JP2007193085A - Liquid crystal display element using nematic liquid crystal - Google Patents

Liquid crystal display element using nematic liquid crystal Download PDF

Info

Publication number
JP2007193085A
JP2007193085A JP2006010892A JP2006010892A JP2007193085A JP 2007193085 A JP2007193085 A JP 2007193085A JP 2006010892 A JP2006010892 A JP 2006010892A JP 2006010892 A JP2006010892 A JP 2006010892A JP 2007193085 A JP2007193085 A JP 2007193085A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
display element
layer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006010892A
Other languages
Japanese (ja)
Other versions
JP4863355B2 (en
Inventor
Shin Yonetani
慎 米谷
Hiroshi Yokoyama
浩 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006010892A priority Critical patent/JP4863355B2/en
Publication of JP2007193085A publication Critical patent/JP2007193085A/en
Application granted granted Critical
Publication of JP4863355B2 publication Critical patent/JP4863355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display element using a nematic liquid crystal, which is easily fabricated, which has a memory property and a wide viewing angle display characteristic compatible with each other, which is highly precise and which has a wide viewing angle and low power consumption. <P>SOLUTION: In the liquid crystal display element using the nematic liquid crystal, which has: a pair of transparent substrates SUB1, SUB2; a liquid crystal layer LCL disposed between the pair of substrates SUB1, SUB2; a group of electrodes for applying an electric field with a component nearly parallel to surfaces of the substrates to the liquid crystal layer LCL; and an alignment layer, subjected to liquid crystal alignment control treatment in two directions, disposed between the liquid crystal layer LCL and at least one out of the pair of substrates SUB1, SUB2, the liquid crystal alignment control treatment of the alignment layer is irradiation treatment with light generating a chemical reaction of the alignment layer on the substrate surface as linearly polarized light, and the alignment layer is composed of a photo-reactive material of which the direction to control liquid crystal alignment is that corresponding to a polarization direction of linearly polarized light of final irradiation with respect to multiple times of linearly polarized light irradiation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ネマチック液晶を用いた液晶表示素子に係り、特に低消費電力、高精細のネマチック液晶を用いた液晶表示素子に関する。   The present invention relates to a liquid crystal display element using a nematic liquid crystal, and more particularly to a liquid crystal display element using a nematic liquid crystal with low power consumption and high definition.

従来、携帯電話などの携帯情報端末の表示素子としては、主にネマチック液晶を用いた液晶表示素子が、その低駆動電圧、低消費電力特性を生かして用いられており、近年の携帯情報端末の急速な普及に伴い、その生産量が拡大している。同時にその表示機能も表示画素(文字)数の増加など、より高度な表示性能が要求されてきている。一方で、携帯機器としてバッテリーを電源とした連続使用時間を維持あるいは拡大しなければならないことから、上記の高精細化をはじめとする表示機能の高度化のみならず、低消費電力化も同時に達成する技術が必要とされている。   Conventionally, as a display element of a portable information terminal such as a mobile phone, a liquid crystal display element mainly using a nematic liquid crystal has been used taking advantage of its low driving voltage and low power consumption characteristics. With rapid spread, the production volume is expanding. At the same time, the display function is required to have higher display performance such as an increase in the number of display pixels (characters). On the other hand, since it is necessary to maintain or extend the continuous use time using a battery as a portable device, not only the above-mentioned high-definition display functions but also low power consumption can be achieved at the same time. Technology to do is needed.

このような技術の一つとして、液晶表示素子に加える電圧を切った場合にも表示が保持される、いわゆる表示メモリー特性をもつ液晶表示素子を用いる技術が種々提案されている。メモリー特性を用いることにより、表示内容が変わらない場合には原理的には消費電力を0とすることができ、また、画素ごとに表示内容が変わった画素のみ電圧を印加して表示内容を変更することによっても消費電力を低減できる。さらに、従来のツイステッドネマチック(TN)方式あるいはスーパーツイステッドネマチック(STN)方式を単純マトリックス駆動する場合には、よく知られているようにデューティー比の制限から、表示可能な画素数に上限があるが、メモリー性を利用することによりこの画素数の制限をなくすことができる。   As one of such techniques, various techniques using a liquid crystal display element having a so-called display memory characteristic in which a display is maintained even when a voltage applied to the liquid crystal display element is turned off have been proposed. By using memory characteristics, in principle, the power consumption can be reduced to 0 when the display content does not change, and the display content can be changed by applying a voltage only to the pixel whose display content has changed for each pixel. By doing so, power consumption can be reduced. Further, when the conventional twisted nematic (TN) method or the super twisted nematic (STN) method is driven in a simple matrix, there is an upper limit on the number of pixels that can be displayed due to the limitation of the duty ratio, as is well known. The limitation on the number of pixels can be eliminated by utilizing the memory property.

このような表示メモリー性を持つ従来技術の具体例としては、例えば、(1)強誘電性液晶を用いたもの(非特許文献1、特許文献1参照)や、(2)ネマチック液晶と微細なグレーティング処理を施した液晶配向層を組み合わせたもの(特許文献2参照)、(3)基板表面に二つのそれぞれ異なる方向に液晶配向規制方向を持つ副領域からなる配向パターンを有した配向層を用いることにより、その表面多重配向安定性を用いたもの(特許文献3参照)などが提案されている。
特開昭56−107216号公報 特表平11−513809号公報 国際公開番号WO02/006887号公報 アプライドフィジックスレターズ,36,899(1980)
Specific examples of the prior art having such display memory properties include, for example, (1) those using ferroelectric liquid crystals (see Non-Patent Document 1 and Patent Document 1), and (2) nematic liquid crystals. A combination of liquid crystal alignment layers subjected to grating treatment (see Patent Document 2), (3) An alignment layer having an alignment pattern composed of subregions having liquid crystal alignment control directions in two different directions on the substrate surface is used. Therefore, the one using the surface multiple orientation stability (see Patent Document 3) has been proposed.
JP-A-56-107216 Japanese National Patent Publication No. 11-513809 International Publication Number WO02 / 006887 Applied Physics Letters, 36,899 (1980)

しかしながら、上記した従来技術において、(1)の強誘電性(カイラルスメクチックC)液晶を用いたものは、強誘電効果に起因して応答が高速で、かつ二つのホモジニアス配向状態間の基板面内のスイッチングを用いることから広視野角表示が可能であるが、ネマチック液晶を用いた一般的な液晶表示素子に比べて、スメクチック液晶特有の層構造をとることから配向制御が難しく、さらにこの層構造は機械的衝撃により一度壊れてしまうと回復し難い等の問題点があり、広範な実用化はなされていない。   However, in the prior art described above, the one using the ferroelectric (chiral smectic C) liquid crystal of (1) has a fast response due to the ferroelectric effect, and is in the substrate plane between two homogeneous alignment states. However, it is difficult to control the alignment because of the layer structure unique to the smectic liquid crystal compared to the general liquid crystal display element using nematic liquid crystal. Has a problem that it is difficult to recover once it is broken due to mechanical shock, and has not been put into widespread use.

一方、(2)のネマチック液晶と微細なグレーティング処理を施した液晶配向層を用いるものは、フレクソエレクトリック効果を用いてホメオトロピック(垂直)配向とハイブリッド配向の二状態間をスイッチングするものであるが、このハイブリッド配向に起因して表示視野角特性が特定の方向で悪化するという問題点がある。さらに、この液晶表示素子において、駆動電圧を低くするためには、フレクソエレクトリック係数が十分に大きな液晶材料が必要となるが、そのような液晶材料が一般的に知られていないため駆動電圧および消費電力が高くなってしまうという問題点もあり、この技術も広範な実用化は行われていない。   On the other hand, the one using the nematic liquid crystal (2) and the liquid crystal alignment layer subjected to fine grating processing switches between the two states of homeotropic (vertical) alignment and hybrid alignment using the flexoelectric effect. However, there is a problem that display viewing angle characteristics deteriorate in a specific direction due to the hybrid orientation. Further, in this liquid crystal display element, a liquid crystal material having a sufficiently large flexoelectric coefficient is required to lower the drive voltage. However, since such a liquid crystal material is not generally known, the drive voltage and There is also a problem that power consumption becomes high, and this technology has not been put into widespread use.

また、(3)の基板表面に二つのそれぞれ異なる方向に液晶配向規制方向を持つ副領域からなる配向パターンを有した配向層を用いたものにおいては、この複数領域からなる配向パターンの作成方法として、水銀ランプ等を紫外光源として、ブリュスター角を利用した偏光素子により直線偏光紫外光とした物を、それぞれの正方形の小領域の大きさが略1μm角とした正方形のチェッカーボードパターンのフォトマスクを介し、2回の直線偏光紫外光照射を、その直線偏光方向を互いに90度回転させ、同時にフォトマスクのチェッカーボードパターンの黒に当たる部分が1回目、白に当たる部分が2回目の偏光紫外照射領域となるように行なうこと等が記述されている。しかしながら、この方法では、1回目と2回目の光照射の間に、フォトマスクの開口部の位置関係を、上記のように1回目はチェッカーボードパターンの黒、2回目は白と変更する必要があり、そのために開口部が黒・白で異なる2枚のマスクの交換か、あるいは同一マスクを水平・垂直方向にそれぞれ前記正方形の大きさ略1μm動かすか、いずれかを行う必要があるが、いずれの場合にも、この正方形のサイズである略1μm未満の位置決め・合わせ精度が要求されることから、作成が困難あるいは装置が大掛かりとなるという実用上の問題がある。   In the case of using an alignment layer having an alignment pattern composed of sub-regions having liquid crystal alignment regulation directions in two different directions on the substrate surface in (3), as a method of creating an alignment pattern composed of a plurality of regions. A photomask with a square checkerboard pattern in which a linearly polarized ultraviolet light is obtained by a polarizing element using a Brewster angle using a mercury lamp or the like as a ultraviolet light source, and the size of each square small region is approximately 1 μm square. The two linearly polarized ultraviolet irradiations are rotated by 90 degrees with respect to each other, and at the same time, the portion of the photomask checkerboard pattern that strikes black is the first and the portion that strikes white is the second polarized ultraviolet irradiation region. It is described to do so. However, in this method, it is necessary to change the positional relationship of the opening portion of the photomask between the first and second light irradiations, as described above, black for the first checkerboard pattern and white for the second time. Therefore, it is necessary to either replace two masks with different openings in black and white, or move the same mask in the horizontal and vertical directions, respectively, by moving the square approximately 1 μm. In this case, since the positioning / alignment accuracy of less than about 1 μm, which is the size of this square, is required, there is a practical problem that the production is difficult or the apparatus becomes large.

以上のように従来技術においては、層構造をもたず、配向制御が容易なネマチック液晶を用いた液晶表示素子において、メモリー性による低消費電力化と広視野角表示を両立した液晶表示素子を、簡便に作製し提供することが困難であった。   As described above, in the prior art, a liquid crystal display element using a nematic liquid crystal that does not have a layer structure and is easy to control the orientation, a liquid crystal display element that achieves both low power consumption due to memory characteristics and wide viewing angle display. It has been difficult to produce and provide it simply.

本発明は、上記状況に鑑みて、簡便に作製できる、メモリー性と広視野角表示特性を両立した高精細、広視野角かつ低消費電力のネマチック液晶を用いた液晶表示素子を提供することを目的とする。   In view of the above situation, the present invention provides a liquid crystal display element using nematic liquid crystal that can be easily manufactured and has both high memory performance and wide viewing angle display characteristics, and has high definition, wide viewing angle, and low power consumption. Objective.

本発明は、上記目的を達成するために、まず、従来技術である上記特許文献3に開示されているものと同様に、基板表面に二つのそれぞれ異なる方向に液晶配向規制方向を持つ副領域からなる配向パターンを有した配向層を用い、同時に、上記従来技術の作製上の問題点を解決するため、上記配向パターンを有した配向層の作製方法として、直線偏光した紫外光により、この光に感度を有する感光性材料をあらかじめコートした表面を照射するいわゆる光配向法を用い、さらにこの感光性材料として、照射偏光光の偏光方向によって決定される液晶配向規制方向が複数回の偏光光照射によりリセット(書き換え)可能な材料を用いる。   In order to achieve the above object, the present invention starts with subregions having liquid crystal alignment regulating directions in two different directions on the substrate surface, similar to the one disclosed in Patent Document 3 as a prior art. In order to solve the problems in the production of the above-mentioned prior art at the same time, an alignment layer having the above-mentioned alignment pattern is prepared by using linearly polarized ultraviolet light as a method for producing the above-mentioned alignment layer. Using a so-called photo-alignment method that irradiates a surface pre-coated with a photosensitive material having sensitivity, the liquid crystal alignment regulation direction determined by the polarization direction of the irradiated polarized light is applied by multiple times of polarized light irradiation. A resettable (rewritable) material is used.

つまり、少なくとも一方が透明な一対の基板と、前記一対の基板の少なくとも一方の基板に形成された、前記基板面に略平行な成分を持つ電界を前記液晶層に印加するための電極群と、前記一対の基板間に配置された液晶層と、該液晶層と前記一対の基板の少なくともどちらか一方の基板の間に配置された、二つの方向に液晶配向規制処理された配向層とを有する液晶表示素子において、前記配向層の液晶配向規制処理が、前記基板表面上の配向層に化学反応を与え得る光を直線偏光光として照射する処理であり、前記配向層が、複数回の前記直線偏光光照射に対して、その液晶配向規制方向が、最後に照射された直線偏光光の偏光方向に対応した液晶配向規制方向となる光反応性材料からなることを特徴とする。   That is, a pair of substrates at least one of which is transparent, and an electrode group formed on at least one of the pair of substrates for applying an electric field having a component substantially parallel to the substrate surface to the liquid crystal layer, A liquid crystal layer disposed between the pair of substrates, and an alignment layer disposed between at least one of the liquid crystal layer and the pair of substrates and subjected to a liquid crystal alignment regulation process in two directions. In the liquid crystal display element, the liquid crystal alignment regulating process of the alignment layer is a process of irradiating light that can give a chemical reaction to the alignment layer on the substrate surface as linearly polarized light, and the alignment layer is a plurality of straight lines. It is characterized by comprising a photoreactive material whose liquid crystal alignment regulating direction is the liquid crystal alignment regulating direction corresponding to the polarization direction of the linearly polarized light irradiated last with respect to polarized light irradiation.

図1は本発明の原理を示す模式図である。   FIG. 1 is a schematic diagram showing the principle of the present invention.

この液晶配向規制方向がリセット(書き換え)可能な材料を用いた配向層を用いることにより、2回の直線偏光紫外光照射において、1回目は図1(a)に示すように処理対象となる領域全体にフォトマスク等を介さず一様に直線偏光紫外光(LUV1)照射を行い、図1(b)に示すように直線偏光方向を90度回転させた2回目の直線偏光紫外光(LUV2)照射時のみ、フォトマスク(PMASK)を介して処理対象となる領域の一部分のみに選択的に2回目の直線偏光紫外光照射を行い、図1(c)に示すように選択領域の液晶配向規制方向のみをセット(書き換え)することが可能となり、フォトマスクの位置決め・合わせ精度の問題を解決することができる。   By using an alignment layer using a material in which the liquid crystal alignment regulation direction can be reset (rewritten), the first time is an area to be processed as shown in FIG. Irradiation with linearly polarized ultraviolet light (LUV1) is performed uniformly without using a photomask or the like, and the second linearly polarized ultraviolet light (LUV2) is rotated 90 degrees as shown in FIG. 1B. Only at the time of irradiation, only a part of the region to be processed is selectively irradiated with the second linearly polarized ultraviolet light through the photomask (PMASK), and the liquid crystal alignment control of the selected region is performed as shown in FIG. Only the direction can be set (rewritten), and the problem of photomask positioning and alignment accuracy can be solved.

ここで、配向層に照射する紫外光として、上記の直線偏光光の代わりに、基板法線に対して斜め方向に入射する光を用いても同様の効果が得られ、この場合は直線偏光方向の代わりに、斜め入射方向を変えることにより液晶配向規制方向を制御可能である。   Here, the same effect can be obtained by using light incident in an oblique direction with respect to the substrate normal instead of the above-mentioned linearly polarized light as the ultraviolet light irradiated to the alignment layer. Instead of this, the liquid crystal alignment regulating direction can be controlled by changing the oblique incident direction.

つまり、前記二つの液晶配向規制処理の一方が、当該処理対象となる領域全体に一様に施される処理であり、かつもう一方の液晶配向規制処理が、当該処理対象となる領域の一部分のみに選択的に施される処理であることを特徴とすればよい。このようにして作製した配向パターンがメモリ性を発現するには、前記異なる二つの液晶配向規制方向が基板面内で略直交し、かつ、少なくとも一方の液晶配向規制方向における基板面からの起き上がり角がすべて略0度であることを特徴とすればよい。また、前記液晶層として、不斉分子を組成成分として含有する液晶材料からなることを特徴としてもよい。また、前記液晶層として、その誘電異方性の符号が印加される交流電界の周波数に依存して正・負両方とり得る液晶材料からなることを特徴としてもよい。さらに、前記櫛歯電極とは別に、前記一対の基板のそれぞれの基板上に配置された、対となる電極を有することを特徴としてもよい。あるいは、前記一対の基板のどちらかの基板上に、光反射板が配置されたことを特徴としてもよい。   That is, one of the two liquid crystal alignment regulation processes is a process uniformly applied to the entire area to be processed, and the other liquid crystal alignment regulation process is performed on only a part of the area to be processed. The process may be selectively performed. In order for the alignment pattern thus produced to exhibit memory properties, the two different liquid crystal alignment regulating directions are substantially orthogonal within the substrate plane, and the rising angle from the substrate plane in at least one liquid crystal alignment regulating direction is May be characterized in that all are substantially 0 degrees. The liquid crystal layer may be made of a liquid crystal material containing an asymmetric molecule as a composition component. Further, the liquid crystal layer may be made of a liquid crystal material that can take both positive and negative depending on the frequency of the alternating electric field to which the sign of dielectric anisotropy is applied. Furthermore, it is good also as having the electrode which becomes a pair arrange | positioned on each board | substrate of a pair of said board | substrate separately from the said comb-tooth electrode. Alternatively, a light reflecting plate may be arranged on one of the pair of substrates.

本発明によれば、ネマチック液晶を用いた液晶表示素子において、メモリー特性による低消費電力と広視野角表示を両立させた液晶表示素子をより簡便に作製することができる。   According to the present invention, in a liquid crystal display element using nematic liquid crystal, a liquid crystal display element that achieves both low power consumption due to memory characteristics and wide viewing angle display can be more easily manufactured.

本発明のネマチック液晶を用いた液晶表示素子は、少なくとも一方が透明な一対の基板と、前記一対の基板の少なくとも一方の基板に形成された、前記基板面に略平行な成分を持つ電界を前記液晶層に印加するための電極群と、前記一対の基板間に配置された液晶層と、この液晶層と前記一対の基板の少なくともどちらか一方の基板の間に配置された、二つの方向に液晶配向規制処理された配向層とを有する液晶表示素子において、前記配向層の液晶配向規制処理が、前記基板表面上の配向層に化学反応を与え得る光を直線偏光光として照射する処理であり、前記配向層が、複数回の前記直線偏光光照射に対して、その液晶配向規制方向が、最後に照射された直線偏光光の偏光方向に対応した液晶配向規制方向となる光反応性材料からなる。   The liquid crystal display element using the nematic liquid crystal according to the present invention has a pair of substrates at least one of which is transparent and an electric field formed on at least one of the pair of substrates and having a component substantially parallel to the substrate surface. An electrode group for applying to the liquid crystal layer, a liquid crystal layer disposed between the pair of substrates, and two directions disposed between at least one of the liquid crystal layer and the pair of substrates. In a liquid crystal display device having an alignment layer subjected to a liquid crystal alignment control process, the liquid crystal alignment control process of the alignment layer is a process of irradiating light that can give a chemical reaction to the alignment layer on the substrate surface as linearly polarized light. From the photoreactive material in which the alignment layer has a liquid crystal alignment regulating direction corresponding to the polarization direction of the last linearly polarized light irradiated to the linearly polarized light irradiated a plurality of times. Become.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図2は本発明の第1実施例を示す液晶表示素子の構成を示す図である。   FIG. 2 is a diagram showing the configuration of the liquid crystal display element according to the first embodiment of the present invention.

この図において、基板SUB1、SUB2として、厚みが1.1mmで表面を研磨した透明なガラス基板を2枚用いた。基板SUB1上に、対となる櫛歯電極EL2AおよびEL2Bを、基板上に形成した同一のITO(インジウムチンオキサイド)からなる透明導電層をパタ−ン化して形成し、更にその上に窒化シリコンからなる膜厚600nmの絶縁保護膜IL1を形成した。同様に、もう一組の櫛歯電極EL1AおよびEL1Bを、上記の櫛歯電極EL2と略直交する方向に、絶縁膜IL1の上に形成した同一のITOからなる透明導電層をパタ−ン化して構成し、更にその上に窒化シリコンからなる膜厚200nmの絶縁保護膜IL2を形成した。また、LCLは液晶層である。上記の櫛歯電極EL1,EL2の電極長手方向は、図中の座標系で表すと、それぞれy軸、x軸方向である。また、これらの櫛歯電極EL1,EL2の電極幅は6μm、電極間隔は4μmで、図中の櫛歯間隙部の数は簡単に説明するため模式的に3分割で図示してあるが、実際の素子は8分割とした。   In this figure, as the substrates SUB1 and SUB2, two transparent glass substrates having a thickness of 1.1 mm and polished on the surface were used. On the substrate SUB1, a pair of comb electrodes EL2A and EL2B are formed by patterning a transparent conductive layer made of the same ITO (Indium Tin Oxide) formed on the substrate, and further made of silicon nitride thereon. An insulating protective film IL1 having a thickness of 600 nm was formed. Similarly, another set of comb-shaped electrodes EL1A and EL1B is patterned by patterning a transparent conductive layer made of the same ITO formed on the insulating film IL1 in a direction substantially orthogonal to the comb-shaped electrode EL2. Further, an insulating protective film IL2 made of silicon nitride and having a thickness of 200 nm was formed thereon. LCL is a liquid crystal layer. The electrode longitudinal directions of the comb electrodes EL1 and EL2 are the y-axis and x-axis directions, respectively, in the coordinate system in the figure. In addition, the electrode width of these comb-tooth electrodes EL1 and EL2 is 6 μm, the electrode spacing is 4 μm, and the number of comb-tooth gaps in the figure is schematically shown in three parts for simple explanation. The element was divided into 8 parts.

次に、絶縁膜IL2上に、感光性材料として、アゾベンゼン基を含有する〔化1〕をN,N−ジメチルホルムアミドに溶解して1%溶液とし、基板表面に塗布後、100℃、5分の溶媒除去を行い緻密な感光性膜を得た。   Next, on the insulating film IL2, as a photosensitive material, [Chemical Formula 1] containing an azobenzene group is dissolved in N, N-dimethylformamide to form a 1% solution. The solvent was removed to obtain a dense photosensitive film.

Figure 2007193085
ここで、感光性材料として、〔化1〕の代わりに同様にアゾベンゼン基を含有する高分子材料〔化2〕を用いてもよい。
Figure 2007193085
Here, instead of [Chemical Formula 1], a polymer material containing an azobenzene group [Chemical Formula 2] may be used as the photosensitive material.

Figure 2007193085
紫外光等の照射により液晶配向規制方向を形成する、いわゆる光配向用の感光性材料としては、紫外光照射による光化学反応の形態による分類、つまり光重合型、光分解型、光異性化型が一般的に知られている。この分類中では、光異性化型に分類されるものが、上記のような液晶配向規制方向がリセット(書き換え)可能な感光性材料として好適であり、具体的にはアゾ基、スチルベン基等を含有する低分子・高分子材料が好ましい。
Figure 2007193085
The so-called photo-alignment photosensitive materials that form the liquid crystal alignment regulation direction by irradiation with ultraviolet light, etc. are classified according to the form of photochemical reaction by ultraviolet light irradiation, that is, photopolymerization type, photolysis type, photoisomerization type. Generally known. Among these classifications, those classified as photoisomerization types are suitable as photosensitive materials whose liquid crystal alignment control direction can be reset (rewritten) as described above. Specifically, azo groups, stilbene groups, etc. The low-molecular / high-molecular material contained is preferable.

その後、高圧水銀ランプを紫外光源として、365nm付近のフィルターを通し、ブリュスター角を利用した偏光素子により直線偏光紫外光として、まず基板全面に一様に照射した。この時の膜面での照射光強度は約15mW/cm2 である。 Thereafter, a high-pressure mercury lamp was used as an ultraviolet light source, passed through a filter near 365 nm, and the entire surface of the substrate was uniformly irradiated as linearly polarized ultraviolet light by a polarizing element using a Brewster angle. The irradiation light intensity on the film surface at this time is about 15 mW / cm 2 .

次に、上記の1回目の光照射に対してその直線偏光方向を90度回転して、図1(b)に示すような区切られたそれぞれの正方形の小領域の大きさが略1μm角とした正方形のチェッカーボードパターン(白の部分が開口部)のフォトマスクを介し、約20mW/cm2 の照射光強度で2回目の照射を行った。 Next, the linear polarization direction is rotated by 90 degrees with respect to the first light irradiation described above, and the size of each divided square small region as shown in FIG. 1B is approximately 1 μm square. Second irradiation was performed with an irradiation light intensity of about 20 mW / cm 2 through a photomask having a square checkerboard pattern (white portion is an opening).

これらの偏光紫外光照射は、それにより付与される液晶配向のプレチルト角が略0度となるように基板面に対して垂直入射とした。   These polarized ultraviolet light irradiations were made to be perpendicularly incident on the substrate surface so that the pretilt angle of the liquid crystal alignment provided thereby was approximately 0 degrees.

上記の2回の直線偏光紫外光照射により、用いたチェッカーボードパターンの黒(マスク非開口部)の部分は1回目の光照射時の直線偏光方向と直交した液晶配向規制方向となり、チェッカーボードパターンの白(マスク開口部)の部分は1回目の光照射の後、偏光方向を90度回転した2回目の光照射により液晶配向規制方向がリセットされ(書き換えられ)、上記の黒の部分に対して直交した液晶配向規制方向となる。   As a result of the above-mentioned two irradiations with linearly polarized ultraviolet light, the black (mask non-opening) portion of the used checkerboard pattern becomes the liquid crystal alignment regulating direction orthogonal to the linearly polarized light direction at the first light irradiation, and the checkerboard pattern After the first light irradiation, the white (mask opening) part of the liquid crystal is reset (rewritten) by the second light irradiation in which the polarization direction is rotated by 90 degrees. The direction of liquid crystal alignment is perpendicular to each other.

上記のように、用いた配向膜材料〔化1〕の、複数回の光照射に対する液晶配向規制方向のリセット(書き換え)機能を用いることにより、配向パターンを形成するマスクを介した照射が1度で済むため、マスクを介した照射を2回行う場合に問題となる1回目と2回目のマスクの位置合わせの問題を解決できる。   As described above, by using the alignment film material [Chemical Formula 1] having a reset (rewrite) function in the liquid crystal alignment control direction for a plurality of times of light irradiation, irradiation through the mask for forming the alignment pattern is performed once. Therefore, it is possible to solve the problem of the first and second mask alignment, which becomes a problem when the irradiation through the mask is performed twice.

なお、これらのパターン形状や照射光強度はあくまで一つの例であり、用いる感光性材料や、液晶材料の特性などに合わせて調整する。上記のチェッカーボードパターンのマス目方向や、各マス目内における局所的な配向規制方向LAL1A,LAL1Bは、図2中の座標系で表すとそれぞれx軸、y軸と略45度の角をなす方向に設定されている。   Note that these pattern shapes and irradiation light intensities are merely examples, and are adjusted in accordance with the photosensitive material used, the characteristics of the liquid crystal material, and the like. The grid direction of the checkerboard pattern and the local orientation regulating directions LAL1A and LAL1B in each grid form an angle of about 45 degrees with the x axis and the y axis, respectively, when expressed in the coordinate system in FIG. Set to direction.

この様にして形成された、二つの液晶配向容易軸方向をもつ領域を基板面内に複数配置した配向層AL1は、結果として図中座標系x軸、y軸方向であるALD1A,ALD1B方向の二つの方向の配向容易軸を有する配向層となる。   The alignment layer AL1 formed in this way and having a plurality of regions having two liquid crystal alignment easy axis directions arranged in the substrate surface results in the ALD1A and ALD1B directions in the coordinate system x-axis and y-axis directions in the figure. An alignment layer having easy alignment axes in two directions is obtained.

もう一方の基板SUB2には、溶剤可溶型のポリイミド前駆体であるSE7210(日産化学社製)の溶液を塗布した後、200°Cまで加熱し、30分放置し溶剤を除去して緻密なポリイミド膜を得た後、ラビングローラに取付けたバフ布で配向膜表面をラビング処理し、図2中の座標軸のx軸方向のALD2で表せられる単一の配向容易軸をもつ液晶配向能を付与した。   The other substrate SUB2 was coated with a solution of SE7210 (Nissan Chemical Co., Ltd.), a solvent-soluble polyimide precursor, heated to 200 ° C., left for 30 minutes to remove the solvent, and the dense substrate SUB2. After the polyimide film is obtained, the alignment film surface is rubbed with a buff cloth attached to a rubbing roller to give a liquid crystal alignment ability having a single easy alignment axis represented by ALD2 in the x-axis direction of the coordinate axis in FIG. did.

次に、これらの2枚の基板をそれぞれの液晶配向能を有する表面同士を相対向させて、分散させた球形のポリマビーズからなるスペーサと周辺部のシール剤とを介在させて、セルを組みたてた。   Next, a cell was assembled by interposing spacers made of dispersed spherical polymer beads and a peripheral sealant between these two substrates with their liquid crystal alignment surfaces facing each other. It was.

次いで、この液晶セルの基板間に、ネマチック液晶組成物ZLI−4535(メルク社製)(誘電異方性Δεが正でその値が14.8であり、屈折率異方性Δnが0.0865)を真空で注入し、紫外線硬化型樹脂からなる封止材で封止して液晶パネルを得た。このとき液晶層の厚みは上記のスペ−サにより、液晶封入状態で6.4μmとなるように調整した。従って、本実施例の液晶表示素子のリタデーション(Δnd)は、0.5μmとなる。   Next, between the substrates of this liquid crystal cell, a nematic liquid crystal composition ZLI-4535 (manufactured by Merck & Co., Inc.) (dielectric anisotropy Δε is positive and its value is 14.8, and refractive index anisotropy Δn is 0.0865. ) Was injected in a vacuum and sealed with a sealing material made of an ultraviolet curable resin to obtain a liquid crystal panel. At this time, the thickness of the liquid crystal layer was adjusted to 6.4 μm in the liquid crystal sealed state by the above-mentioned spacer. Therefore, the retardation (Δnd) of the liquid crystal display element of this example is 0.5 μm.

次に、このパネルを2枚の偏光板POL1,POL2(日東電工社製G1220DU)で挾み、一方の偏光板の偏光透過軸POLを上記のラビング方向ALD2とほぼ並行とし、他方POLをそれに直交させて配置した。その後、駆動回路、バックライトなどを接続し、液晶表示素子を得た。次にこのようにして得た液晶表示素子の基板SUB1側に用いた物と同一の配向膜材料を用い、同一プロセスで配向層を形成した同一の1対の基板間に、上記と同じ液晶組成物ZLI−4535を封入して液晶セルを作製し、クリスタルローテーション法により、この液晶セルの二つの方向の配向容易軸を有する配向層と液晶界面でのそれぞれの方向におけるプレチルト角を測定したところ2度以下で、測定精度の範囲内でプレチルト角が略0度であることを確認した。   Next, this panel is sandwiched between two polarizing plates POL1 and POL2 (G1220DU manufactured by Nitto Denko Corporation), and the polarizing transmission axis POL of one polarizing plate is substantially parallel to the rubbing direction ALD2, and the other POL is orthogonal to it. Arranged. Thereafter, a drive circuit, a backlight, and the like were connected to obtain a liquid crystal display element. Next, the same liquid crystal composition as described above is used between the same pair of substrates in which an alignment layer is formed by the same process using the same alignment film material as that used on the substrate SUB1 side of the liquid crystal display element thus obtained. A liquid crystal cell was prepared by enclosing the product ZLI-4535, and the pretilt angle in each direction at the liquid crystal interface between the alignment layer having the easy alignment axis in two directions and the liquid crystal cell was measured by a crystal rotation method. It was confirmed that the pretilt angle was approximately 0 degrees within the range of the measurement accuracy within the range of degrees.

因みに、本実施例の基板SUB2側に用いた物と同一の配向膜材料、プロセスを用い、同じラビング条件で配向層を形成した同一の1対の基板間に、上記と同じ液晶組成物ZLI−4535を封入して液晶セルを作製し、クリスタルローテーション法により、この液晶セルのプレチルトを測定したところ5度であった。   Incidentally, the same liquid crystal composition ZLI− as described above is used between the same pair of substrates in which the alignment layer is formed under the same rubbing conditions using the same alignment film material and process as those used on the substrate SUB2 side in this example. A liquid crystal cell was prepared by enclosing 4535, and the pretilt of this liquid crystal cell was measured by a crystal rotation method and found to be 5 degrees.

この第1実施例の液晶表示素子のスイッチング特性を図3を用いて説明する。図中において、V1,V2は、第1の櫛歯電極EL1A,EL1Bおよび第2の櫛歯電極EL2A,EL2B間に加えられる電圧波形、Trはそれに伴う液晶素子の透過率の変化を表す。   The switching characteristics of the liquid crystal display element of the first embodiment will be described with reference to FIG. In the figure, V1 and V2 are voltage waveforms applied between the first comb-tooth electrodes EL1A and EL1B and the second comb-tooth electrodes EL2A and EL2B, and Tr represents a change in the transmittance of the liquid crystal element associated therewith.

この図3に示されるように、この実施例に示す液晶素子は、選択的に交流電圧をV1あるいはV2として加えることにより明・暗の2メモリー状態間のスイッチングが可能であることが分かる。この実施例の場合のスイッチング交流電圧(周波数1kHz)はV1として8Vpp、V2として6Vppであり、若干の駆動電圧非対称性がみられた。 As shown in FIG. 3, it can be seen that the liquid crystal element shown in this embodiment can be switched between two bright and dark memory states by selectively applying an alternating voltage as V1 or V2. Switching AC voltage in this embodiment (frequency 1kHz) is 6V pp as 8V pp, V2 as V1, slight driving voltage asymmetry was observed.

図4にそれぞれ、暗状態〔図4(a)参照〕、明状態〔図4(b)参照〕に対応する液晶層内の液晶配向状態の模式図を示す。   FIG. 4 shows a schematic diagram of the liquid crystal alignment state in the liquid crystal layer corresponding to the dark state (see FIG. 4A) and the bright state (see FIG. 4B), respectively.

この図に示されるように、これらの二状態間のスイッチングは略基板面内の液晶分子配向スイッチングにより行われる。   As shown in this figure, switching between these two states is performed by liquid crystal molecule alignment switching substantially in the substrate plane.

次に、液晶視野角測定装置CV−1000(ミノルタ社製)を用いて、本実施例の液晶表示素子の、視野角特性を測定したところ、上下140度、左右140度の全域でコントラスト比が10:1以上で、かつ階調反転のない広視野角特性が得られた。   Next, when the viewing angle characteristics of the liquid crystal display element of this example were measured using a liquid crystal viewing angle measuring device CV-1000 (manufactured by Minolta Co., Ltd.), the contrast ratio was 140 ° up and down and 140 ° left and right. A wide viewing angle characteristic of 10: 1 or more and no gradation inversion was obtained.

目視による画質検査においても、斜め方向から見ても表示色の大きな変化も見られず、均一性の高い表示が得られた。   In visual image quality inspection, a large change in display color was not seen even when viewed from an oblique direction, and a highly uniform display was obtained.

次に、本発明の第2実施例について説明する。   Next, a second embodiment of the present invention will be described.

上記の第1実施例において、液晶材料にカイラルドーパントとしてCB−15(メルク社製)を、組成物の螺旋ピッチ長が約15μmとなるように組成したものを用いた以外は実施例1と同様にして液晶表示素子を作製し、第2実施例とした。   In the first embodiment, the same as Example 1 except that the liquid crystal material was CB-15 (manufactured by Merck) as a chiral dopant so that the helical pitch length of the composition was about 15 μm. In this manner, a liquid crystal display element was produced and used as the second example.

図5は図3に対応する本実施例の電気光学特性を示す図である。   FIG. 5 is a diagram showing the electro-optical characteristics of this example corresponding to FIG.

この実施例の場合のスイッチング交流電圧は、V1として5Vpp、V2として4.8Vppであり、カイラルドーパント添加によるツイステッドプラーナー状態のエネルギー安定化効果により、V1,V2の駆動電圧非対称性をほぼ解消することができた。 In this embodiment, the switching AC voltage is 5 V pp as V 1 and 4.8 V pp as V 2, and the drive voltage asymmetry of V 1 and V 2 is almost equal due to the energy stabilization effect of the twisted planar state by adding the chiral dopant. I was able to resolve it.

第1実施例と同様の視野角測定においても、第1実施例とほぼ同じ広視野角特性を持った均一性の高い表示が得られた。   In the same viewing angle measurement as in the first example, a highly uniform display having the same wide viewing angle characteristic as in the first example was obtained.

次に、本発明の第3実施例について説明する。   Next, a third embodiment of the present invention will be described.

上記の第1実施例において、液晶材料としてTX2A(メルク社製)を用い、図6に示すように、櫛歯電極を1 組のみ持つ構成として、2周波駆動回路を用いた以外は第1実施例と同様にして液晶表示素子を作製し、第3実施例とした。   In the first embodiment, TX2A (made by Merck) is used as the liquid crystal material, and as shown in FIG. 6, the first embodiment except that a dual frequency drive circuit is used as a configuration having only one pair of comb electrodes. A liquid crystal display device was produced in the same manner as in the example, and the third example was obtained.

上記の液晶組成物TX2Aは、その誘電異方性(Δε)が低周波では正で、高周波では負となる2周波駆動用のネマチック組成物であり、そのクロスオーバー周波数は6kHzである。   The liquid crystal composition TX2A is a nematic composition for two-frequency driving in which the dielectric anisotropy (Δε) is positive at a low frequency and negative at a high frequency, and the crossover frequency is 6 kHz.

本実施例の駆動波形と、電気光学特性を図7に示す。この図に示すように、本実施例においては、暗(ホモジニアス)状態から明(ツイステッドプラーナー)状態へのスイッチングには、TX2AのΔεが正となる4kHz、8Vppの交流電圧、逆のスイッチング時にはΔεが負となる8kHz、10Vppの交流電圧をV1として用いることにより、一組の櫛歯電極で両状態間のスイッチングが可能であった。 FIG. 7 shows drive waveforms and electro-optical characteristics of this example. As shown in this figure, in this embodiment, for switching from the dark (homogeneous) state to the light (twisted planer) state, 4 kHz, 8 V pp AC voltage with which Δε of TX2A is positive, and reverse switching are used. Switching between the two states was possible with a pair of comb electrodes by using an alternating voltage of 8 kHz and 10 V pp at which Δε is sometimes negative as V1.

本実施例においても、第1実施例と同様の視野角測定により、第1実施例と略同じ広視野角特性を持った均一性の高い表示が得られた。   Also in the present example, the same viewing angle measurement as in the first example gave a highly uniform display having the same wide viewing angle characteristics as in the first example.

また、実施例1と同様にして、クリスタルローテーション法により、同一配向層と同一液晶材料TX2Aを用いた液晶セルの二つの方向の配向容易軸を有する配向層と液晶界面でのプレチルト角を測定したところ2度以下で、測定精度の範囲内でプレチルト角が略0度であることを確認した。   Further, in the same manner as in Example 1, the pretilt angle at the liquid crystal interface between the alignment layer having the easy alignment axes in two directions of the liquid crystal cell using the same alignment layer and the same liquid crystal material TX2A was measured by the crystal rotation method. However, it was confirmed that the pretilt angle was approximately 0 degrees within the range of measurement accuracy at 2 degrees or less.

次に、本発明の第4実施例について説明する。   Next, a fourth embodiment of the present invention will be described.

上記の第3実施例において、図8に示すように、基板SUB1、基板SUB2それぞれに対となる平行平板電極を加えた構成とした以外は第3実施例と同様にして液晶表示素子を作製し、第4実施例とした。   In the third embodiment, as shown in FIG. 8, a liquid crystal display device was manufactured in the same manner as the third embodiment except that a pair of parallel plate electrodes was added to each of the substrate SUB1 and the substrate SUB2. The fourth example was adopted.

上記の対となる平行平板電極はITO透明電極からなり、交流電圧V2が加えられる駆動回路に接続されている。   The parallel plate electrodes as a pair are made of ITO transparent electrodes and connected to a drive circuit to which an AC voltage V2 is applied.

本実施例の電気光学特性および視野角特性は第3実施例とほぼ同じであるが、追加された平行平板電極間に4kHz、20Vppの交流電圧を加えることにより、二つの画素を一度に明状態から暗状態にリフレッシュ表示が可能であった。 The electro-optical characteristics and viewing angle characteristics of this embodiment are almost the same as those of the third embodiment. However, by applying an AC voltage of 4 kHz and 20 V pp between the added parallel plate electrodes, two pixels are brightened at a time. Refresh display was possible from the state to the dark state.

次に、本発明の第5実施例について説明する。   Next, a fifth embodiment of the present invention will be described.

上記の第3実施例において、図9に示すように、基板SUB1上に光反射板REFとその上にλ/4板QPを加えた構成とし、セルギャップを半分の3.2μmとし、配向層AL1の各チェッカーボードパターン内の局所的な二つの配向規制方向LAL1A,LAL1B形成時の紫外偏光光強度を調整して、AL1にお互いに45度の角度をなす二つの液晶配向容易軸ALD1A,ALD2Aを付与した配向層を用いた以外は第3実施例と同様にして反射型の液晶表示素子を作製し、第5実施例とした。   In the third embodiment, as shown in FIG. 9, the light reflecting plate REF and the λ / 4 plate QP are added on the substrate SUB1, the cell gap is reduced to 3.2 μm, and the alignment layer is formed. Two easy liquid crystal alignment axes ALD1A and ALD2A that form an angle of 45 degrees with respect to AL1 by adjusting the intensity of ultraviolet polarized light when forming two local alignment control directions LAL1A and LAL1B in each checkerboard pattern of AL1 A reflective liquid crystal display device was produced in the same manner as in the third example except that the alignment layer provided with the above was used.

本実施例におけるλ/4板QPの遅延軸の方向は偏光板POL2の透過軸と略45度をなす角度に設定し、配向層AL1の配向容易軸ALD1AはALD2と同方向、ALD1BはALD2に対して45度回転した方向となっている。   In this embodiment, the direction of the delay axis of the λ / 4 plate QP is set at an angle of approximately 45 degrees with the transmission axis of the polarizing plate POL2, the orientation easy axis ALD1A of the orientation layer AL1 is in the same direction as ALD2, and ALD1B is in ALD2. The direction is 45 degrees rotated.

上記の配向層AL1の構成により、本実施例における二つの安定な液晶層の配向状態は、図4(b)に示すものを45度捩れの構造としたものとなり、図4の透過型の構成と同じく一様配向状態で暗、(45度)ツイステッドプラーナー状態で明状態となる。   With the configuration of the alignment layer AL1 described above, the alignment state of the two stable liquid crystal layers in this embodiment is a 45-degree twisted structure as shown in FIG. 4B, and the transmission type configuration of FIG. As well as dark in the uniform orientation state and bright in the (45 degrees) twisted planar state.

本実施例の電気光学特性および視野角特性は第3実施例とほぼ同じであるが、透過率ではなく反射率として光学特性が得られる点が異なる。   The electro-optical characteristics and viewing angle characteristics of the present embodiment are almost the same as those of the third embodiment, except that the optical characteristics are obtained as reflectance rather than transmittance.

本実施例についても、実施例1と同様にしてクリスタルローテーション法により、同一配向層と同一液晶材料を用いた液晶セルの二つの方向の配向容易軸を有する配向層と液晶界面でのプレチルト角を測定したところ2度以下で、測定精度の範囲内でプレチルト角が略0度であることを確認した.
次に、本発明の第6実施例について説明する。
Also in this example, the pretilt angle at the liquid crystal interface between the alignment layer having the easy alignment axes in two directions of the liquid crystal cell using the same alignment layer and the same liquid crystal material and the liquid crystal interface is obtained by the crystal rotation method in the same manner as in Example 1. When measured, it was confirmed that the pretilt angle was approximately 0 degrees within the range of measurement accuracy within 2 degrees.
Next, a sixth embodiment of the present invention will be described.

上記の第1実施例において、液晶層を挟む2枚の基板両方の側の配向層として、実施例1と同様のチェッカーボードパターンの2枚のフォトマスクを用いて、2回の直線偏光紫外光を照射した配向層を用い、さらにこの2回の紫外光照射の強度を相対的に変えることにより、実施例5と同様に結果として得られる配向層の2つの容易軸のなす角度を45度とした以外は実施例1と同様にして液晶表示素子を作製し、第6実施例とした。   In the first embodiment, two linearly polarized ultraviolet rays are used by using two photomasks having a checkerboard pattern similar to that of the first embodiment as alignment layers on both sides of the two substrates sandwiching the liquid crystal layer. In addition, the angle between the two easy axes of the resulting alignment layer is 45 degrees, as in Example 5, by using the alignment layer irradiated with UV and further changing the intensity of the two ultraviolet light irradiations. A liquid crystal display device was produced in the same manner as in Example 1 except for the above, and a sixth example was obtained.

本実施例におけるスイッチングの形態としては、2つの配向方向がエネルギー的に安定となる配向層を両基板に配置していることから、両方の基板界面で面内スイッチング(スイッチング角45度)が生じ、これとクロスニコルに配置された2枚の偏光板により、異なる面内方位のホモジニアス状態間の複屈折光学モードによる表示となる。   As a form of switching in this embodiment, since two alignment directions in which two alignment directions are energetically stable are arranged on both substrates, in-plane switching (switching angle of 45 degrees) occurs at the interface between both substrates. This and the two polarizing plates arranged in crossed Nicol form a display in a birefringent optical mode between homogeneous states with different in-plane orientations.

本実施例の電気光学特性および視野角特性は第1実施例とほぼ同じであるが、前述の様に複屈折モードによる透過率として光学特性が得られる点が異なる。   The electro-optical characteristics and viewing angle characteristics of this embodiment are almost the same as those of the first embodiment, except that the optical characteristics are obtained as the transmittance in the birefringence mode as described above.

本実施例についても、実施例1と同様にしてクリスタルローテーション法により、同一配向層と同一液晶材料を用いた液晶セルの二つの方向の配向容易軸を有する配向層と液晶界面でのプレチルト角を測定したところ2度以下で、測定精度の範囲内でプレチルト角が略0度であることを確認した。   Also in this example, the pretilt angle at the liquid crystal interface between the alignment layer having the easy alignment axes in two directions of the liquid crystal cell using the same alignment layer and the same liquid crystal material and the liquid crystal interface is obtained by the crystal rotation method in the same manner as in Example 1. As a result of the measurement, it was confirmed that the pretilt angle was approximately 0 degrees within the range of the measurement accuracy within 2 degrees.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨にもとづいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, These are not excluded from the scope of the present invention.

本発明の液晶表示装置は、携帯電話などの携帯情報端末に用いる、低消費電力、高精細の液晶表示素子に利用可能である。   The liquid crystal display device of the present invention can be used for a low power consumption, high definition liquid crystal display element used for a portable information terminal such as a cellular phone.

本発明の原理を示す模式図である。It is a schematic diagram which shows the principle of this invention. 本発明の第1実施例を示す液晶表示素子の構成を示す図である。It is a figure which shows the structure of the liquid crystal display element which shows 1st Example of this invention. 本発明の第1実施例を示す液晶表示素子のスイッチング特性を示す図である。It is a figure which shows the switching characteristic of the liquid crystal display element which shows 1st Example of this invention. 本発明の第1実施例を示す暗状態および明状態に対応する液晶内の配向状態の模式図を示す図である。It is a figure which shows the schematic diagram of the orientation state in the liquid crystal corresponding to the dark state and bright state which show 1st Example of this invention. 図3に対応する第2実施例の電気光学特性を示す図である。It is a figure which shows the electro-optical characteristic of 2nd Example corresponding to FIG. 本発明の第3実施例を示す液晶表示素子の構成を示す図である。It is a figure which shows the structure of the liquid crystal display element which shows 3rd Example of this invention. 本発明の第3実施例を示す液晶表示素子の駆動波形と電気光学特性を示す図である。It is a figure which shows the drive waveform and electro-optical characteristic of the liquid crystal display element which show 3rd Example of this invention. 本発明の第4実施例を示す液晶表示素子の構成を示す図である。It is a figure which shows the structure of the liquid crystal display element which shows 4th Example of this invention. 本発明の第5実施例を示す液晶表示素子の構成を示す図である。It is a figure which shows the structure of the liquid crystal display element which shows 5th Example of this invention.

符号の説明Explanation of symbols

SUB1,SUB2 基板
EL1,EL1A,EL1B,EL2,EL2A,EL2B 櫛歯電極
IL1,IL2 絶縁保護膜
LAL1A,LAL1B 各配向パターン内の液晶配向規制方向
AL1,AL2 配向層
POL1,POL2 偏光板
ALD2 ラビング方向
REF 光反射板
QP λ/4板
ALD1A,ALD1B 液晶配向容易軸
LCL 液晶層
LUV1,LUV2 照射紫外光の直線偏光方向
PMASK フォトマスク
SUB1, SUB2 Substrate EL1, EL1A, EL1B, EL2, EL2A, EL2B Comb electrode IL1, IL2 Insulating protective film LAL1A, LAL1B Liquid crystal alignment regulating direction in each alignment pattern AL1, AL2 Alignment layer POL1, POL2 Polarizing plate ALD2 Rubbing direction REF Light reflection plate QP λ / 4 plate ALD1A, ALD1B Liquid crystal alignment easy axis LCL Liquid crystal layer LUV1, LUV2 Linear polarization direction of irradiated ultraviolet light PMASK Photomask

Claims (9)

少なくとも一方が透明な一対の基板と、前記一対の基板の少なくとも一方の基板に形成された、前記基板面に略平行な成分を持つ電界を前記液晶層に印加するための電極群と、前記一対の基板間に配置された液晶層と、該液晶層と前記一対の基板の少なくともどちらか一方の基板の間に配置された、二つの方向に液晶配向規制処理された配向層とを有する液晶表示素子において、
前記配向層の液晶配向規制処理が、前記基板表面上の配向層に化学反応を与え得る光を直線偏光光として照射する処理であり、
前記配向層が、複数回の前記直線偏光光照射に対して、その液晶配向規制方向が、最後に照射された直線偏光光の偏光方向に対応した液晶配向規制方向となる光反応性材料からなることを特徴とするネマチック液晶を用いた液晶表示素子。
A pair of substrates at least one of which is transparent; an electrode group formed on at least one of the pair of substrates for applying an electric field having a component substantially parallel to the substrate surface to the liquid crystal layer; A liquid crystal display comprising: a liquid crystal layer disposed between the substrates; and an alignment layer disposed between the liquid crystal layer and at least one of the pair of substrates and subjected to liquid crystal alignment regulation processing in two directions. In the element
The liquid crystal alignment regulating process of the alignment layer is a process of irradiating light that can give a chemical reaction to the alignment layer on the substrate surface as linearly polarized light,
The alignment layer is made of a photoreactive material whose liquid crystal alignment regulating direction is a liquid crystal alignment regulating direction corresponding to the polarization direction of the last irradiated linearly polarized light with respect to a plurality of times of the linearly polarized light irradiation. A liquid crystal display element using a nematic liquid crystal characterized by the above.
前記配向層の液晶配向規制処理のうち少なくとも一つが、前記基板表面上の配向層に化学反応を与え得る光を直線偏光光として照射する代わりに、無偏光光を基板法線に対して斜め方向から入射する光として照射する処理であり、
前記配向層が、複数回の前記斜め入射光照射に対して、その液晶配向規制方向が、最後に照射された斜め入射光の斜め入射方向に対応した液晶配向規制方向となる光反応性材料からなることを特徴とする請求項1記載のネマチック液晶を用いた液晶表示素子。
At least one of the liquid crystal alignment regulation treatments of the alignment layer is a direction oblique to non-polarized light with respect to the substrate normal instead of irradiating light that can give a chemical reaction to the alignment layer on the substrate surface as linearly polarized light. Irradiating as incident light from
From the photoreactive material in which the alignment layer has a liquid crystal alignment regulation direction corresponding to the oblique incidence direction of the obliquely incident light irradiated last, with respect to the multiple incidences of the oblique incident light irradiation. The liquid crystal display element using the nematic liquid crystal according to claim 1.
前記二つの液晶配向規制処理の一方が、当該処理対象となる領域全体に一様に施される処理であり、かつもう一方の液晶配向規制処理が、当該処理対象となる領域の一部分のみに選択的に施される処理であることを特徴とする請求項1又は2記載のネマチック液晶を用いた液晶表示素子。 One of the two liquid crystal alignment regulation processes is a process uniformly applied to the entire area to be processed, and the other liquid crystal alignment regulation process is selected only for a part of the area to be processed. 3. A liquid crystal display element using a nematic liquid crystal according to claim 1, wherein the liquid crystal display element is a treatment applied automatically. 前記異なる二つの液晶配向規制方向が基板面内で略直交し、かつ、すくなくとも一方の液晶配向規制方向における基板面からの起き上がり角が略0度であることを特徴とする請求項1、2又は3記載のネマチック液晶を用いた液晶表示素子。 The two different liquid crystal alignment regulating directions are substantially perpendicular to each other in the substrate surface, and the rising angle from the substrate surface in at least one liquid crystal alignment regulating direction is substantially 0 degree. 3. A liquid crystal display device using the nematic liquid crystal according to 3. 前記液晶層として、不斉分子を組成成分として含有する液晶材料からなることを特徴とする請求項1、2、3又は4記載のネマチック液晶を用いた液晶表示素子。 5. The liquid crystal display element using a nematic liquid crystal according to claim 1, wherein the liquid crystal layer is made of a liquid crystal material containing an asymmetric molecule as a composition component. 前記液晶層として、その誘電異方性の符号が印加される交流電界の周波数に依存して正・負両方とり得る液晶材料からなることを特徴とする、請求項1、2、3、4又は5記載のネマチック液晶を用いた液晶表示素子。 The liquid crystal layer is made of a liquid crystal material that can take both positive and negative depending on the frequency of an alternating electric field to which the sign of dielectric anisotropy is applied. 5. A liquid crystal display device using the nematic liquid crystal according to 5. 前記電極群を構成する電極の少なくとも一部が櫛歯状電極であることを特徴とする、請求項1、2、3、4、5又は6記載のネマチック液晶を用いた液晶表示素子。 The liquid crystal display element using a nematic liquid crystal according to claim 1, wherein at least a part of the electrodes constituting the electrode group is a comb-like electrode. 前記少なくとも一部が櫛歯状電極とは別に、前記一対の基板のそれぞれの基板上に配置された、対となる電極を有することを特徴とする、請求項7記載のネマチック液晶を用いた液晶表示素子。 The liquid crystal using nematic liquid crystal according to claim 7, wherein the at least part has a pair of electrodes disposed on each of the pair of substrates separately from the comb-like electrodes. Display element. 前記一対の基板のどちらかの基板上に、光反射板が配置されたことを特徴とする、請求項1、2、3、4、5、6、7又は8記載のネマチック液晶を用いた液晶表示素子。 9. A liquid crystal using a nematic liquid crystal according to claim 1, wherein a light reflecting plate is disposed on one of the pair of substrates. Display element.
JP2006010892A 2006-01-19 2006-01-19 Liquid crystal display element using nematic liquid crystal Expired - Fee Related JP4863355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010892A JP4863355B2 (en) 2006-01-19 2006-01-19 Liquid crystal display element using nematic liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010892A JP4863355B2 (en) 2006-01-19 2006-01-19 Liquid crystal display element using nematic liquid crystal

Publications (2)

Publication Number Publication Date
JP2007193085A true JP2007193085A (en) 2007-08-02
JP4863355B2 JP4863355B2 (en) 2012-01-25

Family

ID=38448835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010892A Expired - Fee Related JP4863355B2 (en) 2006-01-19 2006-01-19 Liquid crystal display element using nematic liquid crystal

Country Status (1)

Country Link
JP (1) JP4863355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219191A (en) * 2006-02-17 2007-08-30 V Technology Co Ltd Method for manufacturing substrate for liquid crystal display

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
JPH08160442A (en) * 1994-12-01 1996-06-21 Toshiba Corp Liquid crystal display element and liquid crystal display device
JPH11181127A (en) * 1997-12-19 1999-07-06 Hayashi Telempu Co Ltd Preparation of oriented film, oriented film and liquid crystal display equipped therewith
JPH11212095A (en) * 1998-01-26 1999-08-06 Hitachi Ltd Liquid crystal display device and production therefor
WO2002006887A1 (en) * 2000-07-13 2002-01-24 Japan Science And Technology Corporation Liquid crystal display
JP2002090750A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002250924A (en) * 2000-11-24 2002-09-06 Hong Kong Univ Of Science & Technology Method for manufacturing photo-alignment film
JP2005105204A (en) * 2003-10-01 2005-04-21 Jsr Corp Method for producing liquid crystal alignment layer, oriented liquid crystal alignment layer and liquid crystal display element
JP2005148442A (en) * 2003-11-17 2005-06-09 Stanley Electric Co Ltd Liquid crystal display element and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
JPH08160442A (en) * 1994-12-01 1996-06-21 Toshiba Corp Liquid crystal display element and liquid crystal display device
JPH11181127A (en) * 1997-12-19 1999-07-06 Hayashi Telempu Co Ltd Preparation of oriented film, oriented film and liquid crystal display equipped therewith
JPH11212095A (en) * 1998-01-26 1999-08-06 Hitachi Ltd Liquid crystal display device and production therefor
WO2002006887A1 (en) * 2000-07-13 2002-01-24 Japan Science And Technology Corporation Liquid crystal display
JP2002090750A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002250924A (en) * 2000-11-24 2002-09-06 Hong Kong Univ Of Science & Technology Method for manufacturing photo-alignment film
JP2005105204A (en) * 2003-10-01 2005-04-21 Jsr Corp Method for producing liquid crystal alignment layer, oriented liquid crystal alignment layer and liquid crystal display element
JP2005148442A (en) * 2003-11-17 2005-06-09 Stanley Electric Co Ltd Liquid crystal display element and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219191A (en) * 2006-02-17 2007-08-30 V Technology Co Ltd Method for manufacturing substrate for liquid crystal display

Also Published As

Publication number Publication date
JP4863355B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
EP2598943B1 (en) Liquid crystal display and method for preparation thereof
KR0173803B1 (en) Lcd element and its manufacture
US9007551B2 (en) Liquid crystal display device
KR100947202B1 (en) Liquid crystal display device using nematic liquid crystal
JP2005521101A (en) Liquid crystal device, method for manufacturing liquid crystal device, method for controlling liquid crystal device
JP2009251324A (en) Liquid crystal display device
EP1669797B1 (en) Liquid crystal display element
US7499124B2 (en) Polymer dispersed liquid crystal device conditioned with a predetermined anchoring energy, a predetermined polymer concentration by weight percent and a predetermined cell gap to enhance phase separation and to make smaller and more uniform liquid crystal droplets
JP5127006B2 (en) Liquid crystal display element using nematic liquid crystal
JP4031658B2 (en) Liquid crystal display
JP4863355B2 (en) Liquid crystal display element using nematic liquid crystal
JP3400403B2 (en) Liquid crystal display
CN114902126A (en) Liquid crystal device having a plurality of liquid crystal cells
JP4241364B2 (en) Liquid crystal display device and electronic device
EP1091237A1 (en) Liquid crystal device
Shin Waveguide Liquid Crystal Displays and Optical Diffraction Grating Based on Flexoelectric Liquid Crystals and Polymer Stabilized Liquid Crystals
JP2002258306A (en) Liquid crystal display device
Yoon et al. Multi-domain vertical alignment of nematic liquid crystals for reduced off-axis gamma shift
JP2005062543A (en) Liquid crystal alignment substrate, method for manufacturing the same, liquid crystal display, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees