 100 to 300 nm, The haze of the optically anisotropic layer 2 is set to Hz (B) (%), and the haze made of the laminate of the first optically anisotropic layer and the second optically anisotropic layer is set to Hz (B + L). (%), An optical compensation film satisfying the following relational expressions (1) to (3):
(1) 0 <Hz (B + L) <1.0%
(2) 0 <Hz (B) <1.0%
(3) Hz (B + L) / Hz (B) <1.3.

[2] 前記第2の光学異方性層が、横延伸法、縦延伸法、同時二軸延伸法又は逐次二軸延伸法により延伸されたセルロースアシレートフィルムからなる[1]の光学補償フィルム。
[3] 前記第1の光学異方性層が、棒状液晶化合物を含有する組成物からなり、層中において該棒状液晶化合物の分子が層面に対して実質的に垂直に配向しており、その配向状態に固定されている[1]又は[2]の光学補償フィルム。
[4] 前記第1の光学異方性層が、フルオロ脂肪族基含有モノマーより誘導される繰り返し単位と下記一般式(1)で表される繰り返し単位とを含む共重合体(ポリマーA)の少なくとも一種を含有する[1]〜[3]のいずれかの光学補償フィルム:
[2] The optical compensation film according to [1], wherein the second optically anisotropic layer is made of a cellulose acylate film stretched by a transverse stretching method, a longitudinal stretching method, a simultaneous biaxial stretching method, or a sequential biaxial stretching method. .
[3] The first optically anisotropic layer is composed of a composition containing a rod-like liquid crystal compound, and the molecules of the rod-like liquid crystal compound are aligned substantially perpendicular to the layer surface in the layer, The optical compensation film of [1] or [2] fixed in an orientation state.
[4] A copolymer (polymer A) in which the first optically anisotropic layer contains a repeating unit derived from a fluoroaliphatic group-containing monomer and a repeating unit represented by the following general formula (1) The optical compensation film according to any one of [1] to [3], which contains at least one kind:

一般式(1)

Figure 2007193276
General formula (1)
Figure 2007193276

式中、R1、R2及びR3は、それぞれ独立に、水素原子、又は置換基を表し;Lは下記の連結基群から選ばれる2価の連結基又は下記の連結基群から選ばれる2つ以上を組み合わせて形成される2価の連結基を表し、
(連結基群)
単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基;
Qはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は親水性基(−OH)を表す。
In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent; L is selected from a divalent linking group selected from the following linking group group or the following linking group group. Represents a divalent linking group formed by combining two or more,
(Linked group group)
Single bond, —O—, —CO—, —NR 4 — (R 4 represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group), —S—, —SO 2 —, —P (═O) (OR 5 ) — (R 5 represents an alkyl group, an aryl group, or an aralkyl group), an alkylene group, and an arylene group;
Q is a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, or phosphonoxy {—OP (═O) (OH) 2 } or a salt thereof, or a hydrophilic group (—OH). Represents.

[5] 前記第1の光学異方性層が、オニウム塩の少なくとも一種を含有する[1]〜[4]のいずれかの光学補償フィルム。
[6] [1]〜[5]のいずれかの光学補償フィルムと、偏光膜とを有する偏光板。
[7] 前記光学補償フィルムと前記偏光膜との間には実質的に等方的な接着剤層及び/又は実質的に等方的な保護フィルムのみが含まれる[6]の偏光板。
[8] 前記透明保護フィルムが、セルロースアシレートを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである[7]の偏光板。
[9] 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光膜が、この順で積層されており、かつ、第2の光学異方性層の遅相軸の方向と前記偏光膜の吸収軸の方向とが、実質的に直交している[6]〜[8]のいずれかの偏光板。
[10] 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光膜が、この順で積層されており、かつ、前記第2の光学異方性層の遅相軸の方向と前記偏光膜の吸収軸の方向とが、実質的に平行である[6]〜[8]のいずれかの偏光板。
[11] 一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[9]の偏光板を含み、該一対の基板の一方の基板の外側に、第1の光学異方性層、第2の光学異方性層、及び偏光膜がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板が配置され、及び他方の基板の外側に、さらに第2の偏光膜を有し、双方の偏光膜の吸収軸が互いに直交している液晶表示装置。
[12] 一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び[10]の偏光板を含み、該一対の基板の一方の基板の外側に、第1の光学異方性層、第2の光学異方性層、及び偏光膜がこの順となり、該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板が配置され、及び他方の基板の外側に、さらに第2の偏光膜を有し、双方の偏光膜の吸収軸が互いに直交している液晶表示装置。
[13] 前記第2の偏光膜と前記基板との間には、実質的に等方的な接着剤層及び/又は実質的に等方的な透明保護フィルムのみが含まれる[11]又は[12]の液晶表示装置。
[14] 前記透明保護フィルムが、セルロースアシレートを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmであり、かつ前記透明保護フィルムのヘイズが1.0%以下である[13]の液晶表示装置。
[5] The optical compensation film according to any one of [1] to [4], wherein the first optically anisotropic layer contains at least one onium salt.
[6] A polarizing plate having the optical compensation film of any one of [1] to [5] and a polarizing film.
[7] The polarizing plate according to [6], wherein only a substantially isotropic adhesive layer and / or a substantially isotropic protective film is included between the optical compensation film and the polarizing film.
[8] The polarizing plate according to [7], wherein the transparent protective film is a film containing cellulose acylate, the in-plane retardation is 0 to 10 nm, and the retardation in the thickness direction is -20 to 20 nm.
[9] The first optical anisotropic layer, the second optical anisotropic layer, and the polarizing film are laminated in this order, and the slow phase of the second optical anisotropic layer The polarizing plate according to any one of [6] to [8], wherein the direction of the axis and the direction of the absorption axis of the polarizing film are substantially perpendicular to each other.
[10] The first optical anisotropic layer, the second optical anisotropic layer, and the polarizing film are stacked in this order, and the second optical anisotropic layer is delayed. The polarizing plate according to any one of [6] to [8], wherein the direction of the phase axis and the direction of the absorption axis of the polarizing film are substantially parallel.
[11] A liquid crystal cell having a pair of substrates and a liquid crystal layer in which liquid crystal molecules sandwiched between the pair of substrates are aligned substantially parallel to the substrate during black display, and the polarizing plate of [9] The first optically anisotropic layer, the second optically anisotropic layer, and the polarizing film are arranged in this order on the outside of one of the pair of substrates, and the second optically anisotropic layer The polarizing plate is disposed so that the slow axis and the major axis direction of the liquid crystal molecules during black display are substantially parallel, and a second polarizing film is further provided outside the other substrate. Liquid crystal display device in which the absorption axes of the polarizing films are orthogonal to each other.
[12] A liquid crystal cell having a pair of substrates and a liquid crystal layer in which liquid crystal molecules sandwiched between the pair of substrates are aligned substantially parallel to the substrate when displaying black, and a polarizing plate according to [10] The first optical anisotropic layer, the second optical anisotropic layer, and the polarizing film are arranged in this order on the outer side of one of the pair of substrates, and the second optical anisotropic layer is delayed. The polarizing plate is disposed so that the phase axis and the major axis direction of the liquid crystal molecules at the time of black display are substantially orthogonal to each other, and a second polarizing film is further provided on the outside of the other substrate. A liquid crystal display device in which the absorption axes of the films are orthogonal to each other.
[13] Only a substantially isotropic adhesive layer and / or a substantially isotropic transparent protective film is included between the second polarizing film and the substrate [11] or [ 12] The liquid crystal display device.
[14] The transparent protective film is a film containing cellulose acylate, the in-plane retardation is 0 to 10 nm, the retardation in the thickness direction is -20 to 20 nm, and the haze of the transparent protective film is 1. [13] The liquid crystal display device of 0% or less.

本発明の光学補償フィルムは、所定の光学特性を有するとともに、ヘイズが所定の関係式を満足する。本発明の光学補償フィルム及びそれを用いた本発明の偏光板を利用することによって、正面コントラストが高く、高品位な液晶表示装置を提供することができる。   The optical compensation film of the present invention has predetermined optical characteristics, and haze satisfies a predetermined relational expression. By using the optical compensation film of the present invention and the polarizing plate of the present invention using the optical compensation film, a high-quality liquid crystal display device having high front contrast can be provided.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下において、本発明の光学補償フィルム、偏光板及び液晶表示装置の実施形態について順次説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。   Hereinafter, embodiments of the optical compensation film, the polarizing plate, and the liquid crystal display device of the present invention will be sequentially described. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本明細書において、「平行」、「直交」とは、厳密な角度±10゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±5゜未満であることが好ましく、±2゜未満であることがより好ましい。また、「実質的に垂直」とは、厳密な垂直の角度よりも±20゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±15゜未満であることが好ましく、±10゜未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。さらに屈折率の測定波長は特別な記述がない限り、可視光域のλ=550nmでの値である。   In the present specification, “parallel” and “orthogonal” mean that the angle is within a range of strictly less than ± 10 °. In this range, an error from a strict angle is preferably less than ± 5 °, and more preferably less than ± 2 °. Further, “substantially vertical” means within a range of less than ± 20 ° from a strict vertical angle. In this range, an error from a strict angle is preferably less than ± 15 °, and more preferably less than ± 10 °. Further, the “slow axis” means a direction in which the refractive index is maximized. Further, the measurement wavelength of the refractive index is a value at λ = 550 nm in the visible light region unless otherwise specified.

本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。   In this specification, “polarizing plate” is cut into a size to be incorporated into a long polarizing plate and a liquid crystal device unless otherwise specified (in this specification, “cutting” includes “punching” and “cutting out”. It is used in the meaning including both of the polarizing plates. In this specification, “polarizing film” and “polarizing plate” are distinguished from each other. “Polarizing plate” means a laminate having a transparent protective film for protecting the polarizing film on at least one side of the “polarizing film”. It shall be.

本明細書において、Re、Rthは各々、ある波長λnmにおける面内のリターデーション及び厚さ方向のリターデーションを表す。ReはKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rthは前記Re、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレタデーション値、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレタデーション値の計3つの方向で測定したレタデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値はポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。   In the present specification, Re and Rth respectively represent in-plane retardation and retardation in the thickness direction at a certain wavelength λ nm. Re is measured with KOBRA 21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) by making light of wavelength λ nm incident in the normal direction of the film. Rth was measured by making light having a wavelength λ nm incident from a direction inclined + 40 ° with respect to the normal direction of the film with the slow axis in the plane (determined by KOBRA 21ADH) as the tilt axis (rotation axis). The retardation value and the retardation value measured by making light of wavelength λ nm incident from a direction inclined −40 ° with respect to the normal direction of the film with the in-plane slow axis as the tilt axis (rotation axis). KOBRA 21ADH calculates based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value. Here, as the assumed value of the average refractive index, values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. Those whose average refractive index is not known can be measured with an Abbe refractometer. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). The KOBRA 21ADH calculates nx, ny, and nz by inputting the assumed value of the average refractive index and the film thickness.

[光学補償フィルム]
本発明の光学補償フィルムは、所定の光学特性をそれぞれ有する第1及び第2の光学異方性層を有し、第2の光学異方性層の単独のヘイズ値、及び第2及び第1の光学異方性層の積層体のヘイズ値が所定の関係を満足する。
[Optical compensation film]
The optical compensation film of the present invention has first and second optical anisotropic layers each having predetermined optical characteristics, the single haze value of the second optical anisotropic layer, and the second and first The haze value of the laminated body of optically anisotropic layers satisfies a predetermined relationship.

[ヘイズ]
本発明の光学補償フィルムが有する前記第2の光学異方性層ヘイズ値(Hz(B))は1.0%未満である。0.8%以下であることがより好ましい。さらに、前記第2の光学異方性層と第1の光学異方性層の積層体のヘイズ(Hz(B+L))は、1.0%未満であり、即ち、第2の光学異方性層と第1の光学異方性層を積層してもヘイズが1.0%未満である。Hz(B+L)は0.8%以下であることがより好ましい。さらに、第1及び第2の光学異方性層の積層体のヘイズと、第2の光学異方性層のヘイズは、Hz(B+L)/Hz(B)<1.3を満足するのが好ましく、Hz(B+L)/Hz(B)<1.0を満足するのがより好ましい。かかる特性を有する本発明の光学補償フィルムを用いると、液晶表示装置に組み込んだ際に、正面コントラストをほとんど低下させることなく、視野角特性を改善することができる。
なお、光学異方性層や光学補償フィルムのヘイズは、種々のヘイズメーター、例えば、日本電色工業(株)社製ヘイズメータ(NDH2000)を用いて測定することができる。
[Haze]
The second optically anisotropic layer haze value (Hz (B)) of the optical compensation film of the present invention is less than 1.0%. More preferably, it is 0.8% or less. Further, the haze (Hz (B + L)) of the laminate of the second optical anisotropic layer and the first optical anisotropic layer is less than 1.0%, that is, the second optical anisotropy. Even if the layer and the first optically anisotropic layer are laminated, the haze is less than 1.0%. The Hz (B + L) is more preferably 0.8% or less. Further, the haze of the laminate of the first and second optically anisotropic layers and the haze of the second optically anisotropic layer should satisfy Hz (B + L) / Hz (B) <1.3. Preferably, it is more preferable to satisfy Hz (B + L) / Hz (B) <1.0. When the optical compensation film of the present invention having such characteristics is used, viewing angle characteristics can be improved with almost no reduction in front contrast when incorporated in a liquid crystal display device.
The haze of the optically anisotropic layer and the optical compensation film can be measured using various haze meters, for example, a haze meter (NDH2000) manufactured by Nippon Denshoku Industries Co., Ltd.

ポリマーフィルムのヘイズ値は、一般にフィルムに加える添加剤の量を抑えることにより低下させることができる。したがって、前記第2の光学異方性層を後述するポリマーフィルムから形成する場合は、ヘイズ値(Hz(B))を0.1未満にするために、レタデーション上昇剤の添加量を制御することが好ましい。また、通常は、双方の光学異方性層それぞれのヘイズ値が小さくても、積層するとヘイズ値が大きくなってしまう場合がある。本発明では、第1及び第2の光学異方性層を積層した積層体のヘイズ値も小さく、具体的には1.0%未満である。この様に積層体としてヘイズ値を小さく維持するには、第2の光学異方性層として高分子フィルム(好ましくはセルロースアシレートフィルム)を用い、第1の光学異方性層として垂直配向(ホメオトロピック配向)した棒状液晶分子を含有するフィルムを用いることが好ましい。高分子フィルムにホメオトロピック配向した液晶分子を含有するフィルムを積層すると、積層体のヘイズのヘイズ以下に減少させるのに寄与することがわかった。   The haze value of a polymer film can be lowered by generally suppressing the amount of additive added to the film. Therefore, when the second optically anisotropic layer is formed from a polymer film to be described later, the addition amount of the retardation increasing agent is controlled so that the haze value (Hz (B)) is less than 0.1. Is preferred. Moreover, usually, even if the haze values of both optically anisotropic layers are small, the haze value may increase when laminated. In the present invention, the haze value of the laminate in which the first and second optically anisotropic layers are laminated is also small, specifically less than 1.0%. Thus, in order to keep the haze value small as a laminate, a polymer film (preferably a cellulose acylate film) is used as the second optically anisotropic layer, and the vertical orientation ( It is preferable to use a film containing rod-like liquid crystal molecules having homeotropic alignment. It was found that laminating a film containing homeotropically aligned liquid crystal molecules on a polymer film contributes to reducing the haze below the haze of the laminate.

以下、本発明の光学補償フィルムの作製に用いられる材料、方法、諸特性等について詳細に説明する。
まず、第2の光学異方性層について説明する。
[第2の光学異方性層]
第2の光学異方性層の面内レタデーションReは、20〜150nmであることが好ましく、30〜130nmであることがより好ましく、40〜110nmであることがさらに好ましい。さらに、厚さ方向のレタデーションRthは、100〜300nmであることが好ましく、120〜280nmであることがより好ましく、140nm〜260nmであることがさらに好ましい。第2の光学異方性層は前記光学特性が得られる化合物であれば、特に制限はないが、本発明ではセルロースアシレートフィルムを用いることが好ましい。
Hereinafter, materials, methods, various characteristics and the like used for the production of the optical compensation film of the present invention will be described in detail.
First, the second optical anisotropic layer will be described.
[Second optically anisotropic layer]
The in-plane retardation Re of the second optically anisotropic layer is preferably 20 to 150 nm, more preferably 30 to 130 nm, and still more preferably 40 to 110 nm. Furthermore, the retardation Rth in the thickness direction is preferably 100 to 300 nm, more preferably 120 to 280 nm, and still more preferably 140 nm to 260 nm. The second optically anisotropic layer is not particularly limited as long as it is a compound capable of obtaining the above optical characteristics, but in the present invention, it is preferable to use a cellulose acylate film.

[セルロースアシレートフィルム]
セルロースアシレートフィルムとは、セルロースアシレート化合物、及びセルロースを原料として生物的あるいは化学的に官能基を導入して得られるエステル置換セルロース骨格を有する化合物、を含むフィルムである。セルロースアシレートは、セルロースと酸とのエステルである。エステルを構成する酸は、有機酸が好ましく、カルボン酸がより好ましく、炭素原子数が2〜22の脂肪酸がさらに好ましく、炭素原子数が2〜4の低級脂肪酸がさらにより好ましく、酢酸が最も好ましい。
[Cellulose acylate film]
The cellulose acylate film is a film containing a cellulose acylate compound and a compound having an ester-substituted cellulose skeleton obtained by introducing a functional group biologically or chemically using cellulose as a raw material. Cellulose acylate is an ester of cellulose and acid. The acid constituting the ester is preferably an organic acid, more preferably a carboxylic acid, still more preferably a fatty acid having 2 to 22 carbon atoms, still more preferably a lower fatty acid having 2 to 4 carbon atoms, and most preferably acetic acid. .

セルロースアシレートは、セルロースとカルボン酸とのエステルである。セルロースアシレートは、セルロースを構成するグルコース単位の2位、3位及び6位に存在するヒドロキシル基の水素原子の全部又は一部が、アシル基で置換されている。アシル基の例には、アセチル基、プロピオニル基、ブタノイル基、イソブタノイル基、tert−ブタノイル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基が含まれる。アセチル基、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、tert−ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基が好ましく、アセチル基、プロピオニル基、ブタノイル基がさらに好ましく、アセチル基が最も好ましい。
セルロースアシレートが、セルロースと複数の酸とのエステルであってもよい。セルロースアシレートは、複数のアシル基で置換されていてもよい。
Cellulose acylate is an ester of cellulose and carboxylic acid. In cellulose acylate, all or part of the hydrogen atoms of the hydroxyl groups present at the 2-position, 3-position and 6-position of the glucose unit constituting cellulose are substituted with acyl groups. Examples of acyl groups include acetyl, propionyl, butanoyl, isobutanoyl, tert-butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl Group, octadecanoyl group, cyclohexanecarbonyl group, oleoyl group, benzoyl group, naphthylcarbonyl group, cinnamoyl group. Acetyl group, propionyl group, butanoyl group, dodecanoyl group, octadecanoyl group, tert-butanoyl group, oleoyl group, benzoyl group, naphthylcarbonyl group and cinnamoyl group are preferable, acetyl group, propionyl group and butanoyl group are more preferable. An acetyl group is most preferred.
The cellulose acylate may be an ester of cellulose and a plurality of acids. The cellulose acylate may be substituted with a plurality of acyl groups.

セルロースアシレートの重合度は、粘度平均重合度で200〜700が好ましく、250〜550がより好ましく、250〜400がさらに好ましく、250〜350が最も好ましい。粘度平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)に従い測定できる。粘度平均重合度の測定方法については、特開平9−95538号公報にも記載がある。   The degree of polymerization of the cellulose acylate is preferably from 200 to 700, more preferably from 250 to 550, even more preferably from 250 to 400, and most preferably from 250 to 350 in terms of viscosity average degree of polymerization. The viscosity average degree of polymerization can be measured according to Uda et al.'S limiting viscosity method (Kazuo Uda, Hideo Saito, Journal of Textile Science, Vol. 18, No. 1, pages 105-120, 1962). A method for measuring the viscosity average degree of polymerization is also described in JP-A-9-95538.

低分子成分が少ないセルロースアシレートは、平均分子量(重合度)が高いが、粘度は通常のセルロースアシレートよりも低い値になる。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより行うことができる。また、低分子成分の少ないセルロースアシレートを合成することもできる。低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100質量に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。
セルロースアシレートの原料綿や合成方法については、発明協会公開技報(公技番号2001−1745号、2001年3月15日発行、発明協会)7〜12頁にも記載がある。
Cellulose acylate with a small amount of low molecular components has a high average molecular weight (degree of polymerization), but its viscosity is lower than that of ordinary cellulose acylate. Cellulose acylate having a small amount of low molecular components can be obtained by removing low molecular components from cellulose acylate synthesized by a usual method. The removal of the low molecular components can be performed by washing the cellulose acylate with an appropriate organic solvent. In addition, cellulose acylate having a small amount of low molecular components can be synthesized. When manufacturing a cellulose acylate with few low molecular components, it is preferable to adjust the sulfuric acid catalyst amount in an acetylation reaction to 0.5-25 mass parts with respect to 100 mass of cellulose. When the amount of the sulfuric acid catalyst is within the above range, cellulose acylate that is preferable in terms of molecular weight distribution (uniform molecular weight distribution) can be synthesized.
The cellulose acylate raw material cotton and the synthesis method are also described in pages 7 to 12 of the Japan Society for Invention and Technology (Publication No. 2001-1745, published on March 15, 2001, Japan Society of Invention).

セルロースアシレートフィルムは、フィルムを構成するポリマー成分が実質的にセルロースアシレートからなることが好ましい。『実質的に』とは、ポリマー成分の55質量%以上(好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上)を意味する。セルロースアシレートフィルムに、二種類以上のセルロースアシレートを併用してもよい。   In the cellulose acylate film, the polymer component constituting the film is preferably substantially composed of cellulose acylate. “Substantially” means 55% by mass or more (preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more) of the polymer component. Two or more types of cellulose acylate may be used in combination with the cellulose acylate film.

前記セルロースアシレートフィルムの作製に用いられるセルロースアシレートは、セルロースを原料として得られる。セルロースとしては、綿花リンタや木材パルプ(広葉樹パルプ,針葉樹パルプ)などがあり、何れの原料セルロースから得られるセルロースアシレートでも使用でき、場合により混合して使用してもよい。これらの原料セルロースについての詳細な記載は、例えばプラスチック材料講座(17)繊維素系樹脂(丸澤、宇田著、日刊工業新聞社、1970年発行)や発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)7頁〜8頁に記載のセルロースを用いることができ、前記セルロースアシレートフィルムに対しては特に限定されるものではない。   The cellulose acylate used for producing the cellulose acylate film is obtained using cellulose as a raw material. Examples of cellulose include cotton linter and wood pulp (hardwood pulp, conifer pulp). Cellulose acylate obtained from any raw material cellulose can be used, and in some cases, a mixture may be used. Detailed descriptions of these raw material celluloses include, for example, the plastic material course (17) Fibrous resin (manufactured by Marusawa and Uda, Nikkan Kogyo Shimbun, published in 1970), and the Japan Institute of Technical Disclosure (public technical number 2001-). 1745, issued on Mar. 15, 2001, Invention Association), pages 7 to 8 can be used, and the cellulose acylate film is not particularly limited.

前記セルロースアシレートフィルムは、セルロースアシレートの溶液を調製し、該溶液をソルベントキャスト法を利用して、製膜することによって得られるフィルムであるのが好ましい。ソルベントキャスト法を利用したセルロースアシレートフィルムの作製方法については、特開2005−331773の[0095]〜[0096]等に詳細が記載されていて、本発明でも利用することができる。前記セルロースアシレート溶液には、添加剤として、例えば、可塑剤、紫外線吸収剤、劣化防止剤、Re発現剤、Rth低下剤、波長分散調整剤、微粒子、剥離促進剤、赤外吸収剤などを添加することができる。本発明においては、レタデーション調整剤(Re調整剤)を用いるのが好ましい。また、可塑剤、紫外線吸収剤及び剥離促進剤の1種以上を用いるのが好ましい。   The cellulose acylate film is preferably a film obtained by preparing a solution of cellulose acylate and forming the solution using a solvent casting method. Details of the method for producing a cellulose acylate film using the solvent cast method are described in JP-A-2005-331773, [0095] to [0096], and can also be used in the present invention. In the cellulose acylate solution, as additives, for example, a plasticizer, an ultraviolet absorber, a deterioration preventing agent, an Re developing agent, an Rth reducing agent, a wavelength dispersion adjusting agent, fine particles, a peeling accelerator, an infrared absorber, and the like. Can be added. In the present invention, it is preferable to use a retardation adjusting agent (Re adjusting agent). Moreover, it is preferable to use 1 or more types of a plasticizer, a ultraviolet absorber, and a peeling accelerator.

[Re調整剤]
前記第2の光学異方性層に要求される光学特性を満足するセルロースアシレートフィルムを作製するために、Re調整剤を用いるのが好ましい。なお、ここでは、「Re調整剤」の用語は、レタデーションReを上昇、減少又は発現させるいずれの剤に対しても用いるものとする。本発明において用いることができるRe調整剤としては、棒状又は円盤状化合物からなるものを挙げることができる。上記棒状又は円盤状化合物としては、少なくとも二つの芳香族環を有する化合物を用いることができる。棒状化合物からなるRe発現剤の添加量は、セルロースアシレートを含むポリマー成分100質量部に対して0.1〜30質量部であることが好ましく、0.5〜20質量部であることがさらに好ましい。
[Re adjuster]
In order to produce a cellulose acylate film that satisfies the optical properties required for the second optically anisotropic layer, it is preferable to use a Re adjuster. Here, the term “Re adjuster” is used for any agent that increases, decreases or develops the retardation Re. Examples of the Re adjusting agent that can be used in the present invention include those made of a rod-like or discotic compound. As the rod-like or discotic compound, a compound having at least two aromatic rings can be used. The addition amount of the Re developing agent composed of the rod-shaped compound is preferably 0.1 to 30 parts by mass, and more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component containing cellulose acylate. preferable.

円盤状のRe調整剤は、前記セルロースアシレートを含むポリマー成分100質量部に対して、0.05〜20質量部の範囲で使用することが好ましく、0.1〜10質量部の範囲で使用することがより好ましく、0.2〜5質量部の範囲で使用することがさらに好ましく、0.5〜2質量部の範囲で使用することが最も好ましい。また、二種類以上のRe発現剤を併用してもよい。棒状又は円盤状化合物からなる前記Re発現剤は、250〜400nmの波長領域に最大吸収を有することが好ましく、可視領域に実質的に吸収を有していないことが好ましい。具体的に下記に棒状からなる化合物を示す。   The disc-shaped Re adjuster is preferably used in a range of 0.05 to 20 parts by mass, and in a range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer component containing the cellulose acylate. More preferably, it is more preferably used in the range of 0.2 to 5 parts by mass, and most preferably in the range of 0.5 to 2 parts by mass. Two or more types of Re developing agents may be used in combination. The Re enhancer comprising a rod-like or discotic compound preferably has a maximum absorption in the wavelength region of 250 to 400 nm, and preferably has substantially no absorption in the visible region. Specifically, a compound having a rod shape is shown below.

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

前記第2の光学異方性層に要求される光学特性を満足するために、ソルベントキャスト法等により得られたセルロースアシレートフィルムに、さらに延伸処理を施してもよい。延伸処理は、横延伸法、縦延伸法、同時二軸延伸法及び逐次二軸延伸法のいずれであってもよい。セルロースアシレートフィルムの延伸については、特開昭62−115035号、特開平4−152125号、特開平4−284211号、特開平4−298310号、及び特開平11−48271号の各公報 等に詳細が記載され、本発明でも利用することができる。   In order to satisfy the optical properties required for the second optically anisotropic layer, the cellulose acylate film obtained by a solvent cast method or the like may be further subjected to a stretching treatment. The stretching treatment may be any of a lateral stretching method, a longitudinal stretching method, a simultaneous biaxial stretching method, and a sequential biaxial stretching method. Regarding stretching of the cellulose acylate film, see JP-A-62-115035, JP-A-4-152125, JP-A-4-284221, JP-A-4-298310, and JP-A-11-48271. Details are described and can be used in the present invention.

[第1の光学異方性層]
本発明の光学補償フィルムに含まれる第1の光学異方性層は面内のレタデーションReは、0〜10nmであることが好ましく、0〜5nmであることがより好ましく、0〜3nmであることがさらに好ましい。さらに、該光学異方性層の厚さ方向のレタデーションRthは、−400〜−80nmであることが好ましく、−360〜−100nmであることがより好ましく、−320〜−120nmであることがさらに好ましい。
[First optically anisotropic layer]
The in-plane retardation Re of the first optical anisotropic layer contained in the optical compensation film of the present invention is preferably 0 to 10 nm, more preferably 0 to 5 nm, and 0 to 3 nm. Is more preferable. Further, the retardation Rth in the thickness direction of the optically anisotropic layer is preferably −400 to −80 nm, more preferably −360 to −100 nm, and further preferably −320 to −120 nm. preferable.

第1の光学異方性層は、液晶化合物を含有する組成物から形成されていることが好ましい。前記液晶化合物は棒状液晶化合物であることが好ましい。棒状液晶化合物を用いた場合は、前記光学異方性層において棒状分子が層平面に対して垂直配向しているのが好ましい。   The first optically anisotropic layer is preferably formed from a composition containing a liquid crystal compound. The liquid crystal compound is preferably a rod-like liquid crystal compound. When a rod-like liquid crystal compound is used, it is preferable that rod-like molecules are aligned perpendicular to the layer plane in the optically anisotropic layer.

液晶性化合物の種類については特に制限されない。本発明の光学補償フィルムに含まれる第1の光学異方性層は、例えば、低分子液晶性化合物を液晶状態においてネマチック配向に形成後、光架橋や熱架橋によって固定化して作製してもよい。また、高分子液晶性化合物を液晶状態においてネマチック配向に形成後、冷却することによって当該配向を固定化して作製してもよい。なお本発明では、光学異方性層の作製に液晶性化合物が用いられるが、作製の過程で液晶性化合物は重合等によって固定された状態で光学異方性層に含有される場合が多く、最終的には液晶性を示す必要はない。重合性液晶性化合物は、多官能性重合性液晶でもよいし、単官能性重合性液晶性化合物でもよい。   The type of liquid crystal compound is not particularly limited. The first optically anisotropic layer included in the optical compensation film of the present invention may be prepared, for example, by forming a low molecular liquid crystal compound in a nematic orientation in a liquid crystal state and then immobilizing it by photocrosslinking or thermal crosslinking. . Alternatively, the polymer liquid crystalline compound may be formed in a nematic alignment in a liquid crystal state and then cooled to cool the alignment. In the present invention, a liquid crystalline compound is used for the production of the optically anisotropic layer, but the liquid crystalline compound is often contained in the optically anisotropic layer in a state of being fixed by polymerization or the like in the production process. Finally, it is not necessary to show liquid crystallinity. The polymerizable liquid crystal compound may be a polyfunctional polymerizable liquid crystal or a monofunctional polymerizable liquid crystal compound.

本発明の光学補償フィルムに含まれる第1の光学異方性層において、液晶化合物の分子は、所定の配向状態、好ましくは垂直配向の状態に固定されていることが好ましい。棒状液晶性化合物が実質的に垂直とは、層平面と棒状液晶性化合物のダイレクターとのなす角度が70°〜90°の範囲内であることを意味する。80°〜90°がより好ましく、85°〜90°がさらに好ましい。   In the first optically anisotropic layer included in the optical compensation film of the present invention, the molecules of the liquid crystal compound are preferably fixed in a predetermined alignment state, preferably in a vertical alignment state. The term “substantially perpendicular to the rod-like liquid crystalline compound” means that the angle formed by the layer plane and the director of the rod-like liquid crystalline compound is in the range of 70 ° to 90 °. 80 ° to 90 ° are more preferable, and 85 ° to 90 ° are more preferable.

以下、第1の光学異方性層として、液晶性化合物を含む光学異方性層を有する光学補償フィルムの態様について、作製に用いられる材料、作製方法等を詳細に説明する。
前記光学異方性層は、棒状液晶性化合物等の液晶性化合物と、所望により、下記の重合開始剤や配向制御剤や他の添加剤を含む組成物から形成することができる。
Hereinafter, materials used for production, production methods, and the like will be described in detail with respect to an aspect of an optical compensation film having an optical anisotropic layer containing a liquid crystalline compound as the first optical anisotropic layer.
The optically anisotropic layer can be formed from a composition containing a liquid crystalline compound such as a rod-like liquid crystalline compound and, if desired, the following polymerization initiator, alignment controller and other additives.

[棒状液晶性化合物]
本発明では、棒状液晶性化合物を用いて前記第1の光学異方性層を形成することが好ましい。棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶性化合物には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は好ましくは1〜6個、より好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、特開2001−328973号公報、特開2004−240188号公報、特開2005−99236号公報、特開2005−99237号公報、特開2005−121827号公報、特開2002−30042号公報などに記載の化合物を用いることができる。
[Bar-shaped liquid crystalline compound]
In the present invention, it is preferable to form the first optically anisotropic layer using a rod-like liquid crystalline compound. Examples of rod-like liquid crystalline compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only the above low-molecular liquid crystalline compounds but also high-molecular liquid crystalline compounds can be used. It is more preferable to fix the alignment of the rod-like liquid crystal compound by polymerization. As the liquid crystalline compound, those having a partial structure capable of causing polymerization or crosslinking reaction by actinic rays, electron beams, heat, or the like are suitably used. The number of the partial structures is preferably 1 to 6, more preferably 1 to 3. As the polymerizable rod-like liquid crystalline compound, Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, No. 6-16616, and No. 7-110469. 11-80081, JP 2001-328773, JP 2004-240188, JP 2005-99236, JP 2005-99237, JP 2005-121827, JP It is possible to use the compounds described in 2002-30042 That.

[フルオロ脂肪族含有モノマーと一般式(1)の共重合体]
前記第1の光学異方性層は、下記一般式(1)で表される繰り返し単位を含むフルオロ脂肪族含有ポリマー(以下、「ポリマーA」という場合がある)を含有しているのが好ましい。前記ポリマーAは、主に、光学異方性層の空気界面において、前記液晶性化合物の分子を垂直配向させるのに寄与する。
[Copolymer of fluoroaliphatic-containing monomer and general formula (1)]
The first optically anisotropic layer preferably contains a fluoroaliphatic-containing polymer containing a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “polymer A”). . The polymer A mainly contributes to vertically aligning the molecules of the liquid crystalline compound at the air interface of the optically anisotropic layer.

一般式(1)

Figure 2007193276
General formula (1)
Figure 2007193276

一般式(1)において、R1、R2及びR3はそれぞれ独立に、水素原子又は置換基を表す。Qはカルボキシル基(−COOH)又はその塩、スルホ基(−SO3H)又はその塩、ホスホノキシ基{−OP(=O)(OH)2}又はその塩、又は親水性基(−OH)を表す。Lは下記の連結基群から選ばれる任意の基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。
(連結基群)
単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基。
In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent. Q is a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, a phosphonoxy group {—OP (═O) (OH) 2 } or a salt thereof, or a hydrophilic group (—OH). Represents. L represents an arbitrary group selected from the following linking group group, or a divalent linking group formed by combining two or more thereof.
(Linked group group)
Single bond, —O—, —CO—, —NR 4 — (R 4 represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group), —S—, —SO 2 —, —P (═O) (OR 5 ) — (R 5 represents an alkyl group, an aryl group, or an aralkyl group), an alkylene group, and an arylene group.

一般式(1)中、R1、R2及びR3は、それぞれ独立に、水素原子又は特開2004−333852号公報に例示した下記置換基群から選ばれる置換基を表す。
(置換基群)
アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルケニル基であり、例えば、ビニル基、アリール基、2−ブテニル基、3−ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8のアルキニル基であり、例えば、プロパルギル基、3−ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12のアリール基であり、例えば、フェニル基、p−メチルフェニル基、ナフチル基などが挙げられる)、アラルキル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12のアラルキル基であり、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基などが挙げられる)、
In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent selected from the following substituent group exemplified in JP-A-2004-333852.
(Substituent group)
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like, alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, Particularly preferred are alkenyl groups having 2 to 8 carbon atoms, such as vinyl group, aryl group, 2-butenyl group and 3-pentenyl group), alkynyl groups (preferably having 2 to 20 carbon atoms, more preferred). Is an alkynyl group having 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as propargyl group and 3-pentynyl group. An aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as a phenyl group, a p-methylphenyl group, and a naphthyl group. Aralkyl groups (preferably 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as benzyl group, phenethyl group, 3- Phenylpropyl group and the like), a substituted or unsubstituted amino group (preferably an amino group having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, Unsubstituted amino group, methylamino group, dimethylamino group, diethylamino group, anilino group, etc.),

アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜10のアルコキシ基であり、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアルコキシカルボニル基であり、例えば、メトキシカルボニル基、エトキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは2〜10のアシルオキシ基であり、例えば、アセトキシ基、ベンゾイルオキシ基などが挙げられる)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10のアシルアミノ基であり、例えばアセチルアミノ基、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12のアルコキシカルボニルアミノ基であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12のアリールオキシカルボニルアミノ基であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニルアミノ基であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12のスルファモイル基であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のカルバモイル基であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基などが挙げられる)、 An alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 10 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a butoxy group). An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group), acyloxy A group (preferably an acyloxy group having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms such as an acetoxy group and a benzoyloxy group), an acylamino group (preferably 2-20 carbon atoms, more preferably 2-16 carbon atoms, particularly preferably 2-10 carbon atoms. A silamino group, for example, an acetylamino group, a benzoylamino group, and the like, an alkoxycarbonylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms). An alkoxycarbonylamino group, for example, a methoxycarbonylamino group), an aryloxycarbonylamino group (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 12 carbon atoms). Aryloxycarbonylamino group, for example, phenyloxycarbonylamino group and the like, sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 1 carbon atoms). 12 sulfonylamino groups such as methanesulfonyl And sulfamoyl groups (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms, such as sulfamoyl group). Group, methylsulfamoyl group, dimethylsulfamoyl group, phenylsulfamoyl group and the like), carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably carbon number). 1 to 12 carbamoyl groups, for example, unsubstituted carbamoyl group, methylcarbamoyl group, diethylcarbamoyl group, phenylcarbamoyl group and the like),

アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルホニル基であり、例えば、メシル基、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のスルフィニル基であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のウレイド基であり、例えば、無置換のウレイド基、メチルウレイド基、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12のリン酸アミド基であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24のシリル基であり、例えば、トリメチルシリル基、トリフェニルシリル基などが挙げられる)が含まれる。これらの置換基はさらにこれらの置換基によって置換されていてもよい。また、置換基を二つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。 An alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, more preferably an alkylthio group having 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as a methylthio group and an ethylthio group), an arylthio group ( Preferably it is C6-C20, More preferably, it is C6-C16, Most preferably, it is C6-C12 arylthio group, for example, a phenylthio group etc. are mentioned, A sulfonyl group (preferably C1-C1). 20, more preferably a sulfonyl group having 1 to 16 carbon atoms, particularly preferably a sulfonyl group having 1 to 12 carbon atoms, such as a mesyl group and a tosyl group, and a sulfinyl group (preferably having a carbon number of 1 to 20, more A sulfinyl group having 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms is preferable. Zensulfinyl group and the like), ureido group (preferably a ureido group having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, for example, an unsubstituted ureido group , Methylureido group, phenylureido group, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms, more preferably having 1 to 16 carbon atoms, particularly preferably having 1 to 12 carbon atoms). Yes, for example, diethyl phosphoric acid amide group, phenyl phosphoric acid amide group, etc.), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, Carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (preferably having a carbon number of 1 to 0, more preferably a heterocyclic group of 1 to 12, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, such as an imidazolyl group, a pyridyl group, a quinolyl group, a furyl group , Piperidyl group, morpholino group, benzoxazolyl group, benzimidazolyl group, benzthiazolyl group and the like), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably A silyl group having 3 to 24 carbon atoms, and examples thereof include a trimethylsilyl group and a triphenylsilyl group). These substituents may be further substituted with these substituents. Moreover, when it has two or more substituents, they may be the same or different. If possible, they may be bonded to each other to form a ring.

1、R2及びR3はそれぞれ独立に、水素原子、アルキル基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、又は後述する−L−Qで表される基であることが好ましく、水素原子、炭素数1〜6のアルキル基、塩素原子、−L−Qで表される基であることがより好ましく、水素原子、炭素数1〜4のアルキル基であることがさらに好ましく、水素原子、炭素数1〜2のアルキル基であることが特に好ましく、R2及びR3が水素原子で、R1が水素原子又はメチル基であることが最も好ましい。該アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基等が挙げられる。該アルキル基は、適当な置換基を有していてもよい。該置換基としては、ハロゲン原子、アリール基、ヘテロ環基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アシル基、ヒドロキシル基、アシルオキシ基、アミノ基、アルコキシカルボニル基、アシルアミノ基、オキシカルボニル基、カルバモイル基、スルホニル基、スルファモイル基、スルホンアミド基、スルホリル基、カルボキシル基などが挙げられる。なお、アルキル基の炭素数は、置換基の炭素原子を含まない。以下、他の基の炭素数についても同様である。 R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), or a group represented by -LQ described later. It is preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a chlorine atom, or a group represented by -LQ, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. More preferably, it is particularly preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, most preferably R 2 and R 3 are a hydrogen atom, and R 1 is a hydrogen atom or a methyl group. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, n-butyl group, sec-butyl group and the like. The alkyl group may have a suitable substituent. Examples of the substituent include a halogen atom, aryl group, heterocyclic group, alkoxyl group, aryloxy group, alkylthio group, arylthio group, acyl group, hydroxyl group, acyloxy group, amino group, alkoxycarbonyl group, acylamino group, oxycarbonyl Group, carbamoyl group, sulfonyl group, sulfamoyl group, sulfonamido group, sulfolyl group, carboxyl group and the like. The carbon number of the alkyl group does not include the carbon atom of the substituent. The same applies to the carbon number of other groups.

Lは、上記連結基群から選ばれる2価の連結基、又はそれらの2つ以上を組み合わせて形成される2価の連結基を表す。上記連結基群中、−NR4−のR4は、水素原子、アルキル基、アリール基又はアラルキル基を表し、好ましくは水素原子又はアルキル基である。また、−PO(OR5)−のR5はアルキル基、アリール基又はアラルキル基を表し、好ましくはアルキル基である。R4及びR5がアルキル基、アリール基又はアラルキル基を表す場合の炭素数は「置換基群」で説明したものと同じである。Lとしては、単結合、−O−、−CO−、−NR4−、−S−、−SO2−、アルキレン基又はアリーレン基を含むことが好ましく、単結合、−CO−、−O−、−NR4−、アルキレン基又はアリーレン基を含んでいることが特に好ましく、単結合であることが最も好ましい。Lがアルキレン基を含む場合、アルキレン基の炭素数は、好ましくは1〜10、より好ましくは1〜8、特に好ましくは1〜6である。特に好ましいアルキレン基の具体例として、メチレン、エチレン、トリメチレン、テトラブチレン、ヘキサメチレン基等が挙げられる。Lが、アリーレン基を含む場合、アリーレン基の炭素数は、好ましくは6〜24、より好ましくは6〜18、特に好ましくは6〜12である。特に好ましいアリーレン基の具体例として、フェニレン、ナフタレン基等が挙げられる。Lが、アルキレン基とアリーレン基を組み合わせて得られる2価の連結基(即ちアラルキレン基)を含む場合、アラルキレン基の炭素数は、好ましくは7〜34、より好ましくは7〜26、特に好ましくは7〜16である。特に好ましいアラルキレン基の具体例として、フェニレンメチレン基、フェニレンエチレン基、メチレンフェニレン基等が挙げられる。Lとして挙げられた基は、適当な置換基を有していてもよい。このような置換基としては先にR1〜R3における置換基として挙げた置換基と同様なものを挙げることができる。
以下にLの具体的構造を例示するが、本発明はこれらの具体例に限定されるものではない。
L represents a divalent linking group selected from the above linking group group, or a divalent linking group formed by combining two or more thereof. In the linking group group, R 4 in —NR 4 — represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, preferably a hydrogen atom or an alkyl group. R 5 in —PO (OR 5 ) — represents an alkyl group, an aryl group or an aralkyl group, and preferably an alkyl group. The carbon number when R 4 and R 5 represent an alkyl group, an aryl group or an aralkyl group is the same as that described in the “substituent group”. L preferably contains a single bond, —O—, —CO—, —NR 4 —, —S—, —SO 2 —, an alkylene group or an arylene group, and is a single bond, —CO—, —O—. , —NR 4 —, an alkylene group or an arylene group is particularly preferable, and a single bond is most preferable. When L contains an alkylene group, the alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Specific examples of particularly preferred alkylene groups include methylene, ethylene, trimethylene, tetrabutylene, hexamethylene groups and the like. When L contains an arylene group, the carbon number of the arylene group is preferably 6 to 24, more preferably 6 to 18, and particularly preferably 6 to 12. Specific examples of particularly preferred arylene groups include phenylene and naphthalene groups. When L contains a divalent linking group (that is, an aralkylene group) obtained by combining an alkylene group and an arylene group, the carbon number of the aralkylene group is preferably 7 to 34, more preferably 7 to 26, and particularly preferably. 7-16. Specific examples of particularly preferred aralkylene groups include a phenylenemethylene group, a phenyleneethylene group, and a methylenephenylene group. The group listed as L may have a suitable substituent. Examples of such a substituent include those similar to the substituents exemplified above as the substituents for R 1 to R 3 .
Although the specific structure of L is illustrated below, this invention is not limited to these specific examples.

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

前記式(1)中、Qはカルボキシル基、カルボキシル基の塩(例えばリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩(例えばアンモニウム、テトラメチルアンモニウム、トリメチル−2−ヒドロキシエチルアンモニウム、テトラブチルアンモニウム、トリメチルベンジルアンモニウム、ジメチルフェニルアンモニウムなど)、ピリジニウム塩など)、スルホ基、スルホ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、ホスホノキシ基、ホスホノキシ基の塩(塩を形成するカチオンの例は上記カルボキシル基に記載のものと同じ)、親水基(ヒドロキシル基)を表す。より好ましくはカルボキシル基、スルホ基、ホスホ基、親水基であり、特に好ましいのはカルボキシル基又は親水基である。   In the formula (1), Q is a carboxyl group, a salt of a carboxyl group (for example, lithium salt, sodium salt, potassium salt, ammonium salt (for example, ammonium, tetramethylammonium, trimethyl-2-hydroxyethylammonium, tetrabutylammonium, trimethyl). Benzylammonium, dimethylphenylammonium, etc.), pyridinium salts, etc.), sulfo groups, salts of sulfo groups (examples of cations forming salts are the same as those described above for carboxyl groups), phosphonoxy groups, salts of phosphonoxy groups (salts) Examples of the cation that forms are the same as those described above for the carboxyl group) and a hydrophilic group (hydroxyl group). A carboxyl group, a sulfo group, a phospho group, and a hydrophilic group are more preferable, and a carboxyl group or a hydrophilic group is particularly preferable.

本発明に使用可能な前記ポリマーAに含まれる前記一般式(1)に対応するモノマーの具体例を以下に挙げるが、本発明は以下の具体例によってなんら制限されるものではない。   Although the specific example of the monomer corresponding to the said General formula (1) contained in the said polymer A which can be used for this invention is given below, this invention is not restrict | limited at all by the following specific examples.

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

前記ポリマーAは、前記一般式(1)で表される繰り返し単位を1種含んでいてもよいし、2種以上含んでいてもよい。また前記ポリマーAは、前記フルオロ脂肪族基含有モノマーより誘導される繰り返し単位を1種又は2種以上有していてもよい。好ましくは、特開2004−333852号公報の一般式[1]で記載されているフルオロ脂肪族基含有モノマーを含むことが好ましい。さらに、前記ポリマーAはそれら以外の他の繰り返し単位を含んでいてもよい。前記他の繰り返し単位については特に制限されず、通常のラジカル重合反応可能なモノマーから誘導される繰り返し単位が好ましい例として挙げられる。前記ポリマーAは、特開2004−46038[0026]〜[0033]記載のモノマー群から選ばれるモノマーから誘導される繰り返し単位を1種含有していてもよいし、2種以上含有していてもよい。   The polymer A may contain one type of repeating unit represented by the general formula (1), or may contain two or more types. The polymer A may have one or more repeating units derived from the fluoroaliphatic group-containing monomer. Preferably, it contains a fluoroaliphatic group-containing monomer described in general formula [1] of JP-A No. 2004-333852. Furthermore, the polymer A may contain other repeating units. The other repeating units are not particularly limited, and preferred examples thereof include repeating units derived from ordinary radical polymerizable monomers. The polymer A may contain one type of repeating unit derived from a monomer selected from the monomer group described in JP-A-2004-46038 [0026] to [0033], or may contain two or more types. Good.

また、前記ポリマーAは、特開2004−333852号公報に記載されている一般式[2]で表されるモノマーから誘導される繰り返し単位を含んでいてもよい。   The polymer A may contain a repeating unit derived from a monomer represented by the general formula [2] described in JP-A-2004-333852.

前記ポリマーAのフルオロ脂肪族基含有モノマーの量は、該ポリマーの構成モノマー総量の5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく、30質量%以上であるのがさらに好ましい。前記フルオロ脂肪族基含有モノマーより誘導される繰り返し単位において、前記一般式(1)で表される繰り返し単位の量は、該フルオロ脂肪族基含有モノマーより誘導される繰り返し単位の構成モノマー総量の0.5質量%以上であるのが好ましく、1〜20質量%であるのがより好ましく、1〜10質量%であるのが特に好ましく、1〜5質量%であるのが最も好ましい。   The amount of the fluoroaliphatic group-containing monomer of the polymer A is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 30% by mass or more of the total amount of constituent monomers of the polymer. Further preferred. In the repeating unit derived from the fluoroaliphatic group-containing monomer, the amount of the repeating unit represented by the general formula (1) is 0 of the total amount of constituent monomers of the repeating unit derived from the fluoroaliphatic group-containing monomer. It is preferably 5% by mass or more, more preferably 1 to 20% by mass, particularly preferably 1 to 10% by mass, and most preferably 1 to 5% by mass.

本発明に用いる前記ポリマーAの質量平均分子量は1,000,000以下であるのが好ましく、500,000以下であるのがより好ましく、5,000以上50,000以下であるのがさらに好ましい。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。   The mass average molecular weight of the polymer A used in the present invention is preferably 1,000,000 or less, more preferably 500,000 or less, and further preferably 5,000 or more and 50,000 or less. The mass average molecular weight can be measured as a value in terms of polystyrene (PS) using gel permeation chromatography (GPC).

前記ポリマーAを製造する際に採用される重合方法については、特に限定されるものではないが、特開2004−46038号公報の[0035]〜[0041]に記載の方法を用いることが好ましい。   The polymerization method employed when producing the polymer A is not particularly limited, but the method described in [0035] to [0041] of JP-A No. 2004-46038 is preferably used.

なお、前記ポリマーAは、棒状液晶化合物の配向状態を固定化するために置換基として重合性基を有するものも好ましい。   The polymer A preferably has a polymerizable group as a substituent in order to fix the alignment state of the rod-like liquid crystal compound.

以下に、前記ポリマーAとして本発明に好ましく用いられる具体例を示すが、本発明はこれらの具体例によってなんら限定されるものではない。ここで式中の数値(a、b、c、d等の数値)は、それぞれ各モノマーの組成比を示す質量百分率であり、MwはTSK Gel GMHxL、TSK Gel G4000 HxL、TSK Gel G2000 HxL (いずれも東ソー(株)の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した質量平均分子量である。   Specific examples that are preferably used in the present invention as the polymer A are shown below, but the present invention is not limited to these specific examples. Here, the numerical values (numerical values such as a, b, c, and d) in the formula are mass percentages indicating the composition ratio of each monomer, and Mw is TSK Gel GMHxL, TSK Gel G4000 HxL, TSK Gel G2000 HxL (whichever Also, the mass average molecular weight is expressed in terms of polystyrene by solvent THF and differential refractometer detection using a GPC analyzer using a column of Tosoh Corporation's trade name).

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

本発明に用いられる前記ポリマーAは、上記した様に、公知慣用の方法で製造することができる。例えば、先にあげたフルオロ脂肪族基を有するモノマー、水素結合性基を有するモノマー等を含む有機溶媒中に、汎用のラジカル重合開始剤を添加し、重合させることにより製造できる。また、場合によりその他の付加重合性不飽和化合物を、さらに添加して上記と同じ方法にて製造することができる。各モノマーの重合性に応じ、反応容器にモノマーと開始剤を滴下しながら重合する滴下重合法なども、均一な組成のポリマーを得るために有効である。   The polymer A used in the present invention can be produced by a known and commonly used method as described above. For example, it can be produced by adding a general-purpose radical polymerization initiator to an organic solvent containing the above-mentioned monomer having a fluoroaliphatic group, a monomer having a hydrogen bonding group, and the like, and polymerizing the mixture. Further, in some cases, other addition-polymerizable unsaturated compounds can be further added and produced by the same method as described above. Depending on the polymerizability of each monomer, a dropping polymerization method in which a monomer and an initiator are added dropwise to a reaction vessel is also effective for obtaining a polymer having a uniform composition.

第1の光学異方性層形成用組成物中における前記ポリマーAの含有量の好ましい範囲は、その用途によって異なるが、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005〜8質量%であるのが好ましく、0.01〜5質量%であるのがより好ましく、0.05〜1質量%であるのがさらに好ましい。前記フルオロ脂肪族基含有モノマーより誘導される繰り返し単位の添加量が0.005質量%未満では効果が不十分であり、また8質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、光学補償フィルムとしての性能(例えばレタデーションの均一性等)に悪影響を及ぼす場合がある。   The preferred range of the content of the polymer A in the first optically anisotropic layer-forming composition varies depending on its use, but 0 in the composition (a composition excluding the solvent in the case of a coating solution). 0.005 to 8% by mass is preferable, 0.01 to 5% by mass is more preferable, and 0.05 to 1% by mass is even more preferable. If the amount of the repeating unit derived from the fluoroaliphatic group-containing monomer is less than 0.005% by mass, the effect is insufficient, and if it exceeds 8% by mass, the coating film may not be sufficiently dried. The performance as an optical compensation film (for example, uniformity of retardation, etc.) may be adversely affected.

[オニウム塩]
前記第1の光学異方性層は、オニウム塩の少なくとも一種を含有するのが好ましい。オニウム塩は配向膜界面側において棒状液晶化合物の分子を垂直配向させるのに寄与する。また、前記オニウム塩の例には、窒素原子を含むアンモニウム塩、硫黄原子を含むスルホニウム塩、リン原子を含むホスホニウム塩等が含まれる。
[Onium salt]
The first optically anisotropic layer preferably contains at least one onium salt. The onium salt contributes to the vertical alignment of the molecules of the rod-like liquid crystal compound on the alignment film interface side. Examples of the onium salts include ammonium salts containing nitrogen atoms, sulfonium salts containing sulfur atoms, phosphonium salts containing phosphorus atoms, and the like.

前記オニウム塩としては、好ましくは、4級オニウム塩であり、より好ましくは第4級アンモニウム塩である。
第4級アンモニウム塩は、一般に、第3級アミン(例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリエタノールアミン、N−メチルピロリジン、N−メチルピペリジン、N,N−ジメチルピペラジン、トリエチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミンなど)あるいは含窒素複素環(ピリジン環、ピコリン環、2,2’−ビピリジル環、4,4’−ビピリジル環、1,10−フェナントロリン環、キノリン環、オキサゾール環、チアゾール環、N−メチルイミダゾール環、ピラジン環、テトラゾール環など)をアルキル化(メンシュトキン反応)、アルケニル化、アルキニル化あるいはアリール化して得られる。
The onium salt is preferably a quaternary onium salt, more preferably a quaternary ammonium salt.
A quaternary ammonium salt is generally a tertiary amine (eg, trimethylamine, triethylamine, tributylamine, triethanolamine, N-methylpyrrolidine, N-methylpiperidine, N, N-dimethylpiperazine, triethylenediamine, N, N , N ′, N′-tetramethylethylenediamine, etc.) or nitrogen-containing heterocycle (pyridine ring, picoline ring, 2,2′-bipyridyl ring, 4,4′-bipyridyl ring, 1,10-phenanthroline ring, quinoline ring, An oxazole ring, a thiazole ring, an N-methylimidazole ring, a pyrazine ring, a tetrazole ring, and the like) are obtained by alkylation (Mentstock reaction), alkenylation, alkynylation, or arylation.

第4級アンモニウム塩としては、含窒素複素環からなる第4級アンモニウム塩が好ましく、特に好ましくは第4級ピリジニウム塩である。
より具体的には、前記第4級アンモニウム塩は、下記一般式(3a)又は後述する一般式(3b)で表される第4級ピリジニウム塩から選ばれるのが好ましい。
As the quaternary ammonium salt, a quaternary ammonium salt composed of a nitrogen-containing heterocyclic ring is preferable, and a quaternary pyridinium salt is particularly preferable.
More specifically, the quaternary ammonium salt is preferably selected from quaternary pyridinium salts represented by the following general formula (3a) or a general formula (3b) described later.

Figure 2007193276
Figure 2007193276

式(3a)中、R8は置換もしくは無置換の、アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基又は複素環基を表し、Dは水素結合性基を表し、mは1〜3の整数を表し、X-はアニオンを表す。 In the formula (3a), R 8 represents a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aralkyl group, aryl group or heterocyclic group, D represents a hydrogen bonding group, and m represents 1 to 3 X represents an anion.

まず、前記一般式(3a)について説明する。
上記R8で表されるアルキル基は、炭素数1〜18の置換もしくは無置換のアルキル基が好ましく、より好ましくは炭素数1〜8の置換もしくは無置換のアルキル基である。これらは、直鎖状、分岐鎖状、あるいは環状であってもよい。これらの例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ヘキシル基、n−オクチル基、ネオペンチル基、シクロヘキシル基、アダマンチル基及びシクロプロピル基等が挙げられる。
First, the general formula (3a) will be described.
The alkyl group represented by R 8 is preferably a substituted or unsubstituted alkyl group having 1 to 18 carbon atoms, and more preferably a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms. These may be linear, branched or cyclic. Examples of these are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, n-octyl, neopentyl, cyclohexyl, adamantyl. Group and cyclopropyl group.

アルキル基の置換基の例としては、以下のものを挙げることができる。炭素数2〜18(好ましくは炭素数2〜8)の置換もしくは無置換のアルケニル基(例えば、ビニル基);炭素数2〜18(好ましくは炭素数2〜8)の置換もしくは無置換のアルキニル基(例えば、エチニル基);炭素数6〜10の置換もしくは無置換のアリール基(例えば、フェニル基、ナフチル基);ハロゲン原子(例えば、F、Cl、Br等);炭素数1〜18(好ましくは炭素数1〜8)の置換もしくは無置換のアルコキシ基(例えば、メトキシ基、エトキシ基);炭素数6〜10の置換もしくは無置換のアリールオキシ基(例えば、フェノキシ基、ビフェニルオキシ基、p−メトキシフェノキシ基);炭素数1〜18(好ましくは炭素数1〜8)の置換もしくは無置換のアルキルチオ基(例えば、メチルチオ基、エチルチオ基);炭素数6〜10の置換もしくは無置換のアリールチオ基(例えば、フェニルチオ基);炭素数2〜18(好ましくは炭素数2〜8)の置換もしくは無置換のアシル基(例えば、アセチル基、プロピオニル基);   Examples of the substituent of the alkyl group include the following. C2-C18 (preferably C2-C8) substituted or unsubstituted alkenyl group (for example, vinyl group); C2-C18 (preferably C2-8) substituted or unsubstituted alkynyl Group (for example, ethynyl group); substituted or unsubstituted aryl group having 6 to 10 carbon atoms (for example, phenyl group, naphthyl group); halogen atom (for example, F, Cl, Br, etc.); Preferably a substituted or unsubstituted alkoxy group having 1 to 8 carbon atoms (for example, methoxy group or ethoxy group); a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms (for example, phenoxy group, biphenyloxy group, p-methoxyphenoxy group); substituted or unsubstituted alkylthio group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (for example, methylthio group, ethylthio group) A substituted or unsubstituted arylthio group having 6 to 10 carbon atoms (for example, phenylthio group); a substituted or unsubstituted acyl group having 2 to 18 carbon atoms (preferably 2 to 8 carbon atoms) (for example, an acetyl group or a propionyl group) );

炭素数1〜18(好ましくは炭素数1〜8)の置換もしくは無置換のアルキルスルホニル基又はアリールスルホニル基(例えば、メタンスルホニル基、p−トルエンスルホニル基);炭素数2〜18(好ましくは炭素数2〜8)の置換もしくは無置換のアシルオキシ基(例えば、アセトキシ基、プロピオニルオキシ基);炭素数2〜18(好ましくは炭素数2〜8)の置換もしくは無置換のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基);炭素数7〜11の置換もしくは無置換のアリールオキシカルボニル基(例えば、ナフトキシカルボニル基);無置換のアミノ基、もしくは炭素数1〜18(好ましくは炭素数1〜8)の置換アミノ基(例えば、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、アニリノ基、メトキシフェニルアミノ基、クロロフェニルアミノ基、ピリジルアミノ基、メトキシカルボニルアミノ基、n−ブトキシカルボニルアミノ基、フェノキシカルボニルアミノ基、メチルカルバモイルアミノ基、エチルチオカルバモイルアミノ基、フェニルカルバモイルアミノ基、アセチルアミノ基、エチルカルボニルアミノ基、エチルチオカルバモイルアミノ基、シクロヘキシルカルボニルアミノ基、ベンゾイルアミノ基、クロロアセチルアミノ基、メチルスルホニルアミノ基);   C1-C18 (preferably C1-C8) substituted or unsubstituted alkylsulfonyl group or arylsulfonyl group (for example, methanesulfonyl group, p-toluenesulfonyl group); C2-C18 (preferably carbon) A substituted or unsubstituted acyloxy group (for example, acetoxy group, propionyloxy group) having 2 to 8 carbon atoms; a substituted or unsubstituted alkoxycarbonyl group having 2 to 18 carbon atoms (preferably having 2 to 8 carbon atoms) (for example, A methoxycarbonyl group, an ethoxycarbonyl group); a substituted or unsubstituted aryloxycarbonyl group having 7 to 11 carbon atoms (for example, a naphthoxycarbonyl group); an unsubstituted amino group, or a carbon number of 1 to 18 (preferably having a carbon number) 1-8) substituted amino groups (for example, methylamino group, dimethylamino group, diethylamino group) Anilino group, methoxyphenylamino group, chlorophenylamino group, pyridylamino group, methoxycarbonylamino group, n-butoxycarbonylamino group, phenoxycarbonylamino group, methylcarbamoylamino group, ethylthiocarbamoylamino group, phenylcarbamoylamino group, acetylamino Group, ethylcarbonylamino group, ethylthiocarbamoylamino group, cyclohexylcarbonylamino group, benzoylamino group, chloroacetylamino group, methylsulfonylamino group);

炭素数1〜18(好ましくは炭素数1〜8)の置換もしくは無置換のカルバモイル基(例えば、無置換のカルバモイル基、メチルカルバモイル基、エチルカルバモイル基、n−ブチルカルバモイル基、tert−ブチルカルバモイル基、ジメチルカルバモイル基、モルホリノカルバモイル基、ピロリジノカルバモイル基);無置換のスルファモイル基、もしくは炭素数1〜18(好ましくは炭素数1〜8)の置換スルファモイル基(例えば、メチルスルファモイル基、フェニルスルファモイル基);シアノ基;ニトロ基;カルボキシ基;水酸基;ヘテロ環基(例えば、オキサゾール環、ベンゾオキサゾール環、チアゾール環、ベンゾチアゾール環、イミダゾール環、ベンゾイミダゾール環、インドレニン環、ピリジン環、ピペリジン環、ピロリジン環、モルホリン環、スルホラン環、フラン環、チオフェン環、ピラゾール環、ピロール環、クロマン環、クマリン環)。アルキル基の置換基としては、特に好ましくは、アリールオキシ基、アリールチオ基、アリールスルホニル基、アリールオキシカルボニル基である。   C1-C18 (preferably C1-C8) substituted or unsubstituted carbamoyl group (for example, unsubstituted carbamoyl group, methylcarbamoyl group, ethylcarbamoyl group, n-butylcarbamoyl group, tert-butylcarbamoyl group) , Dimethylcarbamoyl group, morpholinocarbamoyl group, pyrrolidinocarbamoyl group); unsubstituted sulfamoyl group, or substituted sulfamoyl group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms) (for example, methylsulfamoyl group, phenyl) Sulfamoyl group); cyano group; nitro group; carboxy group; hydroxyl group; heterocyclic group (for example, oxazole ring, benzoxazole ring, thiazole ring, benzothiazole ring, imidazole ring, benzimidazole ring, indolenine ring, pyridine ring) , Piperidine ring, pyro Jin ring, morpholine ring, sulfolane ring, furan ring, thiophene ring, pyrazole ring, pyrrole ring, chroman ring, a coumarin ring). The substituent for the alkyl group is particularly preferably an aryloxy group, an arylthio group, an arylsulfonyl group, or an aryloxycarbonyl group.

上記R8で表されるアルケニル基は、炭素数2〜18の置換もしくは無置換のアルケニル基が好ましく、より好ましくは炭素数2〜8の置換もしくは無置換のアルケニル基であり、例えば、ビニル基、アリル基、1−プロペニル基、1,3−ブタジエニル基等が挙げられる。
アルケニル基の置換基としては、前記アルキル基の置換基として挙げたものが好ましい。
The alkenyl group represented by R 8 is preferably a substituted or unsubstituted alkenyl group having 2 to 18 carbon atoms, more preferably a substituted or unsubstituted alkenyl group having 2 to 8 carbon atoms, such as a vinyl group. , Allyl group, 1-propenyl group, 1,3-butadienyl group and the like.
As the substituent for the alkenyl group, those exemplified as the substituent for the alkyl group are preferable.

上記R8で表されるアルキニル基は、炭素数2〜18の置換もしくは無置換のアルキニル基が好ましく、より好ましくは炭素数2〜8の置換もしくは無置換のアルキニル基であり、例えば、エチニル基、2−プロピニル等が挙げられる。アルキニル基の置換基は、前記アルキル基の置換基として挙げたものが好ましい。 The alkynyl group represented by R 8 is preferably a substituted or unsubstituted alkynyl group having 2 to 18 carbon atoms, more preferably a substituted or unsubstituted alkynyl group having 2 to 8 carbon atoms, such as an ethynyl group. , 2-propynyl and the like. As the substituent for the alkynyl group, those exemplified as the substituent for the alkyl group are preferable.

上記R8で表されるアラルキル基は、炭素数7〜18の置換もしくは無置換のアラルキル基が好ましく、例えば、ベンジル基、メチルベンジル基、ビフェニルメチル基、ナフチルメチル基等が好ましい。アラルキル基の置換基は前記アルキル基の置換基として挙げたものが挙げられる。 The aralkyl group represented by R 8 is preferably a substituted or unsubstituted aralkyl group having 7 to 18 carbon atoms, such as a benzyl group, a methylbenzyl group, a biphenylmethyl group, or a naphthylmethyl group. Examples of the substituent for the aralkyl group include those exemplified as the substituent for the alkyl group.

上記R8で表されるアリール基は、炭素数6〜18の置換もしくは無置換のアリール基が好ましく、例えば、フェニル基、ナフチル基、フルオレニル基等が挙げられる。アリール基の置換基は前記アルキル基の置換基として挙げたものが好ましい。またこれらの他に、アルキル基(例えば、メチル基、エチル基等)、アルキニル基、ベンゾイル基も好ましい。 The aryl group represented by R 8 is preferably a substituted or unsubstituted aryl group having 6 to 18 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and a fluorenyl group. As the substituent for the aryl group, those exemplified as the substituent for the alkyl group are preferable. In addition to these, an alkyl group (for example, a methyl group, an ethyl group, etc.), an alkynyl group, and a benzoyl group are also preferable.

上記R8で表される複素環基は、炭素原子、窒素原子、酸素原子又は硫黄原子から構成される5〜6員環の飽和又は不飽和の複素環であり、これらの例としては、オキサゾール環、ベンゾオキサゾール環、チアゾール環、ベンゾチアゾール環、イミダゾール環、ベンゾイミダゾール環、インドレニン環、ピリジン環、ピペリジン環、ピロリジン環、モルホリン環、スルホラン環、フラン環、チオフェン環、ピラゾール環、ピロール環、クロマン環、及びクマリン環が挙げられる。複素環基は置換されていてもよく、その場合の置換基としては、前記アルキル基の置換基として挙げたものが好ましい。R8で表される複素環基としては、ベンゾオキサゾール環、ベンゾチアゾール環が特に好ましい。 The heterocyclic group represented by R 8 is a 5- or 6-membered saturated or unsaturated heterocyclic ring composed of a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and examples thereof include oxazole Ring, benzoxazole ring, thiazole ring, benzothiazole ring, imidazole ring, benzimidazole ring, indolenine ring, pyridine ring, piperidine ring, pyrrolidine ring, morpholine ring, sulfolane ring, furan ring, thiophene ring, pyrazole ring, pyrrole ring , Chroman ring, and coumarin ring. The heterocyclic group may be substituted, and as the substituent in that case, those exemplified as the substituent of the alkyl group are preferable. As the heterocyclic group represented by R 8 , a benzoxazole ring and a benzothiazole ring are particularly preferable.

上記R8は好ましくは、置換もしくは無置換の、アルキル基、アラルキル基、アリール基又は複素環基である。 R 8 is preferably a substituted or unsubstituted alkyl group, aralkyl group, aryl group or heterocyclic group.

Dは水素結合性基を表す。水素結合は、電気的に陰性な原子(例えば、O,N,F,Cl)と、同じように電気的に陰性な原子に共有結合した水素原子間に存在する。水素結合の理論的な解釈としては、例えば、H. Uneyama and K.Morokuma、Jounal of American Chemical Society、第99巻、第1316〜1332頁、1977年に報告がある。具体的な水素結合の様式としては、例えば、J.N.イスラエスアチヴィリ著、近藤保、大島広行訳、分子間力と表面力、マグロウヒル社、1991年の第98頁、図17に記載の様式が挙げられる。具体的な水素結合の例としては、例えば、G.R.Desiraju、Angewante Chemistry International Edition English、第34巻、第2311頁、1995年に記載のものが挙げられる。   D represents a hydrogen bonding group. Hydrogen bonds exist between electronegative atoms (eg, O, N, F, Cl) and hydrogen atoms covalently bonded to electronegative atoms as well. As a theoretical interpretation of hydrogen bonding, for example, H.H. Unneyama and K.M. There are reports in Morokuma, Journal of American Chemical Society, Vol. 99, pp. 1316-1332, 1977. Specific examples of hydrogen bonding include J.I. N. Examples include Israes Ativiri, Yasuo Kondo, Hiroyuki Oshima, Intermolecular Force and Surface Force, McGraw Hill, 1991, page 98, FIG. Specific examples of hydrogen bonding include, for example, G.I. R. Examples include those described in Desiraju, Angewent Chemistry International Edition England, Vol. 34, p. 2311, 1995.

好ましい水素結合性基としては、メルカプト基、ヒドロキシ基、アミノ基、カルボンアミド基、スルホンアミド基、酸アミド基、ウレイド基、カルバモイル基、カルボキシル基、スルホ基、含窒素複素環基(例えば、イミダゾリル基、ベンズイミダゾリル基、ピラゾリル基、ピリジル基、1,3,5−トリアジル基、ピリミジル基、ピリダジル基、キノリル基、ベンズイミダゾリル基、ベンズチアゾリル基、コハクイミド基、フタルイミド基、マレイミド基、ウラシル基、チオウラシル基、バルビツール酸基、ヒダントイン基、マレイン酸ヒドラジド基、イサチン基、ウラミル基などが挙げられる)を挙げることができる。更に好ましい水素結合性基としては、アミノ基、カルボンアミド基、スルホンアミド基、ウレイド基、カルバモイル基、カルボキシル基、スルホ基、ピリジル基を挙げることができ、特に好ましくは、アミノ基、カルバモイル基、ピリジル基を挙げることができる。   Preferred hydrogen bonding groups include mercapto groups, hydroxy groups, amino groups, carbonamido groups, sulfonamido groups, acid amide groups, ureido groups, carbamoyl groups, carboxyl groups, sulfo groups, nitrogen-containing heterocyclic groups (for example, imidazolyl). Group, benzimidazolyl group, pyrazolyl group, pyridyl group, 1,3,5-triazyl group, pyrimidyl group, pyridazyl group, quinolyl group, benzimidazolyl group, benzthiazolyl group, succinimide group, phthalimide group, maleimide group, uracil group, thiouracil Group, barbituric acid group, hydantoin group, maleic hydrazide group, isatin group, uramil group and the like. More preferred hydrogen bonding groups include amino group, carbonamido group, sulfonamido group, ureido group, carbamoyl group, carboxyl group, sulfo group and pyridyl group, and particularly preferred are amino group, carbamoyl group, A pyridyl group can be mentioned.

-で表されるアニオンは無機陰イオンあるいは有機陰イオンのいずれであってもよく、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンなど)、スルホネートイオン(例えば、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、メチル硫酸イオン、p−トルエンスルホン酸イオン、p−クロロベンゼンスルホン酸イオン、1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオンなど)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロほう酸イオン、ピクリン酸イオン、酢酸イオン、リン酸イオン(例えば、ヘキサフルオロリン酸イオン)、水酸イオンなどが挙げられる。
-は、好ましくは、ハロゲン陰イオン、スルホネートイオン、水酸イオンである。なおX-は1価のアニオンである必要はなく、2価以上のアニオンであってもよく、かかる場合は、前記化合物中のカチオンとアニオンとの比率も1:1である必要はなく、適宜決定される。
The anion represented by X may be either an inorganic anion or an organic anion, such as a halogen anion (eg, fluorine ion, chlorine ion, bromine ion, iodine ion), sulfonate ion (eg, methanesulfone). Acid ion, trifluoromethanesulfonic acid ion, methylsulfuric acid ion, p-toluenesulfonic acid ion, p-chlorobenzenesulfonic acid ion, 1,3-benzenedisulfonic acid ion, 1,5-naphthalenedisulfonic acid ion, 2,6-naphthalene Disulfonate ions, etc.), sulfate ions, thiocyanate ions, perchlorate ions, tetrafluoroborate ions, picrate ions, acetate ions, phosphate ions (for example, hexafluorophosphate ions), hydroxide ions, etc. .
X is preferably a halogen anion, a sulfonate ion, or a hydroxide ion. X need not be a monovalent anion and may be a divalent or higher anion. In such a case, the ratio of the cation to the anion in the compound need not be 1: 1, It is determined.

前記一般式(3a)中、mは好ましくは1である。   In the general formula (3a), m is preferably 1.

次に、前記一般式(3b)について説明する。

Figure 2007193276
Next, the general formula (3b) will be described.
Figure 2007193276

式(3b)中、R9及びR10は各々置換もしくは無置換の、アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基又は複素環基を表し、X-はアニオンを表す。
9及びR10で各々表される置換もしくは無置換の、アルキル基、アルケニル基、アルキニル基、アラルキル基、アリール基又は複素環基は、前記一般式(3a)中、R8で表される基と同義であり、その好ましい範囲も同一である。X-で表されるアニオンは、前記一般式(3a)中、X-で表されるアニオンと同義であり、その好ましい範囲も同一である。上述した様に、X-は1価のアニオンである必要はなく、2価以上のアニオンであってもよく、かかる場合は、前記化合物中のカチオンとアニオンとの比率も1:2である必要はなく、適宜決定される。
In formula (3b), R 9 and R 10 each represents a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aralkyl group, aryl group or heterocyclic group, and X represents an anion.
The substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aralkyl group, aryl group or heterocyclic group represented by R 9 and R 10 respectively is represented by R 8 in the general formula (3a). It is synonymous with a group, and its preferable range is also the same. X - anion represented by the In the general formula (3a), X - has the same meaning as anion represented by, and the preferable ranges thereof are also the same. As described above, X need not be a monovalent anion but may be a divalent or higher anion. In such a case, the ratio of the cation to the anion in the compound should be 1: 2. It is not determined.

以下に、一般式(3a)又は(3b)で表される第4級ピリジニウム塩、その他本発明で好ましく用いられるオニウム塩の具体例を以下に示すが、本発明に用いられるオニウム塩はこれらに限定されるものではない。   Specific examples of the quaternary pyridinium salt represented by the general formula (3a) or (3b) and other onium salts preferably used in the present invention are shown below, but the onium salts used in the present invention are shown below. It is not limited.

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

Figure 2007193276
Figure 2007193276

前記第1の光学異方性層中におけるオニウム塩の含有量は、その種類によって好ましい含有量が変動するが、通常は、併用される液晶性化合物の含有量に対して、0.01〜10質量%であるのが好ましく、0.05〜7質量%であるのがより好ましく、0.05〜5質量%であるのがさらに好ましい。オニウム塩は二種類以上用いてもよいが、かかる場合は、使用する全種類のオニウム塩の含有量の合計が前記範囲であるのが好ましい。   The preferable content of the onium salt in the first optically anisotropic layer varies depending on the type of the onium salt, but usually 0.01 to 10 with respect to the content of the liquid crystal compound used in combination. The content is preferably mass%, more preferably 0.05 to 7 mass%, and still more preferably 0.05 to 5 mass%. Two or more kinds of onium salts may be used. In such a case, the total content of all kinds of onium salts to be used is preferably within the above range.

[第1の光学異方性層の他の添加剤]
上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることができる。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
[Other Additives for First Optically Anisotropic Layer]
Along with the liquid crystal compound, a plasticizer, a surfactant, a polymerizable monomer, and the like can be used in combination to improve the uniformity of the coating film, the strength of the film, the orientation of the liquid crystal compound, and the like. These materials are preferably compatible with the liquid crystal compound and do not inhibit the alignment.

重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、棒状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。   Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Preferably, it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the above-described polymerizable group-containing liquid crystal compound. Examples thereof include those described in paragraph numbers [0018] to [0020] in JP-A No. 2002-296423. The amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the rod-like liquid crystalline molecules.

界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報中の段落番号[0028]〜[0056]記載の化合物、特願2003−295212号明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。   Examples of the surfactant include conventionally known compounds, and fluorine compounds are particularly preferable. Specifically, for example, compounds described in paragraphs [0028] to [0056] in JP-A No. 2001-330725, and compounds described in paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212. Is mentioned.

液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。   The polymer used together with the liquid crystal compound is preferably capable of thickening the coating solution. A cellulose ester can be mentioned as an example of a polymer. Preferable examples of the cellulose ester include those described in paragraph [0178] of JP-A No. 2000-155216. The addition amount of the polymer is preferably in the range of 0.1 to 10% by mass, and in the range of 0.1 to 8% by mass with respect to the liquid crystal molecules so as not to inhibit the alignment of the liquid crystal compound. It is more preferable.

本発明において前記第1の光学異方性層は、例えば、液晶性化合物、及び所望により添加される重合開始剤、配向制御剤等の添加剤を、溶媒に溶解及び/又は分散させて調製した塗布液を、支持体上に塗布することで形成することができる。支持体上に配向膜を形成し、該配向膜表面に前記塗布液を塗布して形成するのが好ましい。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。   In the present invention, the first optically anisotropic layer is prepared by, for example, dissolving and / or dispersing a liquid crystalline compound and additives such as a polymerization initiator and an alignment controller added as required in a solvent. The coating liquid can be formed by coating on a support. It is preferable to form an alignment film on a support and apply the coating solution on the surface of the alignment film. As a solvent used for preparing the coating solution, an organic solvent is preferably used. Examples of organic solvents include amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethyl sulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (eg, benzene, hexane), alkyl halides (eg, , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.

[塗布方法]
前記液晶性化合物及び所望により他の添加剤を含有する組成物は、塗布液として調製してもよい。塗布液の表面への塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。中でも、前記光学異方性層を形成する際は、ワイヤーバーコーティング法を利用して塗布するのが好ましく、ワイヤーバーの回転数は下記式を満たすことが好ましい。
0.6<(W×(R+2r)×π)/V<1.4
[W:ワイヤーバーの回転数(rpm)、R:バーの芯の直径(m)、r:ワイヤーの直径(m)、V:支持体の搬送速度(m/min)]
(W×(R+2r)×π)/Vの範囲は、0.7〜1.3であることがより好ましく、0.8〜1.2であることがさらに好ましい。
[Coating method]
The composition containing the liquid crystal compound and optionally other additives may be prepared as a coating solution. Application of the coating solution to the surface can be performed by a known method (eg, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method). Especially, when forming the said optically anisotropic layer, it is preferable to apply | coat using a wire bar coating method, and it is preferable that the rotation speed of a wire bar satisfy | fills a following formula.
0.6 <(W × (R + 2r) × π) / V <1.4
[W: Number of revolutions of wire bar (rpm), R: Diameter of bar core (m), r: Diameter of wire (m), V: Conveying speed of support (m / min)]
The range of (W × (R + 2r) × π) / V is more preferably 0.7 to 1.3, and still more preferably 0.8 to 1.2.

前記第1の光学異方性層の形成にはダイコーティング法が好ましく用いられ、特に、スライドコーター又はスロットダイコーターを利用した塗布方法が好ましい。例えば、特開2004−290775号、特開2004−290776号、特開2004−358296号、特開2005−13989号公報等に記載の塗布方法を用いることができる。   A die coating method is preferably used for forming the first optically anisotropic layer, and a coating method using a slide coater or a slot die coater is particularly preferable. For example, the coating methods described in JP-A No. 2004-290775, JP-A No. 2004-290776, JP-A No. 2004-358296, JP-A No. 2005-13989, and the like can be used.

次に、上記の通り、支持体表面又は配向膜表面に前記組成物を塗布した後、液晶性化合物の分子を配向(棒状液晶性分子については好ましくは垂直配向)させて、分子をその配向状態に固定して光学異方性層を形成する。配向させる温度は、用いる液晶性化合物の転移温度、所望の配向状態等を考慮して、決定することができる。固定化は、液晶性分子や、組成物中に所望により添加される重合性モノマーの重合反応又は架橋反応により実施されるのが好ましい。重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
形成される光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましく、1〜5μmであることがよりさらに好ましい。
Next, as described above, after the composition is applied to the surface of the support or the alignment film, the molecules of the liquid crystalline compound are aligned (preferably vertical alignment for rod-like liquid crystalline molecules), and the molecules are aligned. To form an optically anisotropic layer. The alignment temperature can be determined in consideration of the transition temperature of the liquid crystal compound to be used, the desired alignment state, and the like. The immobilization is preferably carried out by a polymerization reaction or a crosslinking reaction of liquid crystalline molecules or a polymerizable monomer that is optionally added to the composition. It is preferable to use ultraviolet rays for light irradiation for polymerization. The irradiation energy is preferably 20mJ / cm 2 ~50J / cm 2 , further preferably 100 to 800 mJ / cm 2. In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
The thickness of the formed optically anisotropic layer is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm, and still more preferably 1 to 5 μm.

[配向膜]
前記第1の光学異方性層の作製には、配向膜を利用してもよい。配向膜は、液晶性化合物、好ましくは棒状液晶性化合物、の分子の配向方向を規定する機能を有する。
また、上記したオニウム塩等の配向膜側垂直配向剤及び上記したフッ素系ポリマー等の空気界面垂直配向剤を含有していると、垂直配向膜を用いなくても、棒状液晶性化合物の分子を安定的に垂直配向させることができるので、光学異方性層を形成するのに垂直配向膜は必須ではない。しかし、親水性基を含む配向膜の表面に前記第1の光学異方性層形成用組成物を塗布することで、液晶性組成物の配向の均一性を向上させたり、ポリマー基材と光学異方性層との間の密着性を向上させることができるため、配向膜を利用することが好ましい。また、棒状液晶性化合物の分子を配向させ、その配向状態に固定してしまえば、配向膜はその役割を果たしているために、除去することも可能である。例えば、配向状態が固定された配向膜上の光学異方性層のみを、偏光子上に転写して光学異方性層を有する偏光板を作製することも可能である。
[Alignment film]
An alignment film may be used for producing the first optically anisotropic layer. The alignment film has a function of defining the alignment direction of molecules of a liquid crystal compound, preferably a rod-like liquid crystal compound.
In addition, when the alignment layer side vertical alignment agent such as the onium salt and the air interface vertical alignment agent such as the fluorine-based polymer described above are contained, the molecules of the rod-like liquid crystal compound can be obtained without using the vertical alignment film. Since the vertical alignment can be stably performed, the vertical alignment film is not essential for forming the optically anisotropic layer. However, by applying the first composition for forming an optically anisotropic layer on the surface of the alignment film containing a hydrophilic group, the alignment uniformity of the liquid crystalline composition can be improved, or the polymer substrate and the optical film Since the adhesion between the anisotropic layer can be improved, it is preferable to use an alignment film. Further, if the molecules of the rod-like liquid crystal compound are aligned and fixed in the alignment state, the alignment film plays the role and can be removed. For example, it is possible to produce a polarizing plate having an optically anisotropic layer by transferring only the optically anisotropic layer on the alignment film in which the alignment state is fixed onto a polarizer.

配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例えば、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。   The alignment film is an organic compound (for example, ω-tricosanoic acid) formed by rubbing treatment of an organic compound (preferably a polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodget method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.

配向膜は、必要であればラビング処理することができる。配向膜に使用するポリマーは、原則として、液晶性化合物を配向させる機能のある分子構造を有する。
本発明では、液晶性化合物を配向させる機能に加えて、架橋性官能基(例えば、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性化合物を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。
配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。
The alignment film can be rubbed if necessary. In principle, the polymer used for the alignment film has a molecular structure having a function of aligning the liquid crystal compound.
In the present invention, in addition to the function of aligning the liquid crystalline compound, the cross-linking having a function of binding a side chain having a crosslinkable functional group (for example, a double bond) to the main chain or aligning the liquid crystalline compound. It is preferable to introduce a functional functional group into the side chain.
As the polymer used for the alignment film, either a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent can be used, and a plurality of combinations thereof can be used.

ポリマーの例には、例えば特開平8−338913号公報明細書中段落番号[0022]記載のメタクリレート系重合体、スチレン系重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例えば、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。   Examples of the polymer include, for example, methacrylate polymer, styrene polymer, polyolefin, polyvinyl alcohol and modified polyvinyl alcohol, poly (N-methylolacrylamide) described in paragraph No. [0022] of JP-A-8-338913. , Polyester, polyimide, vinyl acetate polymer, carboxymethyl cellulose, polycarbonate and the like. Silane coupling agents can be used as the polymer. Water-soluble polymers (for example, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, and modified polyvinyl alcohol) are preferable, gelatin, polyvinyl alcohol, and modified polyvinyl alcohol are more preferable, and polyvinyl alcohol and modified polyvinyl alcohol are most preferable. .

ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。   The saponification degree of polyvinyl alcohol is preferably 70 to 100%, more preferably 80 to 100%. It is preferable that the polymerization degree of polyvinyl alcohol is 100-5000.

変性ポリビニルアルコールの変性基としては、共重合変性、連鎖移動変性又はブロック重合変性により導入できる。変性基の例には、親水性基(カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基等)、炭素数10〜100個の炭化水素基、フッ素原子置換の炭化水素基、チオエーテル基、重合性基(不飽和重合性基、エポキシ基、アジリニジル基等)、アルコキシシリル基(トリアルコキシ、ジアルコキシ、モノアルコキシ)等が挙げられる。これらの変性ポリビニルアルコール化合物の具体例として、例えば特開2000−155216号公報明細書中の段落番号[0022]〜[0145]、同2002−62426号公報明細書中の段落番号[0018]〜[0022]に記載のもの等が挙げられる。   The modifying group of the modified polyvinyl alcohol can be introduced by copolymerization modification, chain transfer modification or block polymerization modification. Examples of modifying groups include hydrophilic groups (carboxylic acid groups, sulfonic acid groups, phosphonic acid groups, amino groups, ammonium groups, amide groups, thiol groups, etc.), hydrocarbon groups having 10 to 100 carbon atoms, fluorine atoms Substituted hydrocarbon groups, thioether groups, polymerizable groups (unsaturated polymerizable groups, epoxy groups, azirinidyl groups, etc.), alkoxysilyl groups (trialkoxy, dialkoxy, monoalkoxy) and the like can be mentioned. As specific examples of these modified polyvinyl alcohol compounds, for example, paragraph numbers [0022] to [0145] in JP-A No. 2000-155216 and paragraph numbers [0018] to [0018] in JP-A No. 2002-62426 are described. [0022] and the like.

架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性化合物を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償フィルムの強度を著しく改善することができる。
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報明細書中段落番号[0080]〜[0100]記載のもの等が挙げられる。
When the side chain having a crosslinkable functional group is bonded to the main chain of the alignment film polymer or the crosslinkable functional group is introduced into the side chain having a function of aligning the liquid crystalline compound, the alignment film polymer and the optically anisotropic film The polyfunctional monomer contained in the conductive layer can be copolymerized. As a result, not only between the polyfunctional monomer and the polyfunctional monomer, but also between the alignment film polymer and the alignment film polymer and between the polyfunctional monomer and the alignment film polymer is firmly bonded by a covalent bond. Therefore, the strength of the optical compensation film can be remarkably improved by introducing the crosslinkable functional group into the alignment film polymer.
The crosslinkable functional group of the alignment film polymer preferably contains a polymerizable group in the same manner as the polyfunctional monomer. Specifically, for example, those described in paragraphs [0080] to [0100] of JP-A No. 2000-155216, and the like can be mentioned.

配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。
架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉が含まれる。2種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報明細書中の段落番号[0023]〜[0024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
Apart from the crosslinkable functional group, the alignment film polymer can also be crosslinked using a crosslinking agent.
Examples of the crosslinking agent include aldehydes, N-methylol compounds, dioxane derivatives, compounds that act by activating carboxyl groups, active vinyl compounds, active halogen compounds, isoxazole and dialdehyde starch. Two or more kinds of crosslinking agents may be used in combination. Specific examples include compounds described in paragraphs [0023] to [0024] in JP-A-2002-62426. Aldehydes having high reaction activity, particularly glutaraldehyde are preferred.

架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。   0.1-20 mass% is preferable with respect to a polymer, and, as for the addition amount of a crosslinking agent, 0.5-15 mass% is more preferable. The amount of the unreacted crosslinking agent remaining in the alignment film is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less. By adjusting in this way, even if the alignment film is used for a long time in a liquid crystal display device or left in a high temperature and high humidity atmosphere for a long time, sufficient durability without reticulation can be obtained.

配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤を含む支持体上に塗布した後、加熱乾燥(架橋させ)し、必要であればラビング処理することにより形成することができる。架橋反応は、前記のように、支持体上に塗布した後、任意の時期に行なってもよい。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例えば、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で、水:メタノールが0より大きく99以下:100未満1以上が好ましく、0より大きく91以下:100未満9以上であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。   The alignment film can basically be formed by applying the above-mentioned polymer as an alignment film forming material and a support containing a crosslinking agent, followed by drying by heating (crosslinking) and, if necessary, rubbing treatment. it can. As described above, the crosslinking reaction may be carried out at any time after coating on the support. When a water-soluble polymer such as polyvinyl alcohol is used as the alignment film forming material, the coating liquid is preferably a mixed solvent of an organic solvent (for example, methanol) having a defoaming action and water. The ratio by mass is water: methanol greater than 0 and 99 or less: less than 100, preferably 1 or more, and more preferably greater than 0 and 91 or less: less than 100, 9 or more. Thereby, generation | occurrence | production of a bubble is suppressed and the defect of the layer surface of an orientation film and also an optically anisotropic layer reduces remarkably.

配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1〜10μmが好ましい。加熱乾燥は、20度〜110度で行なうことができる。充分な架橋を形成するためには60度〜100度が好ましく、特に80度〜100度が好ましい。乾燥時間は1分〜36時間で行なうことができるが、好ましくは1分〜30分である。   The alignment film is preferably applied by spin coating, dip coating, curtain coating, extrusion coating, rod coating, or roll coating. A rod coating method is particularly preferable. The film thickness after drying is preferably 0.1 to 10 μm. Heat drying can be performed at 20 to 110 degrees. In order to form sufficient cross-linking, 60 ° to 100 ° is preferable, and 80 ° to 100 ° is particularly preferable. The drying time can be 1 minute to 36 hours, preferably 1 minute to 30 minutes.

配向膜上で液晶性化合物を配向させた後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させてもよい。配向膜の膜厚は、0.1〜10μmの範囲にあることが好ましい。   After aligning the liquid crystalline compound on the alignment film, if necessary, the alignment film polymer is reacted with the polyfunctional monomer contained in the optically anisotropic layer, or the alignment film polymer is formed using a crosslinking agent. It may be cross-linked. The thickness of the alignment film is preferably in the range of 0.1 to 10 μm.

液晶性化合物を均一配向させるには、配向膜により配向方向を制御するのが好ましい。なお、配向膜を用いて液晶性化合物を配向させてから、その配向状態のまま液晶性化合物を固定して光学異方性層を形成し、光学異方性層のみをポリマーフィルム(又は支持体)上に転写してもよい。即ち、光学異方性層の作製時に配向膜を用いたとしても、配向膜は必ずしも本発明の光学補償フィルムの構成部材となるわけではない。   In order to uniformly align the liquid crystalline compound, it is preferable to control the alignment direction with an alignment film. In addition, after aligning a liquid crystalline compound using an alignment film, the liquid crystalline compound is fixed in the alignment state to form an optically anisotropic layer, and only the optically anisotropic layer is formed as a polymer film (or a support). ) May be transferred onto. That is, even if an alignment film is used during the production of the optically anisotropic layer, the alignment film is not necessarily a constituent member of the optical compensation film of the present invention.

[支持体]
本発明の光学補償フィルムに含まれる第1の光学異方性層は、支持体上に形成してもよい。支持体として前述の第2の光学異方性層(例えば、セルロースアシレートフィルム)を用いて第1の光学異方性層をその表面に形成してもよいし、仮の支持体上に第1の光学異方性層に形成した後、第2の光学異方性層上に転写してもよいし、光学的に等方性のフィルムを支持体として用いてもよい。光学的に等方的な支持体上に第1の光学異方性層を形成した場合、液晶表示装置での使用時、該支持体は取り除いてもよいし、残してもよい。第2の光学異方性層との積層体は、光学補償フィルムとして、液晶表示装置等に組み込むことができる。
[Support]
The first optically anisotropic layer contained in the optical compensation film of the present invention may be formed on a support. The first optical anisotropic layer may be formed on the surface using the above-mentioned second optical anisotropic layer (for example, cellulose acylate film) as the support, or the first optical anisotropic layer may be formed on the temporary support. After forming on one optically anisotropic layer, it may be transferred onto the second optically anisotropic layer, or an optically isotropic film may be used as a support. When the first optically anisotropic layer is formed on an optically isotropic support, the support may be removed or left when used in a liquid crystal display device. The laminate with the second optically anisotropic layer can be incorporated into a liquid crystal display device or the like as an optical compensation film.

また、支持体は偏光膜の保護フィルムとしても利用できる。支持体は光透過率が80%以上であることが好ましい。 The support can also be used as a protective film for a polarizing film. The support preferably has a light transmittance of 80% or more.

支持体となるポリマーフィルムの例には、セルロースエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート及びポリメタクリレートのフィルムが含まれる。セルロースエステルフィルムが好ましく、アセチルセルロースフィルムがさらに好ましく、トリアセチルセルロースフィルムが最も好ましい。ポリマーフィルムは、ソルベントキャスト法により形成することが好ましい。支持体の厚さは、20〜500μmであることが好ましく、40〜200μmであることがさらに好ましい。支持体とその上に設けられる層(接着層、垂直配向膜あるいは光学異方性層)との接着を改善するため、支持体に表面処理(例えば、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。支持体の上に、接着層(下塗り層)を設けてもよい。また、支持体が重合性基を有するポリマー等のフィルムであるのも、光学異方性層との密着性が向上するので好ましい。また、支持体や長尺の支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒子サイズが10〜100nm程度の無機粒子を固形分重量比で5%〜40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。   Examples of the polymer film as the support include cellulose ester, polycarbonate, polysulfone, polyethersulfone, polyacrylate and polymethacrylate films. A cellulose ester film is preferred, an acetyl cellulose film is more preferred, and a triacetyl cellulose film is most preferred. The polymer film is preferably formed by a solvent cast method. The thickness of the support is preferably 20 to 500 μm, and more preferably 40 to 200 μm. In order to improve adhesion between the support and the layer (adhesive layer, vertical alignment film or optically anisotropic layer) provided thereon, the support is subjected to surface treatment (for example, glow discharge treatment, corona discharge treatment, ultraviolet light (UV ) Treatment, flame treatment). An adhesive layer (undercoat layer) may be provided on the support. In addition, it is also preferable that the support is a film of a polymer or the like having a polymerizable group because adhesion with the optically anisotropic layer is improved. Moreover, in order to give the support body and the long support body the slipperiness in a conveyance process, or to prevent sticking of the back surface and the surface after winding up, an average particle size is about 10-100 nm. It is preferable to use what formed the polymer layer which mixed inorganic particle 5%-40% by solid content weight ratio on the one side of the support body by the application | coating or co-casting with a support body.

実質的に等方的な支持体(以下低Reフィルムという場合がある)としては、面内のレタデーション(Re)は0〜10nmであることが好ましく、0〜5nmであることがさらに好ましく、0〜3nmであることが最も好ましい。また、厚さ方向のレタデーション(Rth)は−20nm〜20nmであることが好ましく、−15nm〜15nmであることが好ましく、−10nm〜10nmであることが最も好ましい。波長分散は、Re400/Re700の比が1.2未満であることが好ましい。さらに低Reフィルムのヘイズは、1.0%以下であることが好ましく、0.8%以下であることがより好ましい。   As a substantially isotropic support (hereinafter sometimes referred to as a low Re film), the in-plane retardation (Re) is preferably 0 to 10 nm, more preferably 0 to 5 nm, and 0 Most preferably, it is ˜3 nm. The retardation in the thickness direction (Rth) is preferably -20 nm to 20 nm, preferably -15 nm to 15 nm, and most preferably -10 nm to 10 nm. The wavelength dispersion is preferably such that the ratio of Re400 / Re700 is less than 1.2. Furthermore, the haze of the low Re film is preferably 1.0% or less, and more preferably 0.8% or less.

以下、本発明の光学補償フィルムを付加した本発明の偏光板について詳細に説明する。
[偏光板]
本発明の偏光板は、本発明の光学補償フィルムと、偏光膜とを少なくとも有する。
偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光膜の吸収軸は、フィルムの延伸方向に相当する。従って、縦方向(搬送方向)に延伸された偏光膜は長手方向に対して平行に吸収軸を有し、横方向(搬送方向と垂直方向)に延伸された偏光膜は長手方向に対して垂直に吸収軸を有す。
Hereinafter, the polarizing plate of the present invention to which the optical compensation film of the present invention is added will be described in detail.
[Polarizer]
The polarizing plate of the present invention has at least the optical compensation film of the present invention and a polarizing film.
Examples of the polarizing film include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film. The iodine polarizing film and the dye polarizing film are generally produced using a polyvinyl alcohol film. The absorption axis of the polarizing film corresponds to the stretching direction of the film. Accordingly, the polarizing film stretched in the longitudinal direction (transport direction) has an absorption axis parallel to the longitudinal direction, and the polarizing film stretched in the lateral direction (perpendicular to the transport direction) is perpendicular to the longitudinal direction. Has an absorption axis.

偏光膜の基材フィルムに使用されるポリマーとしては、ポリビニルアルコール(以下、PVA)系ポリマーが一般的である。二色性物質としてはヨウ素あるいは、二色性染料が単独、あるいは組み合わせて用いられる。PVAは、通常、ポリ酢酸ビニルをケン化したものであるが、例えば、不飽和カルボン酸、不飽和スルホン酸、オレフィン類、ビニルエーテル類のように酢酸ビニルと共重合可能な成分を含有しても構わない。また、アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等を含有する変性PVAも用いることができる。PVAのケン化度は特に限定されないが、溶解性、偏光性、耐熱、耐湿性等の観点から80〜100mol%が好ましく、90〜100mol%が特に好ましい。またPVAの重合度は特に限定されないが、フィルム強度や耐熱、耐湿性、延伸性などから1000〜10000が好ましく、1500〜5000が特に好ましい。また、PVAのシンジオタクチシチーについては特に限定されず、目的に応じ任意の値をとることもできる。   As the polymer used for the base film of the polarizing film, a polyvinyl alcohol (hereinafter referred to as PVA) polymer is generally used. As the dichroic substance, iodine or a dichroic dye is used alone or in combination. PVA is usually a saponified polyvinyl acetate, but may contain components copolymerizable with vinyl acetate such as unsaturated carboxylic acids, unsaturated sulfonic acids, olefins, and vinyl ethers. I do not care. In addition, modified PVA containing an acetoacetyl group, a sulfonic acid group, a carboxyl group, an oxyalkylene group, or the like can also be used. The degree of saponification of PVA is not particularly limited, but is preferably 80 to 100 mol%, particularly preferably 90 to 100 mol% from the viewpoints of solubility, polarization, heat resistance, moisture resistance, and the like. The degree of polymerization of PVA is not particularly limited, but is preferably from 1000 to 10,000, particularly preferably from 1500 to 5000, from the viewpoints of film strength, heat resistance, moisture resistance, stretchability, and the like. Moreover, it does not specifically limit about the syndiotacticity of PVA, It can also take arbitrary values according to the objective.

PVAを染色、延伸して偏光膜を作製する手順には、原反となるPVAフィルムを乾式又は湿式で延伸した後、ヨウ素あるいは二色性染料の溶液に浸漬する方法、ヨウ素あるいは二色性染料の溶液中でPVAフィルムを延伸し配向させる方法、ヨウ素あるいは二色性染料にPVAフィルムを浸漬後、湿式又は乾式で延伸し配向させる方法などがある。また、PVA原反を溶液製膜法により製膜する際、PVA溶液中に二色性物質をあらかじめ含有させる手法もとることができる。   In order to prepare a polarizing film by dyeing and stretching PVA, a method in which a PVA film as a raw fabric is stretched dry or wet and then immersed in a solution of iodine or dichroic dye, iodine or dichroic dye There are a method of stretching and orienting a PVA film in the above solution, a method of stretching and orienting a PVA film in iodine or a dichroic dye and then wet or dry. Moreover, when forming a PVA raw fabric by a solution casting method, a method of previously containing a dichroic substance in the PVA solution can be used.

代表的な偏光板の湿式延伸による製造法を以下に述べる。まず、原反PVAフィルムを水溶液で予備膨潤する。次いで二色性物質の溶液に浸漬し、二色性物質を吸着させる。さらにホウ酸等のホウ素化合物の水溶液中で進行方向に一軸延伸する。必要に応じ色味調整浴、硬化浴等をこの後に設けてもよい。ある程度乾燥したところでPVA等の接着剤を用い保護膜を貼合する。さらに乾燥して偏光板が得られる。   A manufacturing method by wet stretching of a typical polarizing plate will be described below. First, the raw fabric PVA film is pre-swelled with an aqueous solution. Subsequently, it is immersed in the solution of a dichroic substance, and a dichroic substance is adsorbed. Further, it is uniaxially stretched in the traveling direction in an aqueous solution of a boron compound such as boric acid. If necessary, a color adjustment bath, a curing bath or the like may be provided after this. When it is dried to some extent, a protective film is bonded using an adhesive such as PVA. Furthermore, it dries and a polarizing plate is obtained.

予備膨潤液中には、各種有機溶媒、無機塩、可塑剤、ホウ酸類等を水溶液中に添加してもよい。   Various organic solvents, inorganic salts, plasticizers, boric acids and the like may be added to the pre-swelled solution in the aqueous solution.

染色液は、二色性物質としてヨウ素を用いる場合を例にすると、ヨウ素−ヨウ化カリウム水溶液を用いる。ヨウ素は0.1〜20g/リットル、ヨウ化カリウムは1〜100g/リットル、ヨウ素とヨウ化カリウムの重量比は1〜100が好ましい。染色時間は30〜5000秒が好ましく、液温度は5〜50℃が好ましい。染色液中にホウ素化合物等PVAを架橋する化合物を含有させることも好ましい。延伸浴中のホウ素化合物は、ホウ酸が特に好ましい。ホウ酸濃度は、好ましくは1〜200g/リットルであり、さらに好ましくは10〜120g/リットルである。延伸浴には、ホウ素化合物の他にヨウ化カリウム等の無機塩、各種有機溶媒、あるいは二色性染料等を含むことができる。色味調整浴、硬化浴には二色性染料のほか、ヨウ化カリウム等の無機塩、ホウ素化合物等を必要に応じ含有させる。   As an example of the case where iodine is used as the dichroic substance, an iodine-potassium iodide aqueous solution is used as the staining liquid. Iodine is preferably 0.1 to 20 g / liter, potassium iodide is preferably 1 to 100 g / liter, and the weight ratio of iodine and potassium iodide is preferably 1 to 100. The dyeing time is preferably 30 to 5000 seconds, and the liquid temperature is preferably 5 to 50 ° C. It is also preferable to include a compound that crosslinks PVA such as a boron compound in the dyeing solution. The boron compound in the stretching bath is particularly preferably boric acid. The boric acid concentration is preferably 1 to 200 g / liter, more preferably 10 to 120 g / liter. In addition to the boron compound, the stretching bath can contain an inorganic salt such as potassium iodide, various organic solvents, or a dichroic dye. In addition to the dichroic dye, an inorganic salt such as potassium iodide, a boron compound, and the like are contained in the color adjustment bath and the curing bath as necessary.

PVAの延伸工程としては、上に例示した如く連続フィルムの進行方向に張力を付与し、進行方向にフィルムを延伸、配向させる方法が一般的であるが、いわゆるテンター方式等の延伸手段でフィルムの幅手方向に張力を付与し、幅手方向に配向させる方法も適用可能である。延伸は一軸方向に3倍以上行うことが好ましく、4.5倍以上がより好ましい。偏光膜の使用目的により二軸延伸を行ってもよい。延伸後の膜厚は特に限定されないが、取り扱い性、耐久性、経済性の観点より、5〜100μmが好ましく、10〜40μmがより好ましい。延伸時の温度は延伸条件によって異なるが、通常10〜250℃である。100℃以上の温度で乾式延伸する場合は、窒素等の不活性ガス雰囲気で行うことが好ましい。また、予め延伸したフィルムを染色する前には、100℃以上の温度で結晶化処理を行うことが好ましい。   The stretching process of PVA is generally a method in which tension is applied in the traveling direction of the continuous film and the film is stretched and oriented in the traveling direction as exemplified above, but the film is stretched by stretching means such as a so-called tenter method. A method of applying tension in the width direction and orienting in the width direction is also applicable. The stretching is preferably performed 3 times or more in a uniaxial direction, and more preferably 4.5 times or more. Biaxial stretching may be performed depending on the purpose of use of the polarizing film. Although the film thickness after extending | stretching is not specifically limited, 5-100 micrometers is preferable from a viewpoint of a handleability, durability, and economical efficiency, and 10-40 micrometers is more preferable. The temperature during stretching varies depending on the stretching conditions, but is usually 10 to 250 ° C. When dry stretching at a temperature of 100 ° C. or higher, it is preferably performed in an inert gas atmosphere such as nitrogen. Moreover, it is preferable to perform a crystallization treatment at a temperature of 100 ° C. or higher before dyeing a previously stretched film.

染色方法としては上に例示した浸漬法だけでなく、ヨウ素あるいは染料溶液の塗布あるいは噴霧等、任意の手段が可能である。また、既に述べた液層吸着のみでなく、寄贈による吸着も必要に応じ行うことができる。二色性色素で染色することも好ましい。二色性色素の具体例としては、例えばアゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素、アントラキノン系色素等の色素系化合物をあげることができる。水溶性のものが好ましいが、この限りではない。又、これらの二色性分子にスルホン酸基、アミノ基、水酸基などの親水性置換基が導入されていることが好ましい。   As the dyeing method, not only the immersion method exemplified above, but also any means such as application or spraying of iodine or a dye solution is possible. In addition to the liquid layer adsorption described above, adsorption by donation can be performed as necessary. It is also preferable to dye with a dichroic dye. Specific examples of the dichroic dye include dye compounds such as azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes and anthraquinone dyes. I can give you. A water-soluble one is preferred, but not limited thereto. Further, it is preferable that a hydrophilic substituent such as a sulfonic acid group, an amino group, or a hydroxyl group is introduced into these dichroic molecules.

二色性分子の代表的なものとしては、例えばシー.アイ.ダイレクト.イエロー12、シー.アイ.ダイレクト.オレンジ39、シー.アイ.ダイレクト.オレンジ72、シー.アイ.ダイレクト.レッド28、シー.アイ.ダイレクト.レッド39、シー.アイ.ダイレクト.レッド79、シー.アイ.ダイレクト.レッド81、シー.アイ.ダイレクト.レッド83、シー.アイ.ダイレクト.レッド89、シー.アイ.ダイレクト.バイオレット48、シー.アイ.ダイレクト.ブルー67、シー.アイ.ダイレクト.ブルー90、シー.アイ.ダイレクト.グリーン59、シー.アイ.アシッド.レッド37等が挙げられ、さらに特開平1−161202号、特開平1−172906号、特開平1−172907号、特開平1−183602号、特開2000−48105号、特開2000−65205号、特開平7−261024号の各公報に記載の色素等を挙げることができる。特に、シー.アイ.ダイレクト.レッド28(コンゴーレッド)は古くよりこの用途に好ましいとして知られている。これらの二色性分子は遊離酸、あるいはアルカリ金属塩、アンモニウム塩、アミン類の塩として用いられる。   Typical examples of dichroic molecules include C.I. Eye. direct. Yellow 12, sea. Eye. direct. Orange 39, sea. Eye. direct. Orange 72, sea. Eye. direct. Red 28, Sea. Eye. direct. Red 39, Sea. Eye. direct. Red 79, Sea. Eye. direct. Red 81, Sea. Eye. direct. Red 83, Sea. Eye. direct. Red 89, Sea. Eye. direct. Violet 48, C.I. Eye. direct. Blue 67, Sea. Eye. direct. Blue 90, Sea. Eye. direct. Green 59, Sea. Eye. Acid. Red 37 and the like, and further, JP-A-1-161202, JP-A-1-172906, JP-A-1-172907, JP-A-1-183602, JP-A-2000-48105, JP-A-2000-65205, Examples thereof include the dyes described in JP-A-7-261024. In particular, Sea. Eye. direct. Red 28 (Congo Red) has long been known as preferred for this application. These dichroic molecules are used as free acids or alkali metal salts, ammonium salts, and salts of amines.

これらの二色性分子は2種以上を配合することにより、各種の色相を有する偏光子を製造することができる。偏光素子又は偏光板として偏光軸を直交させた時に黒色を呈する化合物(色素)や黒色を呈するように各種の二色性分子を配合したものが単板透過率、偏光率とも優れており好ましい。   By blending two or more of these dichroic molecules, it is possible to produce polarizers having various hues. As a polarizing element or polarizing plate, a compound (pigment) that exhibits black when the polarization axes are orthogonal to each other, or a compound in which various dichroic molecules are blended so as to exhibit black is excellent in terms of both the single plate transmittance and the polarization.

偏光膜の耐熱、耐湿性を高める観点から、偏光膜の製造工程においてPVAに架橋させる添加物を含ませることが好ましい。架橋剤としては、米国再発行特許第232897号に記載のものが使用できるが、ホウ酸、ホウ砂が実用的に好ましく用いられる。また、亜鉛、コバルト、ジルコニウム、鉄、ニッケル、マンガン等の金属塩を偏光膜に含有させることも、耐久性を高めることが知られており好ましい。これら架橋剤、金属塩は、上に述べた予備膨潤浴、二色性物質染色浴、延伸浴、硬化浴、色調整浴等のいずれの工程に含有させてもよく、工程の順序は特に限定されない。保護膜と偏光膜を接着する接着剤としては特に限定はなく、PVA系、変性PVA系、ウレタン系、アクリル系等、知られているものを任意に用いることができる。接着層の厚みは0.01〜20μmが好ましく、0.1〜10μmがさらに好ましい。   From the viewpoint of increasing the heat resistance and moisture resistance of the polarizing film, it is preferable to include an additive that crosslinks PVA in the manufacturing process of the polarizing film. As the crosslinking agent, those described in US Reissue Patent No. 232897 can be used, but boric acid and borax are preferably used practically. In addition, it is known that the polarizing film contains a metal salt such as zinc, cobalt, zirconium, iron, nickel, manganese, etc., because it is known to improve durability. These crosslinking agents and metal salts may be contained in any of the above-described pre-swelling bath, dichroic material dyeing bath, stretching bath, curing bath, color adjusting bath, etc., and the order of the steps is particularly limited. Not. The adhesive that bonds the protective film and the polarizing film is not particularly limited, and any known adhesive such as PVA, modified PVA, urethane, or acrylic can be used. The thickness of the adhesive layer is preferably from 0.01 to 20 μm, more preferably from 0.1 to 10 μm.

偏光膜は一般に保護膜を有する。本発明において、第2の光学異方性層がセルロースアシレートフィルム等のポリマーフィルムからなる場合は、第2の光学異方性層を偏光膜の保護膜として利用してもよい。また、前記第1の光学異方性層をポリマーフィルム等からなる透明支持体上に形成した場合、該透明支持体を偏光膜の保護膜として利用してもよい。偏光膜の保護膜としては、低複屈折性、透明性、適度な透湿性、寸度安定性等の物性が求められ、光学的等方性が高いセルロースエステルフィルムを用いることが好ましい。   The polarizing film generally has a protective film. In the present invention, when the second optical anisotropic layer is made of a polymer film such as a cellulose acylate film, the second optical anisotropic layer may be used as a protective film for the polarizing film. When the first optically anisotropic layer is formed on a transparent support made of a polymer film or the like, the transparent support may be used as a protective film for the polarizing film. As a protective film for the polarizing film, it is preferable to use a cellulose ester film that has low birefringence, transparency, appropriate moisture permeability, dimensional stability and the like, and has high optical isotropy.

本発明の偏光板の好ましい製造方法は、偏光膜と光学補償フィルムとをそれぞれ長尺の状態で連続的に積層される工程を含む。該長尺の偏光板は用いられる液晶表示装置の画面の大きさに合わせて裁断される。   The preferable manufacturing method of the polarizing plate of this invention includes the process of laminating | stacking a polarizing film and an optical compensation film continuously in a respectively long state. The long polarizing plate is cut according to the screen size of the liquid crystal display device used.

偏光膜は、膜は一般に双方の表面に保護膜を有する。本発明の光学補償フィルムを、偏光膜の保護膜として機能させることができ、かかる場合は、前記光学補償フィルムの表面に貼り合わされる偏光膜の表面には、別途保護膜を貼り合わせる必要はない。偏光膜は一般に保護膜を有する。本発明の偏光板において、偏光膜と本発明の光学補償フィルムとの間には、等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルムのみが含まれているのが好ましい。実質的に等方的な透明保護フィルム(偏光膜の保護膜)は、具体的には、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmであるフィルムである。セルロースアシレート又は環状ポリオレフィンを含むフィルムが好ましい。透明保護フィルムに使用可能なセルロースアシレート又は環状ポリオレフィンとしては、前記第1の光学異方性層の支持体として利用可能なポリマーフィルムの例と同様である。また、等方的な接着剤層を形成し得る接着剤としては、ポリビニルアルコール系接着剤、ポリエステル系ウレタン及びイソシアネート系架橋剤からなる接着剤等が挙げられる。   The polarizing film generally has a protective film on both surfaces. The optical compensation film of the present invention can function as a protective film for the polarizing film. In such a case, it is not necessary to separately bond a protective film to the surface of the polarizing film to be bonded to the surface of the optical compensation film. . The polarizing film generally has a protective film. In the polarizing plate of the present invention, only an isotropic adhesive layer and / or a substantially isotropic transparent protective film is included between the polarizing film and the optical compensation film of the present invention. Is preferred. The substantially isotropic transparent protective film (protective film for polarizing film) is specifically a film having an in-plane retardation of 0 to 10 nm and a retardation in the thickness direction of -20 to 20 nm. A film containing cellulose acylate or cyclic polyolefin is preferred. Examples of the cellulose acylate or cyclic polyolefin that can be used for the transparent protective film are the same as those of the polymer film that can be used as the support for the first optically anisotropic layer. Moreover, as an adhesive which can form an isotropic adhesive bond layer, the adhesive agent etc. which consist of a polyvinyl alcohol-type adhesive agent, polyester-type urethane, and an isocyanate type crosslinking agent are mentioned.

本発明の偏光板の第1の態様は、前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光膜が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光膜の吸収軸の方向とが、実質的に直交している偏光板であり;及び本発明の偏光板の第2の態様は、前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光膜が、この順で積層されており、且つ、前記第2の光学異方性層の遅相軸の方向と前記偏光膜の吸収軸の方向とが、実質的に平行である偏光板である。前記第2の光学異方性層が延伸ポリマーフィルムからなる場合は、その遅相軸の方向は、延伸方向により決定される。   In the first aspect of the polarizing plate of the present invention, the first optical anisotropic layer, the second optical anisotropic layer, and the polarizing film are laminated in this order, and 2 is a polarizing plate in which the direction of the slow axis of the optically anisotropic layer and the direction of the absorption axis of the polarizing film are substantially orthogonal; and the second mode of the polarizing plate of the present invention is: The first optical anisotropic layer, the second optical anisotropic layer, and the polarizing film are laminated in this order, and the slow axis of the second optical anisotropic layer In the polarizing plate, the direction and the direction of the absorption axis of the polarizing film are substantially parallel. When the second optically anisotropic layer is made of a stretched polymer film, the direction of the slow axis is determined by the stretch direction.

[液晶表示装置]
本発明の液晶表示装置は、本発明の偏光板を少なくとも含む。本発明の液晶表示装置は、反射型、半透過型、透過型液晶表示装置等のいずれであってもよい。液晶表示装置は一般的に、偏光板、液晶セル、及び必要に応じて位相差板、反射層、光拡散層、バックライト、フロントライト、光制御フィルム、導光板、プリズムシート、カラーフィルター等の部材から構成されるが、本発明においては前記偏光板を使用することを必須とする点を除いて特に制限はない。また、液晶セルとしては特に制限されず、電極を備える一対の透明基板で液晶層を挟持したもの等の一般的な液晶セルが使用できる。液晶セルを構成する前記透明基板としては、液晶層を構成する液晶性を示す材料を特定の配向方向に配向させるものであれば特に制限はない。具体的には、基板自体が液晶を配向させる性質を有していている透明基板、基板自体は配向能に欠けるが、液晶を配向させる性質を有する配向膜等をこれに設けた透明基板等がいずれも使用できる。また、液晶セルの電極は、公知のものが使用できる。通常、液晶層が接する透明基板の面上に設けることができ、配向膜を有する基板を使用する場合は、基板と配向膜との間に設けることができる。前記液晶層を形成する液晶性を示す材料としては、特に制限されず、各種の液晶セルを構成し得る通常の各種低分子液晶性化合物、高分子液晶性化合物及びこれらの混合物が挙げられる。また、これらに液晶性を損なわない範囲で色素やカイラル剤、非液晶性化合物等を添加することもできる。
[Liquid Crystal Display]
The liquid crystal display device of the present invention includes at least the polarizing plate of the present invention. The liquid crystal display device of the present invention may be any of a reflection type, a semi-transmission type, a transmission type liquid crystal display device and the like. A liquid crystal display device generally includes a polarizing plate, a liquid crystal cell, and a retardation plate, a reflection layer, a light diffusion layer, a backlight, a front light, a light control film, a light guide plate, a prism sheet, a color filter, and the like as necessary. Although comprised from a member, in this invention, there is no restriction | limiting in particular except the point which makes it essential to use the said polarizing plate. The liquid crystal cell is not particularly limited, and a general liquid crystal cell such as a liquid crystal layer sandwiched between a pair of transparent substrates having electrodes can be used. The transparent substrate constituting the liquid crystal cell is not particularly limited as long as the liquid crystal material constituting the liquid crystal layer is aligned in a specific alignment direction. Specifically, a transparent substrate in which the substrate itself has a property of orienting liquid crystals, a transparent substrate in which an alignment film having the property of orienting liquid crystals is provided, but the substrate itself lacks the alignment ability. Either can be used. Moreover, a well-known thing can be used for the electrode of a liquid crystal cell. Usually, it can be provided on the surface of the transparent substrate in contact with the liquid crystal layer, and when a substrate having an alignment film is used, it can be provided between the substrate and the alignment film. The material exhibiting liquid crystallinity for forming the liquid crystal layer is not particularly limited, and examples thereof include various ordinary low-molecular liquid crystalline compounds, high-molecular liquid crystalline compounds, and mixtures thereof that can constitute various liquid crystal cells. Moreover, a pigment | dye, a chiral agent, a non-liquid crystalline compound, etc. can also be added to these in the range which does not impair liquid crystallinity.

前記液晶セルは、前記電極基板及び液晶層の他に、後述する各種の方式の液晶セルとするのに必要な各種の構成要素を備えていてもよい。前記液晶セルの方式としては、TN(Twisted Nematic)方式、STN(SuperTwisted Nematic)方式、ECB(Electrically Controlled Birefringence)方式、IPS(In−Plane Switching)方式、VA(Vertical Alignment)方式、MVA(Multidomain Vertical Alignment)方式、PVA(Patterned Vertical Alignment)方式、OCB(Optically Compensated Birefringence)方式、HAN(Hybrid Aligned Nematic)方式、ASM(Axially Symmetric Aligned Microcell)方式、ハーフトーングレイスケール方式、ドメイン分割方式、あるいは強誘電性液晶、反強誘電性液晶を利用した表示方式等の各種の方式が挙げられる。また、液晶セルの駆動方式も特に制限はなく、STN−LCD等に用いられるパッシブマトリクス方式、並びにTFT(Thin Film Transistor)電極、TFD(Thin Film Diode)電極等の能動電極を用いるアクティブマトリクス方式、プラズマアドレス方式等のいずれの駆動方式であってもよい。カラーフィルターを使用しないフィールドシーケンシャル方式であってもよい。   In addition to the electrode substrate and the liquid crystal layer, the liquid crystal cell may include various components necessary for forming various types of liquid crystal cells described later. As the liquid crystal cell system, a TN (Twisted Nematic) system, a STN (Super Twisted Nematic) system, an ECB (Electrically Controlled Birefringence) system, an IPS (In-Plane Switching) system, a VA (In-Plane Switching) system, a VA (In-Plane Switching) system, a VA (In-Plane Switching) system, a VA (In-Plane Switching) system, Alignment), PVA (Patterned Vertical Alignment), OCB (Optically Compensated Birefringence), HAN (Hybrid Aligned Nematic), ASM crocell) method, halftone gray scale method, domain division method, or display method using ferroelectric liquid crystal or antiferroelectric liquid crystal. The driving method of the liquid crystal cell is not particularly limited, and a passive matrix method used for STN-LCD and the like, and an active matrix method using an active electrode such as a TFT (Thin Film Transistor) electrode and a TFD (Thin Film Diode) electrode, Any driving method such as a plasma addressing method may be used. A field sequential method that does not use a color filter may be used.

本発明における偏光板は、反射型、半透過型、及び透過型液晶表示装置に好ましく用いられる。反射型液晶表示装置は、反射板、液晶セル及び偏光板を、この順に積層した構成を有する。位相差板は、通常、反射板と偏光膜との間(反射板と液晶セルとの間又は液晶セルと偏光膜との間)に配置される。反射板は、液晶セルと基板を共有していてもよい。前記偏光板として、本発明の偏光板を用いることができ、かかる場合は、位相差板を別途配置しなくてもよい。
また、半透過反射型液晶表示装置は、液晶セルと、該液晶セルより観察者側に配置された偏光板と、前記偏光板と前記液晶セルの間に配置される少なくとも1枚の位相差板と、観察者から見て前記液晶層よりも後方に設置された半透過反射層を少なくとも備え、さらに観察者から見て前記半透過反射層よりも後方に少なくとも1枚の位相差板と偏光板とを有す。このタイプの液晶表示装置では、バックライトを設置することで反射モードと透過モード両方の使用が可能となる。双方の偏光板が本発明の偏光板であってもよいし、一方のみが本発明の偏光板であってもよい。本発明の偏光板を配置する場合は、液晶セルと本発明の偏光板との間には、位相差板を別途配置しなくてもよい。
The polarizing plate in the present invention is preferably used for a reflective, transflective, and transmissive liquid crystal display device. The reflective liquid crystal display device has a configuration in which a reflector, a liquid crystal cell, and a polarizing plate are laminated in this order. The retardation plate is usually disposed between the reflecting plate and the polarizing film (between the reflecting plate and the liquid crystal cell or between the liquid crystal cell and the polarizing film). The reflector may share the liquid crystal cell and the substrate. As the polarizing plate, the polarizing plate of the present invention can be used. In such a case, the retardation plate may not be separately provided.
The transflective liquid crystal display device includes a liquid crystal cell, a polarizing plate disposed on the viewer side of the liquid crystal cell, and at least one retardation plate disposed between the polarizing plate and the liquid crystal cell. And at least one transflective layer disposed behind the liquid crystal layer as viewed from the viewer, and at least one retardation plate and polarizing plate behind the transflective layer as viewed from the viewer And have. In this type of liquid crystal display device, it is possible to use both a reflection mode and a transmission mode by installing a backlight. Both polarizing plates may be the polarizing plate of the present invention, or only one of them may be the polarizing plate of the present invention. When the polarizing plate of the present invention is arranged, a retardation plate may not be separately arranged between the liquid crystal cell and the polarizing plate of the present invention.

液晶セルのモードは特に限定されないが、IPSモード又はFFSモードであることが好ましい。
IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の透過軸は直交している。光学補償フィルムを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10−54982号公報、特開平11−202323号公報、特開平9−292522号公報、特開平11−133408号公報、特開平11−305217号公報、特開平10−307291号公報などに開示されている。
The mode of the liquid crystal cell is not particularly limited, but is preferably an IPS mode or an FFS mode.
In an IPS mode liquid crystal cell, rod-like liquid crystal molecules are aligned substantially parallel to the substrate, and the liquid crystal molecules respond in a planar manner when an electric field parallel to the substrate surface is applied. In the IPS mode, black is displayed when no electric field is applied, and the transmission axes of the pair of upper and lower polarizing plates are orthogonal. A method of reducing leakage light at the time of black display in an oblique direction and improving a viewing angle using an optical compensation film is disclosed in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522. No. 11-133408, No. 11-305217, No. 10-307291, and the like.

例えば、前記第1の態様の偏光板を、一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル(例えば、IPSモードの液晶セル)を有する液晶表示装置に用いる場合は、前記一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光膜がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板を配置し、及び他方の基板の外側にさらに第2の偏光膜を配置することができる。この場合、双方の偏光膜の吸収軸を互いに直交させて配置する。   For example, the polarizing plate of the first aspect includes a liquid crystal cell having a pair of substrates and a liquid crystal layer in which liquid crystal molecules sandwiched between the pair of substrates are aligned substantially parallel to the substrate during black display ( For example, when used in a liquid crystal display device having an IPS mode liquid crystal cell), the first optical anisotropic layer and the second optical anisotropy are formed on the outside of one of the pair of substrates from the substrate side. The polarizing plate is arranged so that the layer and the polarizing film are in this order, and the slow axis of the second optically anisotropic layer is substantially parallel to the major axis direction of the liquid crystal molecules during black display. In addition, a second polarizing film can be further disposed outside the other substrate. In this case, the absorption axes of both polarizing films are arranged to be orthogonal to each other.

また、前記第2の態様の偏光板を、一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル(例えば、IPSモードの液晶セル)を有する液晶表示装置に用いる場合は、前記一対の基板の一方の基板の外側に該基板側から、第1の光学異方性層、第2の光学異方性層、及び偏光膜がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板を配置し、及び他方の基板の外側にさらに第2の偏光膜を配置することができる。この場合も、双方の偏光膜の吸収軸を互いに直交させて配置する。   Further, the polarizing plate of the second aspect includes a liquid crystal cell having a pair of substrates and a liquid crystal layer in which liquid crystal molecules sandwiched between the pair of substrates are aligned substantially parallel to the substrate during black display ( For example, when used in a liquid crystal display device having an IPS mode liquid crystal cell), the first optical anisotropic layer and the second optical anisotropy are formed on the outside of one of the pair of substrates from the substrate side. The polarizing plate is arranged so that the layer and the polarizing film are in this order, and the slow axis of the second optically anisotropic layer and the major axis direction of the liquid crystal molecules during black display are substantially perpendicular to each other. A second polarizing film can be further disposed outside the other substrate. Also in this case, the absorption axes of both polarizing films are arranged to be orthogonal to each other.

前記いずれの態様においても、前記第2の偏光膜と前記基板との間には実質的に等方的な接着剤層、及び/又は実質的に等方的な透明保護フィルム(偏光膜の保護膜)のみが含まれているのが好ましい。実質的に等方的な透明保護フィルムとは、具体的には、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmであり、例えば、かかる光学特性を有するセルロースアシレート又は環状ポリオレフィンを含むフィルムが好ましい。透明保護フィルムに使用可能なセルロースアシレート又は環状ポリオレフィンとしては、前記第1の光学異方性層の支持体として利用可能なポリマーフィルムの例と同様である。また、等方的な接着剤層を形成し得る接着剤としては、ポリビニルアルコール系接着剤、ポリエステル系ウレタン及びイソシアネート系架橋剤からなる接着剤等が挙げられる。   In any of the above embodiments, a substantially isotropic adhesive layer between the second polarizing film and the substrate, and / or a substantially isotropic transparent protective film (protecting the polarizing film) It is preferable that only a film) is included. The substantially isotropic transparent protective film specifically has an in-plane retardation of 0 to 10 nm and a thickness direction retardation of -20 to 20 nm. For example, cellulose acylate having such optical properties Or the film containing cyclic polyolefin is preferable. Examples of the cellulose acylate or cyclic polyolefin that can be used for the transparent protective film are the same as those of the polymer film that can be used as the support for the first optically anisotropic layer. Moreover, as an adhesive which can form an isotropic adhesive bond layer, the adhesive agent etc. which consist of a polyvinyl alcohol-type adhesive agent, polyester-type urethane, and an isocyanate type crosslinking agent are mentioned.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

<第2の光学異方性層の形成>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。該溶液を保留粒子サイズ4μm、濾水時間35秒の濾紙(No.63、アドバンテック製)を0.5MPa(5kg/cm2)以下で用いてろ過した。
<Formation of Second Optically Anisotropic Layer>
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution. The solution was filtered using a filter paper (No. 63, manufactured by Advantech) having a retained particle size of 4 μm and a drainage time of 35 seconds at 0.5 MPa (5 kg / cm 2 ) or less.

──────────────────────────────────
セルロースアセテート溶液組成物
──────────────────────────────────
酢化度60.9%のセルロースアセテート
(重合度300、Mn/Mw=1.5) 100質量部
トリフェニルホスフェート(可塑剤) 7.8質量部
ビフェニルジフェニルホスフェート(可塑剤) 3.9質量部
メチレンクロライド(第1溶媒) 300質量部
メタノール(第2溶媒) 54質量部
1−ブタノール(第3溶媒) 11質量部
──────────────────────────────────
──────────────────────────────────
Cellulose acetate solution composition ───────────────────────────────────
Cellulose acetate having an acetylation degree of 60.9% (degree of polymerization: 300, Mn / Mw = 1.5) 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first solvent) 300 parts by weight Methanol (second solvent) 54 parts by weight 1-butanol (third solvent) 11 parts by weight ──────────────────── ──────────────

別のミキシングタンクに、下記の円盤状化合物であるレタデーション上昇剤A−1を16質量部、下記の棒状化合物であるレタデーション上昇剤Bを8質量部、二酸化珪素微粒子(平均粒子サイズ:0.1μm)0.28質量部、メチレンクロライド80質量部及びメタノール20質量部を投入し、加熱しながら攪拌して、溶液Aを調製した。セルロースアセテート溶液474質量部に該溶液Aを40質量部混合し、充分に攪拌してドープを調製した。   In another mixing tank, 16 parts by mass of retardation increasing agent A-1 which is the following discotic compound, 8 parts by mass of retardation increasing agent B which is the following rod-like compound, silicon dioxide fine particles (average particle size: 0.1 μm) ) 0.28 parts by mass, 80 parts by mass of methylene chloride and 20 parts by mass of methanol were added and stirred while heating to prepare Solution A. 40 parts by mass of the solution A was mixed with 474 parts by mass of the cellulose acetate solution, and stirred well to prepare a dope.

レタデーション上昇剤A−1

Figure 2007193276
Retardation raising agent A-1
Figure 2007193276

Figure 2007193276
Figure 2007193276

得られたドープを、バンド流延機を用いて流延した。残留溶剤量が15質量%のフィルムを、130℃の条件で、テンターを用いて20%の延伸倍率で横延伸し、延伸後の幅のまま50℃で30秒間保持した後クリップを外してセルロースアセテートフィルムを作製した。延伸終了時の残留溶媒量は5質量%であり、さらに乾燥して残留溶媒量を0.1質量%未満としてフィルムを作製した。   The obtained dope was cast using a band casting machine. A film having a residual solvent amount of 15% by mass was stretched transversely at a stretch ratio of 20% using a tenter under the conditions of 130 ° C., held at 50 ° C. for 30 seconds with the stretched width, and then clipped to remove cellulose. An acetate film was prepared. The residual solvent amount at the end of stretching was 5% by mass, and further dried to prepare a film with the residual solvent amount being less than 0.1% by mass.

このようにして得られたセルロースアセテートフィルムF1は、厚さは80μmであった。作製したポリマー基材について、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、Reの光入射角度依存性を測定して、Reが62nm、Rthが190nmであることが分かった。また日本電色工業(株)社製ヘイズメータ(NDH−2000)によりヘイズ測定を行ったところ、0.65%であった。セルロースアセテートフィルムF1は、第2の光学異方性層に求められる特性を満足していることがわかった。   The cellulose acetate film F1 thus obtained had a thickness of 80 μm. Using the automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments Co., Ltd.), the dependency of Re on the incident angle of light was measured for the polymer substrate thus produced, and Re was 62 nm and Rth was 190 nm. I found out. Moreover, it was 0.65% when the haze measurement was performed with the Nippon Denshoku Industries Co., Ltd. haze meter (NDH-2000). The cellulose acetate film F1 was found to satisfy the characteristics required for the second optically anisotropic layer.

表1に示す通り、レタデーション上昇剤A−1、及びレタデーション上昇剤Bの種類、添加量及び延伸倍率をかえた以外は、セルロースアセテートフィルムF1と同様にして、セルロースアセテートフィルムF2〜F6及びFH1〜FH3を作製し、同様にヘイズを測定した。表1に結果を示す。   As shown in Table 1, the cellulose acetate films F2 to F6 and FH1 to F1 were used in the same manner as the cellulose acetate film F1, except that the type, addition amount and stretching ratio of the retardation increasing agent A-1 and retardation increasing agent B were changed. FH3 was produced and the haze was measured in the same manner. Table 1 shows the results.

Figure 2007193276
Figure 2007193276

レタデーション上昇剤A−2

Figure 2007193276
Retardation raising agent A-2
Figure 2007193276

(第1の光学異方性層の作製)
作製した第2の光学異方性層(セルロースアセテートフィルムF1)の表面ケン化処理を行い、その表面に、下記の組成の配向膜塗布液をワイヤーバーコーターで20ml/m2塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、膜を形成し、配向膜を得た。
配向膜塗布液の組成
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
(Preparation of the first optical anisotropic layer)
The prepared second optically anisotropic layer (cellulose acetate film F1) was subjected to surface saponification treatment, and an alignment film coating solution having the following composition was applied to the surface thereof with a wire bar coater at 20 ml / m 2 . A film was formed by drying with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds to obtain an alignment film.
Composition of alignment film coating liquid Modified polyvinyl alcohol 10 parts by weight Water 371 parts by weight Methanol 119 parts by weight Glutaraldehyde 0.5 parts by weight

変性ポリビニルアルコール

Figure 2007193276
Modified polyvinyl alcohol
Figure 2007193276

下記の組成の棒状液晶化合物を含む塗布液を、上記作製した配向膜上に#5.0のワイヤーバーで連続的に塗布した。フィルムの搬送速度は20m/minとした。室温から80℃に連続的に加温する工程で溶媒を乾燥させ、その後、80℃の乾燥ゾーンで90秒間加熱し、棒状液晶性化合物を配向させた。続いて、フィルムの温度を80℃に保持して、UV照射により液晶化合物の配向を固定化し、第1の光学異方性層を形成した。続いて、55℃の1.5mol/L水酸化ナトリウム水溶液中に作製したフィルムを2分間浸漬した後、水に浸漬し十分に水酸化ナトリウムを洗い流した。その後、35℃の5mmol/L硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。このようにして、第1及び第2の光学異方性層が積層された光学補償フィルムを作製した。また日本電色工業(株)社製ヘイズメータ(NDH−2000)によりヘイズ測定を行ったところ、0.61%であった。   A coating solution containing a rod-like liquid crystal compound having the following composition was continuously applied onto the prepared alignment film with a # 5.0 wire bar. The conveyance speed of the film was 20 m / min. The solvent was dried in a step of continuously heating from room temperature to 80 ° C., and then heated in a drying zone at 80 ° C. for 90 seconds to align the rod-like liquid crystal compound. Subsequently, the temperature of the film was maintained at 80 ° C., and the orientation of the liquid crystal compound was fixed by UV irradiation to form a first optical anisotropic layer. Subsequently, the film prepared in a 1.5 mol / L sodium hydroxide aqueous solution at 55 ° C. was immersed for 2 minutes, and then immersed in water to sufficiently wash away sodium hydroxide. Then, after being immersed for 1 minute in 5 mmol / L sulfuric acid aqueous solution of 35 degreeC, it was immersed in water and the dilute sulfuric acid aqueous solution was fully washed away. Finally, the sample was thoroughly dried at 120 ° C. Thus, an optical compensation film in which the first and second optically anisotropic layers were laminated was produced. Moreover, it was 0.61% when the haze measurement was performed with the Nippon Denshoku Industries Co., Ltd. haze meter (NDH-2000).

棒状液晶化合物を含む塗布液の組成
――――――――――――――――――――――――――――――――――――
下記の棒状液晶性化合物 100質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 3質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1質量部
ポリマーA(P−33) 0.2質量部
オニウム塩(21) 1質量部
メチルエチルケトン 172質量部
――――――――――――――――――――――――――――――――――――
Composition of coating liquid containing rod-shaped liquid crystal compound ――――――――――――――――――――――――――――――――――――
The following rod-like liquid crystalline compound 100 parts by weight Photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy) 3 parts by weight Sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 1 part by weight Polymer A (P-33) 0.2 parts by weight Onium salt (21) 1 part by weight Methyl ethyl ketone 172 parts by weight ――――――――――――――――――――――――――――――――― ―――

棒状液晶化合物

Figure 2007193276
Rod-shaped liquid crystal compound
Figure 2007193276

作製した光学補償フィルムから棒状液晶性化合物を含む光学異方性層(第1の光学異方性層)のみを剥離し、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて光学特性を測定した。波長590nmで測定した光学異方性層のみのReは0nmであり、Rthは−263nmであった。また、棒状液晶分子が層面に対して実質的に垂直に配向している光学異方性層が形成されたことが確認できた。   Only the optically anisotropic layer containing the rod-like liquid crystalline compound (first optically anisotropic layer) is peeled off from the produced optical compensation film, and an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments Co., Ltd.) ) Was used to measure optical properties. Re of only the optically anisotropic layer measured at a wavelength of 590 nm was 0 nm, and Rth was −263 nm. It was also confirmed that an optically anisotropic layer was formed in which rod-like liquid crystal molecules were aligned substantially perpendicular to the layer surface.

<偏光板1−1の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に、上記作製した光学補償フィルムの第1の光学異方性層が形成されていない面(即ち、第2の光学異方性層であるセルロースアシレートフィルムF1の裏面)を、他方の面に、表面を鹸化処理したセルローストリアセテートフィルム(フジタック TD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続的に貼り合わせ、長尺の偏光板1−1を作製した。このとき、偏光膜の吸収軸は長手方向に対して平行であり、かつ、偏光膜の吸収軸と第2の光学異方性層の遅相軸とがなす角は90°であった。
<Preparation of Polarizing Plate 1-1>
A roll-shaped polyvinyl alcohol film having a thickness of 80 μm continuously dyed in an aqueous iodine solution was stretched 5 times in the transport direction and dried to obtain a long polarizing film. The surface on which the first optical anisotropic layer of the produced optical compensation film is not formed on one surface of the polarizing film (that is, the back surface of the cellulose acylate film F1 which is the second optical anisotropic layer) ) Is continuously bonded to the other surface of the cellulose triacetate film (Fujitac TD80UL, manufactured by Fuji Photo Film Co., Ltd.) using a polyvinyl alcohol-based adhesive. -1 was produced. At this time, the absorption axis of the polarizing film was parallel to the longitudinal direction, and the angle formed by the absorption axis of the polarizing film and the slow axis of the second optical anisotropic layer was 90 °.

<低Reフィルムの作製>
(セルロースアセテート溶液の調製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアセテート溶液Aを調製した。
セルロースアセテート溶液Aの組成
―――――――――――――――――――――――――――――――――――
アセチル置換度2.94のセルロースアセテート 100.0質量部
メチレンクロライド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
―――――――――――――――――――――――――――――――――――
<Production of low Re film>
(Preparation of cellulose acetate solution)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution A.
Composition of cellulose acetate solution A ――――――――――――――――――――――――――――――――――――
Cellulose acetate with an acetyl substitution degree of 2.94 100.0 parts by mass Methylene chloride (first solvent) 402.0 parts by mass Methanol (second solvent) 60.0 parts by mass ――――――――――――― ――――――――――――――――――――――

(マット剤溶液の調製)
平均粒径16nmのシリカ粒子(AEROSIL R972、日本アエロジル(株)製)を20質量部、メタノール80質量部を30分間よく攪拌混合してシリカ粒子分散液とした。この分散液を下記の組成物とともに分散機に投入し、さらに30分以上攪拌して各成分を溶解し、マット剤溶液を調製した。
マット剤溶液組成
―――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子分散液 10.0質量部
メチレンクロライド(第1溶媒) 76.3質量部
メタノール(第2溶媒) 3.4質量部
セルロースアセテート溶液A 10.3質量部
―――――――――――――――――――――――――――――――――
(Preparation of matting agent solution)
20 parts by mass of silica particles having an average particle diameter of 16 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) and 80 parts by mass of methanol were mixed well for 30 minutes to obtain a silica particle dispersion. This dispersion was put into a disperser together with the following composition, and further stirred for 30 minutes or more to dissolve each component to prepare a matting agent solution.
Matting agent solution composition ――――――――――――――――――――――――――――――――――
Silica particle dispersion with an average particle size of 16 nm 10.0 parts by weight Methylene chloride (first solvent) 76.3 parts by weight Methanol (second solvent) 3.4 parts by weight Cellulose acetate solution A 10.3 parts by weight ―――――――――――――――――――――――――――――

(添加剤溶液の調製)
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
添加剤溶液組成
――――――――――――――――――――――――――――――
下記の光学的異方性低下剤 49.3質量部
下記の波長分散調整剤 4.9質量部
メチレンクロライド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアセテート溶液A 12.8質量部
――――――――――――――――――――――――――――――
(Preparation of additive solution)
The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution.
Additive solution composition ――――――――――――――――――――――――――――――
The following optical anisotropy reducing agent 49.3 parts by mass The following wavelength dispersion adjusting agent 4.9 parts by mass Methylene chloride (first solvent) 58.4 parts by mass Methanol (second solvent) 8.7 parts by mass Cellulose acetate Solution A 12.8 parts by mass ――――――――――――――――――――――――――――――

光学的異方性低下剤

Figure 2007193276
Optical anisotropy reducing agent
Figure 2007193276

波長分散調整剤

Figure 2007193276
Chromatic dispersion modifier
Figure 2007193276

(セルロースアセテートフィルムの作製)
上記セルロースアセテート溶液Aを94.6質量部、マット剤溶液を1.3質量部、添加剤溶液4.1質量部それぞれを濾過後に混合し、バンド流延機を用いて流延した。上記組成で光学的異方性を低下する化合物及び波長分散調整剤のセルロースアセテートに対する質量比はそれぞれ12%、1.2%であった。残留溶剤量30%でフィルムをバンドから剥離し、140℃で40分間乾燥させ、厚さ80μmの長尺状のセルロースアセテートフィルムT0を製造した。得られたフィルムの面内レタデーション(Re)は1nm(遅相軸はフィルム長手方向と垂直な方向)、厚み方向のレタデーション(Rth)は−1nmであった。また日本電色工業(株)社製ヘイズメータ(NDH−2000)によりヘイズ測定を行ったところ、0.72%であった。
(Production of cellulose acetate film)
94.6 parts by mass of the cellulose acetate solution A, 1.3 parts by mass of the matting agent solution, and 4.1 parts by mass of the additive solution were mixed after filtration, and cast using a band casting machine. The mass ratio of the compound that reduces optical anisotropy and the wavelength dispersion adjusting agent to cellulose acetate in the above composition was 12% and 1.2%, respectively. The film was peeled from the band with a residual solvent amount of 30% and dried at 140 ° C. for 40 minutes to produce a long cellulose acetate film T0 having a thickness of 80 μm. The in-plane retardation (Re) of the obtained film was 1 nm (the slow axis was a direction perpendicular to the longitudinal direction of the film), and the retardation (Rth) in the thickness direction was −1 nm. Moreover, it was 0.72% when the haze measurement was performed with the Nippon Denshoku Industries Co., Ltd. haze meter (NDH-2000).

<偏光板1−2の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。この偏光膜の一方の面に鹸化処理した上記の低Reフィルムを、他方の面に鹸化処理した市販のセルロースアセテートフィルム(フジタックTD80UL、富士写真フイルム(株)製)を、ポリビニルアルコール系接着剤を用いて連続して貼り合わせ、偏光板1−2を作製した。
<Preparation of Polarizing Plate 1-2>
A roll-shaped polyvinyl alcohol film having a thickness of 80 μm continuously dyed in an aqueous iodine solution was stretched 5 times in the transport direction and dried to obtain a long polarizing film. A commercially available cellulose acetate film (Fujitac TD80UL, manufactured by Fuji Photo Film Co., Ltd.) obtained by saponifying the above-mentioned low Re film on one side of the polarizing film and a polyvinyl alcohol adhesive on the other side. Using them, they were continuously bonded together to produce a polarizing plate 1-2.

<偏光板1−3の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長尺の偏光膜を得た。市販のセルロースアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光膜の両面に貼り付け偏光板1−3を形成した。市販のセルロースアシレートのヘイズは0.60%であった。
<Preparation of Polarizing Plate 1-3>
A roll-shaped polyvinyl alcohol film having a thickness of 80 μm continuously dyed in an aqueous iodine solution was stretched 5 times in the transport direction and dried to obtain a long polarizing film. A commercially available cellulose acetate film (Fujitac TD80UF, manufactured by Fuji Photo Film Co., Ltd.) was subjected to saponification treatment, and a polarizing plate 1-3 was formed on a polarizing film by using a polyvinyl alcohol adhesive. The haze of the commercially available cellulose acylate was 0.60%.

<液晶表示装置の作製>
液晶テレビTH-32LX500(松下電器産業(株)社製)から、液晶セルを取り出し、視認者側及びバックライト側に貼られてあった偏光板及び光学フィルムを剥した。この液晶セルは、電圧無印加状態及び黒表示時では液晶分子はガラス基板間で実質的に平行配向しており、その遅相軸方向は画面に対して水平方向であった。
<Production of liquid crystal display device>
A liquid crystal cell was taken out from the liquid crystal television TH-32LX500 (manufactured by Matsushita Electric Industrial Co., Ltd.), and the polarizing plate and the optical film which were pasted on the viewer side and the backlight side were peeled off. In this liquid crystal cell, when no voltage was applied and during black display, the liquid crystal molecules were aligned substantially in parallel between the glass substrates, and the slow axis direction was horizontal to the screen.

上記の平行配向セルの上下のガラス基板に、上記作製した偏光板(1−1及び1−2)を粘着剤を用いて貼り合わせた。このとき、バックライト側の偏光板に1−1を配置し、視認者側に1−2を配置し、偏光板1−1に含まれる第1の光学異方性層がバックライト側のガラス基板に接するように、また、偏光板1−2に含まれるセルロースアセテートフィルムが視認者側のガラス基板に接するように貼り合わせた。また、偏光板1−1の吸収軸と液晶セルの遅相軸が直交するようにし、偏光板1−1と偏光板1−2の吸収軸は直交するように配置した。このようにして偏光板を貼り合せた液晶セルを、再度、液晶テレビTH-32LX500に組み込みこんだ。このようにして液晶表示装置L1を作製し、測定機(EZ−Contrast160D、ELDIM社製)を用いて、正面コントラストを測定したところ、723であった。   The produced polarizing plates (1-1 and 1-2) were bonded to the upper and lower glass substrates of the parallel alignment cell using an adhesive. At this time, 1-1 is disposed on the polarizing plate on the backlight side, 1-2 is disposed on the viewer side, and the first optical anisotropic layer included in the polarizing plate 1-1 is the glass on the backlight side. It bonded so that the cellulose acetate film contained in the polarizing plate 1-2 might contact the glass substrate by the side of a viewer so that it might contact with a board | substrate. Moreover, the absorption axis of the polarizing plate 1-1 and the slow axis of the liquid crystal cell were orthogonal to each other, and the absorption axes of the polarizing plate 1-1 and the polarizing plate 1-2 were orthogonal to each other. The liquid crystal cell on which the polarizing plate was bonded in this way was again incorporated into the liquid crystal television TH-32LX500. Thus, liquid crystal display device L1 was produced and the front contrast was measured using a measuring machine (EZ-Contrast 160D, manufactured by ELDIM).

偏光膜の吸収軸と第2光学異方性層の遅相軸のなす角を0°にする以外は液晶表示装置L1で作製したフィルムを用いて液晶表示装置を作製した。測定機(EZ−Contrast160D、ELDIM社製)を用いて、正面コントラストを測定したところ、712であった。   A liquid crystal display device was produced using the film produced by the liquid crystal display device L1 except that the angle formed by the absorption axis of the polarizing film and the slow axis of the second optically anisotropic layer was 0 °. It was 712 when the front contrast was measured using the measuring machine (EZ-Contrast160D, ELDIM company make).

[参考例1(S1)]
偏光板1−1、及び1−2の代わりに偏光板1−3を上記の平行配向セルの上下のガラス基板に、粘着剤を用いて貼り合わせる以外は実施例1と同様に液晶表示装置を作製し、正面コントラストを測定したところ、696であった。
[Reference Example 1 (S1)]
A liquid crystal display device was prepared in the same manner as in Example 1 except that the polarizing plates 1-1 and 1-2 were bonded to the upper and lower glass substrates of the parallel alignment cell using an adhesive. It was 696 when produced and the front contrast was measured.

表2に示す通り、第2の光学異方性層として用いるセルロースアシレートフィルムの種類、第1の光学異方性層の形成時に用いたポリマーAの種類及び/又は添加量、オニウム塩の種類及び/又は添加量を、それぞれかえた以外は、上記と同様にして、光学補償フィルム、及び偏光板をそれぞれ作製し、作製した各偏光板を偏光板1−1の代わりに用いた以外は、液晶表示装置L1と同様にして、液晶表示装置L2〜L5、LH1〜LH3を作製した。
作製した液晶表示装置のそれぞれについてヘイズ測定及びコントラスト実施例と同様に液晶表示装置を作製し、正面コントラストを測定した。
As shown in Table 2, the type of cellulose acylate film used as the second optically anisotropic layer, the type and / or addition amount of polymer A used in forming the first optically anisotropic layer, and the type of onium salt And / or except that the addition amount was changed, respectively, in the same manner as described above, an optical compensation film and a polarizing plate were respectively prepared, and each of the prepared polarizing plates was used instead of the polarizing plate 1-1. In the same manner as the liquid crystal display device L1, liquid crystal display devices L2 to L5 and LH1 to LH3 were produced.
About each of the produced liquid crystal display device, the liquid crystal display device was produced similarly to the haze measurement and contrast Example, and front contrast was measured.

Figure 2007193276
Figure 2007193276

Claims (14)

少なくとも第1の光学異方性層及び第2の光学異方性層を含み、該第1の光学異方性層の面内のレタデーションが0〜10nmであり、厚さ方向のレタデーションが−400〜−80nmであり、該第2の光学異方性層の面内のレタデーションが20〜150nmであり、厚さ方向のレタデーションが100〜300nmである光学補償フィルムであって、該第2の光学異方性層のヘイズをHz(B)(%)とし、さらに該第1の光学異方性層と該第2の光学異方性層の積層体からなるヘイズをHz(B+L)(%)とすると、下記関係式(1)〜(3)を満足する光学補償フィルム:
(1) 0<Hz(B+L)<1.0%
(2) 0<Hz(B)<1.0%
(3) Hz(B+L)/Hz(B)<1.3。
It includes at least a first optical anisotropic layer and a second optical anisotropic layer, the in-plane retardation of the first optical anisotropic layer is 0 to 10 nm, and the retardation in the thickness direction is −400. An optical compensation film having an in-plane retardation of the second optically anisotropic layer of 20 to 150 nm and a retardation in the thickness direction of 100 to 300 nm. The haze of the anisotropic layer is set to Hz (B) (%), and the haze made of a laminate of the first optical anisotropic layer and the second optical anisotropic layer is set to Hz (B + L) (%). Then, an optical compensation film satisfying the following relational expressions (1) to (3):
(1) 0 <Hz (B + L) <1.0%
(2) 0 <Hz (B) <1.0%
(3) Hz (B + L) / Hz (B) <1.3.
前記第2の光学異方性層が、横延伸法、縦延伸法、同時二軸延伸法又は逐次二軸延伸法により延伸されたセルロースアシレートフィルムからなる請求項1に記載の光学補償フィルム。 2. The optical compensation film according to claim 1, wherein the second optically anisotropic layer is made of a cellulose acylate film stretched by a transverse stretching method, a longitudinal stretching method, a simultaneous biaxial stretching method, or a sequential biaxial stretching method. 前記第1の光学異方性層が、棒状液晶化合物を含有する組成物からなり、層中において該棒状液晶化合物の分子が層面に対して実質的に垂直に配向しており、その配向状態に固定されている請求項1又は2に記載の光学補償フィルム。 The first optically anisotropic layer is made of a composition containing a rod-like liquid crystal compound, and the molecules of the rod-like liquid crystal compound are aligned substantially perpendicular to the layer surface in the layer, The optical compensation film according to claim 1 or 2, which is fixed. 前記第1の光学異方性層が、フルオロ脂肪族基含有モノマーより誘導される繰り返し単位と下記一般式(1)で表される繰り返し単位とを含む共重合体(ポリマーA)の少なくとも一種を含有する請求項1〜3のいずれか1項に記載の光学補償フィルム:
一般式(1)
Figure 2007193276
式中、R1、R2及びR3は、それぞれ独立に、水素原子、又は置換基を表し;Lは下記の連結基群から選ばれる2価の連結基又は下記の連結基群から選ばれる2つ以上を組み合わせて形成される2価の連結基を表し、
(連結基群)
単結合、−O−、−CO−、−NR4−(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、−S−、−SO2−、−P(=O)(OR5)−(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基;
Qはカルボキシル基(−COOH)もしくはその塩、スルホ基(−SO3H)もしくはその塩、又はホスホノキシ{−OP(=O)(OH)2}もしくはその塩、又は親水性基(−OH)を表す。
The first optically anisotropic layer comprises at least one copolymer (polymer A) comprising a repeating unit derived from a fluoroaliphatic group-containing monomer and a repeating unit represented by the following general formula (1). The optical compensation film according to any one of claims 1 to 3, comprising:
General formula (1)
Figure 2007193276
In the formula, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent; L is selected from a divalent linking group selected from the following linking group group or the following linking group group. Represents a divalent linking group formed by combining two or more,
(Linked group group)
Single bond, —O—, —CO—, —NR 4 — (R 4 represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group), —S—, —SO 2 —, —P (═O) (OR 5 ) — (R 5 represents an alkyl group, an aryl group, or an aralkyl group), an alkylene group, and an arylene group;
Q is a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, or phosphonoxy {—OP (═O) (OH) 2 } or a salt thereof, or a hydrophilic group (—OH). Represents.
前記第1の光学異方性層が、オニウム塩の少なくとも一種を含有する請求項1〜4のいずれか1項に記載の光学補償フィルム。 The optical compensation film according to claim 1, wherein the first optically anisotropic layer contains at least one onium salt. 請求項1〜5のいずれか1項に記載の光学補償フィルムと、偏光膜とを有する偏光板。 A polarizing plate comprising the optical compensation film according to claim 1 and a polarizing film. 前記光学補償フィルムと前記偏光膜との間には実質的に等方的な接着剤層及び/又は実質的に等方的な保護フィルムのみが含まれる請求項6に記載の偏光板。 The polarizing plate according to claim 6, wherein only a substantially isotropic adhesive layer and / or a substantially isotropic protective film is included between the optical compensation film and the polarizing film. 前記透明保護フィルムが、セルロースアシレートを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmである請求項7に記載の偏光板。 The polarizing plate according to claim 7, wherein the transparent protective film is a film containing cellulose acylate, an in-plane retardation is 0 to 10 nm, and a retardation in the thickness direction is −20 to 20 nm. 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光膜が、この順で積層されており、かつ、第2の光学異方性層の遅相軸の方向と前記偏光膜の吸収軸の方向とが、実質的に直交している請求項6〜8のいずれか1項に記載の偏光板。 The first optical anisotropic layer, the second optical anisotropic layer, and the polarizing film are laminated in this order, and the direction of the slow axis of the second optical anisotropic layer The polarizing plate according to claim 6, wherein the direction of the absorption axis of the polarizing film is substantially perpendicular to the polarizing film. 前記第1の光学異方性層、前記第2の光学異方性層、及び前記偏光膜が、この順で積層されており、かつ、前記第2の光学異方性層の遅相軸の方向と前記偏光膜の吸収軸の方向とが、実質的に平行である請求項6〜8のいずれか1項に記載の偏光板。 The first optical anisotropic layer, the second optical anisotropic layer, and the polarizing film are laminated in this order, and the slow axis of the second optical anisotropic layer The polarizing plate according to claim 6, wherein the direction and the direction of the absorption axis of the polarizing film are substantially parallel. 一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び請求項9に記載の偏光板を含み、該一対の基板の一方の基板の外側に、第1の光学異方性層、第2の光学異方性層、及び偏光膜がこの順となり、且つ該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に平行になるように前記偏光板が配置され、及び他方の基板の外側に、さらに第2の偏光膜を有し、双方の偏光膜の吸収軸が互いに直交している液晶表示装置。 A liquid crystal cell having a pair of substrates and a liquid crystal layer in which liquid crystal molecules sandwiched between the pair of substrates are aligned substantially parallel to the substrate during black display, and the polarizing plate according to claim 9, The first optically anisotropic layer, the second optically anisotropic layer, and the polarizing film are arranged in this order on the outside of one of the pair of substrates, and the second optically anisotropic layer is delayed. The polarizing plate is disposed so that the phase axis and the major axis direction of the liquid crystal molecules during black display are substantially parallel, and a second polarizing film is further provided outside the other substrate. A liquid crystal display device in which the absorption axes of the polarizing films are orthogonal to each other. 一対の基板と、該一対の基板に挟持された液晶分子が黒表示時に基板に対して実質的に平行に配向する液晶層とを有する液晶セル、及び請求項10に記載の偏光板を含み、該一対の基板の一方の基板の外側に、第1の光学異方性層、第2の光学異方性層、及び偏光膜がこの順となり、該第2の光学異方性層の遅相軸と黒表示時の液晶分子の長軸方向とが実質的に直交するように前記偏光板が配置され、及び他方の基板の外側に、さらに第2の偏光膜を有し、双方の偏光膜の吸収軸が互いに直交している液晶表示装置。 A liquid crystal cell having a pair of substrates and a liquid crystal layer in which liquid crystal molecules sandwiched between the pair of substrates are aligned substantially parallel to the substrate during black display, and the polarizing plate according to claim 10, The first optically anisotropic layer, the second optically anisotropic layer, and the polarizing film are arranged in this order on the outer side of one of the pair of substrates, and the slow phase of the second optically anisotropic layer is in this order. The polarizing plate is arranged so that the axis and the major axis direction of the liquid crystal molecules at the time of black display are substantially orthogonal, and a second polarizing film is further provided on the outside of the other substrate, and both polarizing films Liquid crystal display device in which the absorption axes of each other are orthogonal to each other. 前記第2の偏光膜と前記基板との間には、実質的に等方的な接着剤層及び/又は実質的に等方的な透明保護フィルムのみが含まれる請求項11又は12に記載の液晶表示装置。 13. The only polarizing layer and / or the substantially isotropic transparent protective film only between the second polarizing film and the substrate is included. Liquid crystal display device. 前記透明保護フィルムが、セルロースアシレートを含むフィルムであり、面内のレタデーションが0〜10nm、厚さ方向のレタデーションが−20〜20nmであり、かつ前記透明保護フィルムのヘイズが1.0%以下である請求項13に記載の液晶表示装置。 The transparent protective film is a film containing cellulose acylate, the in-plane retardation is 0 to 10 nm, the retardation in the thickness direction is -20 to 20 nm, and the haze of the transparent protective film is 1.0% or less. The liquid crystal display device according to claim 13.
JP2006013836A 2006-01-23 2006-01-23 Optical compensation film, polarizing plate and liquid crystal display apparatus Pending JP2007193276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006013836A JP2007193276A (en) 2006-01-23 2006-01-23 Optical compensation film, polarizing plate and liquid crystal display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013836A JP2007193276A (en) 2006-01-23 2006-01-23 Optical compensation film, polarizing plate and liquid crystal display apparatus

Publications (1)

Publication Number Publication Date
JP2007193276A true JP2007193276A (en) 2007-08-02

Family

ID=38448997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013836A Pending JP2007193276A (en) 2006-01-23 2006-01-23 Optical compensation film, polarizing plate and liquid crystal display apparatus

Country Status (1)

Country Link
JP (1) JP2007193276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204673A (en) * 2008-02-26 2009-09-10 Konica Minolta Opto Inc Retardation film
JP2009265477A (en) * 2008-04-28 2009-11-12 Konica Minolta Opto Inc Optical compensation film, polarizing plate, and liquid crystal display device
CN112334797A (en) * 2018-06-27 2021-02-05 富士胶片株式会社 Polarizer and image display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204673A (en) * 2008-02-26 2009-09-10 Konica Minolta Opto Inc Retardation film
JP2009265477A (en) * 2008-04-28 2009-11-12 Konica Minolta Opto Inc Optical compensation film, polarizing plate, and liquid crystal display device
CN112334797A (en) * 2018-06-27 2021-02-05 富士胶片株式会社 Polarizer and image display device
CN112334797B (en) * 2018-06-27 2022-12-20 富士胶片株式会社 Polarizer and image display device

Similar Documents

Publication Publication Date Title
JP4440817B2 (en) An optically anisotropic film, a brightness enhancement film, a laminated optical film, and an image display device using them.
US7505099B2 (en) Optical resin film and polarizing plate and liquid crystal display using same
JP2004318118A (en) Optical compensation sheet and liquid crystal display device
KR20080089281A (en) Liquid crystal display
JP4909698B2 (en) Polarizing plate integrated optical compensation film and liquid crystal display device
JP2008033285A (en) Retardation film, polarizing plate and liquid crystal display device
JP4860333B2 (en) Liquid crystal display
JP2006285187A (en) Optical compensation film, polarizer, and liquid crystal display device
JP2007121996A (en) Optical compensation sheet, polarizing plate using the same, and liquid crystal display device
JP4684047B2 (en) Optical compensation film, polarizing plate and liquid crystal display device
JP2008026730A (en) Optical compensation film and method of manufacturing the same, and polarizing plate
JP2005242337A (en) Polymer film and preparation method of polymer solution
JP2006276643A (en) Phase difference film, and liquid crystal display and compound
JP4813217B2 (en) Optical compensation film, polarizing plate, and liquid crystal display device
JP4637698B2 (en) Polarizing plate integrated optical compensation film and liquid crystal display device
JP2006235578A (en) Liquid crystal display apparatus
TWI412843B (en) Optical compensation film, polarizing plate and liquid crystal display
JP2007193276A (en) Optical compensation film, polarizing plate and liquid crystal display apparatus
JP2009086379A (en) Optical compensation film, polarizing plate, and liquid crystal display device
JP2008250237A (en) Liquid crystal display device
JP2006258854A (en) Optical anisotropic film, its manufacturing method, and liquid crystal display
JP4429122B2 (en) Optically anisotropic film, manufacturing method thereof, and liquid crystal display device
JP2007047697A (en) Liquid crystal display device
KR101139264B1 (en) Long polarizing plate and method for producing the same, and liquid crystal display
JP2007193277A (en) Polarizing plate and liquid crystal display apparatus